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Abstract.
Background: How the relationship between obesity and MRI-defined neural properties varies across distinct stages of
cognitive impairment due to Alzheimer’s disease is unclear.
Objective: We used multimodal neuroimaging to clarify this relationship.
Methods: Scans were acquired from 47 patients clinically diagnosed with mild Alzheimer’s disease dementia, 68 patients
with mild cognitive impairment, and 57 cognitively healthy individuals. Voxel-wise associations were run between maps of
gray matter volume, white matter integrity, and cerebral blood flow, and global/visceral obesity.
Results: Negative associations were found in cognitively healthy individuals between obesity and white matter integrity
and cerebral blood flow of temporo-parietal regions. In mild cognitive impairment, negative associations emerged in frontal,
temporal, and brainstem regions. In mild dementia, a positive association was found between obesity and gray matter volume
around the right temporoparietal junction.
Conclusion: Obesity might contribute toward neural tissue vulnerability in cognitively healthy individuals and mild cognitive
impairment, while a healthy weight in mild Alzheimer’s disease dementia could help preserve brain structure in the presence
of age and disease-related weight loss.
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INTRODUCTION

Obesity significantly increases vascular risk and
has been identified as a risk factor for Alzheimer’s
disease (AD) [1]. The potential involvement of vas-
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cular factors in AD etiology has received increased
scrutiny [2]. A recent meta-analysis on 1.3 million
individuals showed that higher body mass index
(BMI) is associated with increased dementia risk
when measured earlier than 20 years before diag-
nosis [3]. Earlier evidence had also suggested that
risk is greater for midlife obesity than old age
obesity [4]. This could be due to the pathologi-
cal cascade of obesity-mediated mechanisms that
can induce neuroinflammation, blood-brain barrier
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breakdown, production of reactive oxygen species,
and microglial activation [5]. These mechanisms can
promote the build-up of AD pathology while simul-
taneously accelerating neuronal damage. Overall, the
available evidence suggests common neurodegen-
erative pathways between the two conditions [5].
However, meta-analytical evidence also shows that
higher BMI is associated with lower dementia risk
when measured later than 10 years before diagno-
sis [3]. Body fat-mediated mechanisms may modify,
therefore, AD risk across disease stages differently.

Although obesity has an overall negative effect on
neural health, cerebral constituents have a variable
susceptibility to AD and obesity. Patients in the early
stages of AD typically present with reduced cerebral
blood flow (CBF) in the posteromedial parietal areas,
reduced white matter integrity (WMI) and neuronal
loss in mediotemporal areas, extending to other brain
regions with disease progression [6]. In contrast, obe-
sity seems to affect frontal brain regions among older
individuals, i.e., > 65 years of age, while temporal
areas are more vulnerable to obesity-related dam-
age in midlife, i.e., > 40 years of age [7, 8]. Since
both AD and obesity can significantly alter cere-
bral constituents, that an interaction between these
pathologies can exacerbate the above effects is not
surprising, with higher age playing a catalytic role
[1]. Although the prevalence of both obesity and
AD rates have risen in the past decades, few studies
have explored the association between brain struc-
ture, perfusion and obesity in patients across the
clinical spectrum of AD, and the evidence is largely
restricted to brain volume [9, 10]. It is, therefore, a
clinical priority to examine the link between obesity, a
prevalent but modifiable risk factor [1, 11], and brain
properties.

Research has shown conflicting evidence sur-
rounding the effects of obesity on the brain across
various stages of life and disease [1, 3]. Given the
uncertainty, a characterization of the neural pheno-
type associated with obesity that can be stratified
using cognitive status would be extremely valuable in
the management of patient body-fat composition to
reduce damage to the brain, in clinical settings. The
present study investigated the relationship between
structural and perfusion brain parameters and indices
of obesity across three diagnostic groups: patients
with mild AD dementia (ADD), patients with mild
cognitive impairment (MCI), and cognitively healthy
individuals (CH). By analyzing multimodal brain
images containing information about gray matter vol-
ume (GMV), WMI, and CBF, a holistic approach was

used to examine the interplay between obesity and
cognitive staging in the cognitively healthy to AD
dementia continuum.

MATERIALS AND METHODS

Participants

Datasets from 172 participants recruited as part of
the VPH-DARE@IT EU-funded project coordinated
by the University of Sheffield, Department of Neuro-
science (http://www.vph-dare.eu/) were included in
this study. Experimental procedures complied with
the declaration of Helsinki and written informed
consent was obtained from all participants. Ethical
approval was obtained from the Yorkshire and Hum-
ber Regional Ethics Committee, Ref No: 12/YH/0474
for the participants from the Sheffield (UK) cohort
and from the ethics committee of the Northern Savo-
nia Hospital District for the participants from Kuopio
(Finland). The participants were divided into patients
with a clinical diagnosis of ADD (n = 47)1, patients
with a diagnosis of MCI (n = 68) and CH (n = 57),
following established clinical diagnostic procedures.
Specifically, diagnoses of ADD or MCI due to AD
were reached based on clinical criteria [12, 13]. Diag-
noses were formulated following a consensus among
a senior neurologist, a senior clinical neuropsycholo-
gist and a neuroradiologist. In addition, MCI patients
also had clinical follow ups at regular intervals for at
least 4 years to confirm their diagnosis. Cerebrospinal
fluid biomarkers were available for a proportion of the
sample (14 ADD and 20 MCI).

The presence of MRI abnormalities, any major
medical condition or any etiological entity that could
account for the presence of cognitive impairment
were exclusion criteria (see [14] for a comprehen-
sive list). All demographic characteristics, including
specific details on age ranges and averages, are listed
in Table 1.

Indices of obesity

Anthropometric measurements were obtained to
calculate obesity indices. Quetelet’s index was used
to calculate BMI (kg/m2) as an index of global obe-
sity. Waist circumference in centimeters (WC) was
used as an index of abdominal obesity [15, 16].

1This number was reduced to 45 in the WMI analysis due to
two unavailable diffusion scans.

http://www.vph-dare.eu/
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Table 1
Demographic characteristics and cognitive profiles of the three diagnostic groups

Variable ADD (n = 47) MCI (n = 68) CH (n = 57) Statistic

Demographic variables

Parametric tests$ mean (SD) mean (SD) mean (SD) F

Age (y) 68.09 (9.88) 68.56 (9.45) 66.51 (11.11) 0.67
Education%x (y) 10.91 (3.26) 11.78 (3.74) 14.44 (3.29) 15.22
WC (cm) 92.11 (10.95) 96.08 (14.39) 96.32 (13.33) 1.69
GMV&%x (ml) 569.30 (77.26) 605.37 (74.34) 636.19 (70.40) 11.52∗∗∗
CSF&x (ml) 525.83 (153.46) 465.92 (130.73) 412.66 (134.89) 6.68∗∗
TIV (ml) 1491.17 (163.41) 1454.14 (143.54) 1495.70 (173.28) 1.24

Non-Parametric tests+ median (IQR) median (IQR) median (IQR) H

MMSE&%x 21 (17 – 25) 26 (25 – 28) 28 (27 – 29) 69.11∗∗∗
BMIx (kg/m2) 24.82 (22.86 – 28.37) 26.76 (23.40 – 26.76) 27.54 (24.94 – 31.01) 7.87∗
WMV (ml) 416.04 (369.51 – 416.04) 407.54 (370.71 – 446.86) 430.34 (381.55 – 469.56) 4.08
WMH volume (ml)%x 3.53 (1.83 – 7.79) 6.64 (0.64 – 7.86) 3.02 (0.22 – 3.55) 11.44∗∗

Chi square tests# n n n χ2

Males/Females 29/18 31/37 26/31 3.54
APOE genotype: ε2ε2/ε2ε3/ε3ε3/ε4ε2/ε4ε3/ε4ε4 0/6/13/0/16/11 0/3/28/5/28/4 0/7/38/2/9/1 36.96∗∗∗
APOE ε4 non-carriers/ε4 carriers 19/27 31/37 45/12 19.15∗∗∗
Centre (UK/Finland) 24/23 29/39 38/19 7.27∗

Neuropsychological measures

Parametric tests$ mean (SD) mean (SD) mean (SD) F

Category Fluency&%x 12.63 (6.50) 17.85 (5.54) 21.54 (5.28) 30.83∗∗∗

Non- Parametric tests+ M (IQR) M (IQR) M (IQR) H

Prose Memory-Immediate recall&%x 6 (2.25 – 9) 10 (8 – 13) 17 (14 – 19) 84.41∗∗∗
Prose Memory-Delayed recall&%x 4 (2 – 8) 11 (6 – 14) 18 (16 – 20) 96.54∗∗∗
Similarities%x 13.5 (8 – 21) 17 (12 –23) 25 (21.5 – 27.5) 45.37∗∗∗
Letter Fluency&%x 22 (13 – 32) 28.5 (20 – 44) 45 (32.5 – 55) 45.01∗∗∗
Digit Span-Forward 6 (5 – 8) 6 (5 – 8) 7 (5 – 8) 0.72
Digit Span-Backward%x 4 (3 – 5) 5 (3.75 – 6) 5 (4 – 6) 19.08∗∗∗
Boston Naming Test%x 12 (10–14) 13 (12 – 14) 15 (14 – 15) 47.32∗∗∗
Stroop task-error%x 2.5 (0 – 14.5) 0.50 (0 – 2) 0 (0 – 0) 29.47∗∗∗
∗Comparison is significant at 0.05 level (two tailed); ∗∗Comparison is significant at 0.01 level (two tailed); ∗∗∗Comparison is significant at 0.001 level (two tailed); Normality

of data was tested using the Shapiro-Wilk Test of Normality. F, F-statistic; H, H-statistic; IQR, Interquartile range; SD, standard deviation; χ2, Chi-square statistic; $A
one-way ANOVA was run for data that were normally distributed. The F-statistic is reported. +Non-parametric Kruskal-Wallis H tests were run for data that were not
normally distributed. The H statistic is reported. &Significant difference between ADD and MCI; %Significant difference between MCI and CH; xSignificant difference
between CH and ADD; ADD, Alzheimer’s disease dementia; MCI, mild cognitive impairment; CH, cognitively healthy; BMI, body mass index; WC, waist circumference;
GMV, gray matter volume; MMSE, Mini-Mental State Examination.
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MRI acquisition and preprocessing

The imaging protocol included a T1-weighted
and a T2-weighted anatomical image, a diffusion-
weighted image for the analysis of WMI and a
pseudo-continuous arterial spin labelling (pCASL)
sequence for the modelling of blood flow. All images
were acquired using a Philips Ingenia 3T scanner. T1-
weighted images were acquired with the following
specifications: voxel size 0.94 × 0.94 × 1.00 mm3,
matrix size 256 × 256 mm2, repetition time 8.2 ms,
echo time 3.84 ms, flip angle 8◦ field of view 240 ×
240 × 170 mm. T2-weighted images features were
as follows: voxel size 0.532 × 0.532 × 4.000 mm3,
matrix size 432 × 432 mm2, repetition time 3000 ms,
echo time 80 ms, flip angle 8◦ field of view 230 ×
140 × 35 mm. Diffusion-weighted images followed
instead these technical parameters: 32 directions,
voxel size 2.5 mm3 isotropic, matrix size 96 × 94
mm2, repetition time 3 s, echo time 98 ms, flip angle
90◦, field of view 240 × 120 × 240 mm. Finally,
pCASL imaging acquisition consisted of two consec-
utive sequences: an M0 estimation tag, followed by a
pseudo-continuous ASL sequence: voxel size 3 × 3
× 8 mm3 with inter-slice 1 mm gap, matrix size 80 ×
80 mm2, repetition time 4 s, echo time 14 s, flip angle
40◦ field of view 240 × 135 × 240 mm, number of
label/control pairs 73, labelling gap 20 s, labelling
duration 1.65 s, post-labelling delay time 1.525 s.

Gray matter volume

T1-weighted scans were preprocessed and ana-
lyzed using voxel-based morphometry within the
Statistical Parametric Mapping (SPM) 12 software
(The Wellcome Centre for Human Neuroimaging,
London, UK) running in MATLAB (Mathworks Inc.,
Natick, MA, USA). A tissue-class probabilistic seg-
mentation was initially run to separate gray matter
(GM), white matter (WM), and cerebrospinal fluid
for each scan within its native space, according to
the most updated version of the standard voxel-based
morphometry procedures [17]. GM maps were then
registered and normalized to the standard template for
“European” brains and were then smoothed with an
8 mm full-width at half-maximum Gaussian kernel.

White matter integrity

Fractional anisotropy (FA) of diffusion-weighted
images was selected as the WMI index. FA pro-
vides information about the motional anisotropy of

water molecules and is the most widely used mea-
sure of WMI [18, 19]. Each image was preprocessed
using the Functional Magnetic Resonance Imaging
of the Brain (FMRIB) Software Library v5.0.8 (FSL,
http://www.fmrib.ox.ac.uk/fsl). The FSL Diffusion
Toolbox was used to correct for eddy currents and
motion artifacts. A fractional-intensity threshold of
0.5 was applied to the resultant image in order to
strip the skull and generate a binary mask using the
Brain Extraction Tool. This mask was fitted with
the diffusion-tensor model at each voxel to calculate
FA maps. Tract-based spatial statistics [20] was then
applied, where FA maps were initially eroded to elim-
inate outliers. The most representative FA map was
then identified and used as a reference for non-linear
registration. Subsequent to the affine alignment to
the standard Montreal Neurological Institute (MNI)
space, an average of the FA maps was computed.
The resultant ‘average’ FA map was then skele-
tonized and each FA image was projected onto the
skeleton.

Cerebral blood flow

pCASL sequences were acquired to obtain
maps of CBF. pCASL images are usually obtained
by applying multiple radiofrequency pulses to
reduce the duration of application of the pulse
in a continuous arterial-spin-labelling sequence,
successfully combining the advantages of contin-
uous and pulsed arterial-spin-labelling sequences
[21]. The current acquisition included a pCASL
image and an M0 estimation image, which contain
the information about the CBF quantification and
calibration, respectively. The M0 and pCASL
images were used to generate CBF maps in Nordic
Ice (https://www.nordicneurolab.com/en/HelpAll/
nordicICE). The maps were sequentially co-
registered with the T2-weighted and then the
T1-weighted images to maximize inter-tissue demar-
cation and to increase the accuracy of the anatomical
correspondence of the CBF signal. Images were
then modified to increase the signal from the brain
parenchyma and to reduce the contribution to the
signal from the cerebrospinal fluid. Therefore, only
voxels with CBF values enclosing more than 50% of
GM and WM were included in the analysis. Next,
a partial volume correction (PVC) was performed
under the assumption that the perfusion of WM
accounts for 40% of the perfusion of GM [22], as
illustrated below for voxel “i”.

http://www.fmrib.ox.ac.uk/fsl
https://www.nordicneurolab.com/en/HelpAll/nordicICE
https://www.nordicneurolab.com/en/HelpAll/nordicICE
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PVCiCBF
= iCBF × (iGM + iWM > 0.5)

iGM + (0.4 × iWM)

The resultant partial volume corrected images were
then normalized using the standard template for
“European” brains in SPM 12 and smoothed using a
10 × 10 × 12 full-width at half-maximum Gaussian
kernel.

Statistical analysis

Multiple regression models were run using GMV,
WMI, and CBF maps to examine the associations
between these brain parameters and obesity. For all
three diagnostic groups, independent models were
run using the indices of obesity (BMI and WC) as
predictors, controlling for the confounding effects
of age, the Mini-Mental State Examination (MMSE)
score as an index of clinical severity, total intracranial
volume as an index of brain reserve [23], recruitment
centre and sex. The MMSE was not included in the
analysis of cognitively healthy participants given its
limited numerical variability, i.e., a variance of just
2.6 (Table 1). All analyses were carried out voxel-
by-voxel and statistical thresholds were applied.
Voxel-based-morphometry models were thresholded
at a cluster-forming threshold of p < 0.001. The analy-
sis of skeletonized FA maps was run using the FMRIB
Software Library (v5.0.8) using the ‘randomise’ com-
mand and implementing 5000 permutations via a
threshold-free cluster enhancement. Finally, given
the smaller size of the acquisition matrix for CBF
maps, a more lenient cluster-forming threshold of
p < 0.01 was used for these analyses. For all infer-
ential models, only results surviving a family-wise
error-corrected value of p < 0.05 at the cluster level
were considered significant.

To contextualize the pattern of findings in rela-
tion to clinical profiles, we extracted the average
signal from clusters showing significant results and
correlated it with scores on neuropsychological
tests. All results surviving at p < 0.01 were con-
sidered as significant. The neuropsychological tests
measured lexical abilities (Boston Naming test),
semantic memory (Category Fluency test), execu-
tive function (Letter Fluency test, Digit Span test
- backwards, Stroop Error Interference test), long-
term memory (Prose Memory test - immediate and
delayed recall), short-term memory (Digit Span
test- forward), and verbal reasoning (the Similari-
ties subtest of the Wechsler Adult Intelligence Scale)
[14, 24].

RESULTS

There were no significant group differences in
age, total intracranial volume, and WC. Cognitively
healthy participants ranked the highest when it came
to measurements of years of education, MMSE, BMI,
and GMV, while MCI and ADD patients ranked
lower than the cognitively healthy participants, in that
order (Table 1). With respect to cognitive profiles,
all groups had significant differences between their
scores with ADD patients scoring the lowest, cogni-
tively healthy participants performing the highest and
MCI patients having an intermediate performance
(Table 1), with the exception of the Digit Span test –
forward.

Body mass index

In ADD patients, there was a positive associa-
tion between BMI and GMV in right posterolateral
areas, particularly around the temporoparietal junc-
tion. This cluster spanned across the junction and
a large proportion of the occipital lobe that tapered
down anteriorly toward the hippocampus (Table 2).
No significant associations were found between BMI
and measures of WMI. Although the results from the
CBF analysis did not reach significance, the trend
of association observed in these analyses overlapped
with the areas exhibiting BMI-related positive asso-
ciations with GMV.

In the MCI patients, higher BMI was associated
with lower GMV in the occipital and frontal lobes
bilaterally, and the right cerebellum and with lower
CBF in the brainstem, frontoparietal and medial tem-
poral areas (Tables 2 and 3). Left frontal volumes
showed a positive correlation with performance on
the Letter Fluency test. No significant associations
were found between BMI and measures of WMI.

In the cognitively healthy participants, GMV was
negatively associated with BMI in inferior frontal,
occipital, subcortical, and cerebellar regions, bilat-
erally (Table 2). Additionally, higher BMI was
associated with lower FA in the superior longitudinal
fasciculus, fronto-occipital tracts, optic radiations,
middle cerebellar peduncle, cingulum, parahip-
pocampal/hippocampal fibers and fornix (Table 4).
BMI was also negatively associated with CBF
in the bilateral fronto-occipital tracts and in the
superior portions of the parahippocampal fibers
(Table 3). Regional signal extracted from the three
analyses revealed a positive correlation with perfor-
mance on the Category Fluency test, Prose Memory
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(immediate and delayed recall) and the Similarities
test.

Waist circumference

In ADD patients, WC was positively associated
with GMV in the areas around the temporoparietal
junction and in the right cerebellar hemisphere. No
significant associations were found between WC and
measures of WMI. Similar to BMI, the pattern of
association observed in the CBF analysis overlapped
with the areas exhibiting WC-related positive associ-
ations with GMV (Table 2, Fig. 1).

In the MCI group, a negative association was found
between WC and GMV in bilateral inferior frontal,
occipital, and cerebellar regions (Table 2, Fig. 1). A
positive association was found between the extracted
GMV signal from these regions and performance on
the Letter Fluency and Digit Span - forward tests.
No significant associations were found between WC
and measures of WMI. A negative association was
found between WC and CBF in the bilateral hip-
pocampi, parts of the brainstem and frontoparietal
regions, concentrated more in the right hemisphere
(Table 4, Fig. 1).

In the cognitively healthy group, there was a nega-
tive correlation between GMV and WC in the bilateral
occipital lobes, cerebellum and midline structures
(Table 2, Fig. 1). Tracts showing a negative asso-
ciation between FA and WC included the inferior
fronto-occipital fasciculus, cingulum, fornix, and
anterior thalamic radiations (Table 4, Fig. 1). Cog-
nitively healthy participants also showed a negative
association between CBF and WC in the bilateral
frontal lobes that extended backward toward the pari-
etal lobe, joining at the midline and then extending
inferiorly into the temporal lobes. This negative asso-
ciation was also observed in the cerebellum and parts
of the brainstem (Table 3, Fig. 1). Positive corre-
lations were found between regional neural signals
and performance on the Category Fluency test, Prose
Memory-immediate and delayed recall and the Sim-
ilarities test.

DISCUSSION

In this study, evidence from multimodal neu-
roimaging suggests variable associations between
indices of obesity and the brain across three diagnos-
tic statuses. The three groups had substantial baseline
differences in the distribution of their obesity indices.
The distribution of the cognitively healthy group

fell in part within the obese range; that of the MCI
group fell in the overweight range, while the dis-
tribution of the ADD group was within the normal
range. Group differences may be among the drivers
of the associations found. These differences could
be a factor of age and disease-related weight alter-
ations, where the trends of body mass distributions
seen in this study are consistent with the existing
literature [3, 25]. The findings indicate that higher
indices of obesity within the overweight and obese
ranges are linked to reduced brain structure and CBF
parameters in cognitively healthy participants and
MCI patients. In contrast, higher indices of body mass
within the normal range are linked to higher reten-
tion of GMV parameters in ADD patients. This trend
could be linked to downstream mechanisms result-
ing from circulating hormones associated with body
fat (including sex hormones), age-related changes in
body fat accumulation and the interaction between
AD and obesity [26–28].

Negative associations between GMV and obesity
in the MCI and cognitively healthy groups were iden-
tified in frontal, occipital, cerebellar and deep brain
regions, albeit the negative associations found in the
MCI group were less extensive than those in the cog-
nitively healthy group. This almost entirely replicated
the results of a meta-analysis on GM and obesity [29].
The only discrepancy was in the occipital lobe, where
a negative association was found between obesity
and GMV in this region in cognitively healthy par-
ticipants and MCI patients in our study, as opposed
to a positive correlation [29]. The GM areas show-
ing negative associations in the cognitively healthy
group are connected by WM tracts that exhibit a
negative association between WMI and indices of
obesity [30]. Past literature has indicated that a loss
of structural connectivity can lead to reductions in
GM density [31]. If this inference in WMI were
causal, WM disconnections could explain the nega-
tive associations found within the GM. Additionally,
obesity has an element of metabolic dysfunction that
fosters systemic inflammatory processes that, as evi-
dence from other neurological conditions shows, are
detrimental to both GM and WM [e.g. 32]. The mech-
anisms and directionality of the relationship between
GM and WM damage still need additional study and
clarification. A negative association between WMI
and obesity in the corpus callosum, superior longitu-
dinal fasciculus, inferior fronto-occipital fasciculus,
fornix, and cingulum was found only in the cogni-
tively healthy sample. This is in accordance with the
previous literature [19, 33, 34]. The absence of a neg-
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Table 2
Regions showing associations between obesity and GMV across the three diagnostic groups

Voxels Cluster Brain region Side Z-score MNI coordinates
(Cluster extent) level pFWE x y z

AD: Positive correlation
BMI
16986 <0.001 Superior parietal lobule (BA 7) R 5.64 40 –58 42

Cuneus (BA 18) R 4.91 22 –88 18
Middle temporal gyrus (BA 39) R 4.76 57 –44 6
Superior temporal gyrus (BA 22) R 4.76 44 –33 10

634 0.04 Superior temporal gyrus (BA 39) L 3.89 –46 –61 22
Superior temporal gyrus (BA 39) L 3.83 –50 –53 28

WC
13284 <0.001 Superior parietal lobule (BA 7) R 6.11 42 –58 39

Superior parietal lobule (BA 7) L 4.70 –24 –62 47
Superior occipital gyrus (BA 19) R 4.39 38 –73 22
Superior temporal gyrus (BA 22) R 4.16 55 –48 8

905 0.01 Inferior frontal gyrus (BA 44) R 4.30 44 6 11
Insula (BA 13) R 4.08 32 –13 17

787 0.02 Cerebellum: Posterior lobe R 4.05 28 –52 –40
MCI: Negative correlation
BMI
2618 <0.001 Middle occipital gyrus (BA 19) R 4.85 50 –80 –1
1318 0.001 Cerebellum: Posterior lobe R 4.76 48 –75 –23
870 0.01 Inferior frontal gyrus (BA 47) L 4.67 –50 36 –15
2545 <0.001 Inferior occipital gyrus (BA 19) L 4.42 –39 –91 –6
639 0.04 Inferior frontal gyrus (BA 47) R 4.32 50 26 –15
WC
1178 0.002 Inferior frontal gyrus (BA 47) L 5.29 –48 32 –16
4662 <0.001 Inferior occipital gyrus (BA 18) R 4.77 48 –82 –3

Cerebellum: Posterior lobe R 4.71 40 –74 –40
615 0.04 Cerebellum: Posterior lobe L 3.88 –40 –77 –33
611 0.04 Inferior frontal gyrus (BA 47) R 4.50 53 27 –11
1872 <0.001 Inferior occipital gyrus (BA 18) L 4.49 –38 –91 –8
1478 0.001 Precentral gyrus (BA 6) L 4.24 –57 4 20
CH: Negative correlation
BMI
1701 <0.001 Thalamus: Ventral anterior nucleus L 3.60 –12 –12 18
1029 0.001 Posterior lobe of the cerebellum R 4.43 36 –81 –35
543 0.02 Posterior lobe of the cerebellum L 4.27 –36 –81 –38
1015 0.001 Anterior cingulate gyrus (BA 24) L 4.36 –3 16 21
631 0.01 Inferior occipital gyrus (BA 18) L 4.34 –38 –91 –9
1218 <0.001 Inferior frontal gyrus (BA 47) R 3.94 50 40 –15
1386 <0.001 Insula L 4.19 –36 14 1
879 0.002 Inferior frontal gyrus (BA 47) L 3.92 –46 44 –16
793 <0.001 Inferior occipital gyrus (BA 18) R 3.89 39 –91 –6
WC
1506 <0.001 Inferior occipital gyrus (BA 19) L 4.40 –36 –92 –9
1451 <0.001 Thalamus L 4.05 –12 –11 19
704 0.01 Anterior cingulate gyrus (BA 24) L 4.48 –2 17 19
821 0.003 Insula (BA 13) L 4.28 –42 –10 –5

ADD, Alzheimer’s disease dementia; BMI, body mass index; GMV, gray matter volume; CH, cognitively healthy; L, left; MCI, mild cognitive
impairment; MNI, Montreal Neurological Institute; pFWE, Family-wise error corrected p value; R, Right; WC, waist circumference.

ative association between obesity indices and WMI in
MCI patients might be due to lower obesity rates seen
in this group, which could explain the more attenu-
ated neural effects mediated by obesity compared to
cognitively healthy participants.

These findings suggest that being on the higher end
of the obesity spectrum may be detrimental to brain
structure. Our findings also indicate that there might

be a resilient effect of higher body-fat store within
the normal weight range in advanced disease stages,
as reflected by the positive correlation between GMV
and normal body mass in ADD patients. A parallel
pattern of association was also found in the analy-
sis of CBF in the same regions (although it did not
survive the predetermined threshold of significance),
suggesting that a relative preservation of vascular
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Fig. 1. Associations with waist circumference across the three diagnostic groups namely ADD, MCI, and CH. The above image shows
various positive and negative correlations between different neuroimaging indices and waist circumference. The image in the top left corner
shows the axial slices chosen in the image and the MNI coordinates for these slices are listed in the same row. The slices going from top
to bottom have been arranged from left to right across the three rows of images. These MNI co-ordinates also correspond to the column
that they represent. First row (ADD): The green overlay represents a positive correlation found between GMV and WC in ADD patients.
Middle row (MCI): The yellow overlay represents a negative correlation between GMV and WC and the red overlay represents a negative
correlation between CBF and WC in MCI patients. Last row (CH): The yellow overlay represents a negative correlation between GMV and
WC, the red overlay represents a negative correlation between CBF and WC and the blue overlay represents a negative correlation between
WMI and WC in CH.

function might be contributing to the associations
found with GMV. Furthermore, the association could
be attributed to the availability of sufficient resources
to cope with neural damage as a result of retaining
a healthy body mass in later disease stages. There-
fore, in the presence of natural age and disease-related
weight loss, having a healthy weight and better nutri-
tion could help preserve brain structure [19, 35, 36],
or even mitigate disease progression as suggested by
nutrition interventional studies in mice [37, 38]. This
could imply that interventions that aid ADD patients
to maintain a healthy body weight could help alleviate
some of the neural susceptibility caused by body-
mass reductions clinically observed in later disease
stages [25]. Our study is limited by its cross-sectional

design, and we can only speculate about how body-
fat composition can modulate disease onset. Since
the ADD group fell within the normal weight range,
we cannot draw inferences on the effects of being
overweight or obese in the dementia stage. This is a
limitation for most studies due to the pattern of weight
loss usually seen in disease and aging. Future longi-
tudinal studies can potentially offer complementary
evidence.

Considerable variation across the three groups was
found in the associations with CBF. In cognitively
healthy participants, a negative association with CBF
was mainly seen in WM regions, specifically in the
fronto-occipital tracts, corpus callosum and the pos-
terior ends of the cingulum, most of which also
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Table 3
Regions showing a negative association between obesity and CBF across CH and MCI groups

Voxels Cluster Brain region Side Z-score MNI coordinates
(Cluster extent) level pFWE x y z

MCI: Negative correlation
BMI
4529 <0.001 Inferior fronto-occipital fasciculus L 3.77 –28 39 11

Middle frontal gyrus (BA 6) L 3.39 –34 5 27
Corticospinal tract L 3.67 –22 –23 45

2555 0.002 Midbrain L 3.68 –6 –28 –9
Inferior longitudinal fasciculus/

Parahippocampal gyrus
L 3.52 –42 –32 –9

3266 <0.001 Superior longitudinal fasciculus R 3.42 22 0 42
Precuneus (BA 39) R 3.32 28 –65 29

WC
5626 <0.001 Hippocampus R 5.23 36 –11 –16

Thalamus R 3.77 12 –16 –4
Hippocampus L 3.52 –28 –22 –11

10179 <0.001 Anterior cingulate gyrus (BA 32) L 4.64 –20 31 28
Corticospinal tracts L 4.44 –22 –23 47
Middle frontal gyrus (BA 6) R 3.75 28 –13 49
Superior longitudinal fasciculus R 3.53 36 –43 33

CH: Negative correlation
BMI
2365 0.01 Superior longitudinal fasciculus L 3.23 –26 –14 36

Parahippocampal gyrus (BA 36) L 2.83 –24 –47 2
2546 0.01 Superior longitudinal fasciculus R 3.33 22 –8 39

Parahippocampal gyrus (BA 36) R 2.84 42 –31 –2
WC
1879 0.04 Posterior lobe of the cerebellum L 4.55 –10 –54 –39

Posterior lobe of the cerebellum R 2.70 20 –70 –34
13608 <0.001 Superior longitudinal fasciculus R 3.73 32 –47 30

Superior longitudinal fasciculus L 3.72 –28 –51 30
Superior longitudinal fasciculus L 3.56 –42 –33 0
Superior longitudinal fasciculus R 3.43 42 –39 6

BMI, body mass index; CBF, cerebral blood flow; CH, cognitively healthy; L, left; MCI, mild cognitive impairment; MNI, Montreal
Neurological Institute; pFWE, Family-wise error corrected p value; R, right; WC, waist circumference.

Table 4
Regions showing a negative association between obesity and FA in CH

Voxels Cluster Brain region Side Z-score MNI coordinates
(Cluster extent) level pFWE x y z

BMI
54045 0.001 Fornix L 7.75 –28 –27 –4

Fornix L 7.13 –28 –29 –1
Superior longitudinal fasciculus/

Inferior fronto-occipital fasciculus
L 6.90 –37 34 6

Cingulum R 6.66 9 –5 34
Inferior fronto-occipital fasciculus R 6.62 26 29 –10
Superior longitudinal fasciculus L 6.62 36 14 18

WC
55438 0.001 Anterior thalamic radiation L 7.49 –28 –30 0

Inferior fronto-occipital fasciculus R 7.47 26 29 –10
Fornix L 7.05 –29 –26 –3
Cingulum R 6.92 9 –5 34
Inferior fronto-occipital fasciculus L 6.85 –35 –55 0
Inferior fronto-occipital fasciculus L 6.80 –37 34 6

BMI, body mass index; FA, fractional anisotropy; CH, cognitively healthy; L, left; MNI, Montreal Neurological Institute; pFWE, Family-wise
error corrected p value; R, right; WC, waist circumference.
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showed negative correlations with WMI. In MCI
patients, the negative association with CBF was con-
centrated in the frontal lobe and extended to the
brainstem, cerebellum, and medial temporal lobes.
Of note, in the present study the MCI group showed
more extensive negative associations with CBF in
the left hemisphere, while loss of function among
obese cognitively healthy participants seems to be
more right lateralized [39]. This discrepancy might
be due to the asymmetry of AD-related neurodegen-
eration, which is harsher in the left hemisphere [40].
The right-sided association in MCI might result from
an interaction between AD and the right-sided sus-
ceptibility to obesity [41]. In addition, some regions
displaying negative associations with obesity are in
close proximity to cerebral watershed sites, making
them particularly vulnerable to the effects of vascular
pathology [42, 43]. The more inferior areas corre-
spond to the system involved in reward behavior,
which are often affected in obese individuals [44].
Of these, the mediotemporal lobes and certain brain-
stem nuclei are centrally affected in AD as well [45].
Therefore, down-regulation of neural parameters in
MCI patients might manifest as an amalgamation of
detriments resulting from the presence of AD pathol-
ogy and being overweight. This may accelerate the
progression rate toward ADD.

The negative associations with CBF that were
found in the groups of cognitively healthy partic-
ipants and MCI patients in the parietal lobe are
particularly of note. This territory acts as a cen-
tral hub that integrates several brain regions, making
it a region with high metabolic demands and, as a
consequence, particularly prone to damage [46–48].
Furthermore, the parietal lobe is supplied by the
terminating branches of the posterior and middle
cerebral arteries, making the medial parietal areas
more vulnerable to hypoperfusion as terminating
arterial branches are more susceptible to ischemic
damage than major arteries [42, 43, 49]. Such a com-
bination of factors confers a certain susceptibility to
the parietal lobe to the effects of metabolic conditions
such as obesity.

Past research has consistently indicated that
medioparietal hypometabolism and hypoperfusion
are among the earliest indicators of AD [6]. Dis-
ruptions in medioparietal function possibly reflecting
a deficit of input from medial temporal areas often
leads to a ‘disconnection’ between areas of the
default mode network, a phenomenon commonly
seen in AD, even in early disease stages [50]. In
the present study, negatively correlated maps of CBF

and WMI extended from temporal to medioparietal
areas and even some anterior areas in cognitively
healthy participants. This pattern partly resembled
the map of ‘disconnection’ typically seen in AD. This
convergence again points toward common patho-
physiological pathways between AD and obesity.
Additionally, the down-regulation of cerebral indices
can reduce the amount of brain tissue available for
compensatory mechanisms, thus accelerating pro-
gression from cognitively healthy to MCI, or even
from MCI to ADD [51]. Therefore, this finding in
the cognitively healthy sample could potentially offer
an explanation for how obesity could promote patho-
physiological cascades, fostering greater damage to
cerebral constituents.

The areas exhibiting negative correlations with
obesity among cognitively healthy participants, were
associated with worse performance on tests of mem-
ory and reasoning. This indicates that damage to
brain areas with high metabolic demands (e.g., the
medioparietal lobe) could result in the manifestation
of cognitive symptoms in the presence of metabolic
disorders as those often associated with obesity. The
fact that these areas of cognition are also affected
early on in AD offers an explanation for how obe-
sity may contribute toward AD risk [6]. Although
a similar association was found between regional
neural indices and obesity, correlations with test per-
formance in the MCI group revealed disruptions in
performance on tasks of executive functioning. This
finding might reflect the presence of greater variabil-
ity in scores in executive tasks at the MCI level, since
the slope of decline in executive function is not as
steep as the slope of decline in memory and reason-
ing tasks, allowing statistical effects to emerge. This
might also reflect obesity-mediated effects, as loss of
executive function has been established as a cognitive
deficit associated with obesity [7].

In conclusion, our study found diminished CBF,
structural, and cognitive measures associated with
obesity in cognitively healthy participants that resem-
ble neural changes typically induced by AD, while
those in MCI patients resemble changes typically
associated with obesity and AD. This could point
toward susceptible pathways that are shared between
AD and obesity and toward the initiation of a patho-
logical cascade pushing the brain over the threshold
for potential progression from cognitively healthy to
MCI and from MCI to ADD [51]. However, this
relationship may change in individuals in later dis-
ease stages, where having a higher body weight
remaining within the normal range may contribute
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to preservation of brain structure in the presence of
aging and disease related insults. It is noteworthy that
these results were consistent across the two different
anthropometric indices of obesity.

These findings are of central importance for the
characterization and management of patients with
AD or, more generally, patients referred to a neuro-
logical examination. Although obesity is mentioned
among the risk factors for AD, its exact effects on
the brain are still undetermined. These findings high-
light multi-component mechanisms associated with
obesity, involving diagnosis-dependent properties of
GMV, WMI, and CBF. This evidence emphasizes
the urgent need to introduce early interventions that
advocate lifestyle assessment and remediation across
the lifespan. It also highlights the importance of pri-
mary prevention strategies based on modulation of
lifestyle factors such as obesity in midlife as an effec-
tive strategy to achieve a reduction of AD related
dementia with advancing age [52].
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