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Abstract: With the increasing demand for energy capacity and power density in battery systems, the
thermal safety of lithium-ion batteries has become a major challenge for the upcoming decade. The
heat transfer during the battery thermal runaway provides insight into thermal propagation. A better
understanding of the heat exchange process improves a safer design and enhances battery thermal
management performance. This work proposes a three-dimensional thermal model for the battery
pack simulation by applying an in-house model to study the internal battery thermal propagation
effect under the computational fluid dynamics (CFD) simulation framework. The simulation results
were validated with the experimental data. The detailed temperature distribution and heat transfer
behaviour were simulated and analyzed. The thermal behaviour and cooling performance were
compared by changing the abnormal heat generation locations inside the battery pack. The results
indicated that various abnormal heat locations disperse heat to the surrounding coolant and other
cells. According to the current battery pack setups, the maximum temperature of Row 2 cases can
be increased by 2.93%, and the temperature difference was also increased. Overall, a new analytical
approach has been demonstrated to investigate several stipulating battery thermal propagation
scenarios for enhancing battery thermal performances.

Keywords: lithium-ion batteries; CFD modelling; air cooling; heat transfer; thermal management

1. Introduction

Electrification will be increasingly integrated to our daily lives with the rapid develop-
ment of energy storage systems. Lithium-ion batteries (LIBs), one of the most commonly
used energy storage units, are now found everywhere owing to their high energy den-
sity, high power output, low self-discharge rate and little memory effect. Nevertheless,
these advancements also have some counterparts, potentially causing a thermal runaway
(TR) phenomenon due to its less thermal stability. Many LIB fires happened in the recent
decade [1–4], and battery safety has become an essential topic for the development of LIBs.
Due to different energy demands, battery cells are usually packed in series or in parallel
to work as a battery pack or a battery system. Considering the performance of LIBs, the
operating temperature range stays from 15 ◦C to 40 ◦C based on battery types [5], while the
temperature difference is under 5 ◦C. In order to keep the most suitable working tempera-
ture range and avoid thermal issues, such as battery cell dissimilarity [6], gradual aging
effects [7], etc., a battery thermal management system (BTMS) becomes an essential compo-
nent for battery packs or systems [8]. In practical situations, some improper conditions,
such as mechanical, electrical, and thermal abuse, cause an abnormal temperature. The
exothermic reaction occurs when the battery temperature is over a specific value, leading
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to heat cumulation. Afterwards, the other chain reactions are triggered with more heat and
gas, resulting in battery fire and explosion. This process is considered a battery TR.

Based on various TR trigger conditions, overheating initiation can be generated by
different situations: (a) cooling systems fail to control the temperature; (b) internal defects,
such as short-circuiting, generate heat and transfer to adjacent cells; (c) external heat
leads to unexpected high temperature. Many research works have been done for the TR
investigation. Goupil et al. [9] analyzed the influence of the heating rate on the outgassing
and cell casing temperature, as well as the comparison of produced flame and released
smoke. The results showed that a high heating rate leads to a more violent TR, while it does
not affect maximum cell and outgassing temperature too much. Chen et al. [10] applied the
t2 fire principle to numerically predict the fire hazard and total heat release. The ignition
time difference parameter was also investigated for the application of battery fire analysis.
Huang et al. [11] studied the feature of battery TR under a different state of charge (SOC).
The safe, critical, and hazardous regions were defined based on the response to thermal
behaviour. The TR mechanism is still the current research focus in battery thermal safety.

In most scenarios, a single cell TR will propagate to the neighbour cells, accelerating
the heat cumulations and leading to a serious situation. Therefore, an effective and efficient
BTMS keeps the battery or battery systems working under a suitable condition and provides
a fire-safe environment before the TR occurs. Depending on the cooling medium, BTMS
can be categorized by several types: air cooling BTMS [12–15], liquid cooling BTMS [16–18],
heat pipe cooling BTMS [19–21], phase change material (PCM) cooling BTMS [22–26], and
hybrid cooling BTMS [27–30]. The performance and effectiveness of the BTMS play an
important role in battery thermal safety.

Compared to other cooling BTMS, air cooling BTMS is one of the most suitable
cooling methods due to its relatively low cost of manufacturing and maintenance, simple
configuration, high reliability, etc. Numerous studies have been done in this area from
both experimental and numerical perspectives. Lopez et al. [31] focused on experimental
elucidation and analysis of various LIB module configurations. The TR propagation has
been characterized, and the safe practices were achieved by increasing the inner cell spacing.
With the development of computer science, the computational fluid dynamics (CFD)
technique has become a mature and effective tool to analyze many perspectives of battery
studies, such as the single battery electro-thermal performance [32–34], each component
of the battery cell [35–37], multi-scale multi-domain thermal analysis [38–41], the battery
pack/module overall performances [42–44], etc. Tang et al. [45] built an electrochemical-
thermal model to optimize the structural design of the battery module. In addition, various
modes of heat transfer were investigated during the TR propagation. Heat conduction is
the primary heat transfer mode for the direct-connect cell mode, while heat radiation is the
primary mode for the indirect-connect cell mode. Chen et al. [46] introduced three novel
schemes, hollow spoiler prisms, added PCM, and fins, to enhance the heat transfer capacity
and safety of a battery pack. The numerical comparison results showed that compared to
the conventional air-cooling system, all the proposed three schemes improved the cooling
performance, where the case with a fin and PCM filled spoiler prism demonstrated the best
result and prevented the TR propagation among battery cells. Yang et al. [47] investigated
the battery cooling performance of the reverse-layered stagger-arranged battery pack
configuration using CFD simulations and optimized the temperature distribution by adding
a spoiler. The maximum temperature of the battery pack decreased by 1.85 K compared
to the one without a spoiler. Zhai et al. [48] proposed an experimental-based Domino
prediction model to predict the TR propagation path and probability. Meanwhile, the
thermal analysis of three different trigger TR battery locations was demonstrated, and the
whole TR propagation process was divided into four stages.

The cell TR or abnormal heat generation is an essential factor for BTMS. It also affects
the temperature distribution of the whole battery system, which links to the battery energy
density. Additionally, understanding the TR occurrence reduces the risks of battery fires.
In essence, the in-depth characterisation of battery internal thermal propagation and heat
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transfer behaviours are key to fully realizing the effectiveness of BTMS and improving the
battery performance without sacrificing safety risks. This study aims to investigate the
influence of different TR cell locations on TR propagation based on the forced-air cooling
BTMS. Based on previous research works and the research motivations, the key objectives
of this work are constructed as follows:

• A three-dimensional thermal model with an in-house written code will be developed,
and the detailed temperature distribution will be replicated by CFD simulations.

• The numerical results will be validated against the previous experimental results, and
more scenarios with various conditions will be presented and compared.

• The heat transfer mechanism will be analyzed, and this will provide insight into the
design of BTMS and the improvement of battery safety.

• The potential application of this work and the future perspectives will be presented.

The paper is constructed as follows. The overall numerical model framework is
introduced in Section 2, and the model validation and verification are described as well.
After that, the numerical analysis and results are exhibited in Section 3. In Section 4, the
conclusions and future perspectives are demonstrated.

2. Numerical Model and Methodology

In this work, the commercial CFD software (ANSYS-Fluent) with an in-house written
code is employed to simulate the battery thermal behaviour and replicate the temperature
distribution across the battery pack. A battery pack with 24 × 18,650 cells was utilised,
which uses air cooling BTMS by a fan located at the outlet, shown in Figure 1. The
experiments were carried out by Behi. et al. [49] under the case with cell spacing of 2 mm
and air velocity of 2 m·s−1. The battery pack comprises 24 cylindrical cells in parallel-series
connection, and 54 holes (6 rows × 9 columns) were embedded in the inlet surface. The
whole battery pack is set as 130 mm × 90 mm × 70 mm, and the diameter of each inlet hole
is 5 mm. Besides, the main parameters of the single battery cell, the ventilation fan, and the
outer polyvinyl chloride (PVC) case are summarized in Table 1, respectively.

Batteries 2022, 8, x FOR PEER REVIEW 4 of 13 
 

 

Figure 1. Schematic figure of the battery pack with 24 18,650 cells. 

2.1. CFD Model Description 

CFD modelling is fundamentally based on the governing equations of fluid dynam-

ics. These equations represent the mathematical statement of the conservation laws of 

physics. Also, the CFD model stands for the basic description of the fluid flow processes 

[50,51]. The appropriate numerical form of the physical boundary condition depends on 

the mathematical form of the governing equations and numerical algorithm used [52–54]. 

Generally, the governing equations include mass, momentum, and energy conservation, 

which are expressed below: 

The mass conservation equation: 

𝜌𝑎 (
𝜕

𝜕𝑡
+ ∇𝜗) = 0 (1) 

The momentum conservation equation: 

𝜕(𝜌𝑎𝜗)

𝜕𝑡
+ ∇(𝜌𝑎𝜗𝜗) = −∇𝑃𝑎 (2) 

The energy conservation equation: 

𝜕(𝜌𝑎𝐶𝑝𝑎𝑇𝑎)

𝜕𝑡
+ ∇ ∙ (𝜌𝑎𝐶𝑝𝑎𝜗𝑇𝑎) = ∇ ∙ (𝐾𝑎∇𝑇𝑎) (3) 

These governing equations are used for computational procedures in finite difference 

or finite volume methods. In these equations, ρ, Cp, T, P, and K stand for the density, spe-

cific heat, temperature, pressure, and heat conductivity coefficient, respectively. The sub-

script a denotes the cooling air. 

For the battery cell, the governing equations also can be applied. More specifically, 

the energy equation can be written as follows: 

𝜌𝑏𝐶𝑝𝑏
𝜕𝑇

𝜕𝑡
= ∇ ∙ (𝐾𝑏∇𝑇) + 𝑞 (4) 

where q represents the heat generation rate per unit volume of a single battery, and the 

subscript b denotes the battery cell. 

Figure 1. Schematic figure of the battery pack with 24 18,650 cells.



Batteries 2022, 8, 216 4 of 13

Table 1. Parameters and properties of the battery cell, ventilation fan and outer case.

Parameters of Battery Cell Parameters of Ventilation Fan Parameters of Outer Case

Specific heat capacity 1200 J·kg−1K−1 Outlet diameter 50 mm Specific heat capacity 600 J·kg−1K−1

Density 2722 kg·m−3 Inlet air temperature 299.15 K Density 100 kg·m−3

Anisotropic thermal
conductivities

kr = 0.2 W·m−1K−1,
kz = 37.6 W·m−1K−1

Pack size (length ×
width × height)

130 mm × 90 mm ×
70 mm

Thermal
conductivities 0.1 W·m−1K−1

2.1. CFD Model Description

CFD modelling is fundamentally based on the governing equations of fluid dynamics.
These equations represent the mathematical statement of the conservation laws of physics.
Also, the CFD model stands for the basic description of the fluid flow processes [50,51].
The appropriate numerical form of the physical boundary condition depends on the mathe-
matical form of the governing equations and numerical algorithm used [52–54]. Generally,
the governing equations include mass, momentum, and energy conservation, which are
expressed below:

The mass conservation equation:

ρa

(
∂

∂t
+∇

→
ϑ

)
= 0 (1)

The momentum conservation equation:

∂(ρa
→
ϑ )

∂t
+∇

(
ρa
→
ϑ
→
ϑ

)
= −∇Pa (2)

The energy conservation equation:

∂
(
ρaCpaTa

)
∂t

+∇·
(

ρaCpa
→
ϑ Ta

)
= ∇·(Ka∇Ta) (3)

These governing equations are used for computational procedures in finite difference
or finite volume methods. In these equations, ρ, Cp, T, P, and K stand for the density,
specific heat, temperature, pressure, and heat conductivity coefficient, respectively. The
subscript a denotes the cooling air.

For the battery cell, the governing equations also can be applied. More specifically, the
energy equation can be written as follows:

ρbCpb
∂T
∂t

= ∇·(Kb∇T) + q (4)

where q represents the heat generation rate per unit volume of a single battery, and the
subscript b denotes the battery cell.

Moreover, the CFD methodology provides a numerical solution for turbulence flow.
The shear-stress transport k-ω model simulates the turbulence flow during the battery pack
cooling process. The k-ω model has improved the accuracy of the turbulence model for
predicting free shear flows. The major two components, turbulence kinetic energy k and
the specific dissipation rate ω, are calculated from the below transport equations:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

(
Γk

∂k
∂xj

)
+ Gk −Yk + Sk + Gb (5)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj

(
Γω

∂ω

∂xj

)
+ Gω −Yω + Dω + Sω + Gωb (6)
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where Gk represents the production of turbulence kinetic energy; Gω represents the gen-
eration of specific dissipation rate ω. Γ; Y and S represent the effective diffusivity, the
dissipation, and user-defined source terms, respectively. Dω stands for the cross-diffusion
term. Moreover, Gb and Gωb account for buoyancy terms. All the terms are calculated by
the CFD software during the simulation process.

2.2. Model Verification and Validation

Typically, the cooling performance of the BTMS is evaluated by three index parameters:
the maximum temperature, temperature difference and energy consumption [55]. To
validate the numerical results of this work, the experimental data generated by Behi
et al. [49] is chosen. The simulation configuration is the same as the experiment setup,
which consists of a 24 cells battery pack, a PVC case, and a cooling fan, as shown in Figure 1.
The testing point of the K-type thermocouple is designated at the specific position, which is
the position of cell 5 (C5) and cell 15 (C15), as shown in Figure 2.
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Figure 2. Schematic figure of thermocouple testing point.

Under normal working conditions, the battery pack completed the discharge cycle
with a 1.5 C discharge rate, which could be considered a heat source equal to 48,750 W·m−3.
The air inlet velocity is 2 W·m−3 with coupled boundary conditions among air-battery and
air-PVC case interfaces. The boundary walls are specified as adiabatic non-slip walls. The
second-order upwind spatial discretization is applied for pressure, momentum, energy,
turbulent kinetic energy and specific dissipation rate.

To achieve a credible CFD solution, mesh independence analysis is required to quantify
the numerical errors and uncertainties. Based on the experimental layout, the geometry
of the whole battery pack was built, and the computational region was mapped by an
unstructured mesh, shown in Figure 3a. The maximum volume temperature and the surface
weighted average temperature specified by C5 and C15 under various mesh element sizes
to evaluate the mesh independence were illustrated in Figure 3b. Compared to the different
grid size and element numbers, it is observed that the maximum volume temperature and
the surface weighted average temperature of both cells stabilizes when the grid amount
reaches 1.99 million. Hence, the medium element number of 1.99 million grids is applied
for this battery pack simulation.
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As shown in Figure 2, the experimental temperature data was collected and used to
validate the numerical results. Validation of the CFD model means validating the numerical
calculations by establishing a range of physical conditions obtained from the calculations
and performing comparisons of the results from the CFD code with experiments that span
the range of conditions. The comparison between the experimental data (black) and pre-
dicted temperature from the CFD model (red) is presented in Figure 4a, which demonstrates
that the numerical results achieve an acceptable agreement with the experimental data.
The relative error between the experimental and numerical results is approximately less
than 0.3%. Thus, the error is acceptable, and the numerical model can capture the thermal
behaviour and demonstrate proper prediction for the current setups. Figure 4b shows the
temperature distribution of the cross-section plane for the whole computational domain.
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3. Result and Discussion
3.1. Applied Extreme Heat to the Model

During the thermal runaway propagation, extra heat is generated due to complex
exothermic reactions, and the temperature of the thermal runaway cell increased dra-
matically. This feather was captured experimentally by Lopez. et al. [31]. Based on the
experimental data, we applied an in-house written user-defined function to replicate the
temperature change of the thermal runaway cell. By using this code in the previously vali-
dated model, the current case successfully simulates the scenario with a cell experiencing
thermal runaway. The case layout is the same as the pre-mentioned case, and an abnormal
heat generation is applied in cell 6, shown in Figure 5a.
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Figure 5. (a) Schematic figure of the battery with a thermal runaway cell; (b) Temperature distribution
in the cross-section plane under this scenario.

The heat propagation inside the battery pack was clearly presented in Figure 5b.
Compared to Figure 4b, the added abnormal heat generation increased the maximum
temperature with the value of 12 K. Additionally, the temperature difference also increased,
which changed the original temperature distribution of the force-air cooling case.
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In this case, the abnormal heat generation is applied, and the neighboring cell tempera-
ture is calculated and compared with the experimental data extracted from Lopez. et al. [31].
The comparison results between the numerical and experimental data are demonstrated in
Figure 6, indicating a satisfactory agreement. The error of the maximum temperature for
the neighboring cell is less than 1 K. Therefore, this case can be further expanded to analyze
the heat transfer mechanism under the abnormal heat generation scenarios.
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3.2. Different Abnormal Heat Generation Locations

Many previous studies focused on the design feature, such as channel configuration
and coolant properties, to investigate the thermal behaviour of the battery pack and the
cooling process. Different thermal runaway locations play an essential role in battery heat
transfer and battery safety. Moreover, the heat propagation also affects the trigger of the
thermal runaway for neighboring battery cells, which determines whether the abnormal
heat generation will transfer to a severe battery fire or explosion. Experimental study
on this point will cover an expensive expense, and it is hard to compare with various
conditions. Hence, numerical investigation demonstrates an effective and efficient way to
carry out the comparison study. It is safer and less polluted than heating or burning real
battery cells and packs.

The current battery pack configuration from the top view of the battery pack consists
of six cells in a row, the longitudinal direction along the forced-air cooling path, and four
cells in a column, which is the transverse direction. Therefore, the battery pack can be
treated as a symmetry set up along the air velocity direction. The total four rows can be
divided into two rows near the outer case wall (Row 1 & 4), and another two in the middle
(Row 2 & 3). Also, the top half with Row 1 & 2 can be mirrored to the bottom half with Row
3 & 4.

With the application of the in-house written user-defined function code, abnormal
heat generation can be applied to the battery pack directly. The comparison of the various
locations along the same row can be observed. For Row 2, the abnormal heat generation
was applied from C2 (the nearest cell located to the air inlet) to C22 (the nearest cell located
to the air outlet). The temperature distribution is shown in Figure 7. The applied abnormal
heat generation was controlled as a thermal runaway in a single cell, but the heat did not
trigger the thermal runaway of adjacent cells. The heat propagation has shown that the
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abnormal heat was transferred to the adjacent cell most along the longitudinal direction
due to the forced-air cooling.
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Figure 7. Comparison of the temperature distributions among the applied abnormal heat generation
on different cells in Row 2.

Due to the forced-air cooling, the abnormal heat was pushed to one dimension. For
example, the case on the right of the top line showed that the cooling was efficient for the
first two columns since the cooling air had not been heated up by the thermal runaway
cell. Moreover, the location of the thermal runaway or abnormal heat generation affected
the BTMS performance related to the maximum temperature and temperature difference.
The thermal runaway cell not only heated the adjacent cells but also heated the cooling air,
reducing the cooling performance of the downstream cells. From Figure 7, it is easy to find
that the cells located upstream of the cell with abnormal heat generation were similar to
the base case without extra heat. The temperature of the downstream cells was increased
due to the abnormal heat generation, and the temperature difference was also increased.

According to the various locations of the thermal runaway cell, the maximum and
minimum temperatures of C15 were compared and demonstrated in Figure 8. C15 is the cell
in the same column as C14 and is also in Row 3. It can be concluded that the temperature of
C15 was stabilized since the thermal runaway cell moved downstream of itself. Also, both
the maximum and minimum temperatures increased by 9.1 K and 7.7 K, respectively, which
illustrates that when abnormal heat is generated, or thermal runaway occurs, at the early
stage, which is before the thermal runaway is triggered of adjacent cells, the increasing
temperature is due to the fact that the cooling air was heated up and the cooling efficiency
was reduced. Compared to cases C2 and C22, the maximum temperature was increased by
2.93%, and the minimum temperature was increased by 2.52%.
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Figure 8. Temperature changes of cell 15 among the applied abnormal heat generation on different
cells in Row 2.

For Row 1, the thermal behaviour was similar to the Row 2 scenarios, shown in
Figure 9. The demonstrated cases have abnormal heat generation at C5, C13 and C21.
Considering the temperature change of C15, Row 2 (C6, C14, C22) has more influence on
the temperature change than Row 1 (C5, C13, C21), and C15 is closer to Row 2. Additionally,
comparing C5 case with C13 and C21, the corner temperature is higher, which is the same
reason that the cooling air was heated up and the cooling performance is not enough for
the corner cell.
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4. Conclusions

This work developed a three-dimensional thermal model for the battery pack simu-
lation by applying an in-house written code by ANSYS Fluent. The detailed temperature
distribution of the whole battery pack was demonstrated under normal operating condi-
tions and severe conditions, sucfigureh as thermal runaway or abnormal heat generation.
After validating both scenarios, the comparison study of various extreme heat locations
was carried out. The heat transfer mechanism inside the battery pack was investigated. The
battery cell with abnormal heat generation not only increases the temperature of adjacent
cells but also can heat the cooling air and leads to a relatively poor cooling performance.
Take Row 2 cases as an example, the maximum temperature can be increased by 2.93%, and
the cell temperature unbalancing was also increased.

The results highlight one significant advantage of the numerical analysis, which is
the capability to simulate severe scenarios and ease of comparison with many different
setups. The proposed model can be further applied to battery performance evaluation
and optimization design. For future perspectives, more parameters can be involved and
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analyzed at the same time, including energy density [56] and charging cycle parameters.
Moreover, these numerical results can be built as a dataset for coupling with machine
learning techniques [57], such as artificial neural networks, to comprehensively enhance
both the battery cell and the BTMS performance simultaneously, as well as improve the
safety of the battery and energy storage system.
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