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Context: Visual biofeedback has been shown to facilitate
injury-resistant movement acquisition in adolescent athletes. Visual
biofeedback is typically thought to foster implicit learning by
stimulating athletes to focus attention externally (on movement
outcome). However, biofeedback may also induce explicit learning
if the athlete uses the visual information to consciously guide
movement execution (via an internal focus).

Objective: To determine the degree to which athletes
reported statements indicating implicit or explicit motor learning
after engaging in a visual biofeedback intervention.

Design: Prospective cohort study.

Setting: Three-dimensional motion-analysis laboratory.

Patients or Other Participants: Twenty-five adolescent
female soccer athletes (age = 15.0 = 1.5 years, height =
165.7 £ 5.9 cm, mass = 59.4 = 10.6 kg).

Interventions: Standard 6-week neuromuscular training
intervention (three 90-minute sessions/wk), with added visual
biofeedback sessions (2 sessions/wk). For the biofeedback
training, participants performed squatting and jumping move-
ments while interacting with a visual rectangular stimulus that
mapped key parameters associated with injury risk. After the

last biofeedback session in each week, participants answered
open-ended questions to probe learning strategies.

Main Outcome Measure(s): Responses to the open-ended
questions were categorized as externally focused (ie, on
movement outcome, suggestive of implicit learning), internally
focused (ie, on movement itself, suggestive of explicit learning),
mixed focus, or other.

Results: A total of 171 open-ended responses were collected.
Most of the responses that could be categorized (39.2%) were
externally focused (41.8%), followed by mixed (38.8%) and
internally focused (19.4%). The frequency of externally focused
statements increased from week 1 (18%) to week 6 (50%).

Conclusions: Although most statements were externally
focused (suggesting implicit learning), the relatively large propor-
tion of internal- and mixed-focus statements suggested that many
athletes also engaged in explicit motor learning, especially in early
practice sessions. Therefore, biofeedback may affect motor
learning through a mixture of implicit and explicit learning.
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Key Points

 Visual biofeedback may enhance motor learning in people at risk of anterior cruciate ligament injury and is typically
thought to promote implicit (relatively automatic) rather than explicit (conscious) motor learning.

* We analyzed oral reports of adolescent elite female soccer players in which they described their interactions with real-time
biofeedback purposefully designed to promote implicit learning and reduce the anterior cruciate ligament injury risk.

 Participants described adopting a mix of explicit and implicit learning strategies, suggesting that biofeedback did not
necessarily exclusively promote implicit learning and that monitoring how people interact with biofeedback is recommended.

he application of advanced technologies to promote
T motor relearning in sports populations is a topic of
increasing interest. One example of such an
application is real-time biofeedback, in which athletes are

presented with visual or auditory feedback for immediate
self-modification of a certain aspect of their physiological
function (eg, muscle tension, joint angle'™). In sports
research and clinical practice, biofeedback often consists
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of information presented visually with the aim of
modifying neuromuscular or biomechanical aspects of
movement. Specific to anterior cruciate ligament (ACL)
injury, different types of visual biofeedback technologies
have been used to enhance the acquisition, retention, and
transfer of safer movement patterns (eg, to reduce the frontal-
plane knee-abduction angle), often successfully.>>!' More-
over, recent technological developments have allowed for the
integration of various visual presentation modes (eg, projector
screens, head-mounted displays) with rapid calculation of
biomechanical variables (eg, asymmetric ground reaction
force, knee-flexion angle), providing biofeedback stimuli that
map to participants’ movements in near-real time.'

Despite subtle differences in methods, the success of
visual-biofeedback manipulations used for ACL injury-
prevention and rehabilitation purposes has usually been
attributed to eliciting implicit rather than explicit motor-
learning processes.”'>'* Implicit learning is generally defined
as learning that “progresses with no or minimal increases in
task-related verbal knowledge (eg, facts and rules)”'>® such
that learning occurs “automatically” with limited conscious
awareness.'® Explicit learning, on the other hand, is a highly
cognitive process. Learners typically accrue significant
amounts of knowledge that can be used to describe their
performance and deliberately test hypotheses to explore
optimal movement solutions. Various interventions designed
to promote implicit learning are hypothesized to result in
more robust motor learning and transfer,'” 2 especially in
high—injury-risk situations, such as a cognitively demanding
environment with high performance pressure.*!

Researchers’!?14?? have presumed that using visual
biofeedback will facilitate implicit learning, in part because
this form of augmented feedback reduces the need for
explicit instruction and diverts attention toward the effects
of one’s movements (ie, an external focus of attention)
rather than the movements themselves (ie, an internal focus
of attention). However, to our knowledge, few studies have
demonstrated that visual biofeedback does, in fact, promote
implicit learning. Indeed, when athletes engaged in self-
guided “discovery learning” (and no specific measures were
taken to constrain their attention or promote exploratory
movement), they engaged in explicit learning.>** Simi-
larly, when using biofeedback, athletes may consciously
investigate how the stimulus responds to their movements
(eg, “If I move my knee to the left, I can make the stimulus
smaller”), thereby promoting explicit learning to achieve
desired outcomes.

In short, when using biofeedback to foster motor
learning, what is relevant is not only the information that
is delivered (ie, the accuracy of the information and its
relevance to performance) but also how the information is
used by the athlete, because this could lead to markedly
different learning processes and subsequent biofeedback
modifications. If athletes use the biofeedback to con-
sciously adjust their movements and deliberately test
hypotheses about how they need to adapt their movements,
then they are likely engaging in explicit learning. In
contrast, implicit learning may occur if the biofeedback
enables them to adjust their movements through uncon-
scious processes, with minimal reliance on explicit,
conscious control of movement.

We aimed to investigate whether a published visual
biofeedback intervention that was purposefully designed to

induce implicit learning would indeed promote implicit
motor-learning processes. Toward this end, we conducted a
short explorative secondary data analysis. Specifically, we
analyzed written reports that were obtained during a 6-week
neuromuscular-training intervention that was augmented
with real-time biofeedback purposefully designed to
promote implicit learning.® Using an established method,*
we classified the focus of attention (external or internal) of
participants’ written self-reports after each week of
biofeedback training sessions (2 sessions/wk) to explore
the extent to which athletes’ statements indicated a more
implicit or explicit learning process. An external focus
promotes movement automaticity and robustly leads to
implicit learning.***” As such, if athletes predominantly
reported external-focus statements, then we characterized
their learning as more implicit, rather than explicit. By
contrast, if athletes predominantly reported internal-focus
statements, their learning was most likely to have been
relatively explicit in nature. We further explored whether
participants’ self-reported ease in interacting with the visual
biofeedback would be associated with the frequency with
which they reported statements indicating explicit learning
(ie, statements containing internal or mixed focus). That is,
we hypothesized that athletes would engage in explicit,
hypothesis-testing behavior when discovering how the
feedback responded to their movements.

METHODS
Population

We conducted a secondary analysis on the data of 25
young, healthy female soccer players (age = 15.0 £ 1.5
years, height = 165.7 £ 5.9 cm, mass = 59.4 = 10.6 kg).
The prior published work® provided data only for the 17
participants who completed both biomechanical and brain
functional magnetic resonance imaging (MRI) testing
sessions (8 participants did not complete the MRI for
various reasons [eg, contraindications to MRI]). However,
in this present study, we supplied data for the full dataset of
participants who completed the 6-week augmented neuro-
muscular training (aNMT) intervention (N = 25).

Intervention

All 25 participants completed a 6-week intervention that
consisted of standard®® neuromuscular training (3 X 1.5-
hour sessions/wk, 18 sessions in total) supplemented with
visual biofeedback during certain exercises (aNMT;
approximately 2 biofeedback sessions/wk; 12 total biofeed-
back sessions during the 18-session standard neuromuscular
training). The biofeedback training involved participants
completing a prescribed exercise while interacting with a
visual biofeedback stimulus displayed in near-real time on a
projector screen. The stimulus is currently patented and
adapted for use as part of ongoing clinical trials (NCT
02933008; US Patent US20180125395). Biofeedback
training was conducted using both unilateral exercises
(pistol squat, Romanian deadlift; 3 X 5 repetitions per leg)
and bilateral exercises (squat, overhead squat, squat jump,
tuck jump; 3 X 10 repetitions).

As seen in Figure 1, the biofeedback was presented as a
rectangular shape on a projector screen that responded in
near-real time to the biomechanical variables of trunk lean,

Journal of Athletic Training 649

#20z Iidy 60 U0 1s8nb Aq Jpd*89-/-85-0509-290 }//SESTLZE/879/8-L/8G/4Pd-Blo1IE Rl WOD Ssa1dus|e ueIpUBW//:d)Y WOl papeojumoq



Figure 1. Three-dimensional rendering of a female athlete inter-
acting with real-time biofeedback stimulus during the overhead
squat exercise. The shape deformed in near-real time commensu-
rate with biomechanical risk factors associated with anterior
cruciate ligament injury. Note that this so-called augmented
neuromuscular-training (aNMT) stimulus (which has also been
presented in some of our earlier work®’) was wirelessly transmitted
in real time to video eyeglasses worn by participants (similar to the
image shown here), whereas the training stimulus used in the
present study was displayed on a projector screen.'>2°3° No brace
neuromuscular training consists of functional exercises that aim to
enhance the functional movement, coordination, balance, and
proprioception. This particular stimulus provides augmented
feedback during the neuromuscular exercises performed, hence
the name augmented neuromuscular training.

knee-to-hip joint-extensor moment force ratio, knee-abduc-
tion moment of force, and vertical ground reaction force
ratio while participants performed various exercises (eg,
double-legged squat). While they exercised, we simply asked
them to achieve a “goal shape” (eg, a perfect rectangle),
which would correspond to an injury-resistant movement (eg,
lesser knee valgus). However, if an individual moved with
biomechanics associated with a higher ACL injury risk (eg,
greater knee valgus or asymmetric loading, insufficient knee
or hip flexion), then the rectangular stimulus would become
distorted in a manner commensurate with the severity of the
deficit. Participants were instructed to maintain the shape of
the rectangle throughout each task but were deliberately not
given explicit oral instructions about how to achieve this.
Please refer to a previously published work® for a more
detailed description of the intervention. Note that we did not
present any outcome data related to the biomechanical effects
of the intervention. Significant longitudinal improvements in
biomechanical parameters (eg, peak knee-abduction moment)
have been reported elsewhere.® Please also see a series of
preliminary studies”'***** supporting the enhanced acquisi-

tion, retention, and transfer of injury-resistant movement when
athletes trained with this specific biofeedback system.

Written Responses

At the end of the last biofeedback session for each week,
participants answered 2 open-ended questions in writing.
These questions were as follows: (1) “Please share your
thoughts about any other aspects of the training, including
the stimulus display and the technology used for the training”
and (2) “How do you think your movements mapped or
corresponded to the movements of the stimulus shape?”
They also answered 2 closed-ended Likert-scale questions on
perceived responsiveness (“Did the shape feel responsive to
your movements?”’) and difficulty (“How difficult was it to
achieve the goal shape?”) of the biofeedback.

To categorize the open-ended questions, we used a
simplified version of the standardized scoring system
described earlier.?® Specifically, we aimed to establish the
degree to which a reply could be classified as externally
focused (EF; indicating implicit learning), internally focused
(IF; indicating explicit learning), mixed-focused (MF; indi-
cating a mixture of the 2), or other. Three raters (E.K., T.E.,
J.H.) established the specific criteria for scoring (see the
Table), and then independently scored all answers. They
subsequently met to discuss discrepancies (initial agreement =
80% of responses), after which they reached consensus on the
final scoring. We present the results in 2 main ways:

1. The frequency (percentage) of external-focus, internal-
focus, and mixed-focus responses, combined across the 2
questions and the 6 weeks for which responses were
collected. This provides insight into how participants
generally focused their attention when interacting with
the biofeedback practice.

2. The frequency of external-focus, internal-focus, and
mixed-focus responses for each week of practice. This
offers more information as to how attentional focus
changed in the course of practice.

Finally, to explore whether participants were more likely to
report statements indicating explicit learning when they
experienced difficulties using the visual biofeedback, they
answered questions on (1) the degree to which the shape was
responsive to their movements and (2) how difficult they found
achieving the goal shape. A 7-point Likert scale was used (1 =
not responsive at all/very difficult, 4 = sometimes responsive/
moderately difficult; 7 = responsive all the time/not difficult at
all). We calculated the median score and interquartile ranges
(IQRs) for these variables. Pearson r correlations were
computed to determine if the scores on these 2 questions
were associated with the overall frequency with which
athletes reported statements indicating explicit learning
(ie, total number of internal- or mixed-focus statements)
rather than implicit learning (total number of external-
focus statements). For this analysis we created a new
variable, using the following equation:

No. of IF + MF statements
No. of IF + MF + EF statements

where EF = external focus, IF = internal focus, and MF =
mixed focus.

X 100%,
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Overview of Scoring Methods to Classify the Focus of Attention of Participants’ Responses and the Type of Motor-Learning Process These Indicate?

Table.

Interpretation in Terms of Explicit vs

Category Assigned to
Athlete’s Statement

Code Implicit Learning

EF

Example

Definition

Indicates more implicit learning®

. | found it hard to keep [the shape] inside
the rectangle”

«

Focus on movement outcome

External focus (EF)

Indicates more explicit learning

. my hips weren't in line with the rest of my body,

or my knees went over my toes”
“l moved slowly and tried to keep the box straight”

“«

Focus on movement mechanics

Internal focus (IF)

Mixture of implicit and explicit learning

MF

Mixture of internal and

Mixed focus (MF)

external focus
No clear focus evident

No clear indication of either motor-learning strategy

Other

“| think everything was good and everything

Other type of statement

worked well”

a Examples are from the current data set.

b By definition, it is very difficult to probe implicit learning, which is typically defined as the absence of explicit knowledge. That said, written reports can be used to explore whether

individuals predominantly use an internal or external focus of attention during learning. These concepts largely (though not perfectly) map onto implicit vs explicit motor learning. That is,

an external focus is known to promote automaticity of learning and is a recognized implicit learning intervention (eg, Van Abswoude et al,?® Kal et al?; these articles also summarize other
commonly used implicit learning interventions). In contrast, an internal focus is known to promote conscious control of movement and thereby contributes to explicit learning. Hence,

athletes who more often report external- rather than internal-focus statements are more likely to have engaged in implicit learning during the preceding practice session. A similar scoring

method has been used to explore the attentional focus of therapists’ instructions and feedback in our previous work (Kal et al?®).

Figure 2. Overall percentage of responses that contained refer-
ences to attentional focus classified as either external (focus on
movement outcomes, indicating predominately implicit learning),
internal (focus on mechanics of movement, indicating predomi-
nately explicit learning) or mixed (both internal- and external-focus
elements within the same response). Note that 60.8% of written
responses did not fit any attentional-focus classification (other
responses) and were not shown here.

RESULTS

Five participants did not provide written responses to the
2 open-ended questions in any of the sessions. The
remaining 20 individuals provided 171 written responses
in total. Of these, 60.8% concerned other statements that
did not fall into any isolated or combined attentional-focus
classification (eg, “It went well”), whereas 39.2% of
responses could be assigned to a particular attentional focus.
Of the latter, most statements were externally focused
(41.8%), closely followed by mixed attentional focus
(38.8%), and 19.4% were internally focused (see Figure 2).
The changes in attention focus over time are depicted in
Figure 3. We observed a relatively gradual increase in
external-focus statements from week 1 (18%) to week 6 (50%
after the final 2 biofeedback sessions).

All 25 participants completed the closed-ended ques-
tions. These questions were both scored on a 1- to 7-point
Likert scale, warranting the presentation of median values.

100 1
External
3 801 focus
o 60
L g
=9 i
< E 40 - Mixed
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°
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0 T T T J
1 2 3 4 5 6
17) (16) 17) (16) (16) (16)
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Figure 3. Percentage of external-focus, internal-focus, and mixed-
focus statements for each week of training. Responses were
collected after the second (and last) biofeedback session for each
week. For this graph, we estimated the percentages for each
category of statements reported for that session (ie, across
participants). Not all participants provided responses for each
week of practice. The number of participants for whom responses
were available is indicated per week.
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Participants rated the biofeedback as being relatively
responsive to their movement (median = 6; IQR = 5-6,
range = 5—7) yet moderately difficult to use (median = 4,
IQR = 4-5, range = 3—7). We observed no association
between perceived responsiveness and the reporting of
internal- or mixed-focus statements (r = .041, P = .873).
A moderate, nonsignificant correlation for perceived
difficulty (» = .453, P =.059) suggested that participants
who found the feedback easier to use more frequently
reported internal- or mixed-focus statements. Of the 20
participants who provided open-ended responses, 2
supplied statements that were classified exclusively as
other. Accordingly, these were not included in this
correlational analysis (total n = 18).

DISCUSSION

Our analyses indicated that a visual biofeedback stimulus
designed to promote implicit learning for the acquisition,
retention, and transfer of improvements in biomechanical
factors associated with ACL injury induced both implicit
and explicit motor-learning strategies in participants. The
majority (42.4%) of the athletes’ statements were focused
externally, which is associated with more implicit, auto-
matic control of movement®!*?; nonetheless, the relatively
high proportion of mixed (36.4%) and, to a lesser extent,
isolated internal-focus (21.2%) statements suggested that
many participants also engaged in some degree of explicit
learning. This especially seems to have been the case in the
early learning phase, given that we noted a relatively low
frequency of external-focus statements in week 1 (18%),
which then increased gradually over the 6-week practice
period (up to 50%).

These unexpected findings highlight that when practi-
tioners develop and use biofeedback specifically to promote
implicit motor learning, such a strategy by itself may be
insufficient to ensure that implicit learning does indeed
occur. For the current intervention program, athletes were
told to maintain the rectangular shape of the biofeedback
stimulus, but they were not given any additional instruc-
tions or oral feedback regarding how they should move to
achieve this. Even so, when interacting with the biofeed-
back stimulus, many participants seemed to have gained
some explicit, verbalizable knowledge about how they
could achieve the desired movement outcome, as evidenced
by the written report data. Thus, some individuals seemed
to have adopted explicit motor-learning strategies during
practice (or at least attempted or related doing so). This so-
called hypothesis-testing behavior is a prominent feature of
explicit learning.*> However, we emphasize that such
explicit learning should not be considered negative per se,
and in fact, it may well be very useful for retaining new
motor skills (eg, see Kal et al*' and Toner and Moran®).
Indeed, prior published work’#!%2%-3% using this specific
augmented visual biofeedback system has been effective
for the acquisition, retention, and transfer of injury-resistant
movement. That said, it is important to acknowledge that (1)
the majority of the statements concerned isolated external-
focus statements (which are associated with implicit learning)
and (2) the motor-learning benefits of the biofeedback
intervention may to a large extent still be underpinned by
implicit processes. Future researchers could explore if those
individuals for whom the biofeedback elicits a more explicit

learning process show different learning outcomes than those
who largely engage in implicit learning when interacting with
the biofeedback.

Our results emphasize that practitioners and investigators
cannot simply assume that using visual biofeedback during
motor learning will result in implicit learning by default.
The stimuli we used in the present biofeedback intervention
simultaneously mapped onto multiple biomechanical risk
factors. In theory, this multidimensional approach to fuse
and transform data on different aspects of movement may
limit an athlete’s ability to develop an explicit strategy.
Even so, athletes often reported statements indicative of
explicit learning. We hypothesize that related interventions
using real-time visual biofeedback isolated to a single
biomechanical variable (eg, knee-abduction angle only)
may induce even greater explicit learning, as it would
be easier for athletes to discover a strategy for 1 (than
multiple) variables.? In line with this, our exploratory
correlational analysis results, though nonsignificant, might
suggest that athletes who found the feedback easier to use
more often conveyed statements indicating explicit learning
(internal- and mixed-focus statements). It seems that, as
these athletes identified how the biofeedback responded to
their movements, they began to consciously use this
knowledge to guide their movements. This in turn may
have given them a greater sense of control and perceived
ease of use and possibly made the biofeedback more
enjoyable or engaging to interact with during training.

This brief report is not without its limitations. First, the
open-ended questions that we based our analyses on were
not originally devised to infer modes of learning but rather
were intended as an evaluation of the intervention and
stimulus design more generally. Nonetheless, we ensured
reliability of the analysis via a rigorous process of scoring,
consistent with that in an earlier study.?® Further, due to
missing responses and the relatively small sample, we did
not have sufficient data for a more in-depth (statistical)
analysis of changes in attentional focus over the entire
6-week training period. We did present some basic changes
in frequencies, but more detailed and fine-grained (quali-
tative) data would be needed to further probe such changes.
On this point, using written descriptions to examine implicit
learning has intrinsic limitations (eg, see Frensch and
Riinger®®). Most importantly, if people move in a fully
implicit manner, by definition, they would not be able to
characterize their movements at all (which could partially
explain the high percentage of other statements in this
study). Therefore, more in-depth study is needed to explore
motor-learning strategies when engaging with biofeedback.
Finally, our sample consisted of young, female athletes only,
which may limit the generalizability of the results. For
instance, relative to young athletes, older athletes may adopt
different learning strategies when interacting with biofeed-
back. Also, younger athletes may also have found it
relatively difficult to answer the open- and closed-ended
questions in our study, as these had not specifically been
validated for this particular population; thus, we cannot be
sure if the 12- to 18-year-olds processed the questions as
intended, and in some cases, they may simply not have
answered because they did not fully understand the
questions. We further recognize that changes in self-reported
focus over the 6 weeks may have been, in part, due to the
progressive changes in exercises while interacting with the
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visual biofeedback. For example, athletes may engage in
more (or less) implicit learning strategies when completing
relatively slow bilateral squats versus more ballistic tuck
jumps. Future researchers should consider the potential
significance of exercise type while using visual biofeedback,
including its relative influence on self-reported focus and
overall learning strategies.

PRACTICAL APPLICATIONS

Our findings suggest that practitioners and researchers
may need to take additional measures if they aim to elicit
implicit learning. First, practitioners and researchers should
always monitor what athletes are actually focusing on or
attending to when engaging with biofeedback. Although we
used a relatively elaborate coding scheme, a simpler way to
achieve this would be to ask athletes to complete a self-
report tool that assesses the degree to which they
consciously process their movements during practice (eg,
the state Movement-Specific Reinvestment Scale®®). Sec-
ond, if biofeedback was used with the specific aim of
promoting implicit learning, and such checks revealed that
athletes were highly conscious of their movements during
practice (indicating explicit learning), this might signal to
practitioners that additional measures are needed to
constrain an athlete’s focus or interpretation of the
biofeedback. Several methods have been described else-
where that could be used for such a purpose.?’

In conclusion, our data indicated that real-time bio-
feedback in a program to reduce the ACL injury risk may
promote both implicit and explicit learning. Many athletes
may benefit more from implicit than from explicit
learning strategies, yet explicit learning may sometimes
be more beneficial, depending on individual constraints
(eg, working memory capacity or proprioceptive acu-
ity?'). Future examination is warranted to determine
whether constraining an athlete’s attention to, or interpre-
tation of, biofeedback modulates the adoption of implicit or
explicit learning strategies. Future authors could also
establish if tailoring biofeedback (eg, on a continuum from
implicit to explicit learning) helps optimize learning
outcomes.
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