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Abstract  

Numerous applications can be enhanced by accurate and efficient indoor localisation using wireless 

sensor networks, however trade-offs often exist between these two parameters. In this thesis, real-

world and simulation data is used to examine the hybrid millimeter wave and Visible Light 

Communications (VLC) architecture of the 5G Internet of Radio Light (IoRL) Horizon 2020 project. 

Consequently, relevant localisation challenges within Visible Light Positioning (VLP) and asynchronous 

sampling networks are identified, and more accurate and efficient solutions are developed.   

Currently, VLP relies strongly on the assumed Lambertian properties of light sources. 

However, in practice, not all lights are Lambertian. To support the widespread deployment of VLC 

technology in numerous environments, measurements from non-Lambertian sources are analysed to 

provide new insights into the limitations of existing VLP techniques. Subsequently, a novel VLP 

calibration technique is proposed, and results indicate a 59% accuracy improvement against existing 

methods. This solution enables high accuracy centimetre level VLP to be achieved with non-

Lambertian sources. 

Asynchronous sampling of range-based measurements is known to impact localisation 

performance negatively. Various Asynchronous Sampling Localisation Techniques (ASLT) exist to 

mitigate these effects. While effective at improving positioning performance, the exact suitability of 

such solutions is not evident due to their additional processes, subsequent complexity, and increased 

costs. As such, extensive simulations are conducted to study the effectiveness of ASLT under variable 

sampling latencies, sensor measurement noise, and target trajectories. Findings highlight the 

computational demand of existing ASLT and motivate the development of a novel solution. The 

proposed Kalman Extrapolated Least Squares (KELS) method achieves optimal localisation 

performance with a significant energy reduction of over 50% when compared to current leading ASLT. 

The work in this thesis demonstrates both the capability for high performance VLP from non-

Lambertian sources as well as the potential for energy efficient localisation for sequentially sampled 

range measurements. 
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of the 𝑘'th Estimation Instant 

𝑷𝒕𝒌

𝝌  Covariance of the Posterior Estimation Derivations at the Time of the 𝑘'th 
Estimation Instant for the Propagated Sigma Points 

𝑷𝒕𝒌
𝒛𝒛 Innovation Covariance at the Time of the 𝑘'th Estimation Instant 

𝑷𝒕𝒌
𝒙𝒛 The Cross Covariance at the Time of the 𝑘'th Estimation Instant 

𝑷𝑹 Received Signal Strength Indicator Value 

𝑷𝑹 Estimate of the Received Signal Strength Indicator Value 

𝑷𝑹𝒊
 Received Signal Strength Indicator Value of the 𝑖’th VLC Source 

𝑷𝑹 Vector of Received Signal Strength Indicator Values  
𝑷𝑹𝒊,𝒕𝒌

 Received Signal Strength Indicator Value of the 𝑖’th VLC Source at the 𝑘’th 
Estimation Instant 

𝑷𝑹,𝒕𝒌
 Vector Of Received Signal Strength Indicator Values Obtained during the 𝑘’th 

Sampling Period 
𝑷𝑹𝒊

𝒙,𝒚 Received Signal Strength Power of the 𝑖’th VLC Source at 𝑥, 𝑦, (𝑧 = 0) 
Coordinates  

𝑷𝑹
𝑹𝑬𝑭  Reference RSS Measurement  

𝑷𝑹𝒊

𝑹𝑬𝑭  Reference RSS Measurement for the 𝑖’th VLC Source 

𝑷𝑻 Power Transmitted from a VLC Source 
𝑷𝑻𝒊

 Power Transmitted from the 𝑖’th VLC Source 

𝑷𝒊  The 𝑖’th VLC Source RSSI Value at the Upper Bound of the Halo Region  
𝑷𝒊  The 𝑖’th VLC Source RSSI Value at the Lower Bound of the Halo Region 
𝑷𝒊

𝒓 The 𝑖’th VLC Source RSSI Value Range Correlating to The Halo Region 
𝝍 LOS Path Angle of Irradiance  
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𝑺𝒊  The 𝑖’th Sensor Position1 

𝑺𝟎 The Position of the Target2  

𝑺𝒕𝒌
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𝑺
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𝒊
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the 𝑘’th Estimation Period1 

𝑺𝒕𝒌
𝟎  Estimate of the Targets Position at the Time of the 𝑘’th Sampling Instant 

𝑺𝟎 Estimate of the Targets’ Position1 

𝑺𝒗𝒍𝒄
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1 Sensor Coordinates may be given in either two or three dimensions. 
2 Target coordinates may be given in either two or three dimensions. 
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1 Introduction  

1.1 Motivation  

With the growing popularity of wirelessly connected devices, in all manner of fields and sectors, 

obtaining the exact position of a device presents a major potential advantage for a multitude of 

applications. The field of device localisation through wireless sensor networks, has introduced means 

to non-invasively track devices and subsequently those that carry them. This capability can be used to 

enrich user experiences within Virtual Reality (VR) applications and personal navigation, enhance 

industry performance through asset tracking and monitored delivery, and even autonomise drones 

and guide rockets into space. Within each of these applications the specifications, environments and 

networks present new challenges to overcome if growing demand is to be met.  

Fortunately, the latest generation of networks referred to as 5th Generation (5G), like those 

before it, is set to bring in transformative radio access technologies. These will provide greater 

available bands of spectrum and New Radio (NR) transmission protocols as well as enhanced 

processing and network topologies such as Software Defined Networking (SDN) and Network Function 

Virtualization (NFV) which will enhance network flexibility. Employing the capabilities of such 5G 

networks is expected to greatly improve the accuracy, robustness, and computational efficiency of 

mobile device tracking.  

This thesis comes as part of the Internet of Radio Light (IoRL) 5G project, a Horizon 2020 

research program, aiming to establish a demonstrator for a 5G network within buildings. I, the author 

of this paper, joined the consortium six months into the project with a remit to research the Indoor 

Positioning System (IPS) and the various applications it could be used in.  

Within this thesis, I present analysis of location data collected from the IoRL project 

measurement campaign. This data is then used to develop and evaluate a simulation model of the 

IoRL IPS. From the IPS modelling I identify points at which data is sampled asynchronously but to 

different degrees. By both assessing the effects of these asynchronous features and by considering 

existing solutions to the asynchronous problem, I propose a novel method in which to address the 

localisation challenges of asynchronous measurement sampling, while increasing the computational 

efficiency compared to existing solutions.  
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1.2 Thesis Contributions 

1.2.1 Chapter 3  

1. Experimental evaluation on the effects of centrally frosted Total Internal Reflection (TIR) lens 

characteristics on Visible Light Positioning (VLP) using 2D Received Signal Strength (RSS) 

trilateration techniques.  

2. Proposed corrective calibration process for Visible Light Positioning (VLP) using 2D Received 

Signal Strength (RSS) trilateration for centrally frosted Total Internal Reflection (TIR) lenses (or 

those that emit a halo of increased intensity). Proven to decrease positioning error by 59% 

and 50% against applying datasheet values directly and using existing calibration techniques 

respectively.  

1.2.2 Chapter 4 

1. Simulated evaluation of a novel 5G localisation architecture involving the hybrid fusion of 

millimetre wave and VLP within the IoRL demonstration use case.  

1.2.3 Chapter 5 

1. Novel study into the effects of asynchronous sampling for range estimation and positioning in 

single sensor and multi-sensor systems respectively.  

2. Comparative study on the effects of asynchronous sampling latency for non-linear localisation 

using both asynchronous and synchronous position estimation methods. Unlike existing 

studies this evaluation considers variable degrees of path non-linearity, sensor measurement 

noise and variable degrees of latency between consecutive sensor measurements.  

3. Proposal and evaluation of adaptations to an existing asynchronous location estimator 

process for asynchronous sampling under nonlinear measurements.  

1.2.4 Chapter 6  

1. Proposal and study of a novel multisensor position estimation technique for sequentially 

asynchronous sampling and non-linear measurements. Simulations indicate the improved 

performance of the proposed estimation process against existing optimal estimators 

regarding both accuracy and computational demand for varying degrees of path non-linearity, 

sensor measurement noise and lack of sensor synchronisation.  
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2 Literature Review of Indoor Wireless Localisation 

For decades, the ability to identify a person or devices’ location indoors and outdoors accurately and 

reliably has been a key research area. Early civilisations used star constellations as reference points to 

determine their generalised orientations and enable navigation. Building on this fundamental need 

for surveying and navigation, the Global Positioning System (GPS) is a well-established Global 

Navigation Satellite System (GNSS) developed by the United States of America Department of Defence 

in 1973 [1]. The initial applications of GPS were limited for military and surveyors. In the present day 

though, GPS capabilities are found in almost all cars and mobile phones to provide navigational 

assistance to users. 

In a digital era, as the number of network-connected devices increases rapidly [2] [3] and new 

applications arise, the public demand for greater performance of location-based services is met with 

increased density and urban or indoor communication challenges [4][5]. To address these matters, 

novel indoor positioning schemes and radio access technologies have been developed. From early 

positioning systems, which relied heavily on passive tracking techniques or invasive wearables [6][7] 

and were limited in deployment, the current widespread use of mobile devices and dense deployment 

of base stations has enabled new technologies and widespread implementation. Hybrid and adaptive 

position estimation techniques involving numerous technologies and sensors allow for modern 

localisation to improve accuracy by three to four orders of magnitude when compared to outdoor GPS 

[8]. 

This chapter presents a background to existing wireless indoor localisation methods. First, the 

preliminaries are introduced, covering the general concepts and processes involved in indoor wireless 

localisation and emphasising asynchronous data fusion for nonlinear systems. Secondly, comparisons 

and surveys of the latest research in relevant fields are given to highlight the current overview of 

existing systems. Thirdly, the Internet of Radio Light (IoRL) 5G Horizon 2020 system and related 

technologies are presented.  

 

2.1 Introduction to Localisation Methods – Background and Preliminaries 

Wireless localisation is neatly described by Jobs et al. [9] as the means of ‘determining the position of 

a user/object by wireless signal’. Localisation has made great strides recently through advancements 

in, e.g., personal navigation where applications can provide estimates with centimetre to millimetre-

levels of accuracy. Existing indoor localisation can be achieved through the combination of numerous 

wireless technologies with varying degrees of performance depending on the type of sensors 

available, algorithms implemented, and the application requirements. There is no single solution for 

all applications; hence various methods have been explored in the literature [8], [10]–[15]. While there 
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is a vast variety of possible technologies, processes, and overall positioning architectures, this section 

provides a generalised view of basic localisation schemes and the fundamental principles for context. 

To more easily evaluate the diversity of wireless localisation solutions, the following generalised 

framework is proposed wherein localisation systems are defined by four core components; 

Application, Sensor system(s), Data manipulation, and Output, as illustrated in Figure 2.1. 

 

 

Figure 2.1 - Constituents of Location estimation processes 

2.1.1 Application  

Applications for indoor localisation continue to increase as the performance of indoor wireless sensor 

networks improve, and more smart devices are implemented within indoor environments. The recent 

expansion of the Internet of Things (IoT) devices [2], [16] influenced this greatly. Literature continues 

to expand on potential sectors in which position information can be utilised to improve the 

performance of existing systems or create new practices altogether. Key sectors where location data 

can be beneficial include transport, emergency responders, health, personal assistance, commercial, 

industrial and military. Examples of such systems are guidance for drones [17] and vehicles  [18], 

enabling emergency responders to identify a ‘person in need’ [19], personal navigation [20],  

multisensory XR [21], automated tours [22], shopping navigation [23], and automation in smart 

factories [24]. 

While the core function of any location estimation system is to provide a user or device with 

an estimate of their position in space according to a given reference frame, the requirements and 

challenges that arise are not consistent due to the broad range of applications. These parameters 

influence the appropriate technologies and systems to implement.  

Firstly, the type or number of targets to be localised in either 2D or 3D space can have 

significant implications on the system design. Dynamic targets present greater difficulty [25] when 

compared to static targets and have more stringent requirements, especially if the target movement 

is fast and complex to define. Active tracking systems describe a solution in which the target carries 

electronic sensor devices that can provide tracking data to the system [12], [26], [27]. Alternatively, 
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Passive tracking solutions lack these devices and must rely only on external systems. Depending on 

the application, a system designer may be limited to a specific setup and may need to consider 

portable power supplies.  

Secondly, one must consider the system's environment regarding potential interference from 

existing signal congestion and potential multipath or blockages from physical obstacles. The 

environment may be dynamic, describing the nature of moving obstacles such as people or reflective 

surfaces. Additionally, systems may be limited by sensor coverage therefore the dimension of the 

environment must be considered. Moreover, the medium of the environment may impact the 

performance of a system and additional considerations must be made, where a target may need to be 

tracked underwater [28], in space or harsh climate conditions. This is important when regarding 

wireless signal propagation characteristics where atmospheric absorption may impact the system 

[29]–[34].  

Finally, various applications demand different levels of performance with regard to precision, 

computation costs, estimation frequency, estimation latency and reliability.  

In summary, the requirements and available solutions of a positioning service are heavily 

dependent upon the application, the metrics of which will be reviewed in later sections. Within this 

thesis, the consideration is limited to the scope of the IoRL project and the 5G applications laid out by 

both the IoRL consortium and Third Generation Partnership Project (3GPP) standardising body. In this 

respect, this thesis focuses on active multi-sensor3 wireless indoor tracking of a single mobile device 

both in 2D and 3D space. Various IoRL project use cases within this setting are provided throughout 

the thesis and discussed in greater detail further in this chapter.  

The following section provides preliminary information on existing sensor systems, 

technologies, and Indoor Positioning Systems (IPS) for context and background to the work presented 

in later chapters. 

 

2.1.2 Sensor Systems  

One principle that remains definite throughout any wireless localisation scheme is the use of sensors 

to obtain wireless signal characteristics. By acquiring these signal characteristics, it is possible to infer 

physical parameters and, consequently, estimate the target’s potential location. Different signal 

characteristics are explored in literature. However, four standard identifiers, Received Signal Strength 

(RSS) [19], [35]–[38], Time of Arrival (TOA) [19], [39]–[45], Time Difference of Arrival (TDOA)[46]–[52] 

and Angle of Arrival (AOA) [19], [53]–[57], are discussed throughout this thesis. While AOA is not 

 
3 Multi-sensor system refers to a collaborative system of multiple sensors as opposed to a single-sensor system 
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directly applied within this body of work, it is discussed briefly for context as a prominent feature of 

wireless localisation.  

 

2.1.2.1 Signal Characteristics for Active Systems 

For wireless localisation to be performed, signal characteristics must be extracted from transmitted 

waveforms as they propagate through, and are affected by, an environment. From the resulting signal 

properties, it is possible to infer details of the environment and the location of the emitter or receiver. 

Signal characteristics are obtained through wireless communication between receivers and 

transmitters, which are types of sensors in this case. With such a multitude of different sensors and 

signal properties available, this section does not intend to explore the various types of sensors but, 

more specifically, the key signal properties that are commonly exploited in wireless localisation. A 

brief discussion regarding signal propagation is given to make sense of the following sensor systems 

and signal characteristics.  

A signal is known to be subjected to noise 𝑛(𝑡) through a wireless channel, where 𝑡 denotes 

time. Typically for ease of analysis, one may consider the channel to be an Additive White Gaussian 

Noise (AWGN) channel, where the noise component is AWGN with a two-sided spectral density 𝑁 2⁄ . 

An observed signal 𝑌(𝑡) is then expressed as [58]:  

 

 𝑌(𝑡) = 𝑠(𝑡) + 𝑛(𝑡). (2.1) 

Where 𝑠 is the signal at time 𝑡. Throughout wireless propagation, a signal will undergo an assumed 

constant attenuation (𝛼) and delay (𝜏). Therefore, the RF channel (𝑈) between the transmitter and 

receiver can be modelled by [58]:  

 𝑈(𝑡) = 𝛼𝛿(𝑡 − 𝜏). (2.2) 

The received signal is then given by [58]:  

 

 𝑌(𝑡) = 𝑠(𝑡)⨂𝑈(𝑡) + 𝑛(𝑡) 

        = 𝛼𝑠(𝑡 − 𝜏) + 𝑛(𝑡). 
(2.3) 

 

Observing the propagation of signals as rays emitted from a transmitter, those rays that reach the 

receiver may do so through a direct path known as Line of Sight (LOS) or through varying paths that 

involve reflections from walls and other signals scattering objects. These reflected paths are referred 

to as the multipath components of a multipath system. To specify further, multipath signals can be 

registered by the number or ‘order’ of surface reflections encountered. Given that different objects 
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have different signal attenuation parameters regarding reflectivity and scattering [58]. Therefore, rays 

will arrive at the receiver with varying arrival times and signal powers. The obtained signal at the 

receiver is then the combination of all the paths that reach the receiver with their respective levels of 

attenuation and delay. The multipath channel with 𝑁  multipath components is then modelled in the 

time domain as [59]:  

 

 
𝑈(𝑡) = 𝛼 𝛿 𝑡 − 𝜏 . (2.4) 

 

Here 𝛼  and 𝜏  denote the attenuation and delay of the 𝑗 𝑡ℎ path, respectively. The received signal is 

therefore given by [59]:   

 

 
𝑌(𝑡) = 𝑠(𝑡)⨂𝑈(𝑡) + 𝑛(𝑡)  = 𝛼 𝑠 𝑡 − 𝜏 + 𝑛(𝑡). (2.5) 

 

In multipath-rich environments, the LOS path can be challenging to distinguish from interfering 

multipath components; however, depending on the level of attenuation suffered by reflections or 

longer propagation paths, multipath components may not be as prominent. If the LOS path is not 

available, possibly due to obstruction, the situation is regarded as a Non-LOS (NLOS) system. In these 

cases, only multipath components are received. Figure 2.2 illustrates the concept of LOS and NLOS 

scenarios between a Transmitter (𝑇𝑥) and a Receiver (𝑅𝑥), as well as First Order Reflections (FOR) 

and Second-Order Reflections (SOR). 

 

Figure 2.2 – LOS and NLOS environments with multipath components 
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In this thesis, the primary focus is on the use of LOS technologies as LOS signals are, for the purposes 

of the thesis, always considered to be obtained. However, the potential effects of multipath 

components are discussed and evaluated in parallel throughout. 

 

2.1.2.1.1 Received Signal Strength (RSS) 

The Received Signal Strength (RSS) of a signal obtained at a receiver is a simple, cheap and effective 

solution to calculate the distance between a transmitter and receiver. RSS principle relies on a known 

level of signal attenuation over a given distance [12], established by channel models that parameterise 

the Path Loss (PL) relative to the distance travelled. Many path loss models exist for different 

environments and technologies, each of which contain varying model parameters, values of 

parameters and mathematical functions [60][58]. RSS methods are widely adopted since very few, if 

any, adaptations must be made to systems to measure the received power of a signal. Here, the key 

signal characteristic is the attenuation factor 𝛼, as described in (2.2). A challenge for RSS based 

localisation is that a high number of environmental and system factors affect the channel and as a 

result the path loss, making the solutions very site specific [61][62] and prone to fluctuations. 

Challenges from randomly moving users or dynamic environments causes variable changes in the 

effects of signal attenuation, creating variability in the measured and modelled signal strengths [15]. 

Due to the nature of signal decay, RSS solutions are not viable for long distance ranging. It should also 

be noted that the RSS specifies the received signal power strength typically in decibel-milliWatts (dBm) 

or milliWatts (mW) as opposed to the Received Signal Strength Indicator (RSSI) which is a relative 

measure of the RSS with arbitrary units [15].  

 

2.1.2.1.2 Time of Arrival (TOA) 

The Time of Arrival (TOA) or ‘Time of Flight’ (TOF) of a signal describes the propagation time of a signal 

(𝜏), between the source and receiver. Using the measured time delay information and the known 

speed of the transmitted signal, it is possible to infer the distance travelled by the signal using (2.6) 

[53]. In (2.6), 𝑑 denotes the distance of the signal path between the transmitter and receiver, 𝜏 

represents the time delay between when the source is emitted and when the source is received as in 

(2.2), while 𝑐 signifies the speed of the transmitted signal, this is commonly the speed of light for 

signals within the EM spectrum or the speed of sound for acoustic solutions.   

 𝑑 = 𝜏 ∗ 𝑐. (2.6) 

Due to the speeds of transmitted signals, the time resolution of TOA systems must be extremely small. 

Nanosecond-level timing synchronization is required for sub-meter accuracy [19]. Not only do TOA 

solutions require extremely high system clock speeds but synchronisation between the transmitter 
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and receiver must be equally as strict [61]–[63]. Since the hardware required to achieve the accurate 

time synchronisation and resolution required, TOA systems are considerably more complex and 

expensive to implement than RSS solutions. Atomic clocks are implemented on GPS satellites to 

maintain such high levels of timing accuracy.  

Two-Way Ranging (TWR) [19][62], [64] methods measure the roundtrip propagation time to 

eliminate the need for tight clock synchronisation between both the receiver and transmitter. 

However, these methods require that the target and wireless system are both transceivers. The 

process involves emitting a signal from one node to another; the initial receiver then returns the signal 

directly back. The distance can be computed with prior knowledge of the computation time at the first 

receiving node through the following equation [64]: 

  

𝑑 =
𝜏 − 𝜏

2
∗ 𝑐. 

 

(2.7) 

Here 𝜏  denotes the total measured Round-Trip Time (RTT) and 𝜏  represents the known processing 

time of the initial receiver. 

Despite shadowing and obstruction being natural issues to TOA, it doesn’t face the same 

concerns as RSS regarding free space losses [65]. The primary source of error within TOA systems is 

the timing errors, brought about by lack of synchronisation and LOS identification errors from poor 

timing resolution and multipath components [66].  

 

2.1.2.1.3 Time Difference of Arrival (TDOA) 

Time Difference of Arrival (TDOA) works similarly to TOA; however, TDOA determines the distance to 

a target using the difference in received propagation times between two signals [12]. This can be 

implemented in two ways, as illustrated in Figure 2.3, where the solid line signifies clock 

synchronisation between two sensors. While the need for tight system synchronisation is still 

apparent, this eliminates the need for more complicated synchronisation between transmitters and 

receivers [4], [63], [67]. Due to the subtractive nature of the process, the minimal number of sensors 

required for TDOA solutions is one greater than TOA or RSS due to the additional reference sensor 

necessary to form a substantial set of equations.  
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Figure 2.3 - TDOA technique with modified synchronised arrangements a) Synchronised receivers b) 

Synchronised transmitters 

Once the TOAs have been received, the time difference between them [68]  (𝜏 , ) is given as the 

TDOA. This forms a hyperbola on which the target lies.  

   

𝑑 , =  𝜏 ,  ∗ 𝑐 =  (𝜏 − 𝜏 ) ∗ 𝑐 

 

(2.8) 

Obtaining the TOA of a signal for both TOA and TDOA processes is achieved by one of two main 

approaches, correlation methods [21], [66], [67], [69] and energy detection [70]–[72]. It is important 

to stress the high time resolution required to obtain an accurate time estimate and, secondly, to 

distinguish the LOS path from multipath components. The receiver’s ability to distinguish close 

multipath components and improve accuracy is dependent on the bandwidth [24], [52], [53], [62], 

[67], [73], [74].  

 

2.1.2.1.4 Angle of Arrival (AOA) 

The Angle of Arrival (AOA) solution uses a received signal to obtain the angle between the receiver 

and the target. This provides a bearing that is more accurately referred to as the Direction of Arrival 

(DOA). The benefit of the AOA approach is that only two receivers are needed to locate a target using 

the intersection of two path angles [75].  

The AOA is inferred from the incoming signal using an array of antennas. Typically, the 

difference in phase or time of the signal at individual antenna elements can be used to infer the 

direction from which the signal arrived [61]. Alternatively, beam searching methods can be employed 

to detect the AOA [76]. Although AOA can provide accurate estimation when the transmitter-receiver 

distance is small, it use of antenna arrays requires more complex hardware [77] and careful calibration 

than RSS, TOA and TDOA techniques [67]. The accuracy deteriorates with increases in the transmitter-

receiver distance [75]. A slight error in the angle of arrival calculation translates into a more significant 
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error in the actual location estimation [4] [8]. For a further exposé on AOA solutions, the reader is 

referred to Obeidat et al. [67] and the references therein.  

 

2.1.3 Position Estimation Techniques  

Given the reader’s current understanding of the signal characteristics that can be utilised in a wireless 

sensor network, this section is intended to introduce the processes through which these signal 

characteristics can be used to estimate the position of a target device. Throughout this thesis, the 

mobile device to be located is referred to as the ‘Target’. In contrast, the sensors in fixed locations are 

referred to as the ‘Sensors’, ‘Base stations’, ‘Nodes’ or ‘Anchors’ interchangeably.  

 

2.1.3.1 Traditional Position Estimation Techniques 

2.1.3.1.1 Proximity-based Localisation  

When a mobile device is within the known coverage area of an anchor node, the mobile device's 

location can be associated with the coverage region of the connected anchor [14], [63]. For 

multisensor systems the target is co-located with the antenna that provides the strongest signal [61]. 

Fundamentally, proximity localisation provides the system with a generalised user location relative to 

the coverage area of a single antenna. Combining this with a more accurate RSS can minimise the 

region of estimated position [63]. While this solution is simple to implement, the accuracy is limited 

to that of the anchor’s coverage [78]; more extensive coverage areas increase the uncertainty of this 

method. Therefore, densely populated networks of sensor nodes provide greater resolution.  

 

2.1.3.1.2 Dead Reckoning  

Dead reckoning is achieved with Inertial Measurement Units (IMUs) which are promising due to their 

compact size and cheap cost [79], [80]. Position estimates are calculated through the integration of 

acceleration measurements from accelerometers to obtain velocity and double integration to get 

displacement [5], [12]. IMUs can provide highly accurate localisation with high sampling rates in the 

order of thousands per second [12], [81]. A problem arises whereby errors arising from the double 

integration accumulate, and over time these grow to be very large. This leads to the position estimates 

‘drifting’. For this reason, Dead Reckoning often incorporates a secondary location estimate solution 

to repeatedly correct for the build-up of drift [5][63], [82].  

 

2.1.3.1.3 Vision Analysis 

Vision analysis is the process of using cameras as sensors to infer the user position from images. More 

specifically, the process identifies markers such as points, lines, spheres and angles within the images 
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[83] to relate the camera's position in world space. There are many different types of image-based 

systems; however, a distinction is made between fixed and mobile camera systems [4]. Fixed camera 

systems observe and locate a target within a designated Field of View (FOV) of the cameras used, 

whereas, in mobile camera systems, the target is equipped with a camera that uses images of the 

surroundings to locate itself. The latter is discussed further in this thesis. For a more comprehensive 

review, the reader is referred to Y. Wu et al. [83]. 

 

2.1.3.1.4 Scene Analysis – Fingerprinting  

The principle of scene analysis relies on mapping the characteristics of signals within an environment, 

such that a reference database of unique ‘fingerprints’ is formed [21], [84]. The database is created 

during an offline stage and often requires surveying a large enough area with many data points to 

model the environment appropriately. During online measurements, the comparison using pattern 

matching techniques, between obtained measurements and the database infers the user position 

[85], [86]. Generally, having more data points recorded allows for a higher resolution in the online 

comparison phase [87], [88]. Due to the need to map individual areas, scene analysis is a highly site-

specific approach. Furthermore, slight changes in the environment require repeated resurveying [89], 

[90], and the method is susceptible to dynamic noises [61], [72], [90].  

 

2.1.3.1.5 Triangulation  

Triangulation is the principle of attaining location estimated by forming triangles between the known 

coordinates of anchor nodes and the target. Triangulation has two subbranches, Angulation and 

Lateration that refer to the use of range-based or angle-based measurements.  

 

2.1.3.1.5.1 Lateration 

By determining a signal's TOA, RSS or TDOA, the distance between anchor nodes and a target can be 

estimated. These distances form a set of equations that define the geometric relationship of positions. 

Geometrically, the anchor nodes can be considered the centre points of circles (or the surface of the 

spheres) with radii equivalent to the length of the respective distance measurements obtained. The 

target may lie anywhere along the circumference of these circles (or spheres). Therefore, for 2D and 

3D systems, the target's position is determined by the intersection of the circles or spheres, 

respectively. For 2D systems with two equations and 3D systems with three equations, the system is 

underdetermined. Therefore, an ambiguity arises as there can be multiple possible solutions. To 

obtain a unique solution, a 2D system requires a set of three equations, and 3D systems require a set 

of four equations. In practice, range estimations are subject to noise, and the desired point of 
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intersection is no longer apparent, as illustrated in Figure 2.4 for a 2D system. To overcome this level 

of uncertainty, the state of the target is given by the closest point of intersection. 

 

 

Figure 2.4 – 2D Trilateration and Errors for noiseless and noisy measurements A) Noiseless distance 

measurements with clear intersection locating the target device. B) Noisy distance measurements, 

indicated by dotted lines, produce position estimation errors and regions of uncertainty.  

The Least Squares Solution  

A standard approach to determining the multilateration solution involves applying the Least Squares 

solution (LSS). Taking an algebraic approach as presented in Norrdine et al. [91], one can consider a 

2D system with 𝑁 sensors observing a single target. The position of the sensors and target are given 

by 𝑆 = 𝑥 , 𝑦  for 𝑖 = (0, 1, ⋯ , 𝑁) where 𝑖 = 0 represents the target. The 𝑖 𝑡ℎ sensor (𝑖 > 0) 

obtains a noisy range estimate 𝑑  between itself and the target, given as the sum of the true distance 

(𝑑 ) and the noise component (𝑛 )  considered to be additive white Gaussian noise, 

 

 𝑑 = 𝑑 + 𝑛 . (2.9) 

For general discussion, these noisy distance measurements and true distances are collated into 𝑑 =

𝑑 , 𝑑 , ⋯ , 𝑑  and �̅� = [𝑑 , 𝑑 , ⋯ , 𝑑 ] respectively, which gives:  

 

 𝑑 = �̅� + 𝑛. (2.10) 

 

Here 𝑛 is modelled as a zero-mean Gaussian random vector with diagonal covariance matrix 𝐶 . Taking 

(2.9), 𝑑  can be represented as [92]: 
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𝑑 =  𝑆 − 𝑆 = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) . (2.11) 

 

Therefore, substitution of (2.11) into (2.9) before re-arranging and squaring both sides as in C. H. Park 

& Chang [93] gives:  

 

 (𝑥 ) + (𝑦 ) − 2𝑥 𝑥 − 2𝑥 𝑥

= 𝑑    − 𝑥 − 𝑦 − 2𝑑 𝑛 + 𝑛  
(2.12) 

 

Applying the measurements obtained from the other 𝑁 − 1 sensors, in the same manner, defines a 

set of quadratic equations where the solution is the target coordinates. Under a sufficiently small noise 

assumption one can ignore the second-order noise terms [44][93][94]. The solution is given in the 

following matrix form [91]:  

 𝐺𝜗 = 𝑏 + 𝑒. (2.13) 

Here 𝑒 = 𝐷𝑛 such that the complete representation is:  

 

 −2𝑥 −2𝑦 1
⋮ ⋮ ⋮

−2𝑥 −2𝑦 1
 

𝑥
𝑦

(𝑥 ) + (𝑦 )

=
𝑑 − (𝑥 ) − (𝑦 )

⋮

𝑑 − (𝑥 ) − (𝑦 )

− 2
𝑑 0 0
⋮ ⋱ ⋮
0 0 𝑑

𝑛
⋮

𝑛

. 

(2.14) 

 

Ignoring the error 𝑒, the solution 𝜗 is therefore given by the LSS [91] as: 

  

 𝜗 = (𝐺 𝐺) 𝐺 𝑏. (2.15) 

 

In cases where the measurement noises are uncorrelated with one another and have different 

uncertainties the solution is determined using the Weighted Least Squares (WLS) [91] solution, 

 𝜗 = (𝐺 𝑊 𝐺) 𝐺 𝑊 𝑏. (2.16) 

Where the weighting matrix 𝑊 is given by the covariance of the random errors [68], 

 𝑊 =  𝐷𝐶 𝐷. 

 
(2.17) 

Errors within the LSS multilateration solution result from the dependence on the accuracy of the 

ranging process [95]. Inaccurate range estimates hinder the identification of a unique intersection 
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point or even of any intersection at all. Additionally, one must be careful in the distribution of sensors 

due to the potential for flip ambiguity [94][96][97], which occurs when there are multiple potential 

intersections. This is typical in 3D systems where sensors are distributed across a flat ceiling in a 

rectangular arrangement. The common height leads to possible ambiguities in estimations which can 

be resolved by moving or adding a sensor at a different height or on the same plane but not on the 

circle formed by the position of the other sensors [17], [98], [99].  

 

Hyperbolic Lateration  

For TDOA measurements, the process is altered to reflect that the measurements obtained represent 

the difference between a single sensor’s distance to the target and a reference sensor’s distance to 

the target. Each TDOA measurement forms a hyperboloid of possible target positions where the two 

respective sensors are the foci [46]. As opposed to a sphere or a circle, the intersection of the 

hyperbolas presents the target. For 𝑁 Anchor nodes within a system, there exists  (𝑁 − 1) TDOA 

measurement equations [48].  

Consider the same scenario given above for the circular/spherical multilateration technique 

where the first sensor 𝑖 = 1 is taken to be the reference sensor and a 3D space is considered such that 

𝑆 = 𝑥 , 𝑦 , 𝑧 for 𝑖 = (0, 1, ⋯ , 𝑁). The time difference between two sensors is given by 𝜏 ,  for 𝑖 =

(2, ⋯ , 𝑁), which is converted to a distance using the propagation speed of the signal, typically the 

speed of light (3∗ 10  m/s) for Electro-Magnetic (EM) waves. From (2.11) a single TDOA measurement 

can be represented as follows [100]: 

 

 𝑑 , =  (𝑑 + 𝑛 ) − (𝑑 + 𝑛 )  

=  (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 )

− (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) +  𝑛 , .  

 

(2.18) 

In which 𝑛 ,  represents the combination of both individual zero mean Gaussian white noise 

components 𝑛  and 𝑛 . The (𝑁 − 1) TDOA measurements define a set of non-linear hyperbolic 

equations, the solution of which gives the 3D coordinates of the target. For general discussion, these 

measurements are compiled as in (2.10) where 𝑑 =  𝑑 , , 𝑑 , , ⋯ , 𝑑 , and 𝑛 is modelled as a zero-

mean Gaussian random vector with diagonal covariance matrix 𝐶 . Typically, due to the computation 

required, these solutions are first linearised and then solved by specific algorithms such as the Chan 

algorithm [101] and the Taylor Series [52], [100], [102]. The Taylor Series (TS) solution relies heavily 

on the suitability of the initial guess [100], and iterative steps can be computationally intensive. The 
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Chan solution requires general prior knowledge of the position to eliminate the ambiguous result that 

occurs from the square root process [52]. The Chan solution is also shown to be less effective than 

other solutions in near-field scenarios, meaning the target is close to the sensors [101][48].  In 

comparative studies [100][52], the Taylor Series solution shows an improved response due to 

ambiguous results in the Chan solution.  

 

Taylor Series (TS) Solutions 

The TS method linearises the set of non-linear hyperbolic equations by applying the Taylor-series 

expansion. Using an initial guess, an iterative method is then applied to solve the system of linear 

equations by determining the local linear LSS. For each measurement set the actual position of the 

target 𝑆 = [𝑥 , 𝑦 , 𝑧 ]  is related to the initial guess 𝑆 = [𝑥 , 𝑦 , �̆� ]  by errors in each coordinate 

𝛿𝑆 = [𝛿𝑥 , 𝛿𝑦 , 𝛿𝑧 ]  as: 

 𝑆 = 𝑆 + 𝛿𝑆 . 

 
(2.19) 

One can denote the non-linear hyperbolic function given in (2.18) as a function of 𝑆 , 𝑆  and 𝑆 , 

denoted as ℎ , (𝑆 , 𝑆 , 𝑆 ). This function is expanded using the Taylor series using the initial estimate 

values 𝑆  and retaining only the first two terms [52].   

  

𝑑 , ≈ ℎ , 𝑆 , 𝑆 , 𝑆 + 𝑎 , 𝛿𝑥 + 𝑎 , 𝛿𝑦 + 𝑎 , 𝛿𝑧 + 𝑛 , .  

 

(2.20) 

In which,  

 
𝑎 , =

𝜕ℎ ,

𝜕𝑥
, ,

=
𝑥 − 𝑥

𝑑
−

𝑥 − 𝑥

𝑑
, 

 

𝑎 , =
𝜕ℎ ,

𝜕𝑦
, ,

=
𝑦 − 𝑦

𝑑
−

𝑦 − 𝑦

𝑑
, 

 

𝑎 , =
𝜕ℎ ,

𝜕𝑧
, ,

=
𝑧 − �̆�

𝑑
−

𝑧 − �̆�

𝑑
, 

 

(2.21) 

where 𝑑  and 𝑑  are calculated using (2.11) where the target coordinates are given by the initial guess 

values of 𝑆 . Then (2.20) can be rewritten as [52]:  

  

𝐺 ∗  𝛿𝑆 = 𝐷 + 𝑛. 
(2.22) 
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Here,  

 
𝐺 =  

𝑎 , 𝑎 , 𝑎 ,

⋮ ⋮ ⋮
𝑎 , 𝑎 , 𝑎 ,

, 𝐷 = 𝑑 , − ℎ , , ⋯ , 𝑑 , − ℎ , ,  

and 

𝑛 = [𝑛 , , ⋯ , 𝑛 , ] . 

 

(2.23) 

The LSS of (2.22) is given by (2.24):  

 

  𝛿𝑆 = (𝐺 𝐺) 𝐺 𝐷,  

 
(2.24) 

The initial guess 𝑆  is updated using (2.19) where an estimate of the coordinate errors 𝛿𝑆  is 

estimated from (2.24). This process can be repeated to improve the response, as the results converge 

on a local solution.  

 

2.1.3.1.5.2 Angulation  

Angulation uses the intersection of measured angles, or ‘bearings’ obtained as AOA measurements 

between the target and known anchor positions to identify the target position [103]. This principle 

relies on the trigonometric properties of right-angled triangles where angle-side-angle measurements 

are sufficient to fully determine any triangle [76]. Using the known distance between anchors, only 

two transmitters and their AOA measurements are required to resolve the target location in 2D space 

[95]. In practical settings, due to measurement errors, the lines formed by multiple bearings may not 

intersect at a singular point [103] and therefore require best fit methods. Triangulation over large 

distances is highly sensitive to errors in the AOA measurements [8][61] [95].  

 

2.1.3.1.6 Summary of Position Estimation Techniques 

From the discussion above the suitability of positioning methods, these can be seen to be strongly 

dependant on the type of data available [95] and the application. For example, proximity based 

solutions are not suitable for providing high accuracy and scene analysis is not appropriate for dynamic 

environments. Obtained AOA measurements are suited to triangulation methods and RSS are fitting 

for proximity detection. These factors should be considered when establishing a wireless indoor 

positioning system.  

The solutions presented so far provide valuable means to estimate the target position; 

however, more advanced filtering techniques can be applied to combine datasets and improve the 
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tracking performance of dynamic targets. These filtering processes are introduced in the following 

section.  

 

2.1.3.2 Sensor Fusion and Tracking Filters  

Sensor fusion, or synonymously data fusion, is well defined by Hall et al. [104] as techniques to  

‘Combine data from multiple sensors, and related information from associated databases, to 

achieve improved accuracies and more specific inferences than could be achieved by the use of a single 

sensor alone.’ 

In this respect this thesis refers particularly to multisensor fusion for state estimation, in which 

the state to be estimated is typically the target’s position and relative data such as velocity or 

acceleration. 

Each of the solutions and signal characteristics reviewed in Sections 2.1.2.1 and 2.1.3 have 

shown to have both advantages and disadvantages [8]. By combining two or more complimentary 

systems together, these shortcomings can be mitigated [105]. Where a single technique may lead to 

an erroneous result or fail to provide an estimate altogether, through fusion of additional data, the 

system can either improve or sustain a response. From an energy perspective, data fusion can be 

employed to reduce the number of redundant transmissions [106] and ambiguities. In general 

combining data from various sensors provides a means to enhance reliability, improve accuracy, and 

increase energy efficiency [107][108][109][106].  

In particular, the sensor fusion considered throughout is achieved using the well-known 

Kalman Filters which were presented by R. E Kalman in 1960 [110]. Particle filters – another method 

for data fusion, involve iterative resampling of large quantities of data and are therefore not 

computationally efficient [111][108][80][112][113]. Due to the emphasis throughout this thesis on 

energy efficiency, Particle filters are not considered further. Additionally multi-target tracking 

techniques, such as Probability Density Hypothesis (PDH) filters, are not considered due to the focus 

throughout this thesis on localisation of a single target. For more details on these filtering processes 

the readers are referred to Elfring et al. [114] and Liu et al. [115], [116] respectively. 

The following section introduces the Linear Kalman Filter (LKF) and its non-linear variants; the 

Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) for target tracking applications. 

This entails the operation of the filtering processes with insight into common system models and the 

tuning parameters.  
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2.1.3.2.1 Kalman Filters 

The Kalman Filter (KF) describes a recursive solution to discrete data linear filtering. Since being 

introduced, the KF has become a standard approach for optimal estimation, owing to its fast recursive 

nature, efficiency, and robustness [117]. Many variations of the KF have been proposed and some 

have become well established, however, in this thesis the three main types are discussed: The Linear 

Kalman filter, the Extended Kalman filter and the Unscented Kalman Filter.  

The KF provides many uses from smoothing and reducing noise [118]–[121], predictive tracking [7], 

[122]–[125], and data fusion [106], [108], [126]–[129].  

Due to its versatility and numerous benefits, the KF has found applications within the fields of orbit 

calculation, signal noise reduction, and GPS [117].  

From a high-level perspective, the KF can be seen as a feedback control system comprised of 

two stages, The prediction stage, and the update stage. In the prediction stage, the KF draws a 

prediction of the state at the next discrete time point, using a given model in the form of a linear state 

transition matrix, subsequently, this increments the filter in the time domain. The prediction is then 

compared, in the update step, with measurements using a weighting factor, established by the 

uncertainties of the prediction and measurements. The measurement that is applied can be 

considered the system feedback. The output is then returned to the prediction stage to repeat the 

process for the subsequent time step.  

 

2.1.3.2.1.1 The Linear Kalman Filter  

The Linear Kalman Filter (LKF) is the simplest form of the KF. This is an optimal linear estimator 

following the principles of Bayesian filter theories to estimate the state 𝑋 ∈ ℝ  of a discrete-time 

process controlled by the linear stochastic difference equation [120], 

 

 𝑋 = 𝐴𝑋  + 𝐵𝑢 + 𝑤 . 

 

(2.25) 

Where subscript 𝑡  describes the adjoined value being related to the time of the 𝑘’th sampling 

instant. With a measurement 𝑧 ∈ ℝ  given by the following observation equation [130]:  

 

 𝑧 = 𝐻𝑋 + 𝑣 . 

 

(2.26) 

Both 𝑤  and 𝑣  respectively represent the process and measurement noise. These random 

variables are assumed to be normally distributed with zero mean, white noise and independent of one 
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another. The process noise and measurement noise are defined by their respective covariance 

matrices 𝑄 and 𝑅 Such that [120]: 

  

 𝐸(𝑤) = 0, 𝑐𝑜𝑣(𝑤) = 𝐸(𝑤𝑤 ) =  𝑄, 𝜌(𝑤)~𝑁(0, 𝑄), 

 

(2.27) 

 𝐸(𝑣) = 0, 𝑐𝑜𝑣(𝑣) = 𝐸(𝑣𝑣 ) =  𝑅, 𝜌(𝑣)~𝑁(0, 𝑅). (2.28) 

 

𝐴 is an 𝑛 x 𝑛 state transition matrix that relates the state at the previous time step (𝑡 ) to the state 

at the current time step 𝑡 . 𝐵 is an 𝑛 x 𝑙 matrix relating an optional control input 𝑢 ∈ ℝ  to the state. 

The measurement translation matrix 𝐻 maps the state to the measurement 𝑧 .  

To distinguish the state at points within the process one may define 𝑋   to be the prior state 

estimate, derived from the state transition matrix at time 𝑡 , and 𝑋  as the posterior state estimate, 

established by combining the measurements at interval 𝑡 . From this, the priori and a posteriori 

estimate errors can be given as [82]:  

 𝑒 = 𝑋 − 𝑋 , (2.29) 

 𝑒 = 𝑋 − 𝑋 . (2.30) 

The covariances of the a priori and a posteriori estimation deviations are defined by [121]: 

 𝑃 = 𝐸 𝑒 𝑒 , (2.31) 

 𝑃 = 𝐸 𝑒 𝑒 . (2.32) 

Derivation of the KF equations aim to find an equation to calculate the a posteriori state estimate 𝑋  

as a linear combination of the a priori state estimate 𝑋  and a weighted difference between an 

observation and a prediction of the measurement 𝐻𝑋  as given by [121]:  

  

𝑋 = 𝑋 + 𝐾 𝑧 − 𝐻𝑋 . 

 

(2.33) 

The ‘innovation’ or residual (𝑧 − 𝐻𝑋 ) describes the difference between the received 

measurement and the predicted measurement at the instant 𝑡 . The Kalman gain, denoted by 𝐾, is an 

𝑛 x 𝑜 matrix that determines the degree to which the innovation is combined with the a priori state 

estimate. Derivations of the Kalman gain involve equations which are provided in Maybeck & Siouris, 

and Welch & Bishop [120], [131] but ultimately the result is:  

 𝐾 = 𝑃 𝐻 𝐻𝑃 𝐻 + 𝑅 . 

 
(2.34) 



22 

 

Notably from (2.34) as the measurement noise covariance 𝑅 tends to zero, the value of 𝐾 increases 

and weights the innovation more, thereby leaning the a posteriori state estimate towards the 

measurement [120]: 

 lim
→

𝐾 = 𝐻 . 

 
(2.35) 

Conversely, as the a priori process noise covariance matrix 𝑃  decreases, the Kalman gain reduces the 

weights of the innovation [120]:  

 

 lim
→

𝐾 = 0. 

 
(2.36) 

It is important to highlight this behaviour since the response of the filter is highly dependent on the 

weights of 𝑄 and 𝑅 [132], [133]. These weights influence the Kalman gain and therefore determine 

the level to which the output agrees with the prediction or measurement.  

 Following Bayesian theory, (2.33) stems from the probability of the a priori estimate 

conditioned on all prior measurements. The a posteriori state estimate represents the mean of the 

state distribution, which is distributed normally if (2.27) and (2.28) are met, while the posteriori 

estimates error covariance matrix 𝑃  reflects the variance of the state distribution [82], [120].  

 

 𝐸 𝑋 = 𝑋 , 

𝐸 𝑋 − 𝑋 𝑋 − 𝑋 = 𝑃 , 

Therefore, 

∴ 𝜌 𝑋 𝑧 ~𝑁 𝐸 𝑋 , 𝐸 𝑋 − 𝑋 𝑋 − 𝑋  

= 𝑁 𝑋 , 𝑃 .                             

(2.37) 

The resultant LKF equations are given by:  

 

 Prediction stage   Update stage  

 𝑋 = 𝐴𝑋 + 𝐵𝑢  

𝑃 = 𝐴𝑃  𝐴 + 𝑄 
(2.38) 

(2.39) 

 𝐾 = 𝑃 𝐻 𝐻𝑃 𝐻 + 𝑅  

𝑋 = 𝑋 + 𝐾 (𝑧 − 𝐻𝑋 ) 

𝑃 = 𝐼 − 𝐾 𝐻 𝑃  

(2.40) 

(2.41) 

(2.42) 

 

The KF under linear process and measurements functions and with noise which follows a 

Gaussian distribution is the optimal theoretical solution [108]. Nevertheless, these conditions are 
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rarely met in practical settings, yet under slight deviations the KF is robust enough to make reasonable 

estimations. For inherently non-linear process and measurement relationships non-linear variations 

of the Linear Kalman filter, namely the EKF and UKF have been established.  

 

2.1.3.2.1.2 The Extended Kalman Filter (EKF) 

The EKF approach attempts to linearise the estimate around a current state estimate using the first-

order derivatives of the measurement and process functions [117]. By computing the Jacobians at 

each time step it is possible to locally linearise the non-linear function, in a process that is somewhat 

similar to the Taylor series. The process to be estimated is like that of the LKF, though, described by a 

non-linear stochastic difference equation given by [120]:  

   

 𝑋 = 𝑓 𝑋 , 𝑢 , 𝑤 , 

 

(2.43) 

And with a non-linear measurement function given by [120]: 

 

 𝑧 = ℎ 𝑋 , 𝑣 . 

 

(2.44) 

All variables are equivalent to those described in the LKF section however 𝑓 represents the non-linear 

function that relates the previous time step 𝑡  to the current time step 𝑡 . The non-linear 

relationship between the state 𝑋  and the measurement 𝑧  is described by ℎ. As with the LKF, the 

EKF equations follow the same prediction and update structure. While the EKF has found applications 

in robot localisation [108], [134] and IMU fusion [80] the process requires the iterative re-computation 

of Jacobian matrices, and this is not computationally efficient [82][108]. Additionally, the EKF relies 

heavily on a suitable initial estimate for linearisation and that the degree of local non-linearity of the 

functions being approximated is not too great. Results can be shown to deviate if the non-linearity of 

the system is too great [135][111] [82].  

 

2.1.3.2.1.3 The Unscented Kalman Filter (UKF) 

The UKF uses the framework of the LKF but applies the Unscented Transform (UT), leading to a definite 

sampling approach as opposed to a random sampling strategy. These sample points are referred to as 

sigma points, and while the number can vary depending on the strategy adopted the most common 

is to use 2𝑛 + 1 symmetrical sampling. Where 𝑛 represents the dimension of the state to be 

estimated.  
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The Unscented Transform (UT) is a solution for calculating the statistics of a random variable 

after being transformed non-linearly [111]. The premise of the UKF is to use weighted sigma points to 

capture the mean and covariance of the original distribution. These points then maintain Gaussian 

distributions through non-linear functions up to the second order of non-linearity [108], [111], [136], 

[137]. The sigma points are chosen deterministically; used to map the Gaussian distribution; they are 

then non-linearly transformed; and finally used to reform a Gaussian distribution. Similar approaches 

to represent states through sampling has been proposed where the sampling points are selected 

differently regarding their number, weights, and values [137]. The process of the UKF is detailed 

below:  

 

Generating sigma points 

Firstly, the sigma points are deterministically defined as a matrix 𝜒 of 2𝑛 + 1 sigma vectors 𝜒  [136]:  

 

 
𝜒 = 𝑋 , 

 

 

 

(2.45) 

 
𝜒 = 𝑋 + (𝑛 + 𝜆)𝑃 , 

 

(𝑗 = 1, ⋯ , 𝑛) 

 

(2.46) 

 
𝜒 = 𝑋 − (𝑛 + 𝜆)𝑃 . 

 

(𝑗 = 1, ⋯ , 𝑛) 

 

(2.47) 

The corresponding sigma weights are appointed as follows where the superscript 𝑚 denotes the 

mean weights and the superscript 𝑐 is a covariance weight [111]: 

 

 

𝑊 , = 𝜆/(𝜆 + 𝑛), 

 

 

 
(2.48) 

 𝑊 , = 1 2(𝜆 + 𝑛)⁄ , (𝑗 = 1, ⋯ ,2𝑛) (2.49) 

 
 

𝑊 , = 𝑊 , + (1 − 𝜁 + 𝛽), 
 

 

(2.50) 

 

 

𝑊 , = 1 2(𝜆 + 𝑛)⁄ . 

 

(𝑗 = 1, ⋯ ,2𝑛) (2.51) 

The scaling parameter 𝜆 is determined as in (2.52) [111]:  
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 𝜆 = 𝜁 (𝐿 + 𝑛) − 𝑛.  (2.52) 

 

Where 𝜁 determines the spread of sigma points around the mean 𝑋 , usually applied as a small 

positive value. 𝐿 is another scaling parameter, often set to zero and 𝛽 incorporates prior knowledge 

of the distribution of 𝑋  (𝛽 = 2 is optimal for Gaussian distributions) [138]. Following the same KF 

structure of prediction and update stages, the UKF prediction involves propagating the set of sigma 

vectors through the non-linear measurement function.  

 

Prediction:  

The set of sigma vectors are propagated through the non-linear process function 𝑓 and subsequently 

incremented in time [136].   

 
𝜒 = 𝑓 𝜒 , 

 

(𝑗 = 0, ⋯ ,2𝑛) 

 

(2.53) 

The mean and covariance of the time updated distribution 𝜒  are approximated by using the 

weighted sample mean and covariance of the propagated sigma points, respectively [136].  

 

 𝑋 =  𝑊 , 𝜒 ,  
(2.54) 

 
𝑃 =  𝑊 , 𝜒 − 𝑋 𝜒 − 𝑋  + 𝑄 . 

 

 

(2.55) 

Measurement update: 

The propagated sigma vectors are then transformed through the non-linear measurement function 

ℎ [136]. 

 
Ζ = ℎ 𝜒  

 
 

(2.56) 

The mean and covariance (innovation covariance) of the resulting transformed observations are 

given in (2.57) and (2.59) [136].  

 �̂� = 𝑊 , Ζ ,  
(2.57) 

 𝑃 = 𝑊 , Ζ − �̂� Ζ − �̂� + 𝑅.  
(2.58) 
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The cross covariance between �̂�  and 𝑋  is then given by [136]: 

 

 
𝑃 = 𝑊 , 𝜒 − 𝑋 Ζ − �̂� . 

 

 

(2.59) 

The Kalman gain is computed by using the innovation and cross-covariance matrices [136]: 

 

 
𝐾 = 𝑃 (𝑃 ) .   

 
 

(2.60) 

The resulting state estimate and covariance are calculated by the Kalman gain of the innovation 

between the propagated estimated prediction (�̂� ) and the measurement (𝑧 ) and are given by 

[136]:  

 

 
𝑋  =  𝑋 + 𝐾 𝑧 − �̂� , 

 
 

(2.61) 

 
𝑃 = 𝑃 − 𝐾 𝑃 𝐾 . 

 
 

(2.62) 

Again, in the same manner as the EKF, the UKF requires re-computation of the weighted sigma points 

through each iteration of the filter and the UKF and EKF have the same order of computations [111], 

[138]. While the UKF doesn’t require Jacobian matrices to be computed [111], simulations indicate 

the UTs require more computation time [137]. However, the UKF is considerably more stable than the 

EKF, as the non-linearisation can be more extreme and does not depend greatly on an initial estimate. 

In General, the UKF is considered superior to the EKF in both theory and in practical applications [117], 

[137], [139], [140]. 

 

2.1.3.2.1.4 Kalman Filters for Sensor Fusion 

From the formulations above, the KF and variations are useful and lightweight tools for prediction of 

state estimates where the combination of provided predictions and measurements reduces the noise 

within the response. Notably, for instances where measurements are missing, estimations can be 

generated using the prediction stage independently, thus increasing the robustness of the response.  

The KF processes described previously highlight how the KF efficiently fuses state estimates 

from the prediction and measurements. The same approach can be applied to effectively fuse 

numerous measurements together. This can be accomplished using homogenous or non-homogenous 
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sensor measurements, the latter approach simply requires a sensor specific measurement translation 

matrix 𝐻 or measurement function ℎ. Sensor fusion using the KF can be approached in one of two 

ways; multiple sensor values can be mixed in the observation model or sensors can be used as 

estimation inputs and others can be applied in the update [130]. The latter approach lacks the 

smoothing contributed by the applied motion model.  

 

2.1.3.2.1.5 Tracking System Models 

Within the context of tracking, the prediction step is generally a linear transformation while the 

update step is defined by a measurement model that is either linearly or non-linearly related to the 

state. The chosen model used by a KF is crucial for good performance and, while deviations are to be 

expected in practical use cases, a model should reflect the true system dynamics as best as possible. 

Various models, both in discrete and continuous time representations have been proposed and 

explored throughout literature for use in target tracking people with varying degrees of success [25]. 

Throughout this thesis, the focus is on tracking applications, therefore, the following popular models, 

namely the Constant Velocity (CV) [132], [133], [141] and Constant Acceleration (CA) [124], [141] 

models are explored.  

 

Constant Velocity (CV) 

The CV model, as the name suggests, describes a target travelling at a constant velocity. Therefore, 

the state transition matrix 𝐴, within the LKF equations given in (2.38) is presented in (2.63) for a second 

order system in one dimension, in the absence of a control input matrix (𝑢 ). The term ‘second order’ 

refers to where only the position and velocities are included in the state in Cartesian form. Such that 

the state to be estimated is of the form 𝑋 = [𝑥, 𝑣 ] , which represent the targets 𝑥-coordinate and 

velocity in the 𝑥-axis (𝑣 ) in terms of Cartesian coordinates. As (2.63) states, for each timestep, the 

Cartesian coordinates are incremented by the product of the estimated velocity component at 

magnitude of the time-step Δ𝑡 [142]: 

 

  

𝑥
𝑣

=
1 Δ𝑡
0 1

𝑥
𝑣

.  

 
 (2.63) 

A 2D or 3D representation can be simply obtained by the inclusion additional dimension parameters.  

  

Constant Acceleration (CA) 

Alternatively, KF designers may wish to opt for the CA model, in which the state is defined by a third 

order system such that the acceleration components in all dimensions are to be estimated in addition 
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to the velocity and position components. Therefore, the state to be estimated is given by 𝑋 =

[𝑥, 𝑣 , 𝑎 ]  where 𝑎  denotes the acceleration components in the 𝑥-axis. Following the kinematic 

equations for displacement under constant acceleration one can obtain the following 2D matrix 

representation of (2.38) with no control input 𝑢  [141]: 

 

 

𝑥
𝑣
𝑎

=
1 Δ𝑡 Δ𝑡 2⁄
0 1 Δ𝑡
0 0 1

𝑥
𝑣
𝑎

.  

 

(2.64) 

 

 

Similarly, to the CV model, a 2D or 3D representation can be simply obtained by the inclusion of 

additional dimension parameters.   

 

2.1.3.2.1.6 System Identification 

From the relationship defined in (2.34) and evaluated in (2.35) and (2.36) the values of the process 

noise and measurement noise covariance matrices have an evidently strong influence on the filter 

performance, and are generally considered to be the tuning parameters of the KF. Small 𝑄 values 

produce small gains that lead to good measurement noise reduction but reduce the filters response 

to measurements and thus lead to large latency during manoeuvres or potential divergence [117], 

[132], [133], [143]. The values and structures applied should be considered to provide the optimal 

description of the relationship between state variables as well as descriptions of the level of noise in 

either the measurements or the level to which the model correctly describes the system dynamics at 

any given instant. The process of determining the appropriate structures and noise values is referred 

to as system identification. In many cases, it is important for a filter designer to avoid overfitting the 

noise parameters to function optimally only under highly specific settings. Doing so reduces flexibility 

in the system and may lead to greater errors when the system is exposed to other settings.  

The measurement noise covariance matrix 𝑅 can be determined through evaluating offline 

measurements to determine the standard deviations in each variable [120]. For a second order one-

dimensional system, where the received observation is the targets Cartesian 𝑥 coordinate, the 

measurement translation matrix and measurement covariance matrix are typically given by 

[133][141]:  

 𝐻 =  [1 0], and 𝑅 =  [𝜎 ], 

(2.65) 

 

 

Where the 𝜎  denotes the variance of the single 𝑥-axis measurements. The measurement model given 

in (2.65) also assumes independent noise parameters are completely independent.  
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The process noise covariance matrix (𝑄) is less trivial to determine, and throughout the 

literature there has been no fully established method for deriving it, therefore, KF designers must 

perform system identification with careful regard not to perform overfitting of a system. This often 

includes tedious trial and error to determine a reasonable optimum for the given application. Several 

structures for the process noise covariance matrices have been derived for CV and CA models to 

describe the relationship between the state parameters. However, each still requires the identification 

of an additional scaling value to describe the model uncertainty. Various motion models are 

considered in Li & Jilkov [25] and derivations for the discrete-time motion model and continuous-time 

motion models are given along with their respective noise covariance matrices. Three process noise 

covariance matrices are explored and evaluated in Saho & Masugi [144].    

Throughout this thesis only discrete time KFs are explored, therefore, to discretise the noise 

term, the highest order term is taken to be constant throughout the duration of each sampling period 

but different and uncorrelated for each sampling period [145]. 

For the second order CV model presented in Section 0 the commonly used Discrete-time 

Nearly Constant Velocity model (DNCV) [25] [144][142][137] uses a process noise covariance matrix 

that describes a random acceleration to account for small deviations in velocity. For the tracking 

applications expanded on throughout this thesis, the target is not influenced by any known input, 

hence, the control input 𝑢  is omitted. Therefore, the discrete time dynamic model in the presence 

of noise and under no control input is given by [132]: 

 𝑋  = 𝐴𝑋 + 𝑤 . 

 

 

 

For the DNCV scenario, the dynamics are considered to have a small constant acceleration component 

𝑎  between time instants 𝑡  and 𝑡 , that is normally distributed with zero mean and standard 

deviation 𝜎 , therefore, 𝑎 = 𝑁(0, 𝜎 ). The acceleration component is related to the state by the 

acceleration translation matrix, 𝐹, such that [25]:  

 𝑋  = 𝐴𝑋 + 𝐹𝑎 . 

 

(2.66) 

 

 

For a second order, one-dimension DNCV model one can apply standard kinematics equations with 

the CV matrices presented previously but include the constant acceleration as a component of the 

noise term such that:  
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𝑥

𝑣
=

1 Δ𝑡
0 1

𝑥
𝑣

+ Δ𝑡 /2
Δ𝑡

𝑎  

 

(2.67) 

 

From here, one can ascertain the covariance matrix of the process noise component as follows [25]:  

 

𝑤 = 𝐹𝑎  

 

𝑄 =  𝑉𝑎𝑟 𝑤 = 𝐸 𝑤 𝑤 = 𝐸 𝐹𝑎 𝑎 𝐹 =

𝐹𝐸 𝑎 𝑎 𝐹 = 𝐹𝜎 𝐹 = 𝐹𝐹 𝜎 , 

 

Therefore, 

𝑄 =  
Δ𝑡 /4 Δ𝑡 /2

Δ𝑡 /2 Δ𝑡
𝜎 . 

(2.68) 

 

 

As for the CA model, the simplest noise model is referred to as the white noise acceleration model 

[25], which assumes the target’s acceleration is a completely independent process and only differs 

from the DNCV model in that the noise component is greater. The Wiener-process acceleration model 

assumes the acceleration to process with independent increments. The same mathematical approach 

can be applied to the third-order process, however, the white process noise component is considered 

as a discrete-time Weiner process  [145] and referred to as the Weiner- sequence acceleration model 

in Li & Jilkov [25]. Hence 𝐴 and 𝑤  are given by [143]: 

 

 𝐴 =  
1 Δ𝑡 Δ𝑡 /2
0 1 Δ𝑡
0 0 1

 , 𝑤 =  𝐹𝑎 =  
Δ𝑡 /2

Δ𝑡
1

𝑎 . 

 

(2.69) 

 

 

Therefore, following the same approach taken in (2.68) one can posit the process noise covariance 

matrix 𝑄 to be [25][143]:  

 

𝑤 = 𝐹𝑎 , 

 

𝑄 =  𝑉𝑎𝑟 𝑤 = 𝐸 𝑤 𝑤 = 𝐸 𝐹𝑎 𝑎 𝐹 = 𝐹𝐸 𝑎 𝑎 𝐹

= 𝐹𝜎 𝐹 = 𝐹𝐹 𝜎 , 

 

Therefore,  

(2.70) 

 



31 

 

𝑄 =  

Δ𝑡 /4 Δ𝑡 /2 Δ𝑡 /2

Δ𝑡 /2 Δ𝑡 Δ𝑡

Δ𝑡 /2 Δ𝑡 1

𝜎 . 

 

Generally, The noise covariance matrices are assumed to be constant throughout filter operation, as 

indicated by the lack of the time associated subscript 𝑡  in equations (2.39) and (2.40). For systems 

where the 𝑄 and 𝑅 are in fact constant, the estimates covariance matrix and Kalman gain will converge 

to constant and stable values [120].  

 

Throughout this sub-section, the process of advanced filter techniques, namely the linear and non-

linear KFs have been presented for use within target tracking applications. Observations have been 

made regarding the KF’s ability to reduce noise in measurements, perform predictions, and fuse 

multiple datasets, which is exploited throughout this thesis. Notably, the process and measurement 

noise covariance matrices act as tuning parameters that dictate the KF’s response.  

 

2.1.4 Review of Existing Indoor Localisation Systems  

This section concludes the four-stage description of localisation systems illustrated in Figure 2.1, 

wherein the output of the system is a product of all the design parameters considered within the 

application, sensors, and processes discussed above.  

This section initially discusses the evaluation criteria of specifically indoor positioning systems 

using wireless sensor networks for people or mobile device tracking. A summary of existing relevant 

systems is then presented to provide context to the performance of existing systems and highlight the 

range of techniques. This summary is by no means exhaustive, therefore, for more particular details 

the reader is encouraged to consider the following literature. Kozlowski et al. [107] and Deak et al. 

[27] provide insightful details of localisation from the sensor and device perspectives respectively. 

Xiao et al. [90] considers a broader catalogue-based approach to existing systems, while Y. Gu et al. 

[86] focuses more on localisation within the context of personal networks.  

 

2.1.4.1 Evaluation Metrics  

Various existing surveys [4], [8], [12], [15], [27], [61], [63], [67], [75], [86], [90] and literature [107], 

[146] propose performance metrics for the systems they evaluate. In general, similar metrics are 

expressed across most studies, however, the diversity in performance metrics typically arises from 

contextually biased papers while others may group parameters differently. The selection of metrics 

presented is selected to best reflect those across the various literatures explored. 
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2.1.4.1.1 Accuracy & Precision  

Arguably, the most valuable localisation metric, the accuracy of a system is commonly determined as 

the average Euclidian distance between the estimated location of the target and the true location of 

the target in 2D or 3D space. The precision, defined as the success probability of position estimations 

with respect to predefined accuracy, Gu et al. [86] considers how consistently the system works by 

revealing the variability in performance. However, there is a trade-off between these and other 

characteristics where a compromise between “suitable” accuracy and other metrics is needed.  

 

2.1.4.1.2 Reliability / Fault Tolerance  

In general, an indoor localisation solution is constructed with numerous components in which sources 

of error may occur. These errors may affect both the accuracy and the likelihood that an estimate is 

generated. Observing the system at the sensor level, Deak et al. [27] discusses how all sensors obtain 

measurements with some degree of noise. These errors may be inherent in the sensing modality, the 

environment, introduced during the sensors manufacture or stem from other factors such as pushing 

for energy efficiency. These factors can contribute towards either a noisy measurement or, more 

drastically, a sensor being unable to provide any measurement at all. Furthermore, the way in which 

a system processes or considers data within a system can impact both the response and the likelihood 

a position estimate is generated. Some solutions, such as the LSS are less effective under higher noise 

due to small noise assumptions or the potential for ambiguities. Moreover, hybrid solutions or 

network structures are better equipped to generate estimates when a sensor fails.  

 

2.1.4.1.3 Energy Efficiency  

With devices becoming more automated and mobile, localisation of battery-operated devices is in 

growing demand. In turn, energy efficiency incurs lower running costs, increased active lifetime for 

battery powered devices and reduces the environmental impact. Typically, a system implemented 

under stricter performance requirements is subjected to trade-offs in energy efficiency, as the system 

requires further complexity to achieve the desired output.  

 

2.1.4.1.4 Latency  

The latency of an indoor positioning system can be used to describe both the frequency of the 

estimates provided and the overall estimation latency, which is the length of time taken for an 

estimate to be obtained by the device from the instant the position estimate is obtained. Both 

elements are crucial in real-time tracking applications and are heavily related to the sampling rate of 
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sensors, computation time, and transmission protocols [86]. The latency is an important factor which 

can affect the response time of applications and suitability for highly dynamic targets.  

 

2.1.4.1.5 Scalability  

As expressed by Liu et al. [61], the scalability of a system can be regarded in terms of geography or 

density. The geography describes the area or volume of coverage that systems can provide. This is 

typically related to the observable range of the individual sensors and the potential requirement for 

collocation from a specific number of sensors. The dimensionality of an IPS, such that it can describe 

a target in 2D or 3D space is also an important consideration. The density describes the number of 

objects a system can locate within a given period. The more devices a system can serve at one time 

the more desirable the system may be.  

 

2.1.4.1.6 Complexity  

Demanding improved performance or functionality from a system naturally incurs the need for 

increased complexity with regards to managing increased data and carrying out a greater number of 

tasks. The complexity of a system can be attributed to hardware, software, and operation factors [61]. 

The more widely regarded in literature is the software or computational complexity of a system, which 

relates to the processes and algorithms used. This directly effects energy constraints on less powerful 

and mobile devices where less intensive processing is desirable. Due to the difficulty in defining the 

analytic complexity of the processes involved in location estimation, the computation time of the 

process is generally considered. The hardware and operation factors can be attributed to complex 

deployment and maintenance, especially if a solution requires lots of prior information for calibration. 

Counter-intuitively, a system may be more complex to operate due to a simplified or limited system. 

One such example is where a system relies on the targets orientation to be limited during use. This is 

less intuitive to use and, therefore, more complex from a user perspective.  

 

2.1.4.1.7 Cost  

The cost of a system is strongly influenced by the complexity of the application, which in turn dictates 

the type and number of sensors required. The cost of a positioning system can be considered within 

the following subsets: monetary, time, space, weight, and energy [61]. The contributing factors lie in 

the hardware, infrastructure, installation, and maintenance [90]. The most direct costing is the 

financial costings required by each of the four factors. Time costs refer to the efforts of operation 

required in installation and maintenance [86]. The space and weight costs of the device and 

infrastructure hardware describe the form factors limitations and mobility of a system. These 
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considerations may affect the installation and maintenance. Energy cost is primarily related to the 

maintenance and lifetime of a system or device. Notably, a system can benefit from reduced costings 

if it exploits existing infrastructure or hardware.  

 

2.1.4.2 Established Systems  

As discussed throughout this chapter, wireless spatial localisation systems can be categorised by the 

signal characteristics measured by the sensors (AOA, TOA, TDOA, RSS) and the process applied 

(triangulation, fingerprinting etc.). To highlight the diversity of these solutions within various 

approaches, the explored solutions are catalogued by the physical layer in which they operate. i.e., 

the wireless technology used to communicate with the mobile or static devices. To further limit the 

scope of this study, the solutions considered in this section are constrained to active systems, 

characterised by the solutions need to have electronic devices situated on the target, that actively 

utilise data from anchors. Alternatively, passive systems consider less invasive methods in which the 

target is tracked without the need for any worn, carried, or embedded electronic devices. 

The technologies considered within this overview are sound, optical, and radio frequency (RF) 

signals. Satellite navigation [147], magnetic signals [148] [149], Inertial Measurement Units (IMU) 

[150], and image-based [23] [151] [152]  localisation solutions are omitted from the following 

discussion as these solutions are either not commonly used for indoor localisation or do not consider 

the signal characteristics discussed in earlier chapters.  

 

2.1.4.2.1 Sound  

2.1.4.2.1.1 Acoustic  

Acoustic signal-based localization leverages the ubiquitous microphone sensors in smart-phones to 

capture acoustic signals emitted by sound sources. Established solutions such as Beep [153], Whistle 

[154] and Echotag [155], are shown to achieve high localization of 3 ft, <20 cm and 1 cm accuracies 

employing TOA, TDOA multilateration, and fingerprinting methods. However, due to the smart-phone 

microphone sampling rate and filter limitations only audible band acoustic signals (<20 KHz) can 

provide accurate estimations. To avoid potentially uncomfortable noise pollution the power must be 

restricted which requires more complex low power signal detection methods [15].  

 

2.1.4.2.1.2 Ultrasonic  

Ultrasonic signals within the frequency band 2 MHz to approximately 15 MHz have been proven to 

provide centimetre level accuracy indoor localisation for multiple targets simultaneously at low energy 

costs [15]. Typical examples of established systems are Active Bats [156], CRICKET [31], and Dolphin 
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[157]. Each of these employ TOA multilateration for localisation. The Active Bat solution requires a 

wearable tag and is received by a ceiling mounted array of receivers [86]. Wearables are small and 

exhibit a lifetime of 15 months while achieving an impressive 50 estimations per second [27]. CRICKET 

couples’ ultrasonic signals with RF signals for synchronisation, and while achieving high accuracy 

around 6 cm, however, it suffers from the inherent narrowband disadvantage [90]. Due to short 

propagation distances the Active Bats solution relies on densely and accurately positioned ceiling 

sensors, which are not convenient or scalable [27], while CRICKET increases power consumption to 

synchronise the RF and ultrasound data. Ultrasonic signals are susceptible to humidity and 

temperature changes, therefore, temperature sensors are often required for ultrasonic systems to 

accommodate for potential fluctuations [15]. Gu et al. [86] also reports that noise from ‘jangling metal 

objects’ and ‘crisp packets’ can affect performance.  

 

2.1.4.2.2 Optical  

2.1.4.2.2.1 Infrared 

Typically, the Infrared (IR) system described in literature is the Active Badge solution which provides 

no more than symbolic location information of a wearable within a given room of a building. While 

the lifecycle of the wearable is over half a year, results are only obtained every 15 seconds [86]. More 

promising commercial solutions, such as VR tracking for the HTC VIVE have shown promising results 

with millimetre-level accuracy through various experimental studies [158][81]. While IR technology is 

promising, with accuracies within the millimeter scale, the response is reported to be affected by 

fluorescent lighting and direct sunlight [27] [159]. 

 

2.1.4.2.2.2 Visible Light  

Visible Light Communication (VLC) is an emerging technology for high-speed data transfer [15] that 

uses visible light between 400 and 800 THz, modulated and emitted primarily by Light Emitting Diodes 

(LEDs) which are widely deployed and make VLC technology a highly cost effective and scalable 

solution [63]. Existing systems such as Elipson [160] and Luxapose [151] have indicated centimetre 

level accuracies, however, due to the Lambertian nature of light emission most solutions are often 

limited to 2D solutions or require additional technologies and more complex algorithms to achieve 3D 

estimates. A more in-depth evaluation of Visible Light Positioning (VLP) is presented further in this 

literature review.  
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2.1.4.2.3 Radio Frequency  

The radio frequency band is, by a considerable margin, the most explored technology for wireless 

localisation solutions, owing to its accessibility, long range transmission, and easy detectability [146]. 

 

2.1.4.2.3.1 Wi-Fi  

Wi-Fi is the name of popular wireless networking technology. Wi-Fi operates within the RF bands of 

2.5 GHz for IEEE 802.11b, IEEE 802.11 g, and IEEE802.11n, and in 5 GHz for IEEE 802.11a. A key 

advantage to Wi-Fi systems is that much of the infrastructure already exists and increasing numbers 

of IoT devices are available. Early implementations of Wi-Fi based approaches such as RADAR [161], 

[162] exhibit poor localisation performance of several meters due to multipath fading, reflections, and 

obstructions affecting radio wave propagation. Recent systems such as Wi-FiNet [163] achieves a 

RMSE of 28 cm by applying a Convolutional Neural Network (CNN) for fingerprinting. While Wi-FiNet 

and similar systems, compared by Hernandez et al. [163], are promising, their performance 

significantly degrades when considering dynamic targets or locations that are different to the training 

data.  

 

2.1.4.2.3.2 Bluetooth  

Bluetooth solutions are built on the IEEE 802.15.1 standard for intended use within short range 

wireless Device to Device (D2D) communication. More recent Bluetooth Low Energy (BLE) provides a 

highly energy efficient and longer communication range of 70 - 100 m compared to previous systems 

[15]. Examples of current systems include the iBeacons from Apple and Eddystone from Google which 

use RSS to determine if a user is within certain discrete metre-level ranges. To account for variations 

in measurements, estimates are produced every one second while sampling is carried out every 50 ms 

[67]. While signal properties are similar to WiFi, Fingerprinting methods have been applied with BLE 

to make use of portability and lower power consumption of Bluetooth beacons, [164] where results 

show similar meter level accuracies to that of Wi-Fi.  

 

2.1.4.2.3.3 Zigbee 

ZigBee arrived as a specification based on the IEEE 802.15.4 standard which offers long distance D2D 

transmission in a wireless mesh network [67]. It uses the 868 MHz band in Europe, 915 MHz bands in 

the USA and Australia, and 2.4 GHz in other regions. With a focus on low cost, low data rate, and 

energy efficient personal area networks [15], ZigBee fingerprinting solutions such as ZIL [165], present 

competitive accuracies to Wi-Fi based solutions while being far more energy efficient. Regardless, 



37 

 

Zigbee technology is not widely adopted into many consumer devices, therefore, making it less 

explored than similar Bluetooth technology.  

 

2.1.4.2.3.4 Radio Frequency Identification (RFID) 

Radio Frequency Identification (RFID) is primarily intended for transferring and storing data using 

electromagnetic transmission from a transmitter to any RF compatible circuit [15]. RFID is a tag-based 

technology that is categorised as either active or passive. The RFID tags operate within the Ultra-High 

Frequency (UHF) and microwave frequency bands. Active RFIDs are powered by a local source to 

periodically transmit their ID over hundreds of meters of range, whereas passive RFID systems require 

no power source but, consequently, have a much more limited communication range (a couple of 

meters). SpotOn [166] presents an RSS triangulation-based RFID approach which, due to poor accuracy 

of 3 m, is proposed for low accuracy applications such as lighting control. More recently, Chong Wang 

et al. [26] presents an RFID solution utilising a ceiling-mounted matrix array with spacings of 1 foot 

between nodes. The solution achieves better accuracies of 1.5 ft and 0.78 ft in the 𝑥 and 𝑦 axes 

respectively. Generally, RFID solutions are not widely integrated into consumer devices. Additionally, 

due to the limited capability of passive RFID tags implementing multiple access mechanisms to avoid 

interference is non-trivial [167].  

 

2.1.4.2.3.5 Ultra-Wide Band (UWB) 

Ultra-Wide Band (UWB) is described as a radio wave whose fractional bandwidth is greater than 20% 

or at least 500 MHz [90].  Ultrashort pulses (i.e., nanoseconds) are transmitted over large bandwidth 

in the frequency range from 3.1 to 10.6 GHz using a very low duty cycle, which results in reduced 

power consumption [15]. The pulses make UWB signal’s much easier to filter out from multipath 

components, providing accurate identification of a signals time delay component [15]. Additionally, 

the difference in radio spectrum and type of signal used, makes UWB more resilient to interference 

from other RF signals while the lower frequencies are better suited to penetrate materials including 

walls [61] Ubisense is a UWB system which uses TDOA and AOA to detect a wearable tags location. 

This system exhibits very high accuracy and precision, approximately 15 cm for 95% of the estimations 

[27]. Warehouse experimentation conducted in Ruiz & Granja [168] compares Ubisense, to two other 

commercial UWB time based location solutions (BeSpoon and Decawave), the study indicates the 

superior performance of the Decawave system, which uses TWR TOA or TDOA. However, UWB signals 

do suffer interference from metallic and liquid materials. Additionally, the short communication 

range, of approximately less than 10 m, limits UWB applications to exceptionally dense networks [90]. 
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2.1.4.3 Localisation Discussion  

The systems described above highlight the variability in performance of Indoor Positioning Systems 

owing to the respectively applied technology and processes. For RF frequencies, the UWB solutions 

exhibit superior performance due the use of high signal bandwidth which enables high time resolution 

for time-based measurements. Notably hybrid solutions present improved performance compared to 

single technology systems. With regards to the evaluation of indoor positioning within this thesis, high 

accuracy and reliability are evidently critical for modern application demands. The trade-off however 

is typically additional Energy, Complexity and Cost, which are each important factors to consider. 

Moreover Energy, Complexity and Cost are reflected in the latency of a solution therefore this thesis 

evaluates the accuracy, reliability, and latency of Indoor localisation solutions. Furthermore, the 

positioning system evaluated throughout this body of work concentrates on the localisation of a single 

UE device within a restricted environment, therefore the scalability of the solution is not greatly 

considered. 

 

2.2 Localisation in Asynchronous Sensor Networks  

In literature, sensor systems are often assumed to be synchronous, in that certain processes within a 

network occur at the exact same time. In practice, maintaining perfect synchronisation across an 

entire network is rather difficult and costly. When handling sensor data and performing data fusion to 

generate location estimates, asynchronous behaviour can negatively affect the performance of an 

Indoor Positioning System (IPS). Due to the complexity of sensor networks, there are several different 

ways in which a network of sensors can be regarded as asynchronous.  

Within this section, network topologies are first introduced due to the differentiation of 

applied fusion methods and datatypes. Potential asynchronous features of wireless sensor networks 

are then discussed, before the challenges are presented and existing solutions are reviewed.  

 

2.2.1 Network Architectures  

When considering data fusion, it is important to consider the type of data to be fused and where in 

the network the network the fusion occurs. The component that conducts the fusion process is 

referred to as the fusion centre (FC).  

The simplest network structure is a centralised network [169], [170] where all raw data from 

independent sensors is transmitted to a single fusion centre. This system is considered optimal in the 

sense that it obtains all available data to establish the best output. However, with all data being 

transmitted to a singular node, the bandwidth of a system is a considerable constraint, additionally 
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the processing required to be performed for all targets within a system increases the computational 

demand of the fusion centre [171].  

To alleviate the bandwidth and processing burden, a distributed architecture considers a 

system of sensors, each established with their own processing capabilities. Localisation is then able to 

be performed throughout the network as sensors share their state estimates and act as fusion centres. 

A distributed network is additionally more robust to failures as there is no single dependant node 

[172], [173]. Sensor fusion within a distributed network considers the fusion of state estimates, 

referred to as ‘tracks’, from various sensors. In this regard, distributed fusion is synonymous with 

‘Track-Track’ fusion and ‘state fusion’. This type of architecture is, however, more complicated than 

centralised fusion [174]. 

While a distributed network presents many added benefits, the complexity is amplified in 

larger networks. Furthermore, the requirement to embed each sensor with the means to directly 

estimate the target state is not always feasible or economical. Additionally, long distance 

communications pose potential difficulties in ensuring communication channels and timings. A 

proposed improvement is the development of a decentralised network or ‘clustered network’ [173], 

[175] where the system is divided into various groups of sensors. Each group is considered part of a 

cluster and all sensors within a cluster communicate to a single fusion centre or ‘Cluster Head’ (CH), 

in a centralised manner. Various CHs are then able to communicate among themselves, sharing their 

local estimates in a distributed sense to perform state fusion.  

 

2.2.2 Types and Causes of Asynchronous Systems 

For a generalised overview, the following section introduces types of asynchronous components 

within a system. This list is by no means exhaustive and it should be noted that within a system there 

could be many possible causes for asynchronous localisation to occur.  

 

2.2.2.1 Asynchronous Clocks 

A system can be regarded as asynchronous if the communicating wireless nodes suffer unknown clock 

offsets or frequencies. In this respect, communicating devices are all considered to have their own 

‘local time’ and, therefore, are asynchronous to one another. The challenges presented by such an 

asynchronous nature are primarily limited only to time-based measurements, where the delay of the 

signal is required to be measured at high accuracies, yet the differences between sensors local times 

obscures the registration of time delay. The effect of such a system is variable on whether the system 

is considered in either the uplink or the downlink.  
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2.2.2.1.1 Uplink  

Within an uplink scenario, a transmitting target device emits a signal periodically within its own local 

time frame. This signal is received by listening sensors and TOA measurements are generated, which 

are affected by their own local time features. The resulting fusion of these results can be considered 

as noisy measurements of a singular transmission. Solutions presented in Xie et al. [176] and Li et al. 

[177] utilise a displacement estimate to eliminate the clock offsets. This requires each node to perform 

TDOA between its own consecutive measurements.  

 

2.2.2.1.2 Downlink   

Within a downlink scenario, where each device clock has its own local time, each signal is transmitted 

from a respective sensor at a slightly different instant in global time. Not only does this scenario suffer 

the effects of temporal misalignment in a time-based measurement but, additionally introduces 

potential for spatial misalignment for all manner of range-based measurements. In a dynamic scenario 

each measurement acquired at different timepoints represents the relationship between the 

respective anchor and the target at a slightly different target position. The outcome of such a downlink 

scenario equates to asynchronous sampling of sensors and is considered further in the following 

sections. 

 

2.2.2.2 Asynchronous Sampling  

Within some systems, sensor devices may obtain measurements of the target at different timepoints. 

Often this occurs due to the use of non-homogenous sensors where the sampling rates are incoherent. 

A typical example considers the use of IMU devices, known for their extremely high sampling rates, 

coupled with a slower system such as radar [178] or image detection. Alternatively, sampling rates 

may be simply misaligned as in the case of asynchronous clocks discussed above in Section 2.2.2.1. 

Regardless of the contributing factors, the outcome of asynchronous sampling is a set of 

measurements describing the state of the target at different points in time. Within a dynamic target 

tracking application, such spatial misalignments can lead to positioning errors if ignored.  

 

2.2.2.2.1 Sequential Sampling  

In a more specific case, the sampling rates and the period between individual sensor observations can 

be considered equivalent, such that the sensors are purposely sampled sequentially. Such a system 

can be established due to the use of multiplexing protocols such as Time-division-Multiplexing (TDM), 

deterministic scheduling, or contention-based protocols [36]  between nodes in a network. In these 

cases, the approach is considered to avoid interference between communications.  
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 TDM is a multiplexing protocol that considers transmission of unique datasets among different 

devices across a single frequency channel by allocating distinct timeslots within a transmission frame 

for each device. As a result, each device communicates with the target sequentially. In a similar 

fashion, Deterministic scheduling and contention-based protocols reduce the bandwidth 

requirements and energy waste by allocating distinct communication periods for each device.  

 

2.2.2.3 Packet Delays – Asynchronous Reception of Data  

Wireless sensor networks may succumb to communication delays of data packets due to the individual 

internal processing speeds of nodes, buffers at nodes, required re-transmission of faulty or non-

received data, or due to variable lengths of transmission paths [179]–[181]. While these delays may 

lead to simply delayed retrieval, depending on the extent to which the data is delayed, more recent 

data may have already been acquired since. In such a case the data is regarded as an Out-of-Sequence 

Measurement (OOSM) and must be handled accordingly. The simplest approach is to ignore OOSM 

[106], [170], [182] however this is not optimal with regards to utilising all available data. Alternative 

approaches consider re-transmission of delayed or lost data which can then be re-applied using 

Kalman filter techniques [106], [173], [180], [182], [183]. Communication delays of sensors are not 

considered throughout this thesis therefore all measurements are considered to be obtained in 

sequence.  

 

2.2.2.3.1 Asynchronous Systems Considered in this Thesis 

Throughout this thesis the term sequential sampling is explored for a system in which all clocks are 

assumed to be perfectly synchronised with one another, all sampling rates are equivalent and packet 

delays are negligible, therefore, the data arrival sequence at the fusion centre is equivalent to the 

measurement acquisition at the sensors in the time domain and is referred to as in-sequence 

measurements. To this end, the rest of this section evaluates existing data fusion techniques for 

location estimation under asynchronous sampling. We first consider asynchronous fusion of linear ITU 

measurements and then non-linear measurements.  

 

2.2.3 Linear Solutions for State Estimation Under Asynchronous Sampling  

Linear solutions describe the scenario where the sensor measurements to be fused at the FC are linear 

to the state to be determined, typically this describes the targets coordinates in two or three 

dimensions and the velocity components along each axis. Within a centralised network, a single sensor 

can be assumed to either directly measure the target’s position or velocity, or contain the necessary 

processing capabilities to do so. Alternatively, these linear measurement sets can be obtained in a 
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distributed network where track measurements are obtained and, therefore, require fusion. For any 

of the previously mentioned causes of asynchronous sampling, linear measurements of the state may 

be obtained asynchronously.  

 

2.2.3.1 Linear Tracking Scenario  

Throughout this section the following system is considered to give context to the individual causes 

and complications of such asynchronously sampled systems. A singular target node is travelling 

through a network of 𝑁 sensors and is described by the following discrete-time linear system [169]:  

 𝑋 = 𝐴 , 𝑋 + 𝑤 , . 

 

(2.71) 

 

Here 𝑋  describes the state of the target at time of the 𝑘′𝑡ℎ sampling instant (𝑡 ), 𝐴 ,  is the state 

transition matrix from estimation instant 𝑡  to 𝑡  and 𝑤 ,  is the system noise which is assumed 

to be white Gaussian distributed with zero mean and covariance 𝑄 , . A fusion centre is tasked 

with periodically combining the observations of all 𝑁 sensors received within the estimation period 

Δ𝑇 = 𝑡 − 𝑡 . During Δ𝑇, each sensor delivers a single observation of the state with the 

measurement equation given by [169]: 

 𝑧 = 𝐻𝑋 + 𝑣 . 

 

(2.72) 

 

In which 𝐻 is the measurement translation matrix, assumed to be constant throughout and equivalent 

between the sensors. The measurement noise 𝑣  is assumed to be white Gaussian with zero mean 

with covariance matrix 𝑅  and 𝑡  is the time point the 𝑖′𝑡ℎ observation relates to within the sampling 

period (𝑡 , 𝑡 ]. For simplicity, one can consider the order of the sensor numbers to correlate to the 

order of measurement acquisition at the sensors and at the fusion centre such that 𝑡 < 𝑡 <

𝑡 ⋯ < 𝑡 ⋯ < 𝑡 < 𝑡 .  

 

2.2.3.2 Sequential State Fusion  

The optimal solution for asynchronous data fusion is to sequentially process sensor measurements 

relative to the time they are obtained at the sensors. Research in Zhang, Chen, et al. [173] presents a 

Sequential Measurement Fusion (SMF) structure through consecutive Kalman filtering. Within a given 

estimation interval Δ𝑇, as a measurement 𝑧  is received, the respective timestamp 𝑡  is used to 

predict the state of the target at the instant. The solution is then updated using the measurement 
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received, and this process is repeated for all 𝑁 sensor measurements, before a final prediction step is 

executed to obtain the state estimate at the required estimation instant 𝑡 . The sequential process 

also provides an elegant solution in cases where no measurements are available. The solution simply 

considers a single prediction step over the estimation interval.  

 

2.2.3.3 Batch Fusion Approach - Measurement Augmentation (MA) 

Yanyan et al. [181] presented a centralised batch fusion algorithm for asynchronous sensor systems, 

in which asynchronous measurements are synchronised in the time domain according to the dynamic 

model of the target. The solution is applicable for an arbitrary number of sensors and respective 

sampling rates. In general, the method requires the timestamps of datapoints to re-organise the 

measurements according to their acquisition time. The approach then considers the backwards state 

transition matrix to relate individual measurements to the state of the target at the timepoint they 

were taken. In effect the solution, aptly referred to as Measurement Augmentation (MA), augments 

asynchronous measurements to generate a set of pseudo-measurements with a common fusion 

instant. Consequently, the solution results in the computation of high-order inverse matrices and 

correlates the pseudo-measurements generated with the process noise. In later works Hu et al. 

extends the concept of MA to distributed networks [184].   

Ironically, the SMF and MA approaches have been proven to be equivalent to one another in 

papers that claim the processing of each method to be superior. Zhang et al. [173] demonstrates that 

the precision of both techniques is equivalent and through the definition of computational complexity 

being the number of multiplications and divisions in the required algorithms, the complexity of MA is 

greater than SMF [182]. Zhang further explains how the procedures for MA and SMF are effectively 

equivalent. The SMF, however, distributes the required processing throughout the estimation period 

leading to lower computational complexity. 

 

While additional linear techniques such as multiscale theory, multirate filter banks, and distributed 

fusion approaches are described in literature [170], [185]–[187], the interest of this thesis lies in the 

case of asynchronous sampling of non-linear measurements. More specifically, distributed fusion is 

concerned with fusion of state estimates and is therefore inherently a linear measurement fusion 

problem. The author of this thesis, declares that to the best of their knowledge these principles are 

not currently applied to the case of non-linear measurements and, therefore, are outside the scope 

of this thesis.  
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2.2.4 Nonlinear Solutions for State Estimation with Asynchronous Data 

Throughout this thesis localisation is considered for asynchronously sampled range measurements 

which are non-linearly related to the target state. The following section discusses existing techniques 

to appropriately fuse non-linear and asynchronously sampled data.  

 

2.2.4.1 Optimal Nonlinear Sequential Measurement Fusion (SMF) 

Zhang et al. [188] build on previous linear SMF research with the use of the Unscented Transform (UT) 

to address non-linear data. The solution follows the same premise as the optimal sequential fusion for 

linear methods, however, applying a UKF process for every measurement. This entails the prediction 

and measurement fusion for each sensor measurement as it is obtained by the FC.  

Various studies employing a sequential non-linear KF consider a generalised asynchronous 

sampling scenario where measurements are obtained sequentially but with random communication 

delays. As a result, the process noise covariance matrix  𝑄
,

 of the UKF is given as a function of the 

variable latency between measurements, which is dependent on the communication and sampling. 

As such, the process noise is the sum of deterministic and stochastic components. The deterministic 

part, as with constant sampling cases, can be derived through offline experimentation. The stochastic 

component is unknown and variable and, therefore, more complex to determine.  

To accommodate for this stochastic component of noise and its potential to diverge the filter 

over time, Yang et al. [129] [126] and Zhu et al. [189] implement a fading factor within the process 

noise to compensate for the unmodelled stochastic process noise component. The proposed approach 

requires dual deterministic sampling which further increases the computational demand. Zhang et al. 

[36] considering the same process however with a Sequential Cubature Kalman Filter (SR-SCKF) in 

place of a SUKF, assume the stochastic component of the process noise to be a uniformly distributed 

random variable, on the intuition that it is simpler to approximate a region of values rather than exact 

solutions.   

The use of sequential non-linear KFs presents a simple tracking solution for asynchronous 

sampling, however, the papers considered fail to describe the computational demand of such 

processes, and as one can infer from the repeated use of non-linear KFs, this presents increases in the 

computational demand.  

  

2.2.4.2 Nonlinear Measurement Augmentation  

In a very specific case, Jeon et al. [174] derives a form of non-linear MA  process using the Unscented 

Transform (UT). The study focuses specifically on the application of non-linear trajectory models 

within an interacting multiple model study. Due to the computational cost of the MA processes 
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already being greater in comparison to the SUKF, this approach is not considered further within the 

thesis. 

 

2.2.4.3 Least Squares Batch Solutions Assuming a Constant Velocity  

In the pursuit of less computationally intensive solutions to the asynchronous challenge, one may 

consider a variety of solutions in which simpler LSSs are considered. Examples of existing work is 

discussed below.  

In very early work Blair et al. [178] employed a linear LSS technique to compress multiple high rate 

optical sensor measurements into a single measurement, synchronous with lower rate radar data. The 

two datasets are then able to be fused together as a single synchronous measurement. The approach 

relies on the assumption that the target has a constant velocity during the estimation interval [170] 

While considering the biases of sensors producing both range and bearing estimates Pu et al. [190] 

presents a new non-linear LSS formulation for asynchronous multi-sensor target tracking, by assuming 

a nearly-constant velocity model. For a single sensor, the proposed method highlights the challenge 

of estimating the azimuth bias and target velocity due to the ambiguities in the solution. These 

ambiguities are resolved using multiple sensors, as there is only a single common velocity component. 

Simulated results are promising against KF solutions.  

Additionally, Shi et al. [44] adopt a multilateration process proposing the use of a modified Two-

Step Weighted LSS (TSWLS) solution for a sequential TDMA scenario with dynamic sensor nodes that 

have both positioning error and asynchronous clocks. Shi et al. suggests that the minor time 

differences between transmissions renders the target speed observable, and thus, attempts to jointly 

estimate the target velocity and position under the approximation of a CV model.  

 

2.2.4.4 Extrapolation  

An interesting use case in which sensor data is often asynchronous is in the use of high rate IMU data 

coupled with slower sampling sensors such as cameras, Radar and Light Detection and Ranging (LIDAR) 

systems. To compensate for temporal or spatial misalignments, extrapolation methods have been 

applied to effectively augment received measurements and synchronise datapoints.  

 Geneva et al.[191]. considers a scenario where measurements provided by sensors do not 

align with the timepoints of the graphical nodes used for localisation. While adding a new node that 

corresponds to the asynchronous measurements is possible, minimising the number of nodes within 

the graph-based localisation approach is preferable for memory usage. The approach considers a 

simple linear interpolation or extrapolation under a CV model assumption between consecutive 
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sensor measurements to obtain the measurement at the nearest corresponding graphical node time 

point.  

Guo et al. [192] considers the online EKF fusion of IMU measurements and images obtained 

by Complementary Metal-Oxide Semiconductor (CMOS) rolling shutter cameras that suffer time 

misalignment due to asynchronous clocks. The rolling shutter cameras additionally represent a 

challenge as each pixel row of the camera is read sequentially, therefore, individual measurements of 

features within the pixel rows will relate to individual camera poses (position and orientation). While 

an ideal solution would model the pose corresponding to each pixel row this solution is not 

computationally viable. The proposed solution exploits the targets given trajectory model to 

interpolate between camera poses to align pixel data. For similar fusion of rolling shutter cameras and 

IMU data, Patron-Perez et al. [193] employs spline based interpolation as opposed to linear 

interpolation.  

 

2.2.4.5 Asynchronous Systems Summary  

Within later chapters of this thesis asynchronous sampling of non-linear measurements is 

encountered and therefore, applicable localisation techniques for asynchronous sampling have been 

presented from existing literature. Sequential non-linear filters, such as the SUKF, present an optimal 

format but dictate the need for repeated non-linear transforms which present potential increased 

computational demand. While complexity is discussed in the literature, it is not formally evaluated. 

Linear assumptions which are presented, offer a promising approach to reduce computational burden 

but rely on small noise assumptions of LSS and on constant velocity assumptions over the estimation 

period. Additionally, across each of the discussed studies, a singular estimation period Δ𝑇 and fixed 

measurement noise is considered for either a line, fixed circle, or fixed square target trajectory. This 

provides no insight into the effectiveness of the solutions in a wider context. Extrapolation methods 

typically consider pose (linear) extrapolations or IMU measurements and to the best of the author of 

this thesis’s knowledge are not evaluated for range measurements alone.  

 

The remainder of the chapter introduces the IoRL system within the context of 5G networks 

and presents relevant localisation technologies that are considered throughout this thesis. 

 

2.3 5G Network Technologies (Introduction to 5G) 

As described in Tadayoni et al. [194], the development of mobile technologies is considered in three 

different ways; through commercialised terms of ‘generations’, International Mobile 

Telecommunication (IMT) standards outlined by the International Telecommunications Union (ITU) 
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or, standards and releases which are provided by standardising bodies such as the Institute of 

Electrical and Electronics Engineers (IEEE) or Third Generation Partnership Project (3GPP). Throughout 

this thesis, the commercial term ‘Generations’ is considered for clarity as these align somewhat with 

the releases and standards presented by 3GPP, which are referred to throughout.  

The Fifth Generation, referred to as 5G, of mobile networks is set to tackle the drastic 

expansion  of mobile data traffic observed over the last decade [195]. This trend is predicted to 

continue as demands for higher transmission speeds, lower latencies, increasing connectivity, and 

expectations of mobile services persists.  

Beyond the sheer numbers of devices and the demands for high quality of service from 

wireless communications, new industry sectors and services such as Massive Internet of Things (MIoT), 

Massive Machine Type Communication (MMTC), Vehicle-to-Vehicle (V2V), and Vehicle-to-Everything 

(V2X) have emerged that are influencing the way in which wireless communications are implemented. 

Within the 3GPP service requirements, outlined in Release 16 [196], the revolutionary approach to 5G 

networks is highlighted. This is highly focused on the flexibility of such a system to support varying 

industry verticals, services traffic loads, and communities. Therefore, the 5G architecture must be 

adaptable to provide simultaneous support for multiple combinations of reliability, latency, 

throughput, and positioning.  

Throughput is expected to increase with one to tens of Gbps [197], [198], [199] data rates 

proposed to support new services within Virtual Reality (VR), Augmented Reality (AR), and Ultra-High-

Definition (UHD) TV. While flexibility within 5G service levels suggests a variety of latency demands, 

time sensitive applications such as remote control and factory automation dictate stringent latency 

requirements on 5G Key Performance Indicators (KPI) for very low end-to-end latency of 1 – 10 ms 

[200], [201]. Additionally, with MIoT the device density is expected to increase from a typical 4G 

connection density of 2,000 devices per square kilometre to upward of a million devices per square 

kilometre [201]. Therefore, highly reliable connectivity and significant improvements in resource 

efficiency will be necessary.  

  

2.3.1 Localisation Within 5G 

As part of the expectations of 5G networks, wireless localisation of mobile terminals within indoor and 

outdoor environments is expected to be provided with varying degrees of performance to satisfy 

individual levels of services and requirements. The 3GPP, a critical standardising body for the release 

of new network services, have defined KPI for 5G localisation throughout a series of releases. During 

the initial 5G packet, referred to as Release 15, KPI details presented in TS22.261 V15 Annex B [202] 

describe localisation use cases within four groups of sectors; Automotive, Transport, logistics & IoT, 
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Health and wellness & smart cities, and Media & Entertainment. In these groups, outdoor positioning 

accuracies are outlined as <0.3 m, <0.3 m, 1-10 m and 0.3 cm – 1 m respectively. Indoor localisation 

within these groups is detailed as ‘also needed’ [202]. Within Release 16, further enhancements and 

specifications towards localisation KPI are outlined in TS22.261 V16 [196] relating KPI to relative 

Service Levels coordinated with the needs of industry as specified in TS22.104 V16 Section 5.7 [200]. 

The Service Levels described consider a variety of industrial use cases with varied performance metrics 

pertaining to horizontal and vertical accuracies within 95 % confidence levels, the availability of the 

positioning service within the environment, positioning latency, the environment and target velocity. 

Most notably, the most stringent indoor positioning requirements pertain to ‘inbound logistics for 

manufacturing’ [200] at Service Level 7 which dictates horizontal and vertical accuracies under 20 cm 

with 99 % confidence and a latency of 1 second at a potential target velocity of 30 km/h. Further 

location requirements specified within Release 16 TS22.261 V16 Section 7.3.2.2 [196]  describe energy 

efficient positioning services for battery operated devices in use cases such as asset tracking. 

Therefore, 5G systems should implement support for positioning at lower accuracies (3-10 m) outlined 

in Service Layer 1 for twelve years using a maximum of 1800mWh of battery power under the 

assumption of multiple position estimates per hour. 

Example use cases of positioning within 5G networks are provided in TS22.261 V16 [196] and 

discuss factory floor requirements to locate assets and dynamic objects such as forklifts. Positioning 

can also be considered for autonomous guidance and V2X for both UAV and Unmanned Ground 

Vehicles (UGV), where accurate and reliable real-time positioning data is critical to ensure safety.  

In summary, due to the plethora of existing connected devices and parties involved, both user 

and industry, the needs of future networks are diverse. This is evident in the contrast of ultra-low 

latency and high data throughput communication, with low energy and long battery life demands.  

 

2.3.2 5G Solutions  

Previous ‘Generations’ of networks have expanded on existing functionalities and delivered enhanced 

system performance through the employment of novel communication techniques, new radio access 

and larger bandwidth [194] [203]. In much the same way, for 5G networks to meet the demands of 

users, the research, development, and use of multiple new technologies must be considered and 

combined. Such new technologies as massive Multiple Input Multiple Output (MIMO), ultra-dense 

network (UDN), millimetre Wave (mmWave) communication, and device-to-device (D2D) 

communication are deemed key enablers of 5G technologies.  

To achieve these stringent system demands, 5G networks are set to enhance both the Radio 

Access Networks (RAN) and Networking Solutions. Regarding RAN, newly accessible unlicensed 
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spectrum at higher frequencies and with larger available bandwidths enables greater speeds and 

capacity of networks. Higher frequencies have much shorter wavelengths, facilitating the use of 

smaller antenna form factors and thereby the development of antenna arrays. Subsequently, the 

development of smaller antenna arrays provides a means for Massive MIMO technology where 

multiple independently controlled antennas are simultaneously active. While spatial division 

multiplexing allows different data streams to occupy the same frequencies at the same time [204]. 

Through controlled shaping of the signals, the waveforms emitted from the antennas can be summed 

up constructively to achieve higher efficiency, increased Signal-to-Noise Ratio (SNR) and focused 

reception. Alternatively, this premise can be reversed to intentionally form deconstructive 

interference elsewhere [205]. This beam forming produces concentrated transmission paths which 

counteract the path losses of higher frequency bands. 5G networks, due to the higher attenuation 

characteristics of employed signals, are utilising dense deployment of smaller local cells to 

accommodate the harsh connectivity requirements in densely populated environments.  

Beyond radio access and novel transmission methods, the flexibility required of 5G networks 

necessitates the development of adaptable network architectures capable of redirecting data, 

dependant on data traffic, user needs, and energy constraints. network slicing, Network Function 

Virtualisation (NFV) Edge computing and Software Defined Networking (SDN) are some among the 

expected networking improvements expected within 5G systems. 

 

2.3.3 The IoRL System  

This thesis forms part of the Internet of Radio Light (IoRL) Horizon 2020 system and, therefore, the 

indoor localisation evaluated within this thesis is explored and takes into account the scope of the 

IoRL system. The following section introduces the proposed structure, technologies, applications and 

indoor positioning system of the IoRL project in hopes of better understanding the type of indoor 

localisation parameters and requirements dictated by the various applications as discussed in Section 

2.1.1. 

 

Remark 1 - The IoRL project is a research project and, therefore, variations to the proposal and use 

cases are natural over the course of the project. The following review and summary are considered 

an overview for the readers understanding. Relevant changes that are regarded to affect the Indoor 

Positioning System (IPS) are documented throughout the thesis and will, in fact, lead to the 

development of the 5th and 6th chapter of this thesis. 

 



50 

 

2.3.3.1 Overview  

The IoRL system [206] presents a novel network architecture for use within buildings, with applications 

in homes, supermarkets [207], museums, and public transport services [208]. The IoRL system offers 

a low interference and high security solution for sub 1ms latencies, 10 cm positioning accuracy and 

10GBps data rates; achieved through the integration of Wireless Local Area Networks (WLAN), 

Millimetre Waves (mmWave), Visible Light Communications (VLC), and Software Defined Networking 

(SDN). The overall concept architecture is presented in Figure 2.5 (a simpler adaptation of that found 

in Cosmas, Zhang, et al. [206]) . 

 

 

Figure 2.5 - IoRL Architecture 

Due to the demand for wireless indoor networks and the inability to adequately penetrate building 

materials, existing home networks commonly deploy a single router access point to propagate data 

internally using RF signals. The drawbacks of such existing systems are a lack of coverage and the use 

of low frequencies that provide inadequate Quality of Service (QoS), especially for the requirements 

of future networks. The IoRL system increases coverage within buildings via deployment of numerous 

mmWave and VLC transceivers throughout existing lighting systems. 

 

 A great number of benefits can be drawn from the intuitive application of multiple high speed 

network transmitters located within existing light roses. These access points are referred to as the 
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Remote Radio Light Heads (RRLH’s) and fulfil the obvious need to locate the VLC transmission points 

within light modules. Moreover, light roses provide ideal coverage for LOS technologies, and have 

existing conduits which would reduce installation costs. The application of multiple technologies 

located in multiple RRLHs in each room present an opportunity for high quality indoor localisation 

through triangulation. This configuration also offers both flexibility for Multiple Input Multiple Output 

(MIMO) diversity by transmission of the same data through multiple RRLHs for reliability or MIMO 

multiplexing, where different sets of data can be transmitted through different technologies or 

antennas, thereby increasing throughput. The IoRL system focuses on a Multiple Input Single Output 

(MISO) diversity proposal in the downlink and Single Input Multiple Output (SIMO) diversity in the 

uplink to increase coverage in the likely event of receiver occlusion from one of more RRLHs [207]. In 

instances where VLC and mmWave antennas are occluded, Multi-Source streaming is utilised to 

ensure the availability of a lower capacity WLAN connection for undisrupted connectivity [207]. 

Additionally, the hybrid use of high frequency LOS technologies such as mmWave and VLC benefits 

from frequency reuse, increased bandwidth, and unlicensed spectrum that provide improved data 

rates and security. Security is increased, as network attackers are unable to interact with the network 

as they are unable to connect to LOS technologies without being directly inside the building. The 

Distributed Antenna System (DAS) configuration reduces data propagation distances and is expected 

to greatly reduce network latencies.  

 

2.3.3.2 IoRL System Architecture 

The system architecture is considered in four layers; Service, Network Function Virtualisation (NFV), 

Software Defined Network (SDN) and Access as illustrated in Figure 2.6 [209].  
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 Figure 2.6 - IoRL Layer Architecture 

This structure can be considered ‘akin to a radio-light home eNodeB suitable for single building 

network rather than an Evolved Packet Core (EPC) suitable for a whole country’ [210]. 

The Service layer runs server-side applications for streaming audio-video, receiving and 

storing results on databases and monitoring security etc. from a multi-core Cloud Home Data Centre 

Server (CHDCS). Additionally, the service layer manages mobile apps from User Equipment (UE) i.e. 

smart phones, tablet PCs, VR headsets and HDTVs.  

 

At the front-end the Access layer consists of a series of RRLH transceivers situated within the light 

roses in each room of a building.  Each RRLH consists of a single VLC LED source connected to a VLC 

frequency modulation module and a mmWave antenna system connected to a mmWave RF duplex 

module. These are powered through the existing lighting infrastructure and arranged to minimise the 

overall form factors of the ceiling light. This configuration provides only a VLC downlink channel and 

both an uplink and downlink mmWave channel. The RRLH Controller (RRLHC) is developed on a Field 

programmable Gate Arrays (FPGA) and drives a total of four RRLHs transmitting an identical 

transmission block sub-frame. This produces a MISO downlink path and a MISO uplink path for the 
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given coverage area, which is typically a room or floor area of a building. Each RRLHC is connected in 

series through a 10 Gbps Ethernet Ring with Common Public Radio Interface (eCPRI) between rooms 

in a building, like the common electric lighting connections found in homes. A 10 MHz reference clock 

signal is generated locally and sent to each mmWave RRLH module for use in 5G synchronisation. Each 

RRLHC houses two lower Layer 1 processors, the first generates an Intermediate Frequency (IF) signal 

to drive the VLC MISO modules using a splitter and the second that generates an Intermediate 

Frequency (IF) signal to drive or be driven by mmWave RF Duplex modules using a RF splitter [209]. 

The ethernet ring also connects a single WI-FI access point to provide a guaranteed connection in 

cases of LOS signal occlusion from both mmWave and VLC. A singular Distributed Radio Access 

Network (DRAN) acts as the upper layer-1 processors connected in the ethernet loop. The final 

component within the ethernet ring is the layer-2 and 3 5G protocol processor that handles the 5G 

Medium Access Control (MAC) layer and Remote Radio Control (RRC) respectively in a single remote 

server unit. Together, these components produce the IoRL Radio Access Network (RAN).  

The IoRL RAN achieves connection to the internet through a central server or multi-core 

computer which acts as an Intelligent Home IP Gateway (IHIPG). The IHIPG has connections to the 

internet, Mobile Network Operators (MNO) and e/gNB and routes data according to application and 

user needs through the means of Software Defined Networking (SDN) and Network Function 

Virtualisation (NFV  

The NFV layer, contained within the IHIPG is comprised of the Network Function Virtualization 

Orchestrator (NFVO). This is the top-level management entity of the IHIPG domain and invokes 

different Virtual Network Functions (VNFs) required for an IHIPG to facilitate local access and deep 

packet inspection, mobility management, and network security functions. The concepts of NFV and 

parallel processing pipeline are beneficial to distribute the complex processing required to the IHIPG, 

thereby, reducing the form factors of the RRLHs [209] [211]. 

Various use cases are presented in Cosmas, Meunier, et al. and Cosmas, Zhang, et al. [206]–

[209] for the IoRL system and further VNFs are specified for each of the various demo sites of the IoRL 

project in Cosmas et al.[211] and are summarised in Table 2.1. 
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Table 2.1 - Summary of Proposed IoRL VNFs 

VNF Scenario 

provided 

Summary Location data 

required? 

Load Balancing 

(LB) 

General Monitors incoming/outgoing traffic of the RAN and determines 

the need for transmission through the mmWave/VLC or Wi-Fi 

Access points.  

No 

Multisource 

Streaming 

(MSS) 

General Simultaneous use of Wi-Fi and mmWave/VLC transmission for 

downloading media at various resolutions to improve reliability. 

No 

Proxy servers General Managing content and mapping protocols to enable media 

continuation throughout the house  

Yes 

Security 

Monitoring 

General Various preventative measures to reduce potential malicious 

network attacks such as Rogue Dynamic Host Configuration 

Protocol (DHCP) servers, Eavesdropping and Denial of Service 

(DoS). 

Potentially 

4k/8k 

streaming  

Home Utilising the 5G high throughput expected from mmWave and VLC 

transmission to deliver high resolution content to remote displays.  

No 

VR Multiplayer  Home Streaming high resolution and ultralow latency VR media between 

networked users for multiplayer interactivity  

No 

Follow me 

Service (FMS) 

Home Streaming video to televisions in rooms in which the smart phone 

user is located as they move.  

Yes 

AR overlay  Train Overlay Virtual models to aid in identification of hardware 

requiring maintenance. 

Yes 

Monitoring 

workforce 

Train Locating maintenance workers for monitoring, safety and 

evacuation. 

Yes 

360 remote 

tourisms 

Commercial Streaming 360 camera content directly to remote VR users for a 

shared experience.   

No 

 

The SDN Layer contains the SDN Forwarding Device (FD) that routes IP packets between the 5G Layer-

2/3 Protocol Processors and the internet or 5G network interfaces connected to the SDN Controller. 

The delivery is managed for different destinations, such as internet, mobile network, Wi-Fi, and 

different RRLHC’s of the IoRL RAN, based on the type of traffic categorised by different network 

entities and applications [210] [209]. An overview of SDN access and handover procedures between 

indoor and outdoor connections to the internet or mobile networks using the IoRL network is provided 

in Cosmas et al. [210]. A complete overview of the IoRL architecture is provided in Figure 2.7.  
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Figure 2.7 - Complete overview of the IoRL system architecture
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2.3.3.3 The IoRL Indoor Positioning System (IPS)  

The importance of the IoRL IPS is highlighted by the extent of potential services outlined within Table 

2.1 that may benefit from available location data. The IoRL Indoor Positioning Protocol (IPP) is 

discussed in Zhang et al. [212]. A summary is given within this thesis to help the reader understand 

the existing protocols, components, and transactions of data within the IoRL network. These will be 

implemented later for testing and evaluating the performance of the IoRL IPS and its capability in 

fulfilling the potential location-based services.  

 

2.3.3.3.1 IoRL IPS Overview  

The IoRL IPS is constructed from four key components: the Location Service Client (LSC), the Location 

Database (LD), the Location Server (LS), and the RRLH Controller (RRLHC). The LSC is a software 

application contained within either the UE or CHDCS. The functionality of the application requires 

access to location data to provide services such as indoor navigation, monitoring, follow-me-TV, and 

more. The RRLHC is responsible for attaining the relevant measurement parameters. For the mmWave 

uplink channel, Sounding Reference Signals (SRS) are transmitted by the UE, and received by the 

RRLHs. The Time of Arrival (TOA) of the SRS are subsequently calculated by the RRLHC. These 

measurements are forwarded to the LD through the SDN in the form of packets, according to the 

Packet Data Convergence Protocol (PDCP). Alternatively, in the downlink channel, VLC SRS are 

transmitted from the RRLHC and RRLHs to be retrieved by the UE. The UE is equipped to measure the 

RSS of the VLC signals which are transmitted to the LD using either the IoRL RAN or WLAN link. The LD 

is a VNF within the IHIPG constructed of three tables, configured within a MySQL database, in which 

all location parameters are stored and retrieved. The first LD table (LD1) stores relevant mmWave and 

VLC location data of all currently connected UE devices retrieved by the RRLHCs. A single entry includes 

a unique UE ID, the RRLHC ID involved, the estimated mmWave and VLC parameters for all 𝑁 RRLH 

sensors, denoted by 𝑆  for 𝑖 = (1, ⋯ , 𝑁) as well as a timestamp of when the measurements were 

taken. An example of the table structure is given in Table 2.2 and the parameter details are elaborated 

in Zhang et al. [212]. The use of TOA results is used to describe the relation between antenna 

coordinates and simplify the table entry as TDOA alone would require specifying the difference 

between which two antennas. 

 

Table 2.2 - LD1: Measured location parameters 

UE ID RRLHC ID mmWave TOA VLC RSS Measurement  

Timestamp 𝑆   ⋯ 𝑆  𝑆  ⋯ 𝑆  

1 1  ⋯   ⋯  DD/MM/YYYY/hh:mm:ss:.. 
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The second LD Table (LD2) contains the prior known mmWave receiver (𝑅𝑥 ) and VLC LED , 𝑇𝑥  

coordinates for each RRLH (𝑅𝑅𝐿𝐻 = [𝑅𝑥 , 𝑇𝑥 ]) where 𝑖 = (1, ⋯ , 𝑁). MmWave Receiver and 

VLC LED cartesian coordinates are denoted as 𝑅𝑥 = 𝑥 , 𝑦 , 𝑧 and 𝑇𝑥 =

𝑥 , 𝑦 , 𝑧  respectively. The table contains the unique UE ID, the RRLHC ID, connected RRLH ID’s 

and respective mmWave antenna and VLC LED coordinates. This table must be configured upon 

installation of the system. Table 2.3 illustrates the structure of IoRL LD2, the parameter details are 

elaborated in Zhang et al. [212].   

 

Table 2.3 – LD2: mmWave Antenna and VLC source coordinates 

UE ID 

 

RRLHC ID 

 

𝑹𝑹𝑳𝑯𝒊 ⋯ 𝑹𝑹𝑳𝑯𝒊 

mmWave Tx VLC LED ⋯ mmWave Tx VLC LED 

𝑥  𝑦  𝑧  𝑥  𝑦  𝑧   𝑥  𝑦  𝑧  𝑥  𝑦  𝑧  

1 1              

 

The third LD table (LD3) stores the estimated locations of the user determined by the IoRL system. An 

entry consists of the UE ID, the global 3D coordinates of the UE and a timestamp of the estimate. The 

structure is illustrated in Table 2.4.  

 

Table 2.4 - LD3: UE location estimates 

UE 

ID 

 

UE 

coordinates 

Estimate Timestamp 

𝑥  𝑦  𝑧  

1    DD/MM/YYYY/hh:mm:ss:.. 

 

The LS is a VNF within the IHIPG responsible for calculating the UE position estimates. This is carried 

out by acquiring the measurement values from LD1 and the respective antenna coordinates from LD3, 

performing the required TDOA estimation and RSS processes before carrying out data fusion. The 

position estimate result is then returned to the LD and stored in LD3. At this point, a LSC can request 

the relative location data and use it accordingly. An overview of the connections between the IoRL IPS 

components is illustrated in Figure 2.8.  
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Figure 2.8 - IoRL IPS architecture, direction of arrows between components indicates the transfer of 

data (no arrow indicates bi-directional communication) 

Remark 2 - The IoRL IPS configuration presented is developed for IoRL demonstration purposes and 

for handover between RRLHCs, implementation of floor plans or more complicated processes, would  

require further development of the processes and LD tables. 

 

2.3.3.3.2 IoRL IPS Communication Protocol  

This section builds upon the relationships and processes discussed in the previous section but 

introduces greater detail into the transmission of data, which is important with regards to both 

frequency, synchronisation, and latency. Continuous estimation of VLC RSS and mmWave TOA 

parameters is carried out between the UE and RRLHC. Only once an LBS request’s location data are 

the relevant estimations transferred to the UE.  

 

2.3.3.3.2.1 Millimetre Wave TOA Acquisition 

Again, highlighting the research nature of the IoRL project, decisions are made due to time, cost and 

feasibility limitations. Additionally, with various partners collaboration between research institutes 

and industry, not all details are fully disclosed due to Intellection Property Rights concerns of industry. 

While the IoRL system intends to perform TDOA location estimation processes, the proposed 

system directly synchronises the RRLHC with the UE to obtain TOA measurements. Once 

synchronisation is attained the UE is provided with UE assistance data, describing the base sequences, 

their group, sequence number, cyclic shift, frequency hopping scheme, etc. This prompts the UE to 

transmit a sequence of Sounding Reference Signals (SRSs) in the uplink channel. The number of SRSs 

transmitted is related to the number of RRLHs associated to the currently connected RRLHC. For a 

RRLHC connected to 𝑁 RRLHs, the SRSs are contained within the last symbols of the first 𝑁 sub-frames 

of the IoRL transmission frame as shown in Figure 2.9 [212] for four connected RRLHs. Each sub-frame 

pertains to a specific TOA measurement by a single RRLH.  
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Figure 2.9 - mmWave SRS within the IoRL Transmission Frame 

For a system bandwidth of 100MHz each SRS will fill 4 resource blocks, corresponding to 48 

subcarriers. The maximum quantity of resource blocks to be occupied is 135, which is equivalent to 

1620 subcarriers. The proposed system suggests that each SRS signal within the sequence is retrieved 

by a single RRLH. This is accomplished by sequentially activating only a single RRLH while the SRS is 

transmitting. This enforces the need for high synchronisation of the SRS and RRLH, and for a common 

understanding of the transmitted signal. The TOA is extracted by each RRLH during this round robin 

activation process, and while doing so the UE and RRLHC clocks are tightly synchronised. This ensures 

coherent reference time for TDOA computation, according to TOAs measured with respect to partial 

SRSs. The presented sequential approach reduces the number of parallel channels required between 

the RRLHC and RRLHs. This decreases the overall system complexity and cost of potential high 

frequency switches. These results are directly transmitted to the LD for storage in LD1 via the SDN.  

 

2.3.3.3.2.2 Visible Light Communication RSS Acquisition  

The VLC RSS measurement acquisition is similar to the mmWave TOA process but carried out 

in the downlink channel. In this instance the UE prompts the RRLHC to transfer a series of reference 

signals. As illustrated in Figure 2.10 [212], the relevant reference information is transmitted in the last 

OFDM symbol of the first 𝑁 sub-frames of the 5G transport block. Transmitting a single OFDM to only 
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one of 𝑁 RRLH VLC LEDS. The reference data only occupies a single subcarrier frequency to transmit 

the reference coordinates of the respective LED. The sequence and transmission frame are known by 

the UE prior to transmission to enable the UE to extract the correct information. 

 While the use of OFDM could be used to distinguish the RRLH identities by frequency, due to 

IoRL system limitations established by its research nature, the position data is again transmitted in a 

sequential manner. For 𝑁 RRLHs connected to the RRLHC, the LED data is transmitted in the last 

symbol of the last slot in the first 𝑁 subframes. Where the data in the 𝑖′𝑡ℎ subframe pertains to the 

𝑖′𝑡ℎ RRLH for 𝑖 = (1, ⋯ , 𝑁). The IoRL project intends to use VLC LEDS with 10 MHz bandwidth and SCS 

of 60 kHz, therefore, a single RSS measurement can be obtained every 1 ms according to the slot 

durations. Once received, the RSS measurements are transmitted to the LD from the UE.  

 

Figure 2.10 - 5G transport block and VLC transmission frames 

Location data stored in LD1, and antenna coordinates from LD3 are continuously polled from the LD 

and processed within the LS. The LS initially uses the RSS and TOA measurements to provide respective 

position estimates. These estimates are then combined using sensor fusion to establish an optimal 

output. These results are transmitted back to the LD where the LSC can access the latest relevant 

location estimates to perform the relevant functions. The process of position estimation and sensor 

fusion is explored throughout this thesis. Figure 2.11 [212] illustrates the IoRL IPP.  
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Figure 2.11 - Transmission of data throughout the IoRL IPP 

The presented IoRL transmission frame in Figure 2.9 is not a 5G New Radio (NR) compatible frame 

structure. Through personal correspondence between the author of this thesis and the project 

partners, the ‘IoRL frame structure’ presented in Zhang et al. [212] is an assumption of the IoRL 5G NR 

frame structure, prior to standardisation. However, the same mmWave sequencing protocol can easily 

be translated to the 5G NR frame structure and made equivalent to the VLC positioning sequence 

where individual TOA measurements are then obtained once every millisecond in the last symbol of 

the first 𝑁 subframes. In this regard, the 5G NR frame structure is considered and the mmWave TOA 

and VLC RSS measurements are obtained synchronously.  

The sequential measurement acquisition employed in both the mmWave, and VLC channels 

separates the individual measurements by one millisecond and presents asynchronous measurement 

sampling within the IoRL project. The effects of this measurement sequencing is considered in later 

chapters.  
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2.3.4 IoRL 5G Localisation Research and Methods 

The IoRL system intends to exploit both mmWave and VLC technology to achieve indoor localisation 

with accuracies below 10 cm. This section introduces and surveys existing localisation obtained 

through these technologies, to be applied in later chapters of this thesis when developing and testing 

the IoRL indoor positioning performance.  

 

2.3.4.1 MmWave 

2.3.4.1.1 Background to mmWave  

Existing communication networks typically utilise frequencies below 2.5 GHz within the Ultra High 

Frequency (UHF) band of the EM spectrum. This is succeeded by the Super High Frequency band (SHF) 

band between 3 GHz – 30 GHZ, and the Extremely High Frequency (EHF) band ranging from 30–300 

GHz. Wavelengths which are within the EHF range span from 10 mm to 1 mm at 3 GHz and 300 GHz 

respectively, and as such are referred to as the mmWave region [195]. Owing to the vast amount of 

available spectrum within the mmWave band, it is forecast as a key candidate technology to alleviate 

the congestion of existing communications within 5G wireless networks. Most of mmWave frequency 

bands that FCC deregulates for 5G communication systems such as 37-38.6 GHz, 38.6-40 or 64-71 GHz 

have an absolute bandwidth covering a couple of gigahertz. [209]. In recent years, the combination of 

research in the field of mmWave and the advances in the design of RF circuits capable of operating at 

these frequencies, have proven MMW to be commercially viable and a feasible communication 

technology. MMW signals can provide multi-gigabit communication services, such as device-to-device 

communication, high-definition television (HDTV), and ultra-high-definition video (UHDV). 

 

2.3.4.1.1.1 Attenuation Characteristics  

Due to the short wavelengths of mmWaves, these signals are commonly characterised by their high 

attenuation where, according to the Friis equation, the path loss can easily exhibit 30 to 40 dB more 

attenuation over typical link distances [95]. These high attenuation characteristics make mmWaves 

inherently an LOS based technology. Additionally, due to resonant frequencies with water and oxygen, 

further attenuation is noted across specific frequencies (e.g. 60GHz) within the EHF band. Signals can 

be attenuated by 10-15 dB/km which makes specific frequencies unsuitable for long distance 

communication (> 2 km). [213]. Conversely, however, reports referred to in Al-Samman et al. [195] 

lead the authors of the study to declare that the path loss effects of atmospheric absorption can be 

considered to be negligible for mmWave in cell sizes under 200m, especially at given frequencies of 

6.5GHz, 10.5 GHz, 19 GHz, 15 GHz, 28 GHz, and 38 GHz. The additional attenuation due to molecular 

absorption of certain mmWave frequencies in the context of positioning is considered within the study 
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carried out by Prasad et al. [70]. However, as is commonly considered for indoor and short range 

applications, these effects are not as important [53]. While potentially limiting for large scale outdoor 

communications, for indoor scenarios or small cell environments the consideration of atmospheric 

absorption is unnecessary.  

 

2.3.4.1.2 Millimetre Waves for Indoor Localisation  

2.3.4.1.2.1 Multipath Components:  

Following the overview covered throughout Section 2.1.2.1, multipath interference in indoor 

scenarios can lead to misrepresentation of transmitted signal characteristics and, therefore, alter the 

measured TOA, TDOA, RSS, or AOA of a signal to be used within a positioning algorithm. Low power 

multipath components present less interference to the received LOS signal than higher power ones, 

where the attenuation of a multipath component is a result of potential energy lost through both 

reflections and the additional propagation distances, which present further free space path loss.  

In this respect, the multipath components in Extremely High Frequency (EHF) signals are 

minimised due to the higher free space attenuation characteristics, which greatly reduce the intensity 

of multipath signals propagated over extended distances. Therefore, a multipath component is rarely 

discernible from noise after more than two reflections [95]. Additionally, shorter wavelengths are 

prone to scattering as opposed to reflecting, however, Olivier et al. [95] argues that reflections within 

the mmWave band do not produce a significant amount of scattering, instead they adhere to Snell’s 

law. Regardless, the harsh result of reflections on multipath components further reduces the 

magnitude of multipath components such that the line-of- sight (LOS) component is dominant even in 

the presence of scatterers [95]. This makes it easier to identify and eliminate NLOS interference [20].     

These multipath features of mmWaves present a promising approach to indoor localisation, 

where multipath interference from nearby walls and obstacles is a significant challenge.  

Whereas, conventionally, multipath mitigation techniques have been pursued in order to best 

identify the LOS parameters, the unique disparity between LOS and multipath components in such a 

system has spawned interest in exploiting multipath components for greater insight into 

environmental parameters and mapping [20]. Under the high attenuation characteristic of reflections, 

as shown in Lemic et al. [53], the authors of Lemic et al. [53] constructively apply one or two first-

order reflections, leading to an improved localisation performance. Conversely, a study considered in 

Olivier et al. [95] finds second-order reflections to improve availability of the positioning estimates at 

the cost of reduced accuracy. 

Studies in the field of mmWaves generally take into consideration only the desired LOS path 

and first-order reflections [20]. [214] considers not only the order of reflections but limits the applied 
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multipath model to one LOS path and the nearest NLOS path, which is the component expected to 

have the most impact on the LOS signal. Alternatively, for simplicity Gertzell et al. [215] considers a 

pure LOS path, free of all reflections. 

Notably, where NLOS paths are considered, the additional propagation distance of a multipath 

component, referred to as the path separation from the LOS path, is explored in several studies for 

ranges between 0.4 m – 3 m [216] and 0 ns -2 ns [214][217] (equating to 0 m - 0.6 m using the 

propagation speed of light). These studies indicate that greater reflection distances reduce the 

positioning error, therefore, positioning within the centre of an environment, further away from 

reflective surfaces such as walls should result in improved localisation performance.  

 

2.3.4.1.2.2 Literature on Localisation Methods using mmWave  

Due to the properties of mmWaves and their strong involvement in 5G networks, there has already 

been a vast amount of interest in the application of mmWaves for localisation. Critically, the use of 

RSS within mmWave localisation solutions is limited by the strong attenuation characteristics of such 

high frequency signals [68] [53]. Despite this, Mtrack [218], a passive 60 GHz solution is developed 

using RSS and signal phase methods to obtain impressive 90th percentile errors of 12 mm for pen 

tracking. However, the authors of the study acknowledge the sensitivity to hand placement, 

propagation distance and background noise which limit the scale of the system. 

While wavelengths in the order of millimetres have been shown to hinder the effective range of 

such systems, they conveniently allow for much smaller antenna dimensions which can be useful for 

both integration within portable devices as well as for forming antenna arrays. The use of high gain 

horn antennas and antenna arrays permit narrow and directional beams to compensate for the higher 

path loss [195]. With the interest in antenna arrays for massive MIMO, spatial multiplexing and 

beamforming, AOA solutions present an exciting opportunity for mmWaves. Regardless, the IoRL 

project does not consider arrays of antennas and, therefore, AOA techniques are not applicable.  

Time-based solutions such as TOA and TDOA, however, benefit greatly from the large available 

bandwidth and reduced multipath effects which allow for higher resolution timing and easier 

distinction of the LOS path. This is highlighted in Kanhere & Rappaport [73] where the raw resolution, 

or smallest divisible difference in distance that can be measured, is defined as the propagating 

distance of EM radiation between consecutive sampling instants. The raw resolution (𝑟 ) is 

calculated using [73]:  

 𝑟  =
𝑐

𝐵𝑊
. 

 

(2.73) 
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Here 𝑐 is the speed of light (3 ∗ 10 ) and 𝐵𝑊 is the bandwidth of the signal in Hertz. Therefore, 

utilising the 2.16 GHz of 60 GHz channel bandwidth defined in IEEE 802.11ad the raw resolution 

achievable is approximately 15 cm. 

While the IoRL system intended to employ TDOA over TOA to avoid the requirement for 

synchronisation between the user terminal and RAN, the accuracy of TOA solutions are closely related 

to TDOA as the greatest source of error in both is the estimation of the time delay in the received 

signal [70].  

Zeb et al. [24] uses a timing advance mechanism for TOA detection with 500 MHz bandwidths and 

beamforming to compare performance of TOA ranging to UWB signals. This highlighting improved 

millimetre-level accuracy and, worst case, timing errors of a few nanoseconds even in NLOS 

conditions. Wang et al. [214] employs a hybrid AOA and TOA solution to achieve millimetre-level 

accuracies, resorting to bandwidths of 1 - 2 GHz. Experimental testing of 60 GHz indoor positioning 

using 1 GHz bandwidth and Two Way Ranging (TWR) [64] achieves sub - 0.05 m accuracies while sub - 

0.1 m accuracies are achieved for TDOA systems [219] [220] using 3 GHz bandwidths.  

Promising high range and positioning accuracies, in some cases, to the order of millimetres 

[217][221][72] [24] is achieved in various studies, where each consider the application of UWB signals, 

fusion techniques with AOA, or beamforming with antenna arrays to improve SNR, and obtain 

impressive results.  

While these results described above are impressive, the IoRL system, as specified in Section 2.3.3, 

uses 100 MHz of bandwidth at 40 GHz with a single horn antenna for signal transmission. With both a 

reduced bandwidth and no means to perform AOA, the IoRL system can expect to achieve much lower 

estimation accuracies. Due to the popularity of UWB availability in mmWave systems, existing 

literature pertaining to a system configuration of single antenna sensors using mmWave frequencies 

at 100 MHz bandwidth for TDOA position estimation is scarce.  

While the study incorporates antenna arrays and AOA [215] does distinguish the TDOA 

performance for a range of bandwidths. It is stated that TDOA measurements alone are inadequate in 

order to bring the position accuracy under 10 cm for a bandwidth of less than 100 MHz, whereas 

increases in bandwidth beyond 100 MHz indicate impressive centimetre level positioning results. The 

simulation results further indicate no effect to the TDOA measurements under variable numbers of 

array antennas and, therefore, the accuracy of TDOA positioning for mmWaves at 100 MHz bandwidth 

is shown to be approximately 8 – 10 cm.  
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2.3.4.1.3 MmWave Section Summary  

The use of mmWaves for localisation has incredible potential for high precision accuracy, due to larger 

available bandwidths, highly directional beams, and antenna arrays. While there is growing interest in 

the field, there is an evident need for a clear and structured survey of recent mmWave localisation 

methods. Naturally TOA and TDOA methods are strongly reliant on accurate recognition of the signal 

delay. This is greatly dependant on the multipath interference, delay detection method and resolution 

of the system. MmWave frequencies present a promising solution for delay detection due to the 

reduction of multipath components aided by high attenuation factors and further increased by 

beamforming techniques. The resolution of the system is also highly dependent upon the bandwidth 

of the system, with frequency bands and standards providing an available bandwidth of 2 GHz; it may 

soon be possible to observe millimetre level tracking in practical experiments. Notably, the IoRL 

project stands as a proof of concept, where, if required, additional antenna systems and larger 

bandwidths could be explored. This fact, as well as the matter that the IoRL demonstrator does not 

yet have the capabilities to perform TDOA mmWave measurements, is why this thesis considers a 

range of time delay accuracies for the IoRL system in later chapters. 

 

2.3.4.2 Visible Light Communications  

Visible Light Communications (VLC) is an emerging technology in which visible light emitted from 

conventional LEDs can be modulated to transmit data. Unlike existing wireless positioning 

technologies for indoor environments, Visible Light Communications (VLC) offer vast amounts of 

license-free bandwidth, which can be used to achieve high positioning accuracy. Due to its highly Line-

of-Sight (LOS) based nature and lack of Radio Frequency (RF) interference, VLC also lends itself to 

increased security suited to e.g., medical applications. Notably, the minimal adaptation required for 

existing lighting infrastructure in optimal LOS coverage locations and the use of standard, low-cost, 

and energy-efficient LEDs makes VLC a viable solution for widespread implementation and coverage. 

Research into the use of VLC for indoor positioning has seen significant improvements in location 

performance, with accuracies in the low-centimetre region [37], [199], [222]–[225]. 

 

2.3.4.2.1 Visible Light Positioning 

Localisation through the means of Visible light technology is referred to as Visible Light Positioning 

(VLP). Two methods exist for receiving VLC signals, either a Photodiode (PD) or an image sensor, which 

is essentially an array of PDs. Referring back to the traditional positioning techniques discussed in 

Section 2.1.3, VLP has been explored within proximity [226], fingerprinting [227] [228], triangulation 

[37][225] [55][229], and image-based [230][231] solutions.  
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In keeping with the focus of this thesis, the IoRL project employs RSSI measurements which 

are received using a PD. Therefore, imaged based solutions are not applicable and not considered 

further. Additionally, proximity-based solutions may be applied but the accuracy is too generalised to 

be applied for high level accuracy applications. Both fingerprinting and triangulation, specifically 

lateration, are potential techniques for use within the IoRL 5G project demonstrator. The 

multilateration approach has been selected throughout this thesis due to the tedious nature of the 

necessary calibration phase of the fingerprinting approach, which, when considering the number of 

demonstrators sites, the IoRL 5G project intended to present at, was a considerable factor. The reader 

is referred to Zhuang et al., Luo et al., Chunyue Wang et al. [63][75][232] and the references therein 

for a more comprehensive overview of VLP systems.  

 

2.3.4.2.1.1 Channel Model  

In visible light positioning systems, signals are transmitted from LED lights to the receiver through a 

free-space channel. The LED source is often considered as a Lambertian emitter [39] where the signal 

is broadcasts according to Lambert’s emission law, i.e., the radiant intensity or luminous intensity, 

observed from an ideal diffusely reflecting surface or ideal diffuse radiator, is directly proportional to 

the cosine of the angle between the direction of the incident light and the surface normal [33], [40]. 

The power received at the PD (𝑃 ) is related to the power transmitted from the VLC source (𝑃 ) and 

the channel 𝐻(0)  [199]:  

 𝑃 = 𝐻(0) ∗ 𝑃 . 

 

(2.74) 

 

Since the channel involves both the LED and the receiver, the LOS channel is described as follows [63]:  

 𝐻(0) =
(𝑚 + 1)𝐴 cos (𝜓) cos (𝜃) 𝑇(𝜃)𝑔(𝜃)

2𝜋𝑑
. 

 

(2.75) 

 

In which 𝐴  is the effective area of the PD, 𝜓 and 𝜃 represent the LOS paths’ angle of irradiance and 

incidence, respectively, 𝑑 is the Euclidian distance between the source and PD, and 𝑇(𝜃) and 𝑔(𝜃) 

are, respectively, the optical filter gain and optical concentrator gain at the receiver. 𝑚 and 𝑀 

represent the order of Lambertian Emission and incidence respectively, as given by [63]:  

 𝑚 =  −
ln(2)

ln cos 𝜓 /

, 

 

(2.76) 
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𝑀 =  −

ln(2)

ln cos 𝜃 /

. 

 

 

(2.77) 

 

Here, 𝜓 /  is the semi-angle at half power of the VLC source and 𝜃 /  is the semi-angle at half power 

of the PD. If no lens is used at the receiver, then 𝑇(𝜃) = 1 and 𝑔(𝜃) = 1. These relationships are 

illustrated in Figure 2.12 where ℎ describes the vertical height between the PD and source. 

 

 

Figure 2.12 - 2D VLC trilateration localisation 

𝐴  is considered a trade-off between bandwidth and sensitivity since an increase in 𝐴  results in a PD 

able to receive more light, therefore, increasing sensitivity. However, the greater the photosensitive 

area, the greater the capacitance, which reduces bandwidth [63]. The influence of various PD 

dimensions on the estimation of the Euclidian distance are explored in Keskin et al. [233]. Across most 

literature, 𝑀 = 1 on the assumption that the semi-angle at half power of the receiver, 𝜃 / = 60°. 

The semi-angle at half power of the source, 𝑚, is commonly extracted from the sources’ datasheet or 

otherwise empirically calibrated for. Studies in Lin et al. [222], Alam et al. [223], and Li et al. [160] 

experimentally model the VLC source patterns to accurately calibrate channel parameters according 

to the Lambertian model and deem it a good fit. As 𝑚 is decreased, the transmitters directivity is 

increased at the expense of the transmitter’s concentration area. The effects of the semi-angle at half 

power of the transmitters are considered for positioning systems in [234] where distinct lighting 

systems are employed. The study suggests that larger values in a LOS case improve signal coverage 

across the room and, therefore, improve accuracy. Where multipaths are considered, the higher 𝑚 

values incur greater reflections which accumulate at higher transmission angles. 
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2.3.4.2.1.2 Multiplexing 

Primarily due to the impracticality of light transmitting from a device a user may be using, VLC systems 

are only considered in the downlink channel. Therefore, the TOA, TDOA, RSS and AOA can only be 

calculated at the UE side, since two-way ranging methods are not possible to realise in this case. For 

these systems to function the UE device must receive assistance data in the transmission to be able 

to determine the correct parameters. AOA requires source ID, coordinate information, RSS methods 

additionally need the transmitted power whereas time-based methods require knowledge of the 

transmission time and transmission block structure. Common solutions to prevent signals interfering 

with one another is the use of TDM or FDM, where the total bandwidth is divided into different time 

slots or frequency bands. The IoRL project, like many VLC solutions, employs OFDM [222] where 

signals are orthogonally spaced in the frequency domain to overcome Inter Carrier Interference due 

to severe channel conditions as a result of Doppler such as narrowband interference and intersymbol 

interference (ISI) as a result of multipath frequency selective fading. Due to the dual-purpose nature 

of VLC for illumination and communication, systems must be configured avoid flickering and a 

reduction of brightness.  

 

2.3.4.2.1.3 Types of Noise  

Two types of noises are often associated with PD currents; the shot noise, which is the fluctuation in 

electric current due to incident optical power from all light sources in the environment and thermal 

noise, which describes fluctuations in current due to temperature changes in the receiver’s circuitry. 

The total noise variance 𝜎 , in the electric current domain is given by [235]: 

 𝜎 = 𝜎 + 𝜎 . 

 

(2.78) 

 

Ambient light from either artificial sources or the sun can directly affect the shot noise producing a 

larger background current [236]. However, due to multiplexing methods, experimental conditions 

under ambient lighting have also resulted in no visible difference in performance [160].  

 

2.3.4.2.1.4 Multipath 

VLC systems are often considerably more resilient to multipath components when considered against 

conventional RF systems. For RSS solutions, where the range is estimated by the LOS path loss, 

additional reflected paths introduce added power and lead to a divergence from the given LOS path 

loss model. Therefore, considering unwanted multipath components affects the range estimation and, 

consequently, the position error. Fortunately, compared to the LOS path, multipaths have reduced 
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power, both due to the poor reflectivity of a reflecting surface and due to the free space attenuation 

factor, therefore, the more reflections and the longer the path, the lower the received multipath signal 

power.  

Under the assumption that attenuation from multipath components are high enough, the 

effects are negated, and only the LOS path is considered [222]. The error without considering 

multipath is only affected by receiver noise (𝜎 ) and free space attenuation, therefore, the further 

from the lights, the worse the SNR and, subsequently, the worse the range estimate is [237]. In 

Almadani et al. [98] the authors of the study note that use of the three strongest signals are shown to 

reduce impacts of multipath and improve accuracy as presented in Gu et al. [235]. However, studies 

in Kwonhyung Lee et al. [238] and Shi et al. [239] indicate that VLP results are differently affected by 

reflective materials across the VLC spectrum. The greatest effects from multipath components are 

seen near reflective surfaces [235] [234] such as near walls and corners. Closer to the centre of the 

room, the multipath signals attenuate and reduce in intensity [160]. This is experimentally validated 

by Almadani et al. [38], where positioning errors due to reflections are noted to increase to a minimum 

of 56% and a maximum of 133%. Filters and increasing the transmission power have been analysed to 

reduce the effects of interference within VLP systems [234] [239], which is effective until the multipath 

and LOS components stabilise.   

 

2.3.4.2.1.5 Field of View (FOV) 

A receiver will only retrieve signals within its Field of View (FOV), as indicated by a cone in Figure 2.12 

with an angle related to the normal of the PD and denoted by (𝜃 ). Incoming signals with incidence 

angles greater than the FOV angle (𝜃 > 𝜃 ) are not received at the PD. To ensure signal reception, 

especially in larger environments, the PD FOV should be large enough to always be in LOS of a VLC 

source. In cases where multiple sources should be retrieved simultaneously, such as for fingerprinting 

or triangulation, the source separation distances and FOV should be carefully considered. Simply tilting 

[63] or raising a PD too high [37] [17][234] can increase noise, due to higher incident and radiant 

angles, or prevent the reception of LOS signals altogether. Additionally a trade-off must be considered 

between capturing more useful signals and potentially receiving more undesired signals from other 

sources, multipath components, or ambient light which can lead to poorer positioning performance 

[239] [234]. As described above, due to the limited LOS, receiver FOV, source separation distances and 

the transmitters emission pattern, maintaining LOS signal reception is not trivial. 
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2.3.4.2.2 VLC RSS Trilateration  

Since the incidence and radiance angles affect the RSS in the VLP trilateration method, a 3D 

configuration such as that illustrated in Figure 2.12, is often simplified to a 2D solution where the 

target is considered to move along a surface parallel to the floor. This is applicable for scenarios 

considering autonomous ground vehicles (AGVs) and robots in a smart home [240].  

 

2.3.4.2.2.1 Existing 2D VLC Trilateration RSS Literature 

Experimental VLP systems are shown to attain mean positioning errors of 1.68 cm, 18 cm, 3.9 cm and 

30 cm from Lin et al. [222], Shi et al. [199], Alam et al. [223], and Li et al. [160], respectively. Overall 

centimetre level performance obtained across a wide variety of lighting arrangements and coverage 

areas highlights the impressive nature of VLP systems. Authors of Li et al. [160] experimentally 

evaluate a 2D VLP system through integration of PD based trilateration and IMU sensors within a 

mobile phone. The orientation of sensors help to determine any potential tilt in the device and 

transform it back to the assumed horizontal attitude. Experimental results achieve median error of 30 

cm for all environments, with 90th percentile errors of 45 cm, 70 cm and 80 cm in the conference room, 

cubicle, and corridor environments in which the experiments were conducted. The authors of the 

study attribute the variation in errors to the arrangements of LEDs and number of reflective objects. 

This highlights a need to evenly deploy LEDs for optimal coverage. Where mentioned in the relevant 

literature, the common practice when considering OFDM modulation is to retrieve the RSS 

measurements from the subcarriers with the highest received signal intensity [199] [222]. Mapped 

position estimation results, as presented in Shi et al. [199], clearly illustrate a prominent skew 

attributed to the reflections from walls, as central results perform much better. The use of multiple 

receivers to address the effects of shadowing from dynamic environments were considered by Lin et 

al. [222] while Se Hoon Yang et al. [241] implements multiple PD receivers for a single transmitter on 

a rotating platform to overcome inter symbol interference. 

 

2.3.4.2.2.2 Existing 3D VLC Trilateration RSS Literature 

VLP solutions for 3D position estimation are non-trivial due to the number of unknown parameters 

including the received power and either the targets height or incidence and radiance angles. An 

adaptive parameter particle swarm optimisation (AP-PSO) algorithm is proposed and applied by Xu et 

al. [242] to estimate 3D coordinates under an assumed gaussian LOS and NLOS model. Alternative 

approaches in Plets et al. [17] and Almadani et al. [38] consider iterative trilateration methods for 

discrete increments in the third dimension (height). This iterative approach is affected by the 

resolution of the height intervals used. While results obtained for both the PSO and iterative 
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approaches maintain centimetre-level accuracies, the solutions are computationally inefficient and 

are shown to take 11.3 ms [242] and 17 ms [17], respectively. Furthermore, previously presented 

studies have simplified the solutions by considering the PD to be parallel to the ceiling where the LEDs 

are mounted. For real world use cases, this assumption is a key limitation. Building on their previous 

work in Almadani et al. [38], the authors of the study consider the same iterative height 2D 

trilateration. However, they include the consideration of the receivers tilt [98]. The obtained results 

highlight that the greater the tilt of the receiver and level of induced multipath components, the 

greater the positioning errors. Conversely Kim et al. [243], proposes a gradient search method to 

determine the position that corresponds to the minimal cost function value. Experimental results 

using four LEDs provides an average 3D positioning error of 7.95 cm with 70 % of points under 5.5 cm. 

The tilt is shown to have an almost negligible effect on the position estimation with a standard 

deviation of 5.2 cm. Alternatively, researchers have mitigated the unknown parameters by considering 

estimation of the receiver angles through use of additional sensors. implementing additional sensors 

such as Inertial Measurement Units (IMU) [225] to determine the receivers orientation. This approach 

relies on static sequential measurements and the user performing controlled re-orientations. The 

study fails to describe the effects of orientation magnitude on the resulting position error 

performance. 

 

2.3.4.2.3 Practical Effects of LED Shape and Emission Patterns 

The effects of LED structures on illumination and communication for VLC have been studied and 

compared in both Jenilla & Jeyachitra [244] and Nguyen et al. [245]. However, very little research has 

been conducted considering source LED characteristics effects on VLP performance. Considered VLP 

works discussed so far have all relied on the channel model (2.75) in some form or another to describe 

the RSS at specific coordinates. The applied channel model conventionally assumes the radiation 

patterns of the VLC source to be Lambertian with a fixed order of Lambertian value, 𝑚. The order of 

Lambertian emission describes the directivity of the source and is inversely related to the semi-angle 

at half power, 𝜓 /  of the source. 𝑚 can be considered to describe the rate of decay in intensity and, 

therefore, is critical in correctly describing the intensity of the source at various angles or distances.   

The semi-angle at half power of a VLC source is commonly detailed by the manufacturer and 

can be applied directly to determine 𝑚. However, various studies have identified variability within the 

Lambertian values in practical scenarios.  

The study set out in Alam et al. [223], presents two calibration processes to determine the 

optimal values of the channel model that best represent the practical environment. This involves an 

offline process of collecting RSS measurements at known coordinates. The authors of the study 
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substitute and rearrange the channel model equations given in (2.74) and (2.75) to give (2.79) and 

(2.80) [223].  

 

 
𝑃 =

( )   , 

and 

(2.79) 

 

 
𝑑 =

( ) ( )

 .  

 

(2.80) 

 

In which the gain term 𝐺 =  and ℎ is the known height difference between the PD and source 

resolved through trigonometric relationships pertaining to the angle of incidence and radiance. This 

is elaborated on further in the following chapter.  

The first calibration process is two parameter calibration where the variables 𝐺 and 𝑚 are 

calculated to be the values that attain the least range error across all points as given by [223]: 

 𝐺, 𝑚 = arg min
,

∑ 𝑑 − 𝑑 . 
(2.81) 

 

 

Here 𝑑 is the Euclidian distance estimate calculated using the allocated 𝐺 and 𝑚 variables as part of 

(2.80), and 𝑑 is the known true Euclidian distance. The second proposed process is a single parameter 

calibration, where a reference RSS measurement (𝑃 ) is taken, preferably directly under the 

luminaire for simplicity in calculating 𝑑 . Dividing (2.79) by its reference point counterpart, one 

eliminates the gain and height terms to obtain [223]: 

 

 
𝑃 = 𝑃

𝑑

𝑑
. 

 

(2.82) 

 

Estimates for 𝑚 can be acquired solving (2.82) for all calibration measurements. The optimal 𝑚 is 

obtained by [223]:  

 𝑚 = arg min ∑ 𝑃 − 𝑃 .  
(2.83) 

 

Where 𝑃  is the measured RSS and 𝑃  describes the RSS estimate obtained by (2.84) and the given 

value of 𝑚. Resultantly distance estimates can be calculated by re-arranging (2.82) for 𝑑. Both 

calibration processes are conducted for each individual sources, each one belonging to one of two 

types of lights.  
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From the Lambertian calibration study conducted in Alam et al. [223], the calibration process 

using as little as 12 measurements per light achieves high positioning accuracy which is comparable 

to large database fingerprinting methods with 187 measurements overall. 

Notably the work highlights irregularity in emission characteristics, not only between different 

models of light sources but, more significantly, variability was observed among the same types of 

lights. This is attributed to asymmetric light distribution, which means the attenuation is found to be 

inconsistent as the source is turned around about its vertical axis. Furthermore, the same set of lights 

are calibrated twice in two experiments and are found to have varied values of 𝑚 which is credited to 

small changes in the environment. This trend regarding the variation in power among similar lights is 

also noted in Li et al. [160], where the authors of the study experimentally validate the Lambertian 

model by plotting the measured signal strength across a range of distances between the receiver and 

transmitter. The experiments concluded a good model fit but described a variation in power across all 

lights. Again, similar findings are discussed in Almdani et al. [38] where LEDs’ true transmitted power 

is shown to vary by 20% from their advertised values. Applying this understanding, Almadani et al. 

[38] and Shi et al. [199] experimentally obtain reference powers for individual lighting systems using 

reference points directly under the sources.  

Alam et al. [223] also identifies three distinct regions of the Lambertian attenuation model: 

the plateau directly under the source, the middle descent, and a tail at the end. The calibration is said 

to model the channel effectively if these three regions are captured by enough offline measurements. 

Following on from this study, Du et al. [240] suggests only two reference positions are required, as 

long as the span of the reference measurements represents the location coverage or range of SNR. 

For each light two reference RSS measurements are obtained and used in a process similar to that 

described by the single parameter calibration of Alam et al. [223].  

While calibrating for practical VLC source Lambertian characteristics is shown to be effective, 

some literature suggests the Lambertian property may not always be expressed in practical systems. 

Kim et al. [246] stipulates that VLC sources are usually developed as LEDs fitted with a lens, where the 

source’s radiation pattern is affected by the lens’ shape, the lens’ internal refractive index and the 

arrangement of potential multiple LEDs inside. The lens, therefore, may alter the assumed Lambertian 

properties of the system. Because of this, a generalised channel model is proposed by Kim et al. [246], 

and summarised neatly in Zhuang et al. [63] as.  

 

 
𝑃 = 𝐶 𝐺 (𝜓)𝐺 (𝜃). 

 

(2.85) 
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Here 𝐶  is the is the optical power constant related to the radiation intensity of the transmitter, the 

concentrator gain, the optical filter gain, the physical area of the detector under normal radiation and 

incident angles. 𝐺 (𝜃) and 𝐺 (𝜓) are the normalised radiation and incidence gains of the transmitter 

and receiver with respect to 𝜃 and 𝜓. Due to empirical testing of the emission patterns, the authors 

of the study propose an exponential model as opposed to the Lambertian model where the angular 

gain components are given as [246]:  

 

 
𝐺 (𝜓) = exp −

(𝜓)

𝑘
, 

and 

(2.86) 

 

 𝐺 (𝜃) = exp −
(𝜃)

𝑘
. 

(2.87) 

 

In which 𝑆  and 𝑆  are slope constants according to 𝐺 (𝜓) and 𝐺 (𝜃) respectively. 𝑘  and 𝑘  are related 

to the semi-angle at half power of both the transmitter 𝜃 /  and receiver 𝜓 /  by [246]:  

  
𝑘 = 𝜃 ⁄ /ln (1 2⁄ ),  

and 

(2.88) 

 

 𝑘 = 𝜃 ⁄ /ln (1 2⁄ ). 
(2.89) 

 

The positioning study which uses the exponential model in Kim et al. [246] goes on to achieve average 

positioning errors of 2.4 cm over 18 points within the area of a 60 cm equilateral triangular prism. In 

Se Hoon Yang et al. [241], the exponential model is applied again to model the optical channel. During 

this study, a single transmitter is used for a positioning system that utilises multiple receivers on a 

rotating platform. Results using the exponential model achieved average distance errors of 0.65 cm 

with a maximum error of only 1.5 cm. More recent works [38], in which the Lambertian model is 

applied, have attributed various positioning errors towards the possibility that the transmitters 

radiation pattern is not ‘perfectly Lambertian’.  

 Wu et al. [247] highlights the effect of the transmitting LED lens structure on resultant 

emission pattern and exploits this to design a lens structure to linearise the horizontal intensity. In 

doing so the distribution is easier to model and improves the positioning accuracy by 44 % to an 

average of 4 cm, when compared to LED transmission with no lens.  

 

2.3.4.2.4 Summary of VLC Localisation 

VLC is a promising technology owing to its vast number of benefits in energy efficiency, cost and 

illumination properties. VLP is growing in interest due to the accessibility of the technology and the 
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high positioning performance that can be obtained. However, due to the Lambertian channel model 

with multiple unknown variables, VLP is commonly limited to 2D solutions, as is explored in this thesis. 

Techniques for 3D positioning in 3D space require more complex processes and often entail additional 

sensors. Nevertheless, most literature, whether describing 2D or 3D solutions relies on the Lambertian 

model assumption. While Lambertian parameters can be obtained from the source manufacturers 

datasheets, a few sources emphasize the need to calibrate the model parameters to specific light 

sources and identify the effects of individual lighting features, such as lens structure, on the 

positioning performance. In contrast to Lambertian models, exponential models have also been 

presented, however these follow a very similar trend to the Lambertian model.  

In a unique sense, VLC technology offers a cheap and minimally invasive solution enabling 

existing light sources to achieve 5G transmission and high-performance localisation. However, lighting 

system options are diverse, such that if VLC is to be widely deployed, a plethora of different VLC 

compatible lighting configurations and structures are likely to emerge. Solutions are required to 

ensure that a VLC system, used within various, old and new, existing lighting structures which may not 

have Lambertian properties, should maintain the ability to perform high end localisation. In this regard 

this thesis considers the effects of VLP from sources with non-Lambertian properties.  

 

2.4 Thesis Focus  

From observing various existing technologies, processes, and technologies it is evident that the Indoor 

Positioning Systems’ application, and its subsequent requirements, dictate the suitability of a 

positioning system. In which suitability refers to the compromise between high accuracy and 

reliability, and the complexity, latency, energy efficiency and costs that come with it. These latter 

parameters are correlated to the computational runtime of a solution as considered throughout this 

thesis.  

Data fusion through various Kalman Filtering processes provides numerous benefits to 

increase a systems reliability and reduce noise. However, the response of these techniques is highly 

dependent on the noise parameters, that are applied as weightings, between predictions and 

measurements. Moreover, where non-linear measurements or processes are concerned the EKF and 

UKF techniques present significantly higher computational demand.  

The above understanding is then applied to the development and evaluation of the IoRL IPS, 

which incorporates both mmWave and VLC technology in a hybrid manner. These emerging LOS 

technologies have great potential for high positioning accuracy over short propagation distances. 

Owing to the ubiquitous deployment of existing lighting systems, VLC solutions present a cheap and 

simple solution for widespread 5G connectivity and energy efficient high positioning accuracy. The 
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literature pertaining to these solutions however is primarily concerned with Lambertian channel 

models, which due to different lens structures may not always be maintained. This restricts the lens 

structures which can be used or if they are used produces poor positioning performance if Lambertian 

conditions are not met.  

Owing to the structure of the IoRL architecture, the IoRL IPS exhibits asynchronous sampling, 

indicating the need to apply localisation methods for asynchronous sampling of non-linear 

measurements. However, while computational efficiency is mentioned in various literature sources 

regarding these solutions, additional processes are required which add further computations to the 

system and yet the computational costs of these additions are not evaluated.  

Moreover, the degree to which a system may be asynchronous is variable, therefore the 

necessity of these more complex solutions, to improve accuracy or reliability, within given scenarios 

is unclear. While the compromise between accuracy and latency related costs is a subjective matter 

regarding the IPS application, these factors should be evaluated to assess the extent of the benefit to 

cost trade-off.  

  

2.4.1 Thesis Outline  

The structure of this thesis is outlined below.  

Chapter 3 presents an evaluation of VLC RSS data obtained from the IoRL IPS. Initial findings 

highlight poor performance, due to applying Lambertian models to non-Lambertian sources. This is 

resolved through the development of a more appropriate novel calibration procedure to achieve high 

accuracy centimetre level positioning, accommodating the non-Lambertian light sources.  

This proposed new technique is then evaluated in chapter 4 using the IoRL IPS. Where through 

data fusion with mmWaves, the system is shown to achieve performance that exceeds the 5G criteria 

and IoRL case requirements. Evaluation of the IoRL IPS highlights the asynchronous sampling, which is 

previously assumed negligible, and the potential need for asynchronous sampling localisation 

techniques. 

Chapter 5 provides a more comprehensive evaluation of the asynchronous sampling effects 

on various existing positioning techniques, regarding variable sensor measurement noises, latencies, 

and trajectories.  

Building on the analysis provided in chapter 5, chapter 6 shows that the asynchronous 

sampling solutions significantly increase computational demand. Through application of more 

efficient methods, a novel asynchronous sampling localisation technique for non-linear 

measurements is proposed and tested, to achieve superior performance and significant energy 

reductions over 50%.  
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3 Compensating for Lens Distortion in Visible Light Positioning  

3.1 Introduction  

This chapter focusses on visible light positioning and the compensation required for potential lens 

distortion found in typical home lighting. Visible Light Communications (VLC), as detailed in the 

literature review, have emission patterns which are generally assumed to follow a Lambertian 

distribution. It is widely understood that the lens structure of the emission can affect the light 

distribution although there is very little research on Visible Light Positioning (VLP), for lights with non-

Lambertian characteristics. VLP experiments using trilateration methods tend to be conducted in 

laboratory settings, using standard commercial light sources which either exhibit or are assumed to 

exhibit conventional Lambertian emission patterns. However, it is necessary to consider VLP across 

diverse settings and circumstances including non-Lambertian sources in non-ideal systems. 

Experimental research models of VLC source patterns from Lin et al. [222], Alam et al. [223], and Li et 

al. [160] accurately calibrate channel parameters following a Lambertian distribution. In Alam et al. 

[223], the experiments emphasise the difference in source parameters coming from identical light 

sources. Interestingly, due to the refractive index of LED lenses, an exponential model has been 

proposed in Kim et al. [246] and applied in Se Hoon Yang et al. [241] which suits the emission pattern 

of LED lenses better than the Lambertian model.  

 

3.1.1 Aims 

This chapter aims to describe and evaluate the performance of the Internet of Radio Light (IoRL) VLP 

system through practical experimentation including analysing the behaviour of the system by applying 

conventional approaches as well as comparing these to calibration procedures sourced from the 

literature. 

  

3.1.2 Contributions  

The contributions in this chapter include the experimental validation of the negative effects that the 

lens structure can have on VLP performance and the proposal of a novel corrective VLP process which 

resolves the effects of lens deformation produced by Total Internal Reflection (TIR) lenses with a 

frosted central coating or other lens types producing a halo ring effect. These will be presented in 

three sections. Firstly, the data and analysis of the IoRL 5G 2D VLP measurement campaign taken in a 

home environment resulting in an average Positioning Error (PE) of less than 5 cm. Secondly the non-

Lambertian emission pattern and Halo ring lighting effect identified as a result of the commercial 
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lenses used in this campaign. Lastly the proposal of a calibration method to accommodate for the Halo 

ring lens distortions observed in VLP.  

 

3.1.3 Summary 

Firstly, the Internet of Radio Light (IoRL) measurement campaign and the VLC specific results obtained, 

secondly the analysis of the positioning performance under existing channel models using the 

experimental data and thirdly the development of the proposed corrective algorithm for VLP within 

the IoRL Indoor Positioning System (IPS) will be presented.  

 

3.2 The IoRL Measurement Campaign  

The IoRL Measurement Campaign was part of the IoRL Horizon 2020 project and is detailed in Ali et 

al. [248]. To identify components of practical significance, the experimental methodology and main 

hardware required to obtain the VLC RSS measurement datasets are summarised in this chapter. 

 

3.2.1 Objectives of the Study  

The IoRL measurement campaign aimed to undertake various signal quality measurements and 

demonstrate the functionality of the system in the various scenarios that the IoRL project was set to 

exhibit in [206]–[209]. The Covid 19 pandemic and government-imposed travel restrictions limited the 

construction of the model to a single scenario which was the home environment. The system was also 

restricted to downlink only, which meant that the Time of Arrival/Time Distance of Arrival (TOA/TDOA) 

testing could not be performed. The tests which could be conducted were the downlink VLC 

transmission of HD video content, the Error Vector Magnitude on both VLC and mmWave downlink 

channels, to identify channel quality, and Visible Light RSS testing, which is the focus of this chapter.  

 

3.2.2 The Overall Setup – Connections, Environment   

The IoRL measurement campaign was carried out at the Building Research Establishment (BRE) in the 

UK, using a furnished open plan sitting room designed for a home environment. The Experimental 

setup matched one of the environments required in the IoRL project. The hardware was fixed to a 

0.4m wide square cross-section aluminium extrusion frame measuring (2.5 ∗ 2.5 ∗ 2), (𝐿𝑒𝑛𝑔𝑡ℎ ∗

𝑊𝑖𝑑𝑡ℎ ∗ 𝐻𝑒𝑖𝑔ℎ𝑡)/m. A centimetre grid was placed horizontally on a flat surface 0.7 m from the floor. 

Measurements were taken in the centre of the grid. There were four VLC transmitters (𝑁 = 4) placed 

over the grid. The Cartesian coordinates 𝑥 , 𝑦 , 𝑧  ⁄ m were respectively 

(−.29, −0.26, 1.424), (−0.285,0.275,1.524), (0.235,0.275,1.524) and (0.24, −0.28,1.424), where 

𝑧  describes the height from the surface of the grid. Figure 3.1 shows the live setup and the position 
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of the VLC lights and the position of the raised grid. The VLC link used Orthogonal Frequency Division 

Multiplexing (OFDM) a carrier frequency of 15MHz, 10MHz Bandwidth and 30kHz subcarrier spacing. 

The IoRL project was originally planned to be compliant to Third Generation Partnership Project 

(3GPP) release 15 (LTE) standard. Hermitian symmetry was imposed on the OFDM subcarriers, and a 

DC bias added to the bipolar OFDM time-domain signal to ensure the signal is always positive, and 

thus compliant with the requirements for OFDM symbol transmission in a VLC medium. 

 

 

Figure 3.1 - IoRL demonstrator within the Home Scenario of the BRE smart-home demonstration site 

3.2.3 Critical Hardware Components and Design Factors 

3.2.3.1 Gimbal and Challenges with Original Lens  

A large glass convex lens was used to focus the VLC signal onto the receiver Photo Diode (PD). The 

focal point of the lens required the lens to have a separation distance of 1.5 cm from the PD. The 

extended focal length of the receiver prevented any VLC signal reaching the PD surface, if the angle of 

incidence became greater than half a degree4. This meant that the receiver module needed to be 

orientated to point directly at the source of transmission, and that each source had to be tested 

individually. To reach stable measurements the receiver required re-orientating to face each 

transmitter without interfering with the position of the PD. To achieve this, a custom made gimbal 

shown in Figure 3.2, was designed and custom made by the author of this thesis, to house the receiver 

module.  

 
4 Alternative smaller and wide-angle lenses were tested but drastically reduced reception of the VLC signal.  
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Figure 3.2 – (Left) Upright IoRL VLC receiver casing. (Right) IoRL Receiver Gimbal mounted with VLC 

receiver and convex lens 

The gimbal eliminated the issue of the angle of incidence which is often a variable difficult to obtain 

in practice. Additionally, the height of the gimbal (ℎ = 15.5 cm) must be accounted for in the 

following solutions.  

 

3.2.3.2 Remote Radio Light Head (RRLH) Designs 

Specific environments typically use different lighting designs. The IoRL project carefully considered 

both the design aspects of the light source as well as style. The Home scenario uses a standard ceiling 

light design and pendant rose concept that can be applicable to both strip lights and single pendant 

lights. Underground tunnels typically consider ‘warm’ coloured tube lighting systems using IP65 

ratings for dust and water control. This impacts the potential for positioning given the large source 

size, non-translucent casings, and general complexity of the system. An additional attachment was 

therefore designed for underground tunnel strip lights. The museum scenario-imposed spotlights for 

directing user attention and minimising the light affecting the artefacts. Original concepts envisaged 

existing lighting systems being retrofitted with IoRL technology, however, due to the given form 

factors and requirements of the project regarding antenna positions, cooling, accessibility and 

manufacturing concerns, original light housings were later manufactured. 

 



82 

 

 

Figure 3.3 - IoRL project RRLH concept designs for different scenarios. (left to right) Ceiling light 

concept, pendant light, strip light attachment, spotlight 

For the actual IoRL measurement campaign, the resulting RRLH was selected to be the ceiling light 

within the home scenario.  

 

 

Figure 3.4 - Ceiling Light RRLH design: a) Illumination LED board, b) RRLH casing, c) central VLC COB 

and d) Illumination diffuser panel and millimetre wave patch antenna corner mounts 

Figure 3.4 displays a RRLH ceiling light used in the IoRL Measurement Campaign and various 

components that contribute towards analysis within this thesis. Figure 3.4a depicts the LED board used 

for general illumination which is mounted in the RRLH as shown in Figure 3.4b. Due to high 

capacitance, necessary diffusion, and overall large coverage area, this was not suitable for VLC 

communication and pinpoint localisation. Throughout the RSSI measurement collection, these 

illumination LEDs were not powered. Figure 3.4c shows the COB light source and lens which are 

mounted in the centre of the RRLH. Notably there is a handmade PCB used as an adapter for the 

coaxial cable input. This may contribute towards disparity in performance among the sources. Lastly, 

Figure 3.4d illustrates the diffuser panel which does not cover the central VLC source. The mmWave 

patch antennas are designed to be fitted in the corner holes of the design. The red line in Figure 3.4d 

indicates the Euclidian distance between the centre of the VLC source and the centre of the mounting 

for the mmWave patch antennas. This distance is equivalent to 14.71 cm, and is used in later modelling 

of the system.   
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3.2.3.2.1 Lens Design  

The design of the lighting source includes a circular Chip on Board (COB) and a 70 mm diameter Total 

Internal Reflection (TIR) lens [249], as shown in Figure 3.5. To reduce the overall form factor an 

internal Fresnel lens is included in the optics, which evenly spreads near incident light rays as shown 

in Figure 3.5a. A centralised area of frosted glass, as shown in Figure 3.5d, diffuses the light emitted 

through the Fresnel lens impacting the light intensity at low radiation angles. There is also a reflector 

surface around the COB source, which captures wider rays of light, directing these in a collimated 

and controlled manner according to the principles of TIR resulting in a narrower and more direct e 

mission pattern. 

 

Figure 3.5- TIR lens and COB source. a) Cross-section view; b) COB VLC source; c) Angled cross-

section view; d) Flat face of the lens with central frosted diffuser. 

The datasheet of the combined light source and lens provides the Luminous Intensity Graph (LIG) given 

in Figure 3.6for two orientations of the light. The two orientations give different semi-angle half-

powers of 22.5° and 21.9° which are averaged to 22.2° 
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Figure 3.6 - Luminous Intensity Graph (LIG) obtained from Datasheet of TIR lens 

3.2.4 Methodology  

It should be specified that throughout this study the IoRL project utilises Received Signal Strength 

Indicator (RSSI) measurements, with arbitrary values, as opposed to Received Signal Strength (RSS) 

measurements which are the true measure of power.  

The centre points of each transmitter's VLC source are mapped using a plumb line, directly 

downward onto the 2D grid. Each point representing each light's origin. Each marked origin point 

forms the initial reference RSSI measurement point directly below each light source. RSSI 

measurements are stored using a custom Python code, at the User Equipment (UE) which is connected 

to the VLC Rx. The receiver is then positioned across both the x and y-axis at 10 cm intervals, totalling 

64 potential positions. A single VLC transmitter is activated at each position, to continually transmit 

data. At each position the receiver gimbal is orientated visually using both mounted protractors to 

ensure that the VLC signal is in contact with the PD. The signal is allowed to stabilise, leaving all 

equipment stationary, before a series of continuous RSSI measurements are taken. Leaving the gimbal 

in position, the first VLC source is disconnected whilst the next is activated. The receiver gimbal is then 

re-orientated, and the process repeated until all four lights have given a clear RSS measurement. A 

collection of (𝑥, 𝑦) coordinate specific RSSI data files 𝐷𝐹 ,  are thereby obtained for each VLC source 

(𝑖 = 1,2,3,4). At the origin point of each source separate RSSI reference data file (𝑅𝐷𝐹 ) are 

additionally recorded. Table 3.1 illustrates a sample of a single 𝐷𝐹 ,  , where each 𝐷𝐹 ,  contains 40 

measured timepoints. At each time point (𝑡), the RSSI of all 191 Subcarriers (𝑆𝑢𝑏) is given. For clarity, 
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the notation 𝑡 ,
,  is used to represent each of the 40 individual measurement timepoints relative to 

the position coordinates and 𝑖 𝑡ℎ VLC source.   

 

3.2.4.1 Data Acquired – Type, Number of Datapoints, Subcarrier Frequencies 

 

Table 3.1 - Example of a single DF of recorded RSSI measurements for the global coordinates 𝑥, 𝑦 

𝑫𝒂𝒕𝒂𝑭𝒊𝒍𝒆 – 𝑫𝑭𝒙,𝒚
𝒊  

 𝑺𝒖𝒃 

Timestamp 1 ⋯ 𝟏𝟗𝟏 

𝒕𝒊,𝟏
𝒙,𝒚 RSSI (𝑡 ,

,
, 𝑆𝑢𝑏 = 1) ⋯ RSSI (𝑡 ,

,
, 𝑆𝑢𝑏 = 191) 

⋮ ⋮ ⋯ ⋮ 
𝒕𝒊,𝟒𝟎

𝒙,𝒚  RSSI (𝑡 ,
,

, 𝑆𝑢𝑏 = 1) ⋯ RSSI (𝑡 ,
,

, 𝑆𝑢𝑏 = 191) 

 

Table 3.2 - Summary of measurement campaign parameters 

Parameter Value 

Effective Area of PD (𝑨𝒓)/m2 7.07𝑒  

PD height (𝒉𝑷𝑫)/m 0.155 

Grid Height from floor (𝒉𝒈)/m 0.7 

VLC Source 𝝍𝟏/𝟐
𝒊  /° 22.2 

VLC source coordinates 𝑺𝒊 = (𝒙, 𝒚, 𝒛)/m 𝑆  (−0.29, −0.26, 2.124) 

𝑆  (−0.285 ,0.275 ,2.134) 

𝑆  (0.235, 0.275, 2.124) 

𝑆  (0.24, −0.28, 2.124) 

Vertical difference between PD and Lights 

(𝒉𝒊)/m 
ℎ  & ℎ  1.2690 

ℎ  & ℎ  1.2790 

Grid x-axis /m [−0.3: 0.1: 0.4] 

Grid y-axis /m [−0.4: 0.1: 0.3] 

Positioning area   (𝑳𝒆𝒏𝒈𝒕𝒉 ∗ 𝑾𝒊𝒅𝒕𝒉)/m 0.8 ∗ 0.8 

Number of coordinates measured (𝑵𝒊)  1 64 

2 43 
3 63 

4 59 

 

A mapped illustration of the layout and setup used to conduct the VLP experiments, at the BRE facility, 

is provided in Appendix A of this thesis.  

 

Remark 3 - During the measurement campaign data files were not collected at every point for all lights 

due to poor signal reception effecting the systems ability to retrieve a signal from specific VLC sources 

at certain coordinates. This is due to the variable transmission power and coverage between sources. 
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3.3 Adapted VLC Processing Method  

Conventional VLC positioning algorithms make the assumption that the light source follows a 

Lambertian radiation pattern. Lambert's cosine law states that a light source's intensity is proportional 

to the cosine of the angle between the path of radiation and the normal. Considering only the Line of 

Sight (LOS) path  and using this cosine law, the RSSI and Euclidian distance (𝑑 ) between the PD and 

the 𝑖 𝑡ℎ transmitter can be described by the VLC channel model [199]: 

 𝑃 = 𝐻(0) ∗ 𝑃 . (3.1) 

 

Where 𝑃  and 𝑃  represent the RSSI and Transmitted Power respectively and 𝐻 (0) represents the 

VLC LOS channel gain between the 𝑖 𝑡ℎ source and the receiver, given as  [199]: 

 

 
𝐻 (0) =

(𝑚 + 1)𝐴 cos (𝜓 ) cos(𝜃 )

2𝜋(𝑑 )
. (3.2) 

Where 𝐴  is the previously known effective area of the PD, 𝜓  and 𝜃  denote the angle of emission 

and incidence respectively and 𝑚  is the order of Lambertian emission given by  [199]:  

 

  
𝑚 =  −

ln(2)

ln cos 𝜓 /

. (3.3) 

 

Where 𝜓 /  is the semi-angle at half power of the source. The relationship between 𝜓  and 𝜃  and the 

normal of the 𝑖 𝑡ℎ transmitter and receiver PD are depicted in Figure 3.7. Exploiting the trigonometric 

relationships between the right-angled triangles of  Figure 3.7 one can obtain the following 

expressions:  

 
cos(𝜃 ) =  cos(𝜓 ) =

ℎ

𝑑
, 

(3.4) 

 
∴ cos (𝜓 ) =

ℎ

𝑑
=

ℎ

(𝑑 )
. (3.5) 

 

Substituting (3.4) and (3.5) into (3.2) and then (3.2) into (3.1) and re-arranging for 𝑑  produces the 

well-established VLP range equation (3.6) [98].  

 

 
𝑑 =

(𝑚 + 1)𝐴 ℎ
( )

2𝜋

𝑃

𝑃
 . 

(3.6) 
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(3.6) eliminates the need for known emission and incidence angles but introduces a known vertical 

height assumption. 

 

 

Figure 3.7 - Geometric relationship between 𝑖′𝑡ℎ transmitter and receiver PD 

In practice however, the gimbal used during the experiments effects the calculations described in 

Section 2.3.4.2.1.1. These must be modified to compensate for an angle of incidence consistently 

equivalent to zero (𝜃 = 0). Subsequently, the relationship in (3.4) becomes cos(𝜃) = 1 and the 

following derivation of 𝑑  carried out using (3.1) - (3.6) gives [199]:  

 

 
𝑑 = 𝑆 − 𝑆 =

(𝑚 + 1)𝐴 ℎ
( )

2𝜋

𝑃

𝑃
  

(3.7) 

 

3.3.1.1.1 Multilateration Position Estimation  

Given the known vertical height difference ℎ  and the estimated Euclidian distance 𝑑  between the 

lens and the receiver, calculated from (3.6), the Pythagoras theorem can be applied to determine the 

horizontal distance component 𝑟  (3.8). Reducing the overall problem to a 2D multilateration solution 

[199]: 

 
𝑟 = (𝑑 ) − ℎ . (3.8) 

In which,  

 
𝑟 = (𝑥 − 𝑥 )  + (𝑦 − 𝑦 ) . (3.9) 

From (3.9), squaring both sides, expanding and re-arrangement leads to: 
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 ((𝑥 ) + (𝑦 ) ) − 2𝑥 𝑥 − 2𝑦 𝑦 = 𝑟  − (𝑥 ) − (𝑦 )  (3.10) 

 

Repeating (3.6) - (3.10) for each transmitter provides an overdetermined set of equations expressed 

in matrix form [199]: 

 𝐺𝜗 = 𝑏. (3.11) 

Where, 

 𝐺 =  
−2𝑥 −2𝑦 1

⋮ ⋮ ⋮
−2𝑥 −2y 1

, 𝜗 =  
𝑥
𝑦

(𝑥 ) + (𝑦 )

,  

 𝑏 =
𝑟 −(𝑥 ) −(𝑦 )
⋮ ⋮ ⋮

𝑟 −(𝑥 ) −(𝑦 )
. 

(3.12) 

 

The 2D coordinates of the PD (𝑆 = [𝑥 , 𝑦 ] ) can be solved for using the LSS to determine 𝜗. The 

LSS solution is given by [98][199]:  

 

  𝜗 = (𝐺 𝐺) 𝐺 𝑏. (3.13) 

3.3.2 Calibration Process using Lambertian Model and Source Data 

The performance of any VLP system depends mainly on the 𝜓 /  of the VLC source as this strongly 

influences the relationship between the RSSI and estimated Euclidian distance. This finding is both 

evident within  and in the  literature [223].  

Typically, a 𝜓 /  value can be retrieved from the datasheet of a light source as described in 

Section 3.2.3.2.1. In practice however identical lights may exhibit varied performance. This has been 

shown by calibrating for the 𝜓 /   in Alam et al. [223]. Therefore the 𝜓 /  value needs to be 

determined empirically for each light 𝑖. While some existing literature suggests using the highest 

power subcarriers (sub) [199], [222], the measurement campaign retrieved RSSI data for all 191 

subcarriers therefore a brief evaluation of subcarrier options is given.   

This section introduces the calibration phase conducted to determine the optimal calibration 

parameters for each source denoted by 𝐶𝑃 = [ 𝜓 /  , 𝑠𝑢𝑏  ]. The data files for all points, excluding 

the reference data files, are halved, resulting in both calibration datafiles 𝐶𝐷𝐹 ,  and measurement 

datafiles 𝑀𝐷𝐹 ,  each containing 20 sets (rows) of measurements. This is illustrated in Figure 3.8.  
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Figure 3.8 - Division of measurement campaign datafiles for calibration and measurement phases 

The calibration method described below is effectively equivalent to the two-stage process proposed 

by Alam et al. [223] but where the gain term is known such that only the optimal order of Lambertian 

must be resolved through comparison of modelled vs known distances. In addition, the optimal 

subcarrier is also evaluated. The explanation considers the process to determine 𝐶𝑃  using an absolute 

search approach to assess all possible suitable combinations of subcarriers (𝑠𝑢𝑏 ) and 𝜓 /  values. 

Where 𝜓 / = [5: 0.2: 60] is given in degrees and 𝑠𝑢𝑏  = [1,192] refers to the column in Table 3.1.  

 

3.3.2.1 Determine 𝑃  

The power of the VLC signal transmitted from the 𝑖 𝑡ℎ transmitter is determined using the reference 

datafile 𝑅𝐷𝐹  collected directly below the 𝑖 𝑡ℎ transmitter. At this location 𝜓  and 𝜃  are zero such 

that (3.2) simplifies to (3.14):  

 
𝐻 (0) =

(𝑚 + 1)𝐴

2𝜋(𝑑 )
. (3.14) 

 

where 𝑚  is calculated using (3.3) and the allotted 𝜓 /  value. At the reference point 𝑑  is known and 

equivalent to ℎ . One can apply the channel gain of (3.2) to (3.1), where the RSSI is the relative power 

received at the reference point, (𝑃 ) and is taken to be the average RSSI of 𝑅𝐷𝐹  using the assigned 

𝑠𝑢𝑏  column data. Finally rearranging for 𝑃  concludes this process. 
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3.3.2.2 Determining the Optimal Parameter Values 

The optimal 𝐶𝑃  are the set of values that reduce the average range error. To determine this, range 

estimation is performed for all measured coordinates using the acquired value of 𝑃  from 3.3.2.1 and 

. The RSSI value employed at each position is acquired from the respective 𝐶𝐷𝐹 ,  where the allocated 

𝑠𝑢𝑏  column data is used for the calibration phase 𝐶𝐷𝐹 , (: , 𝑠𝑢𝑏 ). For each coordinate the range 

error of the 𝑖′𝑡ℎ VLC source (𝜀 ,
,  ) is given by the absolute difference in distance between the 

estimated range (𝑑 , ) and the true range (𝑑 , ): 

 

 𝜀 ,
,  = 𝑑 , −  𝑑 , . (3.15) 

 

The absolute error for all measured coordinates are averaged as in (3.16) to determine the 𝜓 /  and 

𝑠𝑢𝑏  pair that provide the minimum average range error  𝜀
/  ,

,  : 

 

 
𝜀

/  ,

,  =
∑ 𝜀 ,

,  

𝑁
. 

(3.16) 

 

This process is summarised in Algorithm 1 and is repeated for each light.  
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Algorithm 1: Calibration: Absolute Search for Optimal 𝑪𝑷𝒊 Values5 

1:  𝐹𝑜𝑟: 𝜓 / = (5: 0.2: 60) 

2:   𝐹𝑜𝑟: 𝑠𝑢𝑏 = (1: 191) 

   Determine 𝑷𝑻𝒊
 

3:   Calculate 𝑚  using 𝜓 /  in (3.3)  

4:   Determine 𝑃  from 𝑅𝐷𝐹  using the averaged 𝑠𝑢𝑏  column data 

5:   Calculate 𝑃  from (3.14) and (3.1) 

   Determine Average Error 

6:    𝐹𝑜𝑟: Each (𝑥 , 𝑦 ) in the set of 𝑁  retrieved measurements  

7:    Obtain the coordinate specific RSSI (𝑃
,

) by averaging 𝐶𝐷𝐹 , (: , 𝑠𝑢𝑏 ). 

8:    By setting 𝑃 ,
→ 𝑃  use  to estimate the distance 𝑑 ,   

9:    Determine range error 𝜀 ,
,   from (3.15)  

10:    𝐸𝑛𝑑  

11:   Average all coordinate range errors (3.16)  

12:  𝐸𝑛𝑑   

13: 

14: 

𝐸𝑛𝑑   

Ascertain the 𝐶𝑃  that produces the lowest Average error 

 

3.3.2.3 Position Estimation  

With a determined set of optimal parameters 𝐶𝑃 = [𝐶𝑃 ; 𝐶𝑃 ; 𝐶𝑃 ; 𝐶𝑃 ], position estimation is 

carried out using the multilateration process described in Section 3.3.1.1.1 where the 𝑃  in  is 

evaluated in two ways:  

 Averaged RSSI: The RSSI applied is simply the average of the respective 𝑀𝐷𝐹 , . 

 Individual RSSI: Individual RSSI measurements from the 𝑠𝑢𝑏  column of each respective 

𝑀𝐷𝐹 ,  are used. Due to the non-synchronous acquisition of the measurements during the 

measurement campaign, the combination of individual RSSI measurements within the 

multilateration process is arbitrary. Therefore, individual RSSI measurements from each VLC 

source are evaluated with every combination of individual RSSI from the other respective 

measurement sets.  

 

 
5 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop each value in the given range is applied individually as part of a single loop.  
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𝑃

, 𝑚𝑒𝑎𝑛 𝑀𝐷𝐹 , (: , 𝑠𝑢𝑏 ) , 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 

𝑀𝐷𝐹 , (1: 20, 𝑠𝑢𝑏 ), 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 
. (3.17) 

 

The PE is given by the Euclidian distance between the estimated position (𝑆 ) and the true 

position (𝑆 ): 

 𝜀 = 𝑆   − 𝑆 . (3.18) 

The position estimation process is summarised in Algorithm 2 . 

 

Algorithm 2: VLC Multilateration Position Estimation6 

 

1: 

 𝑰𝒏𝒊𝒕𝒂𝒍𝒊𝒔𝒆 𝑪𝑷 

𝐹𝑜𝑟 𝑖 = (1: 4) 

  Determine 𝑷𝑻𝒊
 

2:  Calculate 𝑚  using 𝜓 /  in (3.3)  

Determine 𝑃  from 𝑅𝐷𝐹  using the average 𝑠𝑢𝑏  column data 𝑅𝐷𝐹 (: , 𝑠𝑢𝑏 )   

Calculate 𝑃  from (3.14) and (3.1) 

3:  

4:  

5: End 

 Position Estimate Error (Averaged) 

6:  𝐹𝑜𝑟: Each (𝑥 , 𝑦 ) in the set of 𝑁  retrieved measurements  

7:  𝐹𝑜𝑟: 𝑖 = (1: 4) 

8:   Attain 𝑃 ,  from (3.17) by taking the mean of 𝑀𝐷𝐹 , (: , 𝑠𝑢𝑏 ): 

9:   Use  to estimate the distance 𝑑 ,  

10:  𝐸𝑛𝑑 

11: 

12: 

 Use (3.8)-(3.13) to estimate the targets position coordinates 𝑆 = [𝑥 , 𝑦 ] 

Determine the PE Error(𝜀 ) using (3.18) 

13:  𝐸𝑛𝑑 

Position Estimate Error (Individual) 

14:  𝐹𝑜𝑟: Each (𝑥 , 𝑦 ) in the set of retrieved measurements 

15:  𝐹𝑜𝑟 𝑃 = 𝑀𝐷𝐹 , ((1: 20), 𝑠𝑢𝑏 ): 

16:   𝐹𝑜𝑟 𝑃 = 𝑀𝐷𝐹 , ((1: 20), 𝑠𝑢𝑏 ): 

17:    𝐹𝑜𝑟 𝑃 = 𝑀𝐷𝐹 , ((1: 20), 𝑠𝑢𝑏 ): 

18:     𝐹𝑜𝑟 𝑃 = 𝑀𝐷𝐹 , ((1: 20), 𝑠𝑢𝑏 ): 

 
6 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop each value in the given range is applied individually as part of a single loop. Where only the ‘:’ is present describes the use of 

all available values. When used as part of a table/matrix e.g (𝑅𝐷𝐹 (: , 𝑠𝑢𝑏 )) this refers to all the column data of the 𝑠𝑢𝑏 𝑡ℎ column in 

the𝑅𝐷𝐹  table.  
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19:      Use  to estimate the distances 𝑑 , , 𝑑 , , 𝑑 ,  and  𝑑 ,  

20:      Use (3.8)-(3.13) to estimate the position coordinates 𝑥  and 𝑦  

21:     𝐸𝑛𝑑 

22:    𝐸𝑛𝑑 

23:   𝐸𝑛𝑑 

24:  𝐸𝑛𝑑 

25: 

26: 

 Average the estimated position coordinates 

Determine the PE Error using (3.18) 

27: 𝐸𝑛𝑑 

 

Remark 4 - As stated in Remark 3, datasets are inconsistent; therefore, not all coordinates may 

obtain a range estimate from all four sources, in which case trilateration is performed. No estimate is 

given where less than three range estimates are provided. 

 

3.4 Initial Results & Discussion  

For comparison the following analysis of the calibrated results is compared against applying the 𝜓 /  

of 22.2° taken from the manufacturers datasheet, to all VLC Sources. This value is provided in the 

datasheet extract given in Figure 3.6, hereafter referred to as the Control.  

 

3.4.1 Calibration of 𝐶𝑃  

The optimal 𝐶𝑃  values obtained from Algorithm 1 are presented in Table 3.3. Figure 3.9 illustrates 

the output of Algorithm 1, where the response is much more sensitive to changes in 𝜓 /  values, 

where a clear optimal value can be observed. Alternatively, the selection of subcarriers appears to 

have a much less drastic effect on the average range error performance. The standard deviation of 

average range errors for all subcarrier options at the optimal  𝜓 /  value is 1.1 mm, 2 mm, 0.8 mm, 

and 4.1 mm for Lights 1, 2, 3 and 4, respectively.  

 

Table 3.3 - Optimal 𝐶𝑃  

VLC Source 1 VLC Source 2 VLC Source 3 VLC Source 4 

𝝍𝟏/𝟐
𝟏 / ° 𝑠𝑢𝑏  𝜓 / / ° 𝑠𝑢𝑏2 𝜓 / / ° 𝑠𝑢𝑏3 𝜓 / / ° 𝑠𝑢𝑏4 

25.6 142 24.4 165 24 110 25.8 87 

Control values 

22.2 135 22.2 100 22.2 53 22.2 61 



94 

 

 

 

Figure 3.9 - Average range errors across all measured points for all subcarrier and 𝜓 / . 

 

3.4.2 Range Errors  

To evaluate how individual lights compared to one another, a comparison of the individual range 

errors is given in Table 3.4. The mean values given are reflective of all the coordinates measured during 

the measurement campaign for each light. From Table 3.4 it is evident that not all lights performed 

equally. Light 1 and 3 obtain the lowest mean error and standard deviation across all points, followed 

by Light 4 and Light 2. This pattern correlates with the coverage measured during the measurement 

campaign in Ali et al. [248]. The calibration process has proven to reduce the mean range errors for 

lights 1, 2, 3 and 4 by 60%, 4%, 22% and 13% respectively.  

 

Table 3.4 - Range Error results for Individual lights 

VLC Source 1 VLC Source 2 VLC Source 3 VLC Source 4 

Mean /cm Std. /cm  Mean /cm Std. /cm  Mean /cm Std. /cm  Mean /cm Std. /cm  

Control Results 

2.37 1.75 1.34 1.63 1.27 1.25 1.44 1.67 

Calibrated Results 

0.99 1.35 1.33 1.82 1.03 1.36 1.28 1.77 

 



95 

 

3.4.3 Identifying Practical Irregularities in the Lambertian Model 

Taking a closer look at the spread of range errors for individual lights, Figure 3.10 presents the 

non-absolute range errors for all lights across all measured points. 

 

 

Figure 3.10 - Individual light ranging errors across all points 

Noticeably, each light exhibits a common circular region in which the range errors are negative. A 

negative range error from the non-absolute adaptation of (14) indicates the estimated distance is less 

than the actual distance. Given the negative correlation between 𝑃  and 𝑑  in , a reduced distance 

indicates an increased RSSI. This region shows an irregularity in the Lambertian relationship between 

𝑃  and 𝑑  given by .  

Figure 3.11 depicts the differences between the actual RSSI measurements (𝑀𝐷𝐹 , ) at given 

distances and the expected RSSI due to the modelled Lambertian fit using the optimal 𝐶𝑃  values. 

From Figure 3.11, the area at which the RSSI are higher than the expected RSSI is more evident and 

can be seen to occur at roughly the same region of Euclidian distances for each light. However, the 

magnitude of the effect varies among the individual lights, explaining the disparity in Range error 

percentage improvements. Given that this uniform circular region is consistent throughout all lights 

and at seemingly constant radii, it is reasonable to conclude that the area exists due to the construct 

of the RRLH lens. The lens distorts the light, focusing it in a non-Lambertian manner causing a region 
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of higher-than-expected light intensity and higher RSSI measurements. Observing the Lens 

characteristics, presented in Section 3.2.3.2.1, the cause of this non-Lambertian emission pattern is 

likely to be both the central diffuser, which reduces the intensity of incident light rays, and the lens 

reflector that refocuses light directly downward as opposed to outward as Lambert’s cosine function 

suggests. The region of lens distortion, or higher RSSI, is hereafter referred to as the 'Halo Region' 

(HR). This draws further attention to the need for calibrating when performing VLP processes as not 

all light emission patterns are Lambertian. The HR can be seen to cause errors in two significant ways. 

Firstly, the Lambertian assumption is inappropriate for this distribution and will consistently 

misrepresent the distance to the RSSI relationship. Secondly, during the calibration phase, as 

described in Section 3.3.2, the optimal 𝐶𝑃  values will resort to the best fit that reduces the overall 

error. This not only leads to a poor fit for the ranges within the HR but also for those outside it, as the 

Lambertian model is forced to accommodate all values. 

 

 

Figure 3.11 - Measured RSSI against distance compared against the fitted Lambertian model. Coloured 

regions indicate the disparity between the model and measurements. Black lines indicate exaggerated 

assumptions of the HR considered later. 

 

3.5 Proposed Halo-Lens Compensation Method 

To reduce the effects of the HR, the model based on the Lambertian assumption should be corrected 

to reflect the genuine relationship between RSSI and distance. The following section describes the 

calibration procedure to mitigate the errors caused by a Lens-Halo. More simply termed the Halo Lens 

Compensation (HLC) method.  
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Figure 3.12 - A general overview of the proposed solution where a peak is included across the RSSI 

range that relates to the HR to compensate for the higher RSSI values. 

3.5.1 Overview of the Proposed Halo-Lens Compensation Solution  

The proposed halo lens compensation method fits an ideal Lambertian distribution across all points 

outside the HR before applying a piecewise skewed peak across the HR, with a calibrated amplitude 

and skew to match the actual distribution. Figure 3.12 illustrates the solution concept to adjust the 

higher RSSI values within the HR using a fitted peak.  

The HR is defined by the minimum and maximum Euclidian distances at which it occurs, 

represented by 𝐷  and 𝐷  respectively. 𝑃  and 𝑃  denote the VLC source specific region limits of 

RSSI values that correlate to 𝐷  and 𝐷  respectively. One can summarise 𝑃 = [𝑃 , 𝑃 ] and 𝐷 =

[𝐷 , 𝐷 ]:  

 

 
𝑓(𝜙 ) =  

𝐴𝑚𝑝

𝜉
𝑡𝑎𝑛

𝜉 ∗ 𝑠𝑖𝑛(𝜙 )

1 − 𝜉 ∗ 𝑐𝑜𝑠(𝜙 )
. (3.19) 

 

The peak to be applied is generated using (3.19) where 𝐴𝑚𝑝  is a calibrated scaling factor relating to 

the amplitude of the peak and 𝜉  denotes the Skew factor as illustrated in Figure 3.13.  

 

 

Figure 3.13 - Effects of the Skew Factor (𝜉 ) on the skew of the peak. 
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The RSSI values are mapped to (3.19) using (3.20). 

 

 
𝜙 =

𝜋

𝑃 − 𝑃
𝑃 − 𝑃 . (3.20) 

 

Finally, the solution is given in (3.21), using a piecewise function to isolate the peak and range 

according to 𝑃  and 𝑃 :  

 

𝑑 =

⎩
⎪
⎨

⎪
⎧ (𝑚 + 1)𝐴 ℎ

( )

2𝜋

𝑃

𝑃
       ,  𝑃 ≤ 𝑃 ≤ 𝑃

(𝑚 + 1)𝐴 ℎ
( )

2𝜋

𝑃

𝑃
+ 𝑓(𝜙),  𝑃 ≤ 𝑃 ≤ 𝑃

. 

 

 

(3.21) 

3.5.2 Estimating the Halo Region  

The HR can be assumed to be the Euclidian distances at which the RSSI values increase beyond the 

Lambertian model as a result of lens distortion. This region is not well defined by the available data 

and varies slightly among the four light sources. The differences are potentially caused by subcarrier 

frequencies, environmental factors, or practical dissimilarities such as the simplistic COB source 

mounting method seen in Figure 3.5d. It is of note that under a few given data points, the region is 

considered subjective, and a quantitative measure for calculating the HR cannot be provided.  

The proposed approach to estimate the HR builds on the notion that by ignoring the values 

within the HR, the Lambertian model can correctly fit all the other data points that are accurately 

modelled by the Lambertian distribution. Once compared against all measurements, this highlights 

the HR where measurements are most distorted and no longer adhere to the ideal Lambertian fit.  

For this analysis, using Figure 3.11, the author of this thesis applies the assumed initial 

exaggerated estimates of 𝐷 = [ 1.285,1.415] as indicated by black lines in  Figure 3.11. These 

values are selected to capture both ends of the distribution while allowing enough leniency for the HR 

to potentially widen. The proposed solution applied to estimate the HR is summarised in Algorithm 3.  
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Algorithm 3: Halo Region Estimation 

1. Fit: Determine original 𝐶𝑃 using Algorithm 1 and the given calibration data 

2. Plot: Plot the Lambertian model of 𝐶𝑃 values against calibration data (similar to Figure 3.11) 

3. Assume: Make an initial assumption of HR bounds (𝐷 ). (HR approximated by the distances 

at which the RSSI are regularly more significant than the expected Lambertian RSSI) 

4. Buffer region: Exaggerate the assumed HR bounds to increase the assumed region 𝐷 . 

(Making a note to leave measurements outside the exaggerated region. Especially at the higher 

distances, as this is where the Lambertian fit is most sensitive).  

5. Re-fit: Repeat Algorithm 1 to obtain Updated 𝐶𝑃 (𝑈𝐶𝑃) values but ignore all measurements 

within the exaggerated HR.  

6. Re-Plot: Repeat 2. - Plotting the new Lambertian model against the data highlights the region 

in which the Lambertian model and more accurate bounds of the HR can be identified.  

7. Inspect: Visually estimate the common HR bounds 𝐷 and 𝐷  among all lights  

8. Power range: Using the determined 𝐷  values, attain the corresponding 𝑃  for each light. 

Remark 5 - It is of note that varying amounts of calibration data were evaluated, and while 

ambiguities were expected, the HR was evident for all. 

 

Figure 3.14 - Optimal Lambertian fit which ignores the measurements within the exaggerated HR. 

Dashed and solid lines represent 𝐷  and 𝐷  respectively. 

 

Figure 3.14 presents the results of step 6 of Algorithm 3,the Re-Fit, where the 𝑈𝐶𝑃  data generated 

is used to plot the Lambertian relationship against the subcarrier specific measurements. The HR is 
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amplified when considered against the similar plots in Figure 3.11 but is now clearer to identify. From 

Figure 3.14, the final estimate of 𝐷 = [1.305, 1.412] can be obtained and are presented as dashed 

vertical lines. Finally, 𝐷  can be applied to obtain the corresponding 𝑃  of the HR for the respective 

𝑈𝐶𝑃  values.  

 

3.5.3 Optimal Amplitude and Skew  

The 𝐶𝑃  values retrieved from step 6 of Algorithm 3 are subsequently used to determine the optimal 

𝐴𝑚𝑝  and ξ  values through the absolute search process given in Algorithm 4.  

 

Algorithm 4: Calibration: absolute search optimal 𝑈𝐶𝑃  search7 

INPUT: 𝑃 , 𝜓 /  𝑎𝑛𝑑 𝑠𝑢𝑏 , for all lights and 𝐷  

OUTPUT: 𝐴𝑚𝑝 , ξ  for all lights 

 Determine 𝑷𝑻𝒊
 

1) Calculate 𝑚  using 𝜓 /  in (2)  

2) Determine 𝑃  from (12) & (13) using 𝑠𝑢𝑏  

3) Calculate 𝑃  from (11) and (3) 

4) 𝐹𝑜𝑟: 𝐴𝑚𝑝 = (0: 0.01: 0.4) 

5)   𝐹𝑜𝑟: 𝜉 = (−0.99: 0.001: 0.99) 

   Determine Average Error 

6)    𝐹𝑜𝑟: Each (𝑥 , 𝑦 ) in the set of retrieved measurements  

7)    Attain 𝑃 ,  from the 𝑠𝑢𝑏  column of 𝑀𝐷𝐹 ,  

8)    Use (3.21) to estimate the distance 𝑑 ,   

9)    Determine range error 𝜀 ,
,   from (3.15)  

10)    𝐸𝑛𝑑  

11)   Average all errors with (3.16)  

12)  𝐸𝑛𝑑   

13) 𝐸𝑛𝑑   

14) Ascertain the 𝑈𝐶𝑃  that produces the lowest Average error 

 

 
7 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop.  
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This concludes the necessary steps required to estimate the Updated Calibrated Parameters 

𝑈𝐶𝑃 = 𝜓 /  , 𝑠𝑢𝑏 , 𝑃 , 𝐴𝑚𝑝 , 𝜉 for the HLC method. Step 5 of Algorithm 3 obtains the 𝜓 /  and 

𝑠𝑢𝑏  values given in the first and second rows of Table 3.5. The range of power values 𝑃  are 

determined from step 8 of Algorithm 3 and are given in rows four and five of Table 3.5.The 

𝐴𝑚𝑝  and ξ  results obtained from Algorithm 4 finalise the collection of necessary 𝑈𝐶𝑃  values and 

can be found in rows six and seven of Table 3.5. 

 

Table 3.5 - Updated Calibration Parameters (𝑼𝑪𝑷) 

Row  VLC Source 1 VLC Source 2 VLC Source 3 VLC Source 4 

1 𝝍𝟏/𝟐
𝒊  25.6 21 23.4 22.6 

2  𝒔𝒖𝒃𝒊 64 12 31 3 

3 𝑷𝒊  1206.82 1522.44 1295.33 1757.33 

4 𝑷𝒊  607.58 587.40 585.50 757.70 

5 𝑨𝒎𝒑𝒊 0.0236 0.0304 0.0300 0.0300 

6 𝝃𝒊 0.3831 -0.9204 0.0149 0.3831 

 

The proposed HLC solution has both an offline calibration phase to determine the necessary source 

specific parameters 𝑈𝐶𝑃  and online estimation phase for range estimation. The generalised online 

estimation phase of the HLC solution for a system of 𝑁 VLC sources is summarised in Algorithm 5 In 

which the 𝑖′𝑡ℎ VLC source, denoted by 𝑆 , is described by its three-dimensional Cartesian coordinates 

as 𝑆 = 𝑥 , 𝑦 , 𝑧 . Where 𝑖 = 0 denotes the target UE location in Cartesian coordinates given by 

𝑆 = [𝑥 , 𝑦 , 𝑧 ] . The estimated coordinates are given by 𝑆 = [𝑥 , 𝑦 , �̂� ]  where 𝑧  is assumed to 

be known and therefore equivalent to �̂� . During the 𝑘 𝑡ℎ sampling period a set of 𝑁 individual RSSI 

measurements 𝑃 , each pertaining to the respective 𝑖 𝑡ℎ source, are obtained. The source specific 

calibration parameters, Sensor coordinates and RSSI measurements are grouped as 𝑈𝐶𝑃 =

𝑈𝐶𝑃 , ⋯ , 𝑈𝐶𝑃 , 𝑆 = [𝑆 , ⋯ , 𝑆 ] and 𝑃 = 𝑃 , ⋯ , 𝑃  respectively. 
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Algorithm 5: VLC RSSI state estimation using the HLC method8 

INPUT: 𝑷𝑹, 𝑺, 𝑼𝑪𝑷, 𝒛𝟎 

OUTPUT: 𝑺𝟎   

 Range Estimation 

1: For 𝑖 = (1: 𝑁) 

2:  If  𝑃 ≤ 𝑃 ≤   𝑃   

3:   Calculate Euclidian distance  𝑑  using 𝑈𝐶𝑃  parameters in (3.21) for 𝑃 ≤ 𝑃 ≤ 𝑃  

4:  Else 

5:   Calculate Euclidian distance 𝑑  using 𝑈𝐶𝑃  parameters in (3.21) for 𝑃 ≤ 𝑃 ≤ 𝑃  

  6:  End 

7:  Using the height difference ℎ , calculate the horizontal range component 𝑟  using (3.8) 

8: End 

 Multilateration Position Estimation  

9: Collate the set of 2D range measurements 𝑟 = [𝑟 , ⋯ , 𝑟 ]  

10: Using 𝑆 and 𝑟, execute 2D LSS multilateration (3.13) with the matrices given in (3.12) 

11: Extract the 𝑥  and 𝑦  components from the LSS result to form the position estimate 𝑆 = [𝑥 , 𝑦 , �̂� ]  

 

3.6 Halo-Lens Compensation Results & Discussion  

Applying the 𝑈𝐶𝑃  values from Table 3.5, range estimation and multilateration can be performed by 

simply replacing  with (3.21). Figure 3.15 illustrates the proposed modified Lambertian relationship 

compared to the measured calibration data. For reference, the original Lambertian model is also 

compared to the measured calibration data. Notably, the arch in the proposed fit accommodates the 

HR better than the original fit. Comparing Table 3.3 and Table 3.5 reveals that 𝜓 /  values decrease, 

as expected from ignoring measurements in the HR. The subcarrier values generally tend to decrease 

too. This may be due to the higher powers of the lower subcarrier frequencies, which are more 

affected by the physical environment. Thus, creating more significant variability in measurements 

which applies better to a narrower beam angle indicated by the higher order of Lambertian fit. This 

can be observed in Figure 3.15, where the proposed model fit appears to deviate more from the 

measurements. This is simply due to the lower variation in power between higher subcarrier 

frequencies.  

 
8 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop.  
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3.6.1 Range Estimation Error 

Range estimation is carried out for each light using the 𝑀𝐷𝐹 ,
  and the average for all coordinates is 

given in Table 3.6 and compared to the previous Lambertian model results, provided in Table 3.4. 

Overall, the proposed solution leads to a consistent reduction in error across all lights with mean range 

errors of 5.9 mm, 6 mm, 6.9 mm and 5.4 mm. Thus producing average percentage reductions of 40.2 

%, 54.5 %, 33.1 % and 57.9 % for lights 1, 2, 3 and 4 respectively, when compared to the previously 

calibrated results. Due to these reductions, light 1 is no longer the highest performing light system. 

Notably, in Figure 3.16, the HR effect is significantly reduced, and errors become more uniform across 

all points. The choice of subcarrier options appears to have a more significant effect on the results. As 

the standard deviation of average range errors for all subcarrier options, at the optimal 𝜓 /  value, is 

2 mm, 4.4 mm, 2.6 mm and 4.9 mm for lights 1, 2, 3 and 4 respectively. While this is an increase from 

those reported in Section 3.4.1, the effects of subcarrier option appear minimal.  

 

 

Figure 3.15 - Original 𝐶𝑃  Lambertian relationship fit vs proposed (HLC) model fit 
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Table 3.6 – Individual Light Range Error Results 

VLC source 1 VLC source 2 VLC source 3 VLC source 4 

Mean /cm Std. /cm  Mean /cm Std. /cm  Mean /cm Std. /cm  Mean /cm Std. /cm  

Lambertian Model - using 𝑪𝑷𝒊 

0.99 1.35 1.33 1.82 1.03 1.36 1.28 1.77 

Proposed Model – HLC 

0.59 0.84 0.60 0.81 0.69 0.77 0.54 0.73 

Percentage Decrease in Range Error (%) 

40.15 38.19 54.51 55.61 33.10 43.22 57.95 58.77 

 

 

Figure 3.16 - Range errors for individual lights using the proposed Halo Lens Compensation (HLC) 

method. VLC Light sources are indicated by red vertical lines. Colour bar scale given in centimetres.  

3.6.2  Position Estimation Error 

The comparative positioning error results in Table 3.7 indicate substantial improvements in PE from 

applying the Proposed Halo lens model. Compared with the previously calibrated Lambertian model, 

average errors for averaged and individually used measurement sets achieve a near 50% and 40% 
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reduction in error. Individual measurement sets naturally show a higher error due to the higher noise 

expected in individual results; however, average results are still less than 4 cm. These results are a 

vast improvement on the direct application of Datasheet values reaching mean error improvements 

of near 60% and 40% for averaged and individual datasets respectively. Figure 3.17 illustrates the 

comparison of position estimates from both Lambertian and the proposed HLC method.  

Table 3.7 – Multilateration PE Results 

Averaged Measurements Individual Measurements 

Mean /cm Min /cm Max /cm Std. /cm Mean /cm Min /cm Max /cm Std. /cm 

Lambertian Model – using Datasheet 𝝍𝟏/𝟐 (Control) 

7.37 1.10 14.13 3.24 7.37 1.67 12.77 3.15 

Lambertian Model – using 𝑪𝑷𝒊 

6.10 0.59 25.77 4.05 7.55 1.10 29.12 5.27 

Proposed Model – HLC 

3.06 0.30 8.34 1.78 4.64 0.64 17.79 3.52 

HLC vs Control - Percentage Decrease in Range Error (%) 

58.53 72.32 40.95 44.95 37.02 61.74 -39.30 -11.77 

HLC vs  𝑪𝑷𝒊 - Percentage Decrease in Range Error (%) 

49.88 48.73 67.63 55.99 38.51 41.92 38.91 33.23 

 

 

Figure 3.17 - Plot of the 63 measured coordinates and position estimates for both Lambertian and 

proposed solutions 
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3.7 Chapter Conclusions  

VLC solutions are a immensely viable and exciting potential solution for 5G networks owing to their 

minimal required adaptations to existing infrastructure as well as illumination, energy and cost 

benefits. To encourage widespread deployment, VLC sources should be expected in all manner of 

existing lighting systems and as such the necessary measures need to be taken to ensure that despite 

the lens or source structure, the potential for highly accurate localisation performance is not hindered.  

This study has highlighted the importance of source characteristics, primarily lens form factors, 

on VLP performance. This emphasises that while Lambertian models may serve well for simulations, 

it is crucial to calibrate experimental VLP systems accordingly. The proposed HLC solution is shown, 

using real-world data, to significantly improve the position estimation performance. Further 

developments should consider the effects of varied quantities of datasets both with regards to the 

number of measured positions and quantity of RSSI measurements acquired at each point as this may 

impact the resolution of the calibration and subsequently the effectiveness of the HLC method. 

While performance of the IoRL IPS system is shown to be impressive with centimetre level 

accuracies one must acknowledge the ideal LOS case in which this data is acquired using a gimbal to 

eliminate the angle of incidence. The following chapter considers applying this solution to what is 

known of the IoRL Indoor Positioning System (IPS) to appropriately evaluate the expected IoRL IPS 

performance.  
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4 Evaluation of the Internet of Radio Light Indoor Positioning 

Service 

4.1 Introduction  

Building on the work covered in chapter 3, where Visible Light Communications (VLC), within the 

Internet of Radio Light (IoRL) project was studied for non-Lambertian VLC emitters, this chapter 

considers the implementation of the proposed Halo-Lens Compensation (HLC) within the IoRL 

projects’ Indoor Positioning Service (IPS). In this model tracking is achieved through fusion of mmWave 

and VLC data from a dynamic target.  

As promising technologies alone, the combined application of millimetre waves (mmWaves) 

and VLC for modern networks is recently explored for high speed and secure LOS communications 

[250]–[253]. However, regarding their combined use within localisation systems, the available 

research focuses on the application of VLC localisation methods to facilitate mmWave 

communications [254] [255] or handover protocols [256]. Nor et al. [254] propose the use of VLC RSSI 

localisation to reduce the complexity of exhaustive mmWave beamforming training processes and Hsu 

et al. [255] successfully evaluate this concept practically. Alternatively, Sheikholeslami et al. [256] 

apply VLC localisation to improve communication handover.  

Here the author, of this thesis, recognises that to the best of their knowledge, the only 

research evaluating the hybrid fusion of mmWave and VLC localisation schemes comes from the IoRL 

project, published by the author of this thesis [257]. This previous work describes an oversimplified 

study of the potential of the IoRL positioning system and focusses on Virtual Reality (VR) applications. 

This chapter presents a novel analysis of a hybrid mmWave and VLC localisation scheme applying real 

world data obtained through the IoRL measurement campaign. 

 

4.1.1 Aims 

The aims of this study are to better understand the potential of the IoRL IPS system, to evaluate its 

suitability for location-based applications presented by both the 3GPP and the IoRL project 

consortium, and to identify the key challenges for localisation to be evaluated in later chapters. 

 

4.1.2 Contributions  

This chapter presents a more complete evaluation of the novel VLC and mmWave hybrid fusion of the 

IoRL project IPS which includes the proposed novel HLC algorithm for dynamic target tracking.  
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4.1.3 Summary 

The chapter first reviews existing work, written by the author of this thesis, on this subject to highlight 

the various simplifications made. Following this, an outline of the IoRL IPS is provided to detail the 

considered implementation for the IoRL demonstration case. Considerations and modelling of 

parameters are then presented and various tests conducted. These parameters all culminate in a final 

simulation study.  

 

4.2 Previous IoRL IPS Studies  

Within previous work, the author of this thesis proposed the concept of the IoRL architecture for use 

within Virtual Reality (VR) tracking [258]. The concept provided a means for virtual reality users on 

different platforms (mobile, PC or Standalone) to benefit from a 5G localisation scheme in which 

cables, tracking boundaries or limitations of the users’ freedom would be evaded. However, for such 

a system to exist, the tracking performance would have to meet or to exceed the requirements of 

existing VR tracking technologies. As presented in Section 2.1.4.2.2.1 the accuracies and latencies of 

such systems are within the order of millimetres and milliseconds respectively. Such high 

specifications are not only required to provide the user with a more immersive experience but must 

be enforced to ensure that the user does not suffer simulation sickness. Simulation sickness is akin to 

motion sickness brought on by a perceivable misalignment between the users’ actions and the 

respective change in media to reflect the users’ actions. This is attributed to poor accuracy and 

perceivable latencies between the target’s motion and the respective media shown, described as the 

Motion to Photon Latency (MTPL). While tolerances to simulation sickness are subjective, the general 

understanding is that a system’s accuracy and latency must be within millimetres and milliseconds. 

To evaluate the feasibility of the IoRL project to reach such performance standards, previous 

work [257] focused on establishing a model a model of the IoRL IPS. The study specifically looked at 

the system latency and accuracy expected of the IoRL IPS through simplistic modelling of the 

millimetre wave, VLC and Location Server (LS) components. The results highlighted the unfeasibility of 

a system meeting such tracking requirements for VR applications.  

This original study considers the IoRL tracking environment in which only a single user is 

connected and requires localisation data. As such, a rudimentary LS is established in which only data 

pertaining to a single user are retrieved from the Location database. Under this single target 

assumption, the measurements are directly applied to the update stage of a Linear Kalman filter. This 

structure ignores the potential for any other target data within the Location database. Using this 

configuration, latency tests are conducted and used to assess the overall MTPL and update frequency. 
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Nevertheless, these latency components are reflective of an oversimplified LS process and carry an 

optimistic view of the actual performance.  

Additionally, the measurement noise values applied to model both the mmWave and VLC 

measurements are related loosely to existing literature. VLC noise was applied as AWGN, using the 

distribution attained from an experiment conducted by IoRL project partners [199]. However, this 

experiment considered a 2D scenario and therefore lacked details about the third axis (𝑧). The noise 

in height measurements were taken to be an average of the noise in x and y. This is not suitable as 

VLC 2D trilateration is not directly applicable to 3D space, where computing the height requires more 

complex solutions that may affect not only 𝑧 but also 𝑥 and 𝑦 error distributions. The mmWave 

measurements were extracted from the ‘optimistic’ region of existing literature [68] in which the 

bandwidths of the systems considered far exceeded those to be implemented within the IoRL system.  

Moreover, the target trajectories assessed within this original study are observations of a 

single user and therefore, one cannot ignore the subjective nature due to the bias of age, gender, 

ability of the participant and the tracking assessment.  

 To build on this previous work and better evaluate the IoRL performance, a secondary study 

is considered within this thesis. In which the previously oversimplified approaches are re-considered 

to better replicate the response of the IoRL system.  

At the time of writing this thesis, a fully realised IoRL IPS is not available, therefore simulating 

the response is still necessary. The approach taken within this chapter is to utilise the Halo-Lens 

Compensation method and IoRL Measurement campaign results to better model real-world 

performance. As these VLC data reflect the measurement campaign conditions (RRLH positions, 

tracking distances, 2D implementation), the simulation within this chapter replicates the same setting 

and conditions. With a lack of mmWave TDOA data, this technology is evaluated for various degrees 

of noise within the time delay measurements, where errors within time-delay are related to the 

bandwidth of the system.  

 The overall approach conducted throughout this chapter is like the methodology of the 

original study. The latency components are evaluated and later applied to the model where data 

fusion is carried out to locate a moving target. However, the Location Database is reconstructed to 

better characterize the experimental parameters needed and the LS is designed to better reflect the 

performance of a system capable of assisting multiple users. This avoids the latency bias that occurs 

from ignoring the matter completely. Furthermore, as opposed to the non-repeatable and subjective 

VR trace used in the previous study, the trajectory is kept here in a repeatable and consistent circular 

pattern.  
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In this respect the following chapter evaluates the proposed IoRL IPS with regards to both accuracy 

and latency. It can be seen from previous discussions that the latency not only indicates the rate of 

estimations and delay but also conveys the complexity and energy consumption of an IPS. This in turn 

relates to the maintenance costs and processing demand placed on the IoRL architecture. 

 

4.3 Implementation of the IoRL IPS  

The author, of this thesis, acknowledges that as a research venture, the IoRL project demonstration is 

not yet finalised at the time of writing. To evaluate the IoRL system performance without a fully 

realised system entails modelling the features not yet available, namely the mmWave Uplink 

transmission which permits the ability to perform uplink TDOA measurements. Constructing a more 

realistic model can however be achieved by evaluating the system performance of the features that 

are practically available.  

 This section considers the design and implementation of the IoRL IPS providing context to the 

processes described later and verifying the system latency. The VLC location results are also briefly 

evaluated. 

In this implementation of the IoRL IPS, the system is limited to that of the IoRL demonstration 

use case to be established in a Home, in keeping with the IoRL Measurement Campaign setup. This 

allows the obtained VLC data to be appropriately applied. 

In this manner, this chapter can be considered a study into what the response of the IoRL IPS 

could have been during the measurement campaign, if the mmWave uplink and LS were operational. 

This scenario consists of four RRLHs connected to a singular RRLHC with the intent to track a single UE 

device. In a similar but more comprehensive approach, to that of previous work, the following 

describes the IoRL IPS features, latency, and measurement evaluations, and finally the results of the 

model.  

As discussed in the literature review, the key performance metrics considered throughout this 

thesis are accuracy, reliability, and latency. The latency is not only a descriptor of the response time 

and estimation frequency but it also directly correlates with the system’s complexity, cost and energy 

efficiency.  
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4.3.1 IoRL IPS Communications  

The design of the IoRL IPS follows the description given within Section 2.3.3.3. For more intuitive 

reading, the Location Database Tables (LD1, LD2 & LD3), given by Table 2.2-Table 2.4, are further 

referred to as: 

 LD1 – Measurement Table 

 LD2 – Anchor Table 

 LD3 – Estimates Table 

 

The LS is tasked with processing the raw mmWave TDOA and VLC RSSI data stored within The 

Measurement Table of the IoRL LD, using sensor position data stored in the Anchor Table of the IoRL 

LD. These estimates are returned to the LD and stored in the Estimates Table, to be accessed by 

Location Based Services. In a general sense the LS performs state estimation on both measurement 

datasets and then data fusion, using a Kalman Filter (KF) for tracking.  

 

Within the LS, the data fusion utilises a Linear Kalman Filter (LKF) since the location estimates 

provided through the TDOA and VLC processes are linear with regards to the state of the target being 

tracked.  

The KF process follows two stages, Prediction and Update, the recursive nature of the KF is 

beneficial in this application since minimal prior data is required. The KF can be run recursively within 

the LS as more observations are given for a singular UE device. This approach however, applies to a 

system considering only a singular UE device. To facilitate multiple UE devices, the implementation of 

multitarget tracking filters such as Probability Hypothesis Density (PHD) filters [115], [116] may be 

appropriately considered. Nevertheless, due to the consideration of a singular UE device within the 

IoRL demonstration a singular KF is more simply employed. This approach, however, can be expanded 

for multiple UE devices in which multiple singular Prediction and Update stages can be executed for 

each device in a round robin arrangement. An increasing number of devices will drastically affect the 

performance of such an architecture.  

Previous implementation of the LS [257] considered an IoRL demonstration use case in which 

only a singular UE was to be tracked. While this is no exception within this thesis, the LS latency 

components presented in Meunier et al. [257] represent a system in which the state and state 

covariance matrices are stored directly within the LS, for repeated use within the KFs recursive stages. 

Within this study, the LS is designed to be capable of performing location estimation for multiple 

devices in the round robin format. This is done to appropriately reflect the fact that both a PHD filter 



112 

 

and a KF, carrying out this round robin pattern, would not be able to store all the previous data within 

the LS.  

These processes both require an initial state estimate and the corresponding probability 

density, given as the initial state estimate covariance matrix. Because of this requirement the LD must 

be adapted to appropriately store both the target state and its covariance matrix. The LS is then 

capable of extracting both the measurement data for the target and the corresponding previous state 

information from the Estimates Table in the LD. This additional dataset and process, required to obtain 

the previous data, can be expected to invoke additional latency within the system. For the reasons 

discussed above, the implementation of the LS and LD are described and the resulting latencies are 

evaluated.  

 

4.3.1.1 The Location Server  

The implementation of the LS realised in this thesis is constructed in MATLAB R2021a which uses an 

Open Database Connectivity (ODBC) driver to link with the MySQL Location Database. The process of 

the LS is considered in Section 2.3.3.3 but elaborated further within this section. This section describes 

the position estimation stages using data fusion of initial state estimates. The following explanation 

considers a general system of 𝑁 Remote Radio Light Head (RRLH) transceivers monitoring a single UE 

device. It is assumed that all 𝑁 RRLHs obtain both mmWave TDOA and VLC RSSI LOS measurements 

throughout the tracking period. The 𝑖 𝑡ℎ Remote Radio Light Head (RRLH) is described by the position 

of the mmWave receiver antenna 𝑅𝑥 = 𝑥 , 𝑦 , 𝑧  and VLC source 𝑇𝑥 =

𝑥 , 𝑦 , 𝑧  given by 𝑅𝑅𝐿𝐻 = 𝑅𝑥 , 𝑇𝑥  in which 𝑥, 𝑦 and 𝑧 describe the coordinates of the 

VLC source and mmWave receiver in world space, as denoted by the subscripts 𝑣𝑙𝑐 and 𝑚𝑚 

respectively. The set of 𝑁 RRLH parameters are collected as 𝑅𝑅𝐿𝐻𝑠 = [𝑅𝑅𝐿𝐻 , ⋯ , 𝑅𝑅𝐿𝐻 ]. The 

singular UE target position is described by its Cartesian coordinates in world space given by 𝑆 =

[𝑥 , 𝑦 , 𝑧 ] . During the 𝑘 𝑡ℎ sampling instant, given by (𝑡 , 𝑡 ], a set of VLC RSSI (𝑃 , ) and 

mmWave TDOA (�̅� ) measurements are obtained. In which  

𝑃 ,  is a set of 𝑁 individual 𝑃 ,  measurements relating to each RRLH and �̅�  describes a set of 𝑁 −

1 measurements in which 𝑅𝑅𝐿𝐻  has been arbitrarily selected as the reference node. Therefore �̂� ,  

denotes the TOA difference obtained between the 𝑅𝑅𝐿𝐻  and 𝑅𝑅𝐿𝐻  at the 𝑘′𝑡ℎ sampling instant 

(𝑡 ): 

 𝑃 , = 𝑃 , , ⋯ , 𝑃 , , 
(4.1) 
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 𝜏̅ = �̂� , , ⋯ , �̂� , . (4.2) 

 

4.3.1.1.1 State Estimation 

Once measurement data has been acquired, the initial stage requires processing of the raw VLC RSSI 

and TDOA mmWave measurements to produce initial estimates of the UE position 𝑆  and 𝑆  for 

VLC and mmWave datasets respectively. The following section describes the individual state 

estimation processes adopted within the LS of the IoRL IPS.  

 

4.3.1.1.1.1 VLC RSSI State Estimation  

State estimation using the VLC RSSI measurement dataset employs the Halo Lens Compensation (HLC) 

method, proposed in the previous chapter of this thesis, designed for use within the IoRL system to 

mitigate the effects of the non-Lambertian emitters. In this respect the solution is limited to target 

tracking within a 2D plane where the height or 𝑧  coordinate of the receiver is fixed and known. The 

proposed HLC solution entails an offline calibration phase to obtain the light specific HCL Updated 

Calibration Parameters 𝑈𝐶𝑃 = 𝜓 /  , 𝑠𝑢𝑏 , 𝑃 , 𝐴𝑚𝑝 , 𝜉 for 𝑖 = (1, ⋯ , 𝑁) in which the Halo 

Region (HR) power range is given by 𝑃 = [𝑃 , 𝑃 ]. 𝜓 /  , 𝑠𝑢𝑏 , 𝐴𝑚𝑝 , 𝜉  denotes the optimal Semi-

angle at half power, Subcarrier column, Halo Lens Compensation Amplitude and Skew respectively. 

These parameters are grouped as 𝑈𝐶𝑃 = [𝑈𝐶𝑃 , ⋯ , 𝑈𝐶𝑃 ]. 

 During an offline phase a training dataset, of 20 RSSI measurements at every 10  cm2 position, 

must be obtained for each light. As discussed in the conclusion of the previous chapter, this quantity 

and spatial resolution may further affect the performance. However, for consistency, the same 

parameters applied in Chapter 3 are considered. Using the obtained RSSI training data set, the Halo 

region is estimated using Algorithm 3 and the calibration is completed using Algorithm 4.  

The complete details of the HLC process are defined in the previous chapter where Algorithm 

5 summarises the online estimation process for the 𝑘’𝑡ℎ estimation instant in which  

𝑃 , → 𝑃  and  𝑇𝑥 → 𝑆 .  

 

4.3.1.1.1.2 MmWave TDOA State Estimation  

As discussed within the literature review (Section 0) the applied TDOA estimation process within this 

thesis is the Taylor Series (TS) solution. This solution relies on an initial estimate in which iterative 

calculations converge on a local estimate, however a single iteration is sufficient and considered within 

this thesis. Due to the requirement of an initial estimate, the VLC estimate is directly applied. Though 

this means the errors of both estimates are correlated, for simplicity they are assumed independent 
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to satisfy the LKF process. As discussed in the following Data fusion section there is only a single 

instance where the VLC and mmWave noises are evaluated together, hence this assumption is 

considered valid.  

The TS solution is presented in the literature review and is summarised for a homogenous set 

of sensors, thereby applying the LSS and not WLS, below in Algorithm 6. 

 

Algorithm 6: Taylor Series TDOA solution9  

INPUT: 𝝉𝒕𝒌
, 𝑹𝑹𝑳𝑯, 𝑺𝒗𝒍𝒄

𝟎  

OUTPUT: 𝑺𝒎𝒎
𝟎  

1: Using the initial estimate 𝑆  and 𝑅𝑥  estimate the Euclidian distance 𝑑  from (2.11) 

2: For 𝑖 = (2: 𝑁) 

3:  Using the initial estimate 𝑆  and 𝑅𝑥  estimate the Euclidian distance 𝑑  from (2.11) 

4:  Calculate the Jacobians 𝑎 , , 𝑎 ,  and 𝑎 ,  from (2.21) 

5: End 

6: Populate G and D matrices according to (2.23) 

7: Carry out LSS using (2.24) to determine the coordinate errors 𝛿𝑆  in the initial estimate 

8: Update the initial estimate to determine the mmWave TDOA solution. 𝑆 =  𝑆 + 𝛿𝑆  

 

Remark 6 – Both the Chan and TS solutions were applied during initial testing however findings 

resulted in much greater ambiguities for the Chan solution under vastly lower noise parameters. For 

this reason, the TS solution is taken forward. 

 

4.3.1.1.2 Data Fusion  

Data fusion, as shown in the literature review, provides an efficient means to improve the response 

of a system through the combination of individual datasets. Within the IoRL IPS, the state estimates 

𝑆  and 𝑆  derived in the above section, along with their respective covariances, are subsequently 

fused together using a LKF to form an optimal output. The state of the filter is given by 𝑋 =

[𝑥 , 𝑦 , 𝑣 , 𝑣 ] where 𝑥  and 𝑦  denote the Cartesian coordinates of the target in reference to the 

RRLHs and 𝑣  and 𝑣  represent the targets velocity components in each respective axis. The state 

estimates 𝑆  and 𝑆  obtained from the mmWave and VLC datasets, during the 𝑘′𝑡ℎ sampling 

period, are submitted to the LKF as 𝑧  and 𝑧  respectively: 

 
9 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop. 
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𝑆 →  𝑧 , 

𝑆  → 𝑧 . 

 

(4.3) 

 

 

The LKF equations from Section 2.1.3.2.1.1 are repeated here for readability. 

 

Prediction stage  Update stage  

𝑋 = 𝐴𝑋 + 𝐵𝑢  

𝑃 = 𝐴𝑃  𝐴 + 𝑄 

(2.38) (2.39) 𝐾 = 𝑃 𝐻 𝐻𝑃 𝐻

+ 𝑅  

𝑋 = 𝑋 + 𝐾 (𝑧

− 𝐻𝑋 ) 

𝑃 = 𝐼 − 𝐾 𝐻 𝑃  

(2.40) (2.41) (2.42) 

 

There are no control inputs, therefore 𝐵 and 𝑢  are ignored. The applied process model is given as a 

Constant Velocity (CV) model with the following state transition matrix [133]:  

 

 

𝐴 =

1 0 Δ𝑇 0
0 1 0 Δ𝑇
0 0 1 0
0 0 0 1

 
(4.4) 

 

 

As stated above, the LS requires prior data to form a prediction of the target’s state using the state 

transition matrix. The obtained state estimates are then fused together with the predicted state to 

obtain an optimal output. The prior state information of a UE (𝑋  and 𝑃  ) is acquired by scanning 

the Estimates Table to find previously generated position estimates. Due to potential fluctuations in 

computational time and consideration for potential multiple targets, the time between consecutive 

estimations, given by Δ𝑇, may not be consistent. Therefore Δ𝑇 is calculated dynamically by comparing 

the timestamp of the current measurement dataset, denoted as 𝑡  and the timestamp of the 

previously generated estimate given by 𝑡 :  

 

 Δ𝑇 = 𝑡 − 𝑡 .  (4.5) 

 

 

For instances where there is no available prior state information (𝑋  or 𝑃  ) such as when a new 

device is connected or on the initial iteration of the LS, the prediction stage is ignored, and state 

estimates are directly fused together. An initial estimate is instead produced using the Update stage 
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alone. In this case the TDOA state estimate and covariance are applied as 𝑋  and 𝑃  respectively. 

The VLC state estimate and its covariance matrix are given as 𝑧  and 𝑅 respectively.  

To simplify the further processes throughout this chapter, the Anchor Table is only queried on 

initialisation as the evaluated scenario assumes a single RRLHC system limited to a set of four receivers 

required for localisation. In this case the Anchor data is not expected to change. The summary of the 

LS Algorithm applied within this thesis is given below in Algorithm 7. 

  



117 

 

 

Algorithm 7: IoRL Location Server Algorithm10 

 Initialisation  

1: Establish connection with LD 

2: Query 1: SQL READ LD Table 2 - Retrieve RRLH coordinates and VLC parameters 

3: Initialise fixed parameter values  

 Estimation Loop   

4:  While (Devices connected) 

5:  Query 2: SQL READ LD Table 1 - Obtain measurement data and number of currently connected 

UE devices (𝑁 )  

6:  For 𝑖 = (1: 𝑁 ) 

7:   Extract measurement data 𝜏̅ , 𝑃 ,  for the 𝑗′𝑡ℎ UE from Query 2 data  

8:   Query 3: SQL SELECT LD Table 3 for prior estimation of the 𝑗′𝑡ℎ UE 𝑋 , 𝑃  

9:   If Query 3 returns prior data   

10:    Compute 𝛥𝑇 from timestamps of measurement and priory estimation data 

11:    If 𝛥𝑇 ≠ 0 

12:     Establish matrices 𝐴 & 𝑄 within the Kalman filter with 𝛥𝑇  

13:     Determine initial state estimate and covariance matrix (2.38) & (2.39) 

14:     Compute VLC position estimate 𝑆  through Algorithm 5 

15:     Fuse VLC estimate (𝑆  → 𝑧 ) with update step equations (2.40) - (2.42) 

16:     Compute TDOA state estimate 𝑆  with Algorithm 6 and initial estimate 𝑆  

17:     Fuse TDOA estimate (𝑆  → 𝑧 ) with Update step equations (2.40) - (2.42) 

18:     Query 4: SQL UPDATE LD Table 3 with state estimate and covariance matrix  

19:    End 

20:   Else 

21:    Compute VLC state estimate 𝑆  through Algorithm 5 

22:    Compute TDOA state estimate 𝑆  with Algorithm 6 and initial estimate 𝑆  

23:    Fuse TDOA and VLC estimate with Update step equations (2.40) - (2.42) 

24:    Output state estimate and covariance matrix to LD3 

25:   End 

26:  End 

27: End 

 

 
10 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop. 
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4.3.1.2 Design of Implemented Location Database 

The Location Database is established as a MySQL database within the IHIPG containing the three tables 

described in Section 2.3.3.3. However due to the VLC process and proposed VLC Lens computation, 

VLC light specific parameters (𝜓 / , 𝑃 , 𝑃 , 𝑃 , 𝐴𝑚𝑝 , 𝜉 ) for 𝑖 = (1, … , 𝑁) are calibrated as 

described in Algorithm 3 and Algorithm 4 to be stored within the LD. This requires modifications to 

the table to store the additional RRLH specific parameters as shown in Table 4.1.  

 

Table 4.1 - LD2: Antenna and LED coordinates 

RRLHC 

ID 

 

RRLH 

ID 

mmWave Tx VLC LED VLC Estimation Parameters 

𝑥  𝑦  𝑧  𝑥  𝑦  𝑧  𝜓 /  𝑃  𝑃  𝑃  𝐴𝑚𝑝  𝜉  

1 1             

 

The implemented LS considers a single propagation approach in which prior data is retrieved, 

processed, fused with the generated state estimates, and then transmitted directly back to the LD 

before searching for new measurement data. Therefore, the estimated target states are to be stored 

in the LD Estimates Table with their respective covariance matrices. To accommodate the size of the 

covariance matrix, the values are stored within a single database column as a String array. Additionally, 

due to the state matrix of the applied KF, the estimated target velocity components are stored to be 

applied as priory data within the KF process. The addition of this necessary data requires the Estimates 

Table to be updated, as presented in Table 4.2.  

 

Table 4.2 - LD3: UE location estimates 

UE 

ID 

 

UE 

coordinates 

UE Velocity Covariance 

matrix 

Estimate 

Timestamp 

𝑥  𝑦  𝑧  𝑣  𝑣  𝑣  𝑃 

1    
    DD/MM/YYYY 

hh:mm:ss:.. 

 

As identified within the literature review (Section 2.3.3.3), the IoRL project’s Indoor Positioning 

Protocol (IPP) applies the 5G New Radio frame structure to both the mmWave and VLC channels. With 

regards to the transmission of location data, the sequencing is always within the last symbol of the 

last slot of the first 𝑁 sub-frames. In this sense the VLC and mmWave measurements are acquired 
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synchronously. Therefore, it should be noted that the timestamp given to measurement datasets, 

stored within the Measurement Table, refers to the timepoint the measurements, which are assumed 

to be synchronous, are acquired. This same timestamp is maintained throughout the state estimation 

process and is applied to the uploaded target state within the Estimates Table. In this way the 

timestamp of the estimate correlates to the point in time at which the respective measurements were 

acquired. This is achieved using a common clock within the IoRL IHIPG where both the LS and LD are 

situated. 

 

4.4 Obtaining Simulation Parameters from Available Datasets 

4.4.1 Determining System Latencies  

The aim here is to acquire the latency components of the IoRL IPS to better understand the system 

and subsequently to identify the effects that these have on performance. These latencies can then be 

applied to the overall system model to improve the consistency between simulated and expected 

performance.  

Observing the IoRL IPP discussed within the literature review, the measurements between the 

VLC and mmWave are shown to be synchronous to one another according to the same transmission 

sequence. However, each technology is asynchronous due to the sequential sampling structure of 

each technology’s respective measurements. This is caused by the transmission of individual location 

reference signals within separate sub-frames of the 5G transmission block. This results in millisecond 

delays between consecutive measurements for both the mmWave and VLC technologies. Within this 

chapter the sequential sampling is assumed to have a negligible effect and therefore the 

measurements are assumed to be sampled synchronously. The effects of these asynchronous 

assumptions are evaluated further in later chapters.  

Additionally, within this study, to avoid the latency assumption made in Meunier et al. [257] 

regarding the transmission period between the Radio Access Network (RAN) and the UE, and the 

subsequent rendering time on the UE side, the considerations of latency are limited to those within 

the RAN. 

 

Following the protocol of the IoRL IPS described in Section 2.3.3.3.2, both the Estimation Period 

Latency Component (EPLC) and the Round-Trip Time (RTT) are evaluated within this study:  

1) The EPLC describes the time taken for the LS to retrieve new data, generate an estimate and 

return it to the LD. The frequency at which new data can be resolved can be used to model 

the period of estimation within the KF Δ𝑇. Given that the LS is only capable of processing a 
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single dataset at any given time, the EPLC dictates the number of acquired measurements that 

may be ignored during the estimation period. 

2) The RTT is the duration of time it takes for a single dataset to be acquired, processed and the 

resulting position estimate to be received. To avoid the assumptions made within previous 

work regarding transmission and rendering times at the UE, the RTT is considered from RRLHC 

transmission to RRLHC reception.  

The latency components described above and the considered system for the following study is 

illustrated below: 

 

Figure 4.1 - Evaluated processes, data transmissions and latencies within the simulated model for a 

single estimation  

4.4.1.1 Methodology  

All tests are conducted on a DELL Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz using MATLAB R2021a. 

The inbuilt tic/toc stopwatch function within MATLAB is utilised for measuring the duration of the 

respective processes. As advised within the MATLAB documentation [259] the tic/toc function is not 

recommended for durations less than 0.1s. For this reason, the programmes are looped 𝑁  times, 

allowing for the average execution time of a single loop Δ𝑇  to be calculated: 

 Δ𝑇 = Δ𝑇 𝑁⁄ . 
(4.6) 

 

Where Δ𝑇  is the recorded runtime over 𝑁  iterations. To assess the various computation times, 

namely the RTT, without interrupting the LS, a RRLHC is modelled on an additional instance of 

MATLAB. The RRLHC is tasked with uploading mock datasets to, and retrieving relevant estimates from 
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the LD. It should be noted that the measurement datasets applied are not considered important in 

this specific study and are exactly the same for each upload, except for the timestamp. The 

timestamps are simplified to an integer count starting from 1 due to the lack of sub-second time data 

available and its irrelevance in this study to have correct timestamp data. Prior to testing, the Anchor 

Table is pre-configured with calibration data from Table 3.3.  

 

4.4.1.2 EPLC Testing 

The ‘While (Devices Connected) ‘statement within Algorithm 7 imposes a loop where, if 𝑁 > 0, 

there is considered to be device data within the Location Database. For latency testing this While loop 

is reconfigured to count 𝑁  completed estimations using a simple counter variable, which is 

incremented by one after each uploaded estimate. The RRLHC is initially run on a separate instance of 

MATLAB and continually uploads measurement datasets with increasing timestamps. The LS is then 

executed to perform 𝑁 = 500 estimations. To specifically measure the runtime of the LS processing 

the stopwatch ‘tic’ is triggered just prior to the main loop (line 4 of Algorithm 7). The stopwatch ‘toc’ 

is triggered again once all 500 estimations are carried out and the average runtime is calculated. This 

process is repeated 50 times  .  

Additionally, to gain further insight into the key contributors of latency within the IoRL IPS, 

several further tests are conducted. These tests consider the computational impact of three Queries 

(2, 3 and 4) carried out within each LS estimation period. While these queries are necessary to retrieve 

new data at each loop, the LS is set to repeatedly process the same data by manually setting Δ𝑇 equal 

to 1, in line 10 of Algorithm 7. The latencies reported for each scenario are given in Table 4.3.  

Table 4.3 - IoRL latency test results 

Evaluated system EPLC with 

RRLHC /ms 

Removed Query 

Contribution /ms 

EPLC without 

RRLHC /ms 

Removed Query 

Contribution /ms 

LS as presented in 

Algorithm 7 
14.98 n/a 8.74 n/a 

LS without Query 2 6.25 8.73 5.80 2.94 

LS without Query 2 & 3 4.34 1.91 3.98 1.82 

LS without Query 2, 3 & 

4 
1.43 

2.91 
1.33 

2.65 

 

4.4.1.3 PELC Analysis 

From Table 4.3 it is evident that the LD queries clearly have a pronounced effect on the computation 

time of the LS, where the actual estimation process, without any LD Queries, takes as little as 1.43ms 
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to compute. The latency contribution of each removed Query is also extracted to highlight the 

disparity between Query 2, 3 and 4. Query 2, entails requesting all the available LD data and therefore 

presents a significantly higher latency increase. In addition to reducing the numbers of queries, the 

effects of the RRLHC updates are also considered for each system. The RRLHC is either enabled, or not, 

to upload measurements to the LD in parallel to the LS while trying to retrieve or upload data. 

Evidently where the RRLHC is not enabled there is a prominent reduction in EPLC values. Where no 

Queries are performed, the slight disparity between the computation times can reasonably be 

attributed to the host computer running parallel instances of MATLAB. The RRLHC effects are generally 

moderate for Queries 3 and 4 however the RRLHC presents a drastically greater amount of latency, 

when running simultaneously while Query 2 is performed. Query 2 involves attempting to obtain 

Measurement Table data while the RRLHC is continually providing parallel updates to the same 

Measurement Table. Whereas Queries 3 and 4 relate to the LD Estimates Table which is not 

simultaneously updated by the RRLHC.  

 

4.4.1.4 RTT Testing  

To evaluate the RTT, the RRLHC is reconfigured to upload a measurement dataset before continually 

querying the LD for the respective estimation. The RRLHC achieves this by comparing the timestamps 

of the uploaded data with timestamps from the relative UE in the Estimates Table. Once the result 

with a matching timestamp is obtained the next measurement is transmitted. In this manner the 

process illustrated in Figure 4.1 is looped 𝑁 = 500 times. The average RTT over 50 tests is given as 

24.01 ms. While the RTT involves more LD queries, the substantial increase in computation time can 

be related to the parallel table access finding from the EPLC results. Due to the RRLHC now continually 

querying the LD Estimates table during the LS process, Queries 3 and 4 can be expected to suffer 

greater latencies.  

 

These results indicate potential optimisation of the LS, LD and RRLHC structure to reduce increased 

computation times from increased queries. This may be even more pronounced for networks 

considering multiple UE devices continually requesting data from the LD. Regardless, this is beyond 

the scope of this this study which concentrates on a single UE demonstration case. 

 The obtained EPLC and RTT can be applied to the simulated model, where measurement sets are 

processed every 14.98 ms and estimates are compared to the state of the target 24.01 ms from when 

they were obtained.  

Due to the structure of the location data transmission sequence, new datasets are acquired at the 

end of the 𝑁′𝑡ℎ sub-frame and updated every 10 ms according to the duration of the 5G New Radio 
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(NR) frame. As discussed previously, the individual measurements are assumed to be sampled 

synchronously. The duration of the EPLC is greater than the 10 ms update frequency, therefore to 

avoid complicated synchronisation measures, every other measurement is ignored. This invokes a 

slight delay of approximately 5 ms before the next dataset is acquired at the database. In practice this 

additional buffer period allows for the likely delay in VLC RSS measurements that must be transmitted 

from the UE side to the LD. Therefore, due to the EPLC being greater than the NR frame, the delay 

buffer is included and a new dataset is processed every to 20 ms, or two NR frames. The sequence of 

location data processing, equivalent for both the VLC and mmWave channels, is illustrated in Figure 

4.2. Each 10ms NR frame contains 10 subframes of 1ms duration. The location data for both mmWave 

and VLC signals are transmitted in the last symbol of the last slot in the first 𝑁 subframes of each NR 

frame. The transmission of this data is indicated by black arrows. During this chapter the sampling is 

considered synchronous therefore location data is transmitted and received at the 𝑁′𝑡ℎ subframe as 

indicated by the green arrow. The duration of the LS process, given by the EPLC, is shown with a blue 

arrow and the ignored dataset is in red. 

 

Figure 4.2 – Sampling and processing sequence of the IoRL IPS for four RRLHs.  

4.4.2 Determining System Accuracies  

4.4.2.1 VLC Modelling  

To model the performance of the IoRL system, the VLC RSSI data obtained from the measurement 

campaign and corrected in chapter 3 is analysed. These measurements are reflective of discrete points 

within a 2D plane at a fixed distance from the RRLHs, therefore to model the IoRL VLC RSSI response 

for all points within the 2D plane, the error distribution is evaluated and applied within the model as 

AWGN with covariance matrix 𝑅  given by:  

 

 𝑅 =  
𝜎 , 0

0 𝜎 ,

. 
(4.7) 
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To attain the proper distribution the measurement Dataset described in Section 3.2.4.1 is used. The 

‘averaged’ datasets described provide the response obtained by averaging over all 20 measurements 

and the individual datasets consider all possible combinations of measurements which are cross 

correlated. For this distribution the RSSI measurements are processed according to the HLC method, 

presented in Chapter 3, and applied within the multilateration scheme in a consecutive format, such 

that the first measurement for each RRLH is compared to the first measurement of the others and so 

on. In this respect, 20 Position estimates are computed for all evaluated points. The errors in both 𝑥 

and 𝑦 axes are recorded for all estimations to obtain the means and standard deviations for both the 

𝑥 and 𝑦 axes. The error distribution given in Figure 4.3a follows a normal distribution very closely, 

where the calculated means of the errors for 𝑥 and 𝑦 axes are −5.4 mm and −8.6 mm respectively. 

The standard deviations of this distribution are, 𝜎 ,  =  11.06 cm and 𝜎 , = 12.12 cm. The 

applied distributions are shown in Figure 4.3a with red and yellow for the 𝑥 and 𝑦 axes respectively. 

These distributions visibly indicate a poor fit due to outlying datapoints. To remove the outlying data 

from the normal distributions, the Grubbs’ test [260] was applied using the inbuilt MATLAB function. 

This proceeded to remove 59 outliers within the dataset which equates to 4.91 % of the overall 

sample. Post Grub fit distributions, as shown in Figure 4.3b, are visibly more appropriate with mean 

errors in the 𝑥 and 𝑦 axis of  −7.2 mm and −3.2 mm respectively and standard deviations of 𝜎 ,  =

 4.77 cm and 𝜎 , = 4.5 cm. 

 

 

Figure 4.3 - VLC HLC position estimate error distribution a) prior to outlier removal b) post outlier 

removal 
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4.4.2.2 MmWave Modelling 

Given the IoRL system’s research status, mmWave results are unavailable at the time of writing this 

thesis. Therefore, the need to completely simulate the response from the mmWave solution is 

necessary. From the literature discussed in Section 2.3.4.1.2 there are two main methods for 

modelling TDOA or TOA signal propagation: Raytracing or applying a Gaussian distribution to the true 

range or position of the target.  

Raytracing methods provide a means to suitably model the received signal parameters according 

to the geometry of the environment. This enables a more realistic signal characteristic in accordance 

with shadowing, reflections, scattering, attenuations, and multipath components. Despite these 

qualities, raytracing is computationally extremely demanding and various studies in the existing 

literature have adopted less complicated means of AWGN modelling for LOS channels. Moreover, the 

simulation study considered within this thesis is reflective of the IoRL measurement campaign setup, 

effectively imitating a real time solution with both mmWave and VLC measurements working 

simultaneously. Under this consideration, the simulated environment is centred within a large living 

room environment where the nearest wall is more than 2 m from the tracked area. Using what is 

known of multipath attenuation from mmWave technology, the path separation from reflecting 

surfaces and assuming LOS transmission, the tracking area can be expected to experience very few 

effects from multipath components [216] [214][217]. 

In this respect, AWGN modelling is a reasonable and less complex approach for the given LOS 

scenario and has been implemented within this study to model the mmWave TOA signal transmission. 

Furthermore, the AWGN component is applied to the individual time delays measured at each sensor 

𝜏  𝑓𝑜𝑟 𝑖 = (1, ⋯ , 𝑁): 

 �̂� = 𝜏 + 𝑣 . 
(4.8) 

 

Where 𝑣  is the zero mean AWGN component given by, 

 𝑣  ~𝑁(0, 𝜎 ). 
(4.9) 

 

Drawing on existing literature, zero mean Gaussian distributions have been applied for mmWave TOA, 

for both optimistic and pessimistic ranges between 0.3 ns – 1 ns [68] and 1 ns – 2 ns [53] respectively. 

Furthermore, various promising millimetre level results have been demonstrated for TOA based 

mmWave solutions [24], [72], [214], [217]. To encapsulate this range of values this thesis considers a 

range of TOA noise standard deviations 𝜎  from 10 ns to 0.0001 ns (1 ps). For Electro-Magnetic (EM) 

wave propagation at the speed of light (3∗ 10 ) this translates to a resolution of 3 m - 0.0003 m (0.3 

mm). 
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4.5 Simulation Setup   

4.5.1 Model Layout 

The following scenario is established to reflect the parameters of the IoRL measurement campaign to 

make suitable use of the VLC datasets. In this regard the relative distances between RRLHs and the 

tracking region are maintained. The mmWave antennas’ positions are given by the respective 

distances between the VLC transmitters and the mmWave antennas, as designed and presented in 

Figure 3.4d. This configuration of mmWave antennas has been selected to alleviate the issues that 

arise from square configurations for 3D tracking. A summary of the model parameters is given in Table 

4.4 and the model layout is illustrated in Figure 4.4.  

 

Table 4.4 - Summary of simulated model parameters 

Parameter Value 

Sensor Locations (𝒙𝒊, 𝒚𝒊, 𝒛𝒊)/m VLC Tx  Active mmWave Rx 

𝑹𝑹𝑳𝑯𝟏 (0.1471,0.1671,1.2690) (0.0000,0.0200,1.2690) 

𝑹𝑹𝑳𝑯𝟐 (0.1521,0.7021,1.2790) (0.2992,0.8492,1.2790) 

𝑹𝑹𝑳𝑯𝟑 (0.6721,0.7021,1.2690) (0.8192,0.8492,1.2690) 

𝑹𝑹𝑳𝑯𝟒 (0.6771,0.1471,1.2790) (0.8242,0.0000,1.2790) 

Target Tracking Area  

𝒙 − 𝒂𝒙𝒊𝒔 (𝒎𝒊𝒏, 𝒎𝒂𝒙)/m 𝒚 − 𝒂𝒙𝒊𝒔(𝒎𝒊𝒏, 𝒎𝒂𝒙)/m Origin (𝒙, 𝒚)/m 

(𝟎. 𝟏𝟑𝟕𝟏, 𝟎. 𝟖𝟑𝟕𝟏) (0.0271,0.7271) (0.4871,0.3771) 
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Figure 4.4 - Simulation layout considering active sensor positions and tracking plane 

 

4.5.2 Target Trajectory 

The target to be tracked is described by its Cartesian coordinates, at time 𝑡  as 𝑆 = 𝑥 , 𝑦 . 

Throughout the simulation the target travels at a constant velocity of 0.2 m/s. If the trajectory is 

ideally described by the process model, the process noise of the KF will tend towards zero and 

measurements will be ignored. This case is neither practical nor realistic. Therefore, due to the 

predictive nature of the KF process, one must refrain from considering a pure Constant Velocity (CV) 

target trajectory due to potential overfitting of the process noise. Instead, the tracking performance 

of the used location estimation techniques is evaluated for a circular path. In this setting, the target 

maintains a constant angular velocity equivalent to a 0.2 m/s velocity along the circumference of the 

circular path. Variable nonlinearity is introduced by means of adjusting the angle 𝜃  of the path 

under a constant arc length of 1 m.  

 

 𝐴𝑟𝑐 𝐿𝑒𝑛𝑔𝑡ℎ (1 m) = 𝑅𝑎𝑑𝑖𝑢𝑠(m)∗ 𝜃 (radians). 

 
(4.10) 

An increase in 𝜃  decreases the path radius while increasing the angle of the target’s path and 

hence the non-linearity of the Target trajectory. The centre point of the circle is given by the origin of 
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the tracking plane as shown in Figure 4.4. It is notable that the centre point of the tracking plane and 

the centre point of the RRLHs are not equivalent. The CenterPoint of the tracking plane has been 

selected to maximise the variable path trajectory. 

Throughout the following simulations, the 𝜃  is considered at values of 3 rad, 5 rad and 5 

rad with path radii of 33.3, 20 and 10 cm respectively. The target trajectories for various 𝜃  values 

are illustrated in Figure 4.5.  

 

 

 

Figure 4.5 - Ariel View of simulation layout with target trajectory plots 

Due to the differing lengths of path circumferences, the number of estimations carried out for a single 

circumference length are inconsistent. For a fair comparison, the number of estimations must be 

equivalent, therefore the target continues along the shorter circumference trajectories, until the 

number of computed position estimations is equal to the number of estimations obtained for a single 

length of the longest circumference path. Consequently, the number of position estimations evaluated 

for all paths is given by:  

 

 
𝑁 =

2𝜋 ∗ 𝑅𝑎𝑑𝑖𝑢𝑠

 1𝑚/𝑠
/𝑇 . 

 

(4.11) 
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Where 𝑅𝑎𝑑𝑖𝑢𝑠  is the maximum evaluated radius and 𝑇  is the EPLC measured in Section 4.4.1. 

As such, given a maximum radius of 33.33 m, and EPLC of 15 ms the target is evaluated at 7027 

individual points around the given path.  

 

4.5.3 Error Metrics  

The following performance metrics are obtained throughout the simulation. The Position Error (PE) 

for each position estimate is given as the Euclidian distance between the estimated location (𝑆 =

𝑥 , 𝑦 ) and the true targets position 𝑆  at 𝑡 : 

 

 
𝜀 =  𝑆 − 𝑆 . 

 
 

(4.12) 

Once all 7027 estimations have been provided, this concludes a single simulation iteration denoted 

with subscript 𝐼𝑡. The simulation is repeated 𝑁  times for each combination measurement 

noise and path angle. Once position errors have been obtained for all iterations (𝜀 , ) where 𝐼𝑡 = (1,

⋯ ,  𝑁 ), the average error for each estimation interval is calculated and described as the 

Mean Point Error (MPE):  

 

 
𝜀̂ =

1

𝑁
𝜀 , . 

 

 

(4.13) 

The Root Mean Square Error (RMSE) is then used to determine the overall error across all 

estimations and iterations:  

 
𝑅𝑀𝑆𝐸 =

1

7027
𝜀̂ . 

 

 

(4.14) 

4.5.4 Kalman Filter Tuning  

Certain variables and quantities must be established during the KF design for an optimal solution. As 

discussed in Section 2.1.3.2.1.1, the noise parameters of both the process and measurements are 

important to define the response to the scenario. This section presents the evaluations and prior 

studies that are carried out to tune the KF.  
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4.5.4.1 Measurement Noise Distribution  

During the KF update stage of the 𝑘 𝑡ℎ estimation period, the VLC and mmWaves state estimates are 

inputted as measurements denoted by 𝑧  𝑎𝑛𝑑 𝑧  and computed through Algorithm 5 and 

Algorithm 6 respectively. These are related to the target state 𝑋 , using the measurement translation 

matrix 𝐻:  

  

 𝑧 = 𝐻(𝑋 ) + 𝑣  

 

𝑧 = 𝐻(𝑋 ) + 𝑣  

 

(4.15) 

 

In which  

 𝐻 =  
1 0 0 0
0 1 0 0

  

 

(4.16) 

 

Where 𝑣  and 𝑣  describe the normally distributed additive white Gaussian estimation noises, 

which are assumed independent from the KF process noise 𝑤  and have respective covariance 

matrices 𝑅  and 𝑅 . Typically, these noise values can be obtained from empirical testing to 

determine the noise within the measurements as described by Welch & Bishop [120]. Using this 

approach, one can directly obtain the 𝑅  values from the measurement data as explained in Section 

2.1.3.2.1.1 and presented in (4.7). To obtain the mmWave measurement noise covariance matrix, a 

similar yet completely simulated approach is taken to generate the PE distribution from completely 

synthetic data. As this study considers the effects of variable TOA ranging errors 𝜎  on the IoRL system 

performance, a new 𝑅  matrix is required to be configured for each value of  𝜎  applied.  

To establish the measurement noise covariance matrix 𝑅 , for the TDOA state estimation, 

a subtest is carried out within the virtual environment described in Section 4.5.1. for each level of 

applied noise. Position estimates, using Algorithm 6, are carried out across the target tracking area in 

increments of 5 cm. The TOA measurements are each corrupted by AWGN as described in (4.8). This 

process is repeated for each considered value of 𝜎 . Each coordinate is evaluated 20 times as featured 

in the analysis of the VLC measurement campaign.  

The computed standard deviations of the mmWave estimates, for both the x and y axis, are 

given below in Table 4.5 and applied to the system model as required.  
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Table 4.5 - mmWave position error distribution values for different time delay errors 

𝝈𝝉/s 1.00e-12 2.15e-12 4.64e-12 1.00e-11 2.15e-11 4.64e-11 1.00e-10 

𝝈𝒙,𝒎𝒎𝒘/m 2.79e-03 5.41e-03 1.13e-02 2.43e-02 5.25e-02 1.13e-01 2.44e-01 

𝝈𝒚,𝒎𝒎𝒘/m 2.75e-03 5.27e-03 1.10e-02 2.36e-02 5.09e-02 1.09e-01 2.36e-01 

𝝈𝝉/s 2.15e-10 4.64e-10 1.00e-09 2.15e-09 4.64e-09 1.00e-08  

𝝈𝒙,𝒎𝒎𝒘/m 5.23e-01 1.12e+00 2.41e+00 5.20e+00 1.12e+01 2.41e+01  

𝝈𝒚,𝒎𝒎𝒘/m 5.08e-01 1.09e+00 2.35e+00 5.04e+00 1.09e+01 2.33e+01  

 

4.5.4.2 System Identification for Process Noise  

Unlike the measurement noise, the process noise 𝑤 , with covariance matrix 𝑄 , is less trivial to 

determine. The process model applied (4.4) is a Constant Velocity (CV) model and therefore, as 

described in the literature review, commonly uses the Discrete-time Nearly Constant Velocity (DNCV) 

process noise covariance matrix structure given by Li & Jilkov [25] but for a two dimension system: 

  

𝑄 =  

⎣
⎢
⎢
⎢
⎡
Δ𝑇 4⁄ 0 Δ𝑇 /3 0

0 Δ𝑇 4⁄ 0 Δ𝑇 /3

Δ𝑇 /3 0 Δ𝑇 0

0 Δ𝑇 /3 0 Δ𝑇 ⎦
⎥
⎥
⎥
⎤

∗ 𝜎 . 

 

(4.17) 

 

While the estimation period Δ𝑇 is shown to be given by the consecutive timestamps of the incoming 

data, as shown in (4.5), for simulation purposes, this value has been estimated to 20ms in the previous 

latency testing of Section 4.4.1. Therefore the 𝑄 matrix is a fixed value throughout and the estimation 

subscript ‘𝑡 ′ is omitted. The Acceleration noise magnitude 𝜎  is the tuning parameter to be 

determined through empirical testing. In this regard, the system is assumed to have known 

measurement noises, as given above, and a fixed estimation period (Δ𝑇). Therefore, simulations are 

conducted to determine the optimal process noise through trial and error. Various values of  𝜎  are 

tried and tested through numerous iterations of Algorithm 8, the optimal value is the one that obtains 

the lowest overall RMSE. 

This tuning process may be subject to overfitting, where the process noise is adjusted to 

handle a specific target trajectory. While this leads to optimal filter performance for the specified 

trajectory, for alternative target trajectories this process noise may be suboptimal and lead to 

degrading tracking performance.  
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To avert the issue of overfitting, the system is tuned for both the maximum and minimum 

path angles 𝜃  considered. The responses are averaged to provide the optimal 𝜎  value across all 

intermediate path angles, thereby reducing the effects of overfitting. This tuning process is carried out 

for all mmWave measurement noise values considered. In addition, the process is computed to obtain 

the optimal 𝜎  value for both estimates delayed by the RRLHC RTT and considering no computation 

delay denoted by 𝜎  and 𝜎  respectively. The optimal 𝜎  and 𝜎  values are given for each degree of 

measurement noise in Table 4.6. 

 

Table 4.6 - Optimal acceleration noise components for the Location Server tracking filter at different 

levels of time delay noise 

𝝈𝝉/s 1.00e-12 2.15e-12 4.64e-12 1.00e-11 2.15e-11 4.64e-11 1.00e-10 

𝝈𝒂/m  1.50e+00 1.50e+00 1.69e+00 1.69e+00 1.50e+00 1.50e+00 1.50e+00 

𝝈𝒂/m  1.06e+00 1.34e+00 1.34e+00 1.50e+00 1.34e+00 1.19e+00 1.34e+00 

𝝈𝝉/s 2.15e-10 4.64e-10 1.00e-09 2.15e-09 4.64e-09 1.00e-08  

𝝈𝒂/m 1.50e+00 1.34e+00 1.34e+00 1.50e+00 1.50e+00 1.50e+00  

𝝈𝒂/m  1.19e+00 1.19e+00 1.19e+00 1.19e+00 1.19e+00 1.34e+00  
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4.5.5 Simulation Algorithm  

The simulation used to test the IoRL IPS is summarised as pseudocode in Algorithm 8. 

Algorithm 8: IoRL IPS Test11 

INPUT: mmWave Measurement noise values from Table 4.5 and respective optimal acceleration noise 

magnitudes from Table 4.6. 

1: For 𝜎  = (1e-8, 1e-9, 1e-10, 1e-11, 1e-12) 

2:  For 𝜃 = (3, 5, 10) 

3:   For 𝐼𝑡 = (1: 𝑁 ) 

           Initialise KF 

4:    Assign Δ𝑇 equivalent to the EPLC of 20 ms 

5:    With 𝑘 = 1, initialise 𝑋 = 𝑥 , 𝑦 , 𝑣 , 𝑣 and 𝑃  as identity matrix 𝐼 ∗  

6:    Configure 𝐴, 𝑄 𝑎𝑛𝑑 𝐻 from (4.4), (4.17) and (4.16) respectively  

    Loop simulation  

7:    For k = (1:7027) 

8:     Move target along trajectory defined by 𝜃  by 0.2 m/s for 20 ms 

9:     Generate VLC noisy estimate 𝑧  using targets true position and normally distributed 

noise with covariance matrix 𝑅  given by (4.7) and standard deviations 

𝜎 ,   𝑎𝑛𝑑 𝜎 ,  acquired from HLC results.  

10:     Generate noisy TOA �̂�  measurements from the true TOA 𝜏  (4.8) using (4.9) 

11:     Establish TDOA measurements using sensor 𝑖 = 1 as the reference  

12:     Obtain mmWave estimate 𝑧  from Taylor Series (TS) solution Algorithm 6 

13:     Kalman filter fusion  

14:     Obtain 𝑋  ̅ and 𝑃  ̅ from prediction stage measurements using (2.38) & (2.39) and 

respective 𝜎  (or 𝜎  if not testing delayed measurements) 

15:     Fuse VLC estimate 𝑧  and covariance 𝑅  using update equations, (2.40) - (2.42) 

16:     Fuse mmWave estimate 𝑧  and covariance 𝑅   using update equations, (2.40) - 

(2.42) 

17:     Calculate respective PE using (4.12) (for delayed measurements PE is calculated with 

respect to the target’s position at the targets future position 24.01 ms further along the 

trajectory) 

18:    End 

19:   End 

20:   Calculate Mean point Error for 𝑁  (5.23)  

21:   Determine RMSE values for 𝑁  (5.24) 

 
11 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop. 
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22:  End 

23: End 

4.6 Results  

The following section presents the results obtained from Algorithm 8 for 500 iterations, using the 

EPLC, RTT and VLC measurement noise values. To assess the mmWave performance at various levels 

of noise the timing noise is varied from 0.001 ns – 10 ns. For each value of timing noise in the TOA 

measurements, the respective mmWave measurement noise covariance values are applied as given 

in Table 4.5 and optimal acceleration noise magnitudes are applied from Table 4.6. For comparison, 

errors are collected for results obtained with and without the RTT. The results obtained from the 

simulation are presented below in Table 4.7 and illustrated in Figure 4.6.  

 

 

Figure 4.6 - IoRL IPS RMSE results for Delayed and non-Delayed estimations 
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Table 4.7 - IoRL IPS RMSE results for Delayed and non-Delayed estimates 

 
Not delayed RMSE/cm Delayed Results RMSE /cm 

𝝈𝝉/s 𝜃 =  3 𝑟𝑎𝑑 𝜃 =  5 𝑟𝑎𝑑 𝜃

= 10 𝑟𝑎𝑑 

𝜃  =  3 𝑟𝑎𝑑 𝜃  =  5 𝑟𝑎𝑑 𝜃

= 10 𝑟𝑎𝑑 

1.00E-12 0.19 0.13 0.11 0.54 0.51 0.50 

2.15E-12 0.34 0.22 0.18 0.62 0.55 0.53 

4.64E-12 0.61 0.41 0.37 0.83 0.66 0.63 

1.00E-11 1.07 0.80 0.76 1.21 0.96 0.95 

2.15E-11 1.55 1.37 1.47 1.66 1.48 1.61 

4.64E-11 1.80 1.78 2.03 1.94 1.91 2.12 

1.00E-10 1.93 1.96 2.18 2.03 2.06 2.31 

2.15E-10 1.90 1.97 2.26 2.04 2.10 2.35 

4.64E-10 1.91 1.98 2.27 2.01 2.08 2.40 

1.00E-09 1.90 1.98 2.28 2.01 2.08 2.41 

2.15E-09 1.91 1.98 2.28 2.05 2.11 2.36 

4.64E-09 1.91 1.98 2.27 2.05 2.11 2.36 

1.00E-08 1.95 2.00 2.23 2.05 2.11 2.36 

 

4.7 Simulation Analysis  

Performance across the range of results indicates promisingly low centimetre level accuracies with a 

maximum RMSE of 2.41 cm. Accuracies within the millimetre region are shown to be attainable for 

mmWave time delay noises of less than 0.01 ns.  

The mmWave measurement noise is shown to have a prominent effect on the results for 

values below 0.1ns. The RMSE reaches a plateau as the mmWave noises surpass this region, at which 

point the errors within the mmWave covariance matrix are so great, that the mmWave estimates are 

effectively redundant, in comparison to the centimetre level accuracy of the VLC estimates. During 

this plateau region, the position estimates are purely dependant on the VLC state estimates and the 

process model.  

It can also be seen that, during this transition from strongly mmWave weighted estimates to 

more reliance on the process model, the performance for different path angles is seen to invert. 

Higher reliance on the process model favours larger path angles, since the trajectory better reflects 

the CV model applied. Conversely, where slightly noisy measurements are favoured, the more linear 

trajectories show worse performance.  

For a dynamic target, the displacement encountered during the processing time of the 

estimation leads to errors. While the target travels at only 0.2 m/s around the circumference of the 
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path and with a RTT of only 24 ms, the error attributed to the computational delay of the estimates is 

evident throughout all measurement ranges. Notably, this latency effect is more prominent at lower 

noise levels where the latency component is the main source of error. As estimates become less 

accurate, the effects of the estimation delay are less prominent.  

 

4.8 Chapter Conclusions  

This chapter presents an evaluation of the performance of the IoRL 5G IPS using the proposed HLC 

method and a combination of simulated and measured data. The proposed IoRL performance, even 

at the highest point of error achieves low centimetre level accuracies. While the mmWave error, 

within the IoRL system, is expected to be limited by available BW, the tracking solution relying on VLC 

estimates alone is shown to achieve reliable centimetre level positioning error. Where the mmWave 

errors are not substantially greater than those of the VLC solution, the use of data fusion exploits the 

benefit of both technologies, With regards to potential system improvements, the basic LD table 

requests, given by Query 2 and employed within the LS, are shown to increase the overall EPLC. More 

efficient mechanisms could present lower EPLC values. This may enable the efficient use of all available 

datasets and facilitate more frequent updates. 

 

4.8.1 Suitability of the Evaluated System in Satisfying Application Requirements 

The 5G standards, outlined by 3GPP in Release 16 [200] present various service levels where 

localisation requirements are set. The most stringent of which dictates horizontal and vertical 

accuracies under 20 cm with 99 % confidence and a latency of 1 second at a potential target velocity 

of 30Km/h. While the target velocity and confidence levels are not evaluated within this chapter, the 

performance of the modelled IoRL project appears promising in meeting these requirements in terms 

of accuracy and latency. 

The IoRL project documented several use case applications [211] for different demonstration 

sites. The Home scenario suggests a Follow Me Service (FMS) in which room level positioning is 

required to identify the most suitable monitor to display a user’s content. In this case the results 

obtained exceed the positioning performance required. However, the Train station scenario suggests 

applications for both locating maintenance workers and overlay of virtual models on Virtual Reality 

(VR) displays. locating workers to the degree of a few centimetres can be expected to satisfy 

application demands. However, VR systems require millimetric resolutions, which can be achieved 

only if the timing error of the mmWave solution is less than 0.001 ns.  
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While this study presents significant Improvements on the previous publication [257] 

presented by the author of this thesis, one must acknowledge the various assumptions made 

throughout this study.  

First, typical positioning applications, like those presented in the 3GPP specifications and IoRL 

project, require 3D positioning in which additional processes for VLC triangulation are required and 

larger levels of noise can be expected for longer propagation distances due to RSSI attenuation. 

Second, the tilt of the receiver affects the VLC RSS signal attenuation due to greater incident 

angles. While this is ignored in many VLP studies, the VLC results obtained during the IoRL 

measurement campaign and used within this study are reflecting ideal LOS conditions that cannot be 

expected to be met in practical settings. These measurements are obtained using a gimbal with a zero-

degree angle of incidence such that optimal LOS is achieved. Results obtained without the use of the 

gimbal can be expected to suffer a much greater level of noise due to larger incidence angles.  

Regardless, the study provides a basis on which evaluations and observations of the IoRL IPS 

can be made. One significant assumption made early in the chapter relates to the asynchronous 

sampling nature of both mmWave and VLC measurements. The IoRL IPS specifies millisecond latencies 

between consecutive measurements however these were assumed negligible during this initial study. 

The following chapter considers the asynchronous sampling of the IoRL project further.  
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5 An Evaluation of Asynchronous Sampling Effects on Wireless 

Localisation for Range Measurements  

 

5.1 Introduction  

So far, the body of work considered in chapters 3 and 4 has assumed that the IoRL Indoor 

Positioning system (IPS) measurement sampling, between the Remote Radio Light Heads (RRLHs) and 

User Equipment (UE) is achieved synchronously. However, this reviewing the communication protocol 

of the IoRL IPS from Section 2, the system is designed to sample individual millimetre wave (mmWave) 

Time of Arrival (TOA) and Visible Light Communication (VLC) Received Signal Strength Indicator (RSSI) 

measurements asynchronously, or more specifically in a sequential manner. The Internet of Radio 

Light (IoRL) Indoor Positioning Protocol (IPP), described in Section 2.3.3.3.2, defines that the individual 

Position Reference Signals (PRS) and LED signals are transmitted and received sequentially. This 

feature of asynchronous sequential sampling is evaluated throughout the remainder of this thesis and 

is illustrated by the individual Sounding Reference Signals (SRSs) and LED transmissions in Figure 5.1.  

 

 

Figure 5.1 – The measurement sampling extract from the IoRL Indoor Position Protocol. Transmission 

of Sounding Reference Signals (SRSs) and LED position data between the User Equipment (UE) and 

the Remote Radio Light Head Controller (RRLHC) prior to dataset transmission to the Location 

Database (LD).  
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Within the IoRL IPP, both mmWave SRS and VLC LED ID data is transmitted within separate subframes 

of the 5G transport block and therefore individual TOA and RSSI measurements are obtained each 

millisecond. Additionally, changes to the IoRL project system and performance are to be expected, 

due to its research nature. The current system implemented for the 5G demonstrations is designed to 

obtain individual mmWave TOA measurements in the uplink channel every 10 ms at individual RRLHs. 

This process of sequential measurement acquisition is notably an order of magnitude slower and 

introduces increased potential for estimation error.  

Given the asynchronous sampling of nonlinear range measurements, within the IoRL system, 

this chapter considers localisation estimation using nonlinear range measurements obtained from 

TOA and RSSI, under sequential sampling.  

Within the context of asynchronous sampling of data for localisation applications, one can 

take the separation between consecutive measurements, referred to as the Inter Measurement 

Latency (IML), denoted by 𝛥𝑡 , to be the measure of how asynchronous a system is. In this respect, 

the IoRL system exhibits a smaller (1 ms) and greater (10 ms) level of asynchronous sampling than the 

revised VLC and mmWave sampling protocols discussed.  

It is commonly accepted that additional processes are generally required to compensate for 

measurements' temporal and spatial misalignments. The added complexity of such techniques 

requires more energy and consequently add cost to the overall system. Therefore, asynchronous 

sampling localisation techniques should not be used where the costings outweigh the potential 

accuracy improvements. The degree to which asynchronous sampling localisation techniques are 

suitable needs to be evaluated, where suitability refers to the subjective trade-off between 

computational efficiency vs accuracy.  

To run a cost benefit analysis on the IoRL asynchronous 1 ms and 10 ms cases, one needs to 

quantify the effect of the asynchronous sampling on the performance of the system. Existing literature 

is quick to highlight the need for asynchronous localisation methods, citing that the misalignments of 

measurements are erroneous and therefore expected to be detrimental to accuracy. However, the 

extent of these implications is not evaluated. Within studies on the various techniques, comparisons 

are drawn between solutions under a single set of conditions, where the measurement noise, time 

between consecutive measurement samples, and target trajectory, are confined to fixed values.  

Whilst the potential for errors within asynchronous systems is evident, the effects of 

sequentially asynchronous sampling on various localisation methods are not described within existing 

literature. The existing studies that are available, fail to clearly indicate the suitability of asynchronous 

solutions for variable degrees of IML. Moreover, the existing solutions may be applicable under set 
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conditions, but as part of a wider scope, should still present strong resilience to noise and suitability 

under variable trajectories.  

 

5.1.1 Chapter Aims 

This chapter evaluates the impact of asynchronous sampling on different existing localisation 

solutions, so that the performance of existing systems under variable measurement noise, IML and 

target trajectories can be assessed. In doing so, the suitability of asynchronous solutions can be 

determined, with regard to their position error, latency and performance with added noise. This work 

highlights the effective regions of existing asynchronous solutions and fundamental challenges for 

efficient asynchronous localisation techniques which is discussed in the following chapters.  

 

5.1.2 Chapter Contributions  

The primary contribution of this chapter is an in-depth analysis of the effects of asynchronous 

sampling on existing techniques, under a broader range of parameters than previously considered. 

This includes exploration of path nonlinearity, magnitude of sampling delay and variable noise. In 

addition to this, a modified location estimation solution for asynchronous sampling of range 

measurements is also presented. 

 

5.1.3 Overview of Chapter  

The first section of this chapter explores the effects of the latency component within sequential 

sampling on range estimation for a single sensor system. In subsequent sections, this concept is 

evaluated under multisensor systems and various position estimation methods, that both do, and do 

not, consider the asynchronous sampling element. Within these sections, a proposal and analysis of 

modified existing asynchronous solutions is put forward, and a comparison and discussion of existing 

location estimation techniques is carried out, which is concluded in the summary section.  

 

5.2 Sequentially Asynchronous Localisation Problem Statement  

To better understand the effects of asynchronous sampling on target localisation, this chapter first 

considers the effects on the range measurements used within the estimation processes. First the 

scenario is described and then analysis on the range estimates for single sensor systems is presented. 

To retain emphasis on the IoRL IPS, this chapter explores a centralised network in which 𝑁 sensors are 

estimating the distance between themselves and a dynamic target. The Fusion Centre (FC) describes 

the component tasked with performing the location estimation process, which may be a single sensor 
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within the network at one point in time or an external device. We assume that: the clocks of the 

various sensors are also synchronised, the transmission delays are negligible, and no packets are 

delayed, missing or corrupted. The sensors are configured to obtain individual distance measurements 

𝑧   for 𝑖 = (1, ⋯ , 𝑁) in sequence, such that 𝑡  < 𝑡 < ⋯ 𝑡 < ⋯ 𝑡  where 𝑡  denotes the instant the 

𝑖′𝑡ℎ sensor produces a measurement within the sampling period [𝑡 , 𝑡 ). Within the described 

network, the sensors are assumed to be homogenous such that they have the same Additive White 

Gaussian Noise (AWGN) measurement noise 𝑣 = 𝑁(0, 𝜎 ) and the same constant sampling period 

(∆𝑇): 

 

 ∆𝑇 = 𝑡 − 𝑡   𝑖 = (1, … , 𝑁). 

 

(5.1) 

The time between each consecutive sensors’ sampling is assumed equivalent and is referred to as the 

Inter-Measurement Latency (IML) denoted using the term (Δ𝑡 ): 

 

 ∆𝑡  = 𝑡 − 𝑡   𝑖 = (2, … , 𝑁). 

 

(5.2) 

All measurements are delivered to a Fusion Centre (FC) where periodic state estimation is carried out 

at the instant of the last measurement being received: 

 

 𝑡 = 𝑡 . 

 

(5.3) 

 

From the relationships defined in (5.1), (5.2) and (5.3) the period of estimation or sampling period of 

the FC is simply the product of the number of sensors and the IML: 

 

 Δ𝑇 = 𝑡 − 𝑡 = 𝑁 ∗ Δ𝑡 . 

 

(5.4) 

An illustration of the scenario and relationships is presented below in Figure 5.2. 
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Figure 5.2 - Sequential sampling scenario and relationships between variables.  

5.3 Inter-Measurement Latency (IML) Noise Component 

Within the problem statement described in the previous section, the considered scenario is simplified 

in two keyways:  

 Firstly, the sensors are sampled periodically with a constant time difference between them, 

known as the IML value.  

 Secondly, the data fusion is carried out on the instant of the 𝑁 𝑡ℎ measurement.  

These simplifications are given to highlight the relationships more easily between values and to reduce 

variability in the potential outcomes.  

As previously stated, the asynchronous sampling is produced by the delay between 

consecutive measurements as given by the IML. The positioning estimation errors within the 

asynchronous sampling system occur when measurements are fused from different points in time 

and, under a dynamic scenario, describe the state of the target at different points in space. For this 

problem statement scenario, this takes place at the end of every sample period, where 𝑁 

measurements are fused together at the fusion instance to generate an estimate. The error within the 

individual measurements, caused by the IML, contributes towards the resultant position error. To gain 

further insight into the effects of asynchronous sampling on localisation techniques, the influencing 

factors and magnitude of measurement errors that arise from IML are explored within this section.  

Firstly, consider the individual sensor measurements discussed throughout this thesis, which 

are nonlinear observations of the targets state at the measurement instant [132]:  

  

 𝑧 = ℎ 𝑆 , 𝑆 + 𝑣 .  (5.5) 
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Where 𝑣  is additive white zero-mean Gaussian noise such that 𝑣 ~𝑁(0, 𝜎 ) with covariance matrix 

𝑅. 𝑆  represents the  𝑖 𝑡ℎ sensor position given by 2D coordinates 𝑆 = 𝑥 , 𝑦  where 𝑥  and 𝑦  

denote the Cartesian coordinates in the 𝑥 and 𝑦 axis of the 𝑖 𝑡ℎ sensor respectively. 𝑆  with 

superscript of zero, represents the target position, given by 𝑆 = 𝑥 , 𝑦 , at timepoint 𝑡 , which 

refers to the 𝑖′𝑡ℎ sensor’s measurement instant within the [𝑡 , 𝑡 ) sampling period. Where  𝑥  and 

𝑦  denote the Cartesian coordinates in the 𝑥 and 𝑦 axis of the target respectively. The nonlinear 

measurement function ℎ is given by [36]:  

 

 
ℎ 𝑆 , 𝑆 = 𝑥 − 𝑥 + 𝑦 − 𝑦 .  

(5.6) 

 

By means of fusing the sensor measurement at the Fusion Centre (FC), one can consider the effects of 

the IML as an additional error component 𝜀 ,  . The error component of each measurement pertains 

to the range difference between the measurement instant 𝑡  and the estimation instant 𝑡 . The range 

measurement for the 𝑖′𝑡ℎ sensor at the estimation instant is therefore represented in the following 

form:  

 

 𝑧 = ℎ 𝑆 , 𝑆 + 𝑣  + 𝜀 , . 

 

(5.7) 

Where 𝜀 ,  represents the IML noise component, which has a complex relationship within the 

dynamic scenario that is explored throughout this chapter.  

 

To better understand the effect the IML has on the localisation performance, this section initially 

evaluates the IML noise component 𝜀 ,  for a single sensor. To isolate the IML noise component, the 

sensor measurement noise 𝑣  is initially set to zero. Consider the 𝑖 𝑡ℎ sensor, from the network of 𝑁 

sensors, located on a 2D plane. The target to be tracked is assumed to travel along a linear path with 

constant velocity 𝑉 = [𝑣 , 𝑣 ] where 𝑣  and 𝑣  denote the velocity in the 𝑥 and 𝑦 axis respectively. 

 

Sensor 𝑖 obtains a noise free distance measurement 𝑑  of the target at time point 𝑡 . The FC performs 

location estimation at timepoint 𝑡  where the time difference between 𝑡  and 𝑡  is referred to as the 

Measurement Latency (MLa), denoted by ∆𝑡 . The Cartesian coordinates of the target at the 
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measurement instant and the estimation instant are given by 𝑆 = 𝑥 , 𝑦  and 𝑆  = 𝑥 , 𝑦  

respectively. The true distance between the target and the 𝑖 𝑡ℎ sensor at the estimation point 𝑡  is 

denoted by 𝑑 . Under the constant IML scenario, the MLa can be described by a multiple of the IML 

such that: 

 ∆𝑡 = 𝑡 − 𝑡 = (𝑁 − 𝑖)∆𝑡 . 

 

(5.8) 

This is illustrated in Figure 5.3. 

 

 

Figure 5.3 - 2D Cartesian representation of the IML Noise Component for a single sensor 

The measurement error in this scenario is brought on by the target’s movement during the interval 

Δ𝑡 , in which the distance between the target described by the measurement at time point 𝑡  is no 

longer equivalent to the distance at the estimation instant 𝑡 . As such, the magnitude of the IML noise 

component refers to the absolute difference between the measured range 𝑑  and the non-measured 

true range of the target at 𝑡 . Using the relationships described, the magnitude of the IML noise 

component for a single sensor can be presented as:  

 

 𝜀 , =  𝑑 − 𝑑 . (5.9) 

 

Furthermore, representing the distances as the Euclidian distance between their respective positions 

gives:  
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 𝜀 , =  𝑆 − 𝑆 − 𝑆 − 𝑆 . (5.10) 

 

Lastly, under the constant velocity assumption, the position of the target at the estimation instant can 

be represented by the position of the target at the measurement instant and displacement over ∆𝑡 :  

 𝜀 , =  𝑆 − 𝑆 − 𝑆  +V(𝑁 − 𝑖)∆𝑡 − 𝑆 . 

 

(5.11) 

From (5.11), the IML noise component can be regarded as a complex function of the target’s position 

relative to the sensor, the velocity of the target and the Measurement Latency (MLa) component. The 

MLa component here, as per equation (5.8), refers to the IML and the multiplier derived from the 

sequencing of the specific sensor. From this analysis the IML error component can be regarded as a 

systematic error which can be quantified. 

 

5.3.1 Single Sensor IML Error Analysis  

To provide an initial overview of the IML error component as a function of the variables presented in 

(5.11), a brief simulation study is carried out for a single sensor system. For the purposes of this 

simulation, the sensor is assumed to be noiseless in order to isolate the IML effects. The simulation is 

carried out under three scenarios where the velocity of the target is different in each, with respect to 

the tangent of the circle formed from the radius of the measurement 𝑑 . Within each scenario three 

individual targets A, B & C are considered, in which the initial positions 𝑆  are varied. Targets A and C 

reflect different initial positions with an equal initial measurement value 𝑑  , such that 𝑑 (A) is 

equivalent to 𝑑 (C). While B, indicates a greater initial range measurement 𝑑 (B). Considering a 2D 

model, each range measurement forms a circle about the sensor position 𝑆  with a radius equivalent 

to the respective range measurement. To evaluate the effects of the IML, the MLa between the 

measurement instant 𝑡  and the estimation instant 𝑡  is increased. While the sensor position is a 

variable within the IML Error function (5.11), the sensor position is relative to the targets’ initial 

location and therefore the adjustment of the initial target coordinates is sufficient to indicate this 

change. 

It should be noted that the following analysis of the simulation study is a simplification under 

a constant velocity assumption. The IML error component is calculated as per equation (5.9), and the 

geometry and target trajectories for each scenario are illustrated in Figure 5.4, with the respective IML 
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Error components provided in the bottom row of graphs. The analysis of the results presented for 

each scenario, as shown in Figure 42, is below. 

 

 

Figure 5.4 - IML error component under three varied trajectory scenarios 

Scenario 1 

Within Scenario 1, the velocity vector for each target is perpendicular to the tangent of the circle, 

which is generated by the measurement at 𝑡  . As a result, the IML Errors are linearly related to the 

MLa, and are directly correlated across all the targets. This path generates the greatest possible 

amount of range error between the measurement instant 𝑡  and the later fusion instant 𝑡 . 

 

Scenario 2 

For Scenario 2, the target velocity vectors are at a tangent to the circle formed by the measurement 

at 𝑡 . The resulting error that occurs is nonlinear with MLa, and forms an exponential relationship. 

Notably, targets A and C obtain an identical error, whilst target B, which is at a greater initial distance 

from the sensor, incurs a smaller relative error. This difference is caused by the nonlinear relationship 

between the target position and the distance to the sensor.  

 

Scenario 3 

The velocity within Scenario 3 reflects an arbitrary vector between the vector values described in 

Scenario 1 and 2. Interestingly, as the target velocity vector creates a chord through the circle, which 
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is formed by the measurement, the error increases nonlinearly towards an initial maxima. This maxima 

coincides with the centre point of the chord. In other words, the error decreases the closer the 

estimated distance is to the measured distance. Evidently, the error is zero when the target’s 

estimation position is equal to the measured distance. As the IML exceeds this value the errors 

continue to increase nonlinearly. In this respect, depending on the velocity component, a greater 

amount of IML does not necessarily dictate a higher level of IML Error. The same observation could be 

made for scenario 1 however, under the Constant Velocity (CV) assumption, the target would have to 

pass through the sensor, and this is impossible in practice.  

The above analysis of the simulation study provides reasonable insight into the magnitude of 

the IML error component, which has been evaluated for different scenarios, such that the variables 

are altered to highlight their individual impact.  

 

5.3.2 Single Sensor IML Error Effects Under Measurement Noise 

Having analysed, in the previous section, data collected under ideal noiseless conditions, the following 

section considers the effects of measurement noise on asynchronously sampled measurements. The 

IML Error component remains systematic however, when combined with random measurement noise, 

the resulting effects can be both constructive and deconstructive. This effect is represented by Figure 

5.5 below, illustrates how measurement noise may exacerbate or otherwise reduce the effects of IML 

in comparison to noise free asynchronous measurements. In  Figure 5.5A, the black arrow represents 

a nonlinear target trajectory. The black dots along the trajectory path identify the targets’ position at 

various sensor sampling instances where the last is the estimation instant. Individual sensor range 

measurements are compared to the true sensor range at the estimation instant and the Range Error 

(RE) is visualised in red. Figure 5.5B includes measurement noise for each sensor range measurement. 

The green node illustrates where negative noise decreases the measured range and increases the 

overall RE. The yellow node shows where positive noise increases the range yet further increases the 

RE. The blue sensor shows where a positive noise element increases the measured range and corrects 

for the error attributed to the IML therefore improving the RE. Lastly, the purple node has no IML 

error but is negatively affected by measurement noise.  



148 

 

 

Figure 5.5 - Illustrative comparison of sensor Range Errors for asynchronous sampling, with and 

without measurement noise 

To better understand the effects of IML on range errors under measurement noise, a brief study is 

presented for the same single sensor measurements as in Section 5.3.1. For this study, only Scenario 

1A is observed, as scenario 1 generates the greatest amount of IML Error, and targets B and C within 

it provided no additional information. Furthermore, for more comparative results across the different 

scenarios within this thesis, the range of the latency component is set to its maximum as generally 

considered within this body of work, where Δ𝑡 = 0.1 s and 𝑁 = 4 and therefore the maximum 

latency observed is 0.3 s. Figure 5.7 illustrates the magnitude of the error of scenario 1A under variable 

measurement noise, comparing both a single iteration and an averaged response of 1000 iterations.  

With the addition of measurement noise, the Range Error (RE) 𝜀 ,  is taken to be the difference 

between the noisy sensor range measurement 𝑑  and the true distance between the target and the 

𝑖 𝑡ℎ sensor at the fusion instant 𝑑 . The RE is the sum of both the AWGN and IML Error component. 

 

 𝜀 ,  =  𝜀 , + 𝑣 =  𝑑 − 𝑑  (5.12) 
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Figure 5.7 - IML error under variable measurement noise values for scenario 1A 

The following analysis pertains to Figure 5.7. The Range Error, unlike the IML error component, is given 

as a non-absolute; therefore, the negative range error describes the true distance at the fusion 

instance 𝑑  being less than the measured distance 𝑑 , which is logical given the target trajectory in 

Scenario 1A. Given the linear relationship between the Measurement Latency and IML Error 

component, with consideration given to the scenario IML and sensor numbers, the maximum possible 

range error accrued by MLa alone is given by a target travelling perpendicular to the tangent of the 

circle formed by the measurement, with a constant velocity of 1 m/s. Under these conditions, the 

maximum range error that can be attributed to the IML alone, for a single measurement, is 0.3 m.  

Due to its zero-mean nature, averaging the response of over 1000 iterations effectively 

removes the measurement noise; therefore, the orange line in Figure 5.7, representing the averaged 

result, illustrates the IML error component. A single iteration is also given to highlight the constructive 

and deconstructive nature between the two constituents of noise. Where the noises interact and the 

Range Error is reduced, one can observe the deconstructive qualities of both the MLa and 

Measurement noise combined. The opposite can also be observed where the measurement noise 

exaggerates the IML error component, producing a greater level of error.  

From Figure 5.7a - Figure 5.7c, which reflect the additive noise range of 𝜎 = 1 mm−1 cm, 

the effects of measurement noise within the scenario are relatively slight. This highlights the 

significance of the Measurement Latency (MLa), and where it supersedes the effects of measurement 
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noise. Furthermore, it indicates that the errors due to IML for values within this thesis are not 

negligible and should not be ignored. 

As measurement noise increases in Figure 5.7d - Figure 5.7f, the errors due to the MLa 

component remain constant, however, the magnitude of the measurement noise dominates the 

system and the IML error component is less distinguished.  

 

5.3.3 IML Section Summary  

Within this section, the principle of IML has been introduced and a function for the IML error 

component has been derived for range-based estimation under a constant velocity assumption. 

Subsequently the single sensor RE’s caused by IML in both noiseless and noisy conditions has been 

evaluated. From this work, it is evident that the IML noise component is a highly systematic error with 

many time varying factors. The introduction of measurement noise within the system is shown to be 

either constructive or deconstructive.  

While it is possible to average out the random measurement noise, identifying the IML noise 

component is far more complex. This is due to the variability of the parameters within the IML error, 

and the fact that the error is only present in dynamic scenarios. It should also be noted that in practical 

scenarios the target’s velocity may not be constant and as such, further complexity is added to the 

scenario. The author, of this thesis, therefore considers primitive methods to calculate the IML 

component, in order to mitigate its effects, ineffective and costly for real-time tracking solutions. 

Under measurement noise, the effects of IML are relatively less significant, however, they are 

still significant and therefore cannot be disregarded. With this in consideration, the following research 

investigates the effects of IML on location estimation using a multi-sensor system.  

 

5.4 Existing Tracking Under IML  

Whilst the effects of the IML component for a single sensor have been established, analysis of 

multisensor tracking, with existing nonlinear positioning methods has yet to be evaluated for varied 

path nonlinearities and levels of IML. Through a series of simulation studies, this section first analyses 

the effects of IML on conventional tracking solutions in which IML is not acknowledged by the 

estimation algorithms. This analysis will provide a fundamental understanding of the effects of IML on 

standard localisation techniques and will further establish the control studies for the remainder of this 

work. This will allow for improved comparison of the suitability of asynchronous solutions under 

variable degrees of asynchronous sampling. The nonlinear tracking solutions considered within this 

section, are the common Least Squares Solution (LSS) Multilateration and the Unscented Kalman Filter 

(UKF) approach. Both are batch processes conducted once 𝑁 measurements have been received 
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sequentially, in accordance with the scenario described in Section 5.2. Later in this section adaptations 

of the LSS and UKF processes, proposed for asynchronous sampling, are evaluated to assess their 

overall suitability, under variable conditions. The remainder of this chapter considers the 2D 

sequentially asynchronous problem statement provided earlier in Section 5.2.  

 

5.4.1 Non-Asynchronous Tracking Solutions  

To ascertain the effects of IML on tracking solutions and further explore the necessity of asynchronous 

solutions, common non-asynchronous localisation techniques are explored under asynchronous 

sampling conditions. As previously stated, the techniques considered are the Multilateration LSS and 

the UKF.  

 

The target is set on a given trajectory and at every Δ𝑡  timestep a measurement of the distance 

between the 𝑖 𝑡ℎ sensor and the target is taken. For notational convenience the 𝑖 𝑡ℎ sensor 

measurement obtained in the sampling period [𝑡 , 𝑡 ) is denoted as 𝑧 .  

 

5.4.1.1 Multilateration Process Summary  

Due to the homogenous nature of the considered sensors, the multilateration approach using the LSS 

is considered in place of the WLS multilateration approach as described in Section 2.1.3.1.5.1. For 

readability the general formula and matrices are given for the multilateration approach as [199]12:  

 

 
𝜗 = (𝐺 𝐺) 𝐺 𝑏. 

(5.13) 

 

In which,  

 

𝜗 =  

𝑥
𝑦

(𝑥) + (𝑦)
, 𝐺 =

⎣
⎢
⎢
⎢
⎡
−2𝑥 −2𝑦 1

−2𝑥 −2𝑦 1

−2𝑥 −2𝑦 1

−2𝑥 −2𝑦 1⎦
⎥
⎥
⎥
⎤

, 𝑏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑧 − (𝑥 ) − (𝑦 )

𝑧 − (𝑥 ) − (𝑦 )

𝑧 − (𝑥 ) − (𝑦 )

𝑧 − (𝑥 ) − (𝑦 ) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.  
(5.14) 

 

 

The batch process for each multilateration estimate at the estimation instant is given by Algorithm 9 

below, where 𝑘  represents the maximum number of estimation instants carried out.  

 
12 The notation of the equation taken from the reference has been altered for consistency with the notation throughout this thesis. 
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Algorithm 9: LSS Multilateration13 
1: For 𝑘 = (1: 𝑘 ) 

2:  Collect set of N range measurements 𝑧  from 𝑁 sensors  𝑖 = (1, … , 𝑁) 

3:  Input set of 𝑁 range measurements and known sensor coordinates into (5.14) 
4:  Compute Target coordinates using (5.13), excluding 𝜗(3) 
5: End 

 

5.4.1.2 UKF Process Summary 

In a general sense, the recursive process of the batch UKF solution generally requires the 

determination of the sigma points and their respective weights to appropriately define the state 

distribution. A nonlinear process model is then applied to these sigma points to determine a set of 

transformed sigma points which are further transformed through the nonlinear observation model. 

The resulting data is assimilated, and an output is formulated. The process is then repeated. 

 

The process considers a single step, estimating across the entire estimation interval Δ𝑇 [136].  

 
𝑋 = 𝑓 𝑋 , Δ𝑇 + 𝑤 . 

(5.15) 

 

Where the state is given by 𝑋 = [𝑥 , 𝑦 , 𝑣 , 𝑣 ] and the process model 𝑓 considered for this 

implementation is a linear Constant Velocity (CV) 2D model [137]:  

 

 

𝑓 𝑋 , Δ𝑇 =  

1 0 Δ𝑇 0
0 1 0 Δ𝑇
0 0 1 0
0 0 0 1

. 
(5.16) 

 

 

𝑤  is modelled as a zero-mean white Gaussian noise with covariance matrix 𝑄 which is a fixed matrix 

given by the Discrete-Time Nearly Constant Velocity structure, as discussed in Section 2.1.3.2.1.6, for 

a two dimension system [133], [141]:  

 

 

𝑄 =  

⎣
⎢
⎢
⎢
⎡
Δ𝑇 4⁄ 0 Δ𝑇 /3 0

0 Δ𝑇 4⁄ 0 Δ𝑇 /3

Δ𝑇 /3 0 Δ𝑇 0

0 Δ𝑇 /3 0 Δ𝑇 ⎦
⎥
⎥
⎥
⎤

∗ 𝜎 . 
(5.17) 

 

 

 
13 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop. 
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Where 𝜎  is the acceleration noise magnitude and must be determined empirically. The 𝑖 𝑡ℎ sensor 

measurement is given by [126]: 

 

 𝑧 = ℎ 𝑋 + 𝑣 .  

 

(5.18) 

In which the nonlinear measurement function ℎ  is given by [126]: 

 

 
ℎ 𝑋 , 𝑆 = 𝑥 − 𝑥 + 𝑦 − 𝑦 . 

(5.19) 

 

 

Where the sensor noise 𝑣   in each measurement is modelled as a normally distributed random 

variable with zero mean and standard deviation 𝜎 : 

 

 𝑣  = 𝑁(0, 𝜎 ). (5.20) 

 

For UKF initialisation, where 𝑘 = 1, the initial state 𝑋  is given by the least square estimates for 𝑥  

and 𝑦 , calculated using initial measurements acquired in the first sampling period, and velocity 

components given as 1. The initial state covariance matrix 𝑃  is given as an identity matrix. The 

complete description of UKF equations and process can be reviewed in Section 2.1.3.2.1.3 but are 

summarised as follows for the readers convenience [136].  

Prediction 

 𝜒 = 𝑓 𝜒 , 
(𝑗

= 0, ⋯ ,2𝑛) 
(2.53) 

 
𝑋 =  𝑊 , 𝜒 ,  (2.54) 

 
𝑃 =  𝑊 , 𝜒 − 𝑋 𝜒 − 𝑋  + 𝑄 .  (2.55) 

Measurement update 

 Ζ = ℎ 𝜒 ,  (2.56) 

 �̂� = 𝑊 , Ζ ,  
(2.57) 
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𝑃 = 𝑊 , Ζ − �̂� Ζ − �̂� + 𝑅, 

 (2.58) 

 
𝑃 = 𝑊 , 𝜒 − 𝑋 Ζ − �̂� , 

 (2.59) 

 𝐾 = 𝑃 (𝑃 ) ,  (2.60) 

 𝑋  =  𝑋 + 𝐾 𝑧 − �̂� ,  (2.61) 

 𝑃 = 𝑃 − 𝐾 𝑃 𝐾 .  (2.62) 

 

The scaling parameter 𝜆 presented in (2.52) and used in determining of the sigma point distribution is 

given by [111]:  

 𝜆 = 𝜁 (𝐿 + 𝑛) − 𝑛.  (2.52) 

 

Where 𝑛 is the dimension of the state matrix, equal to four.  

 

Within this thesis the sequential fusion approach is used where the measurement update is repeated 

sequentially for each measurement. For each measurement fused, the distribution must be passed 

through the nonlinear measurement function ℎ  as a sigma point distribution. In the initial 

measurement update (𝑖 = 1) the sigma point distribution is already provided from the prediction 

stage (2.53) and can be applied through the measurement function (2.56) directly. While some 

literature notes that the distribution of sigma points can be re-evaluated prior to the measurement 

function, this is not the approach taken in this thesis, to avoid additional computation. For the 

following measurement updates (𝑖 ≥ 2) the fused distribution is provided as a mean and covariance 

and as such, a new set of resampled sigma points are required. This set of sigma points are computed 

using the same calculations given in (2.45) - (2.52) but where 𝑋 →  𝑋  and 𝑃 → 𝑃  . For 

clarification, the resampled sigma points are denoted by 𝜒  and are applied to the nonlinear 

measurement function as: 

 Ζ = ℎ 𝜒 , 𝑆  

 

 (5.21) 

The batch UKF algorithm is summarised in Algorithm 10.  
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Algorithm 10: Batch UKF14 

1: For 𝑘 = (1: 𝑘 ) 

2:  Collect 𝑁 range measurements 𝑧  from 𝑁 sensors  𝑖 = (1: 𝑁) 

3:  Determine sigma point set using (2.45) - (2.52) 

4:  Propagate sigma points using process model (2.53) 

5:  Calculate transformed predicted mean and covariance using (2.54) and (2.55) respectively 

  Initial Measurement Update  

6:  Transform the predicted sigma point distribution using the measurement function ℎ  (2.56) 

7:  Compute the mean, measurement covariance and the cross covariance (2.57) - (2.59) 

8:  Determine the Kalman gain using (2.60)  

9:  Using 𝑧  generate the state estimate and covariance matrix with (2.61) and (2.62) respectively 

  Subsequent Measurement Updates 

10:  For 𝑖 = (2: 𝑁) measurements  

11:   Resample the sigma points set using (2.45) - (2.52) 

12:   Transform the resampled sigma point distribution using the measurement function ℎ  (5.21) 

13:   Compute the mean, measurement covariance and the cross covariance (2.57) - (2.59) 

14:   Determine the Kalman gain using (2.60)  

15:   Using 𝑧  generate the state estimate and covariance matrix from (2.61) & (2.62) respectively 

16:  End 

17: End 

 

5.4.2 Reference Simulation Scenario 

Within this section, the simulation parameters are presented for the study on synchronous localisation 

solutions. For the sake of equal comparison throughout this and subsequent chapters, the following 

described tracking simulation scenario will be referred to as the ‘Reference Simulation Scenario’. The 

Reference Simulation Scenario is implemented to evaluate the performance of various localisation 

solutions under variable degrees of asynchronous sampling, measurement noise and target 

trajectories. The measurement sampling sequence follows the description given in the Sequentially 

Asynchronous Sampling problem described at the beginning of this chapter. This states that the IML 

is constant, and estimation is carried out on the reception of the last sensor measurement. 

Additionally, transmission times are assumed negligible and the reception of data is not corrupted by 

potential errors.  

 
14 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop.  
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The Reference Simulation Scenarios describe a range of IML values, from 1 ms to 100 ms, and 

measurement noise with a normal distribution and standard deviation 𝜎 , ranging from 1 mm to 1 m. 

Both ranges are implemented with a logarithmic scale where 15 and 10 points are evaluated for the 

IML range and measurement noise respectively.  

 

5.4.2.1 Physical Layout  

The scenario considers a 2D space, where four sensors (𝑁 = 4) are distributed in an equilateral square 

configuration. The length of the sides in this square are referred to as the Baseline Distance (𝐵𝐷). 

Therefore, the 𝑥 and 𝑦 coordinates of each sensor are denoted by 𝑆 = 𝑥 , 𝑦 such that 𝑆  to 𝑆  is 

given by [0,0] , [𝐵𝐷, 0] , [0, 𝐵𝐷]  𝑎𝑛𝑑 [𝐵𝐷, 𝐵𝐷]  respectively.   

 

5.4.2.2 Target Trajectory 

The variable trajectory considered throughout the Reference Simulation Scenario is equivalent to the 

circular path trajectories applied in Section 4.5.2, but on a larger scale. In this scenario, the centre 

point of the circle is designated at , and the 𝐵𝐷 = 10 m. The path angles evaluated range 

between 0.2 rad and 1 rad, where applying (4.10) the equivalent range of circular path radii is 5 m and 

1 m respectively. The target also maintains a constant angular velocity equivalent to 1 m/s along the 

path circumference. An example of the target trajectories for various 𝜃  values at a 𝐵𝐷 = 10 m is 

given in Figure 5.8.  
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Figure 5.8 - Various target trajectories ranging from 0.2 rad to 1 rad. 

As with the similar structured simulations conducted in Section 4.5.2, the circumference of the path 

changes for each path angle. To obtain equivalent evaluations of the tracking response at different 

path angles, it is imperative that the number of points evaluated is consistent. The number of position 

estimations considered is given by (4.11). With a maximum radius of 5 m, minimum IML of 1 ms and 

4 sensors, the target is evaluated at 7854 individual points around the given path. To maintain this 

across all possible path angles and values of IML, the target is set to continue travelling along its 

circular trajectory until 7854 positions have been evaluated. Once the target travels the full length of 

the path circumference, the target is deemed to have completed a single ‘cycle’.  

 

5.4.2.3 Performance Metrics 

The following performance metrics are obtained throughout the simulation. Both Position Error (PE) 

and Mean Point Error (MPE) are equivalent to those presented in Section 4.5.3, but are repeated for 

the readers clarity. 

The PE for each position estimate, is taken to be the Euclidian distance between the estimated location 

𝑆 , and the true targets position 𝑆  at 𝑡 : 

 

 
𝜀 =  𝑆 − 𝑆 . 

 
 

(5.22) 
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Once all 7854 estimations have been provided this concludes a single simulation iteration, denoted 

with subscript 𝐼𝑡. The simulation is repeated 𝑁  times for each variable combination of IML, 

measurement noise and 𝜃 . Once position errors have been obtained for all iterations the average 

error for each estimation interval is calculated as the Mean Point Error (MPE):  

 

 
𝜀̂ =

1

𝑁
𝜀 , . 

 

 

(5.23) 

The Root Mean Square Error (RMSE) is then used to determine the overall error across all 

estimations and iterations:  

 
𝑅𝑀𝑆𝐸 =

1

7854
𝜀̂ . 

 

 

(5.24) 

The Estimation Runtime (ER) describes the average time it takes the processor to complete a single 

estimation. This is used to provide insight into the computational complexity of a solution. The 

simulation runtime is calculated using the inbuilt ‘tic/toc’ function in MATLAB software which, as 

documented [259], is unreliable for times less than 10 ms. The individual localisation techniques are 

therefore looped 𝑁  times over and the total recorded runtime Δ𝑇  is averaged to obtain the 

individual Estimation Runtime:   

 

 

𝐸𝑅 =
1

𝑁

Δ𝑇

7854 ∗ 𝑁
. 

 

 

 

 

(5.25) 

 

5.4.2.4 Simulation Algorithm Overview  

To evaluate the performance of Multilateration and UKF under variable changes, a variable loop is 

considered which iterates through a range of values, for the selected variable. Furthermore, an 

iteration loop is introduced to repeat each simulation for 𝑁  iterations, to deliver a more 

reliable averaged result. Simulations are conducted using a MATLAB script on a DELL G7 7790 Intel(R) 

Core(TM) i7-9750H CPU @ 2.60GHz, 6 Cores, 12 Logical Processors. 

The UKF sigma point scaling parameters using in determining the sigma point values and weightings 

as well as the simulation parameters are given in Table 5.1. 
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Table 5.1 - Simulated UKF parameter values 

Parameter Value 

𝜻 1e-3  

𝑳 0 

𝜷 2 

IML 𝚫𝒕𝒎 (s) [1e-3,1e-1] 

Measurement Noise 𝝈𝒛 (m) [1e-3, 1e0] 

Path Angle 𝜽𝒑𝒂𝒕𝒉 (rad) [0.2:0.2:1] 

 

The executed simulation is summarised in Algorithm 11 below. Due to the repeated use of this 

Simulation format for evaluating various solutions, Algorithm 11 is generalised and the considered 

solution algorithms, such as LSS Multilateration and UKF, are applied within line 8 of Algorithm 11. 

This is identified throughout the thesis as ‘Algorithm X is evaluated under the Reference Simulation 

given in Algorithm 11’ where 'X' pertains to the localisation solution being tested. Therefore within 

this section, both Algorithm 9 and Algorithm 10 are evaluated under the Reference Simulation given 

in Algorithm 11.  
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Algorithm 11: Reference Simulation15  

1: For 𝛥𝑡  = logspace(1e-3:15:1e-1) 

2:  For 𝜎  = logspace(1e-3: 6: 1e1) 

   For 𝜃 = (0.2: 0.2: 1) 

2:    For 𝐼𝑡 = (1: 𝑁 ) 

   4:     Generate set of target measurement positions  

5:     Generate sequence of noisy measurements for each target measurement position using 

additive noise  𝑣  

6:     For loop = (1:𝑁 ) 

7:      Insert respective Algorithm to be evaluated 

8:      Calculate respective estimation errors (5.22) across all estimation instants 

9:     End 

10:    End 

11:    Calculate Mean point Error for No. of Iterations (5.23)  

12:    Determine RMSE values for No. of Iterations (5.24) 

13:    Determine Estimation Runtime (5.25) 

14:   End 

15:  End 

16: End 

 

As reviewed in Section 2.1.3.2.1.6, the process noise within a Kalman Filter (KF), such as the UKF being 

applied, must be tuned to suit the system. The following section considers the optimal KF process 

noise where the acceleration noise magnitude 𝜎  is the scaling quantity that must be determined to 

optimise the performance of the UKF.  

 

5.4.2.5 Kalman Filter System Identification - Determining the Acceleration Component of the UKF 

Process Noise 

The process noise of a KF is a critical tuning value and leads to drastic changes in performance. For 

this study the Discreet Nearly Constant Velocity (DNCV) process noise model as referred to in Section 

2.1.3.2.1.6, is most suitable. However, the process noise acceleration component 𝜎  must be 

determined empirically within a system, prior to operation [133].  

 
15 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop. If a range of values are incremented logarithmically 

the following representation is used: logspace(initial value: number of equally logarithmically spaced elements: end value).  
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A reasonable assumption can be made that, in practice, the KF designer is able to obtain a 

measure of the measurement noise 𝜎  variance by recording several measurements in an offline 

calibration phase. Furthermore, while the localisation processes within this scenario make no attempt 

to resolve the effects of IML, the system designer is likely to be aware of the IML and its magnitude. 

As such, the optimal process noise can be configured to obtain a best response for a specifically known 

IML and measurement noise combination. Alternatively, the targets path nonlinearity may be variable 

throughout a typical dynamic scenario and as such the optimal process noise cannot be determined 

for specific path angle values. Optimising for a specific path angle value may lead to overfitting, where 

the system responds optimally to the individual path angle value and worse to others. Therefore, the 

process noise acceleration component must be selected to perform admirably over a broad range of 

path angles. We denote the process noise acceleration component value that is specific to a given 

scenarios’ IML and Measurement noise as 𝜎 (Δ𝑡 , 𝜎 ).  

A simple and decisive manner to determine the correct process noise value for KFs does not 

yet exist [132] and the optimisation process is therefore conducted by a brute force trial and error 

process.  

 

5.4.2.5.1 Trial and Error Process 

Throughout this thesis, the methodology adopted to determine the optimal process noise acceleration 

component for any KF is trial-and-error simulations. This entails a set of simulations, where the 

acceleration noise magnitude is iterated, tried and tested for each combination of sensor 

measurement noise and IML value. From this data, the optimal process noise acceleration component 

value is chosen to give the lowest overall RMSE for a variety of path angles.  

The trial-and-error process, described below in Algorithm 12, considers iterating Algorithm 11 

one hundred times for a suitable range of 𝜎  values. However, only the two extreme path angles 

𝜃 = 0.2 & 1  are considered. The range of 𝜎  values chosen are described by 𝑞  , 𝑞  

and 𝑞  which denotes the lower bound, the upper bound and the interval spacing respectively. 

In general, the bounds are set to different orders of magnitude and the spacing is logarithmically set 

to 10 intervals per order of magnitude difference between the upper and lower bounds. The bounds 

are selected through an initial test to reduce the number of computations carried out. The RMSE of 

the solution under every value of 𝜎  is attained and forms an array of 𝜎  specific RMSE values 

𝑅𝑀𝑆𝐸 Δ𝑡 , 𝜎 , 𝜃 , 𝜎 . Both the minimum and maximum path angles are evaluated in Algorithm 

12, and the two arrays produced are averaged together. The 𝜎  value that produces the minimum 

RMSE of the averaged response is selected. In this way, the RMSE results obtained can be used to 
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identify the optimal 𝜎  value for each combination of IML and measurement noise at a high and low 

path nonlinearity.  

 

Algorithm 12: Optimal Acceleration Noise Component 16 

1: For 𝛥𝑡  = logspace(1e-3: 15: 1e-1) 

2:  For 𝜎  = logspace(1e-3: 6: 1e) 

3:   For 𝜃 = (0.2: 0.2: 1) 

   4:    For 𝜎 = 𝑙𝑜𝑔𝑠𝑝𝑎𝑐𝑒(𝑞  : 𝑞 : 𝑞 ) 

5:     For 𝐼𝑡 = (1: 𝑁 ) 

6:      Generate set of target measurement positions 

7:      Generate sequence of noisy measurements for each target measurement position 

using additive noise  𝑣  

8:      Insert respective Algorithm to be evaluated 

9:      Calculate respective estimation errors (5.22) across all estimation instants 

12:     End 

13:     Calculate Mean point Error for 𝑁 (5.23) 

14:     Determine RMSE values for 𝑁 (5.24) 

15:    End 

16:    Store array of 𝑅𝑀𝑆𝐸 Δ𝑡 , 𝜎 , 𝜃 , 𝜎  

17:   End 

18:   Average 𝑅𝑀𝑆𝐸(𝛥𝑡 , 𝜎 , 0.2, 𝜎 ) & 𝑅𝑀𝑆𝐸(𝛥𝑡 , 𝜎 , 1, 𝜎 ) 

19:   Linearly interpolate, attain minimum RMSE and corresponding 𝜎  value 

20:  End 

21: End 

 

The resultant 𝜎 (Δ𝑡 , 𝜎 ) values are stored in a database such that the optimal value can be 

appointed for each IML and measurement noise scenario. As for the Reference Simulation Scenario, 

the system identification process is the same for all applied KFs throughout this body of work. In this 

respect Algorithm 12 is generalised with the inclusion of line 8, where the respective KF-based solution 

is applied.  

 

 
16 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop. If a range of values are incremented logarithmically 

the following representation is used: logspace(initial value: number of equally logarithmically spaced elements: end value). 
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Figure 5.9 below, illustrates the selection of optimal 𝜎 (Δ𝑡 , 𝜎 ) for all IML, sensor measurement 

noise scenarios.  

 

Figure 5.9 - 3D plot of optimal q values for UKF with IML 

In analysing the 𝜎  obtained within Figure 5.9, above, the following observations can be made about 

the process noise study. It is important to note that the axis scales within Figure 5.9 are inverted for 

clarity in the image. 

The process noise of a system can be considered a measure of the process model’s 

uncertainty; therefore, a greater optimal 𝜎 (Δ𝑡 , 𝜎 ) value suggests the system performs best, 

because the measurements are favourable against the predictions formed by the system model. One 

can also use the optimal acceleration noise magnitudes to infer the response of the UKF when 

subjected to an asynchronous dataset.  

Where measurement noise is high within the study, It is shown to be the more prominent 

constituent, compared to IML, with regard to their cumulative effects on error and therefore the 

effects of IML are consequently less prominent. Here, the plot in Figure 5.9 indicates a consistent trend 

in optimal acceleration noise, where a greater level of measurement noise leads to a slightly higher 

𝜎  value, avoiding potential divergence and overconfidence in the process model. 

Conversely, for these higher sensor measurement noises, as the IML increases, the process 

noise visibly decreases, effectively suggesting that weighting the process estimates more heavily 
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improves the response. This effect reflects the fact that the state estimate covariance matrix 𝑃 is 

influenced by both the state transition matrix 𝐴 and the process noise covariance matrix 𝑄, as per 

(5.17). Both 𝐴 and 𝑄 are time dependant, in that they contain the variable 𝛥𝑇. From the structure of 

the IML sampling, 𝛥𝑇 is related to the IML from (5.4). What one can obtain from this is that where the 

IML is greater, the estimation period is also greater, and the weighting in the process model is lower. 

Therefore, the reduction in 𝜎  can be expected to compensate for the lower process weighting to 

avoid complete reliance on the measurements alone.  

As shown in  Figure 5.9, for most considered values of measurement noise, once the IML is 

increased above a certain threshold, there is a significant increase in the optimal 𝜎  value. In this 

instance the UKF solution performs best when weighting the measurements more heavily. It should 

be noted that this sharp increase is also the region at which the 𝑅𝑀𝑆𝐸 𝛥𝑡 , 𝜎 ,
.

, 𝜎  plateaus 

and the optimal value can be given by a range of values, hence the sharp fluctuations at the lower 

region of both IML and measurement noise scales. The amount of IML at which this significant rise in 

optimal 𝜎  value appears is correlated with the level of measurement noise and reduces in intensity 

as the measurement noise increases. This reinforces the idea that the influence of the IML is 

dampened as Measurement noise is increased.  

From the optimal process noise plot and the surge in values, it can be observed that the UKF 

solution is not designed for handling of the IML effects and suffers irregularities in attempts to 

compensate. This is made clearer in later comparisons.  

 

5.4.3 Simulation Study of Non-Asynchronous Tracking Solutions Under Variable IML Effects 

and Various Scenarios 

Within this section, the simulation results of the UKF and LSS techniques under variable IML and 

measurement noise are presented and discussed. The previously described optimal 𝜎  values are 

included. 
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Figure 5.10 - RMSE for LSS and UKF under variable scenario parameters    

From Figure 5.10, which displays the RMSE for LSS and UKF under variable scenario parameters, the 

following initial observations can be made about the RMSE.  

Firstly, the UKF technique benefits from its predictive qualities, as it is more successful in 

reducing the error than the LSS technique. This is evident from the consistently lower RMSE displayed 

for all considered scenarios. However, for low measurement noise values, both solutions suffer very 

linear increases in error as IML increases. Similarly, for low IML values, the solutions again experience 

very linear increases in error as Measurement noise increases 

On the other end of the scale, at higher IML values, the effects of Measurement noise become 

much smaller and are in fact almost negligible. Comparatively, the LSS RMSE remains constant under 

increasing measurement noise for much longer, which suggests that the MN has less effect on the LSS 

at higher IML values. Therefore, while the UKF response is generally better than the LSS response, the 

disparity between the two distinctly reduces as the IML increases.  

  The same observation can be made for high measurement noises, where the effects of IML 

are somewhat less prominent than at lower measurement noise values. This is more applicable to the 

LSS solution, which appears to suffer more from measurement noise. As both sources of error increase 

the difference between the UKF RMSE and LSS RMSE is greatly reduced indicating that while the UKF 

exhibits a significantly improved response it does not perform best under both sources of error 

combined. 
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The following analysis considers the influence of path angles as presented in Figure 48, for 

measurement noise standard deviations of 1 mm, 10 cm and 1 m. 

 

 

Figure 5.11 - RMSE of position estimation using UKF and LSS for different path trajectories and 

measurement noises under variable IML 

For the LSS, under low measurement noise the path angles are shown to have almost no effect on the 

resultant RMSE. However, as the Measurement noise increases, increase in path angle is shown to 

consistently produce a lower RMSE. This is most likely due to the points not being as widely dispersed 

as they would be within a more linear trajectory.  

For the UKF, under low measurement noise values the system responds positively to a higher 

path angle, however, for higher measurement noise values this effect is reversed. Interestingly, this 

change in path angle effect for higher measurement noise values is delayed with increasing IML values. 

This change in response to path nonlinearity can be attributed to the KFs response to a higher 

measurement noise. This response necessitates more reliance on the CV process model which is 

known to be less accurate at higher path angles.  

Relevant tabulated data for the UKF and LSS is provided in Appendix B of this thesis.  
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5.4.3.1 Additional Testing  

Following the initial observations above, the subsequent simulations were conducted in order to 

highlight the effects of both sensor sequencing, which relates to sensor positions, and the potential 

bias of estimation frequency within KF-based solutions.  

 

5.4.3.1.1 Errors due to Sequencing and RRLH Positioning  

Multisensor systems used for target tracking require consideration of the sequence of the sensor 

sampling and the respective sensor position. From the IML single sensor study conducted in Section 

5.3.1, the effects of IML are shown to be reduced at greater distances for certain trajectories. It is also 

known that respective sensor positioning can have great influence on the performance of a system 

[17], [99], [160], [261], [262]. The same model parameters applied in the aforementioned study were 

applied to the following simulations, where sensors maintain a standard equilateral square 

arrangement, but variability is introduced within the sampling sequence.  

Figure 5.12 illustrates four considered sensor sampling sequences for a four-sensor system. 

Both Sequence 1 and 2 follow a zig-zag pattern whereas 3 and 4 are clockwise and counter-clockwise 

sequences.  

 

 

Figure 5.12 - Sampling sequence variations for N = 4 

 

The first sensor within each sequence would generally be expected to obtain a greater level of IML 

error as due to the sampling sequence, it has a greater overall MLa, however, understanding the 

effects of target trajectories relative to the sensor position, this cannot be assumed to be true for all 

cases. To evaluate the change that the sampling sequence has on the resulting estimation, the highest 

IML value (0.1 s) and a path angle of 0.4 rad is evaluated at various measurement noise values. The 

results are provided in Figure 5.13 where the MPEs for a 1000 iterations are plotted for a single cycle 

around the circular trajectory.  
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Figure 5.13 - Mean errors for LSS and UKF tracking for different sensor sampling sequences. 

One observation that can be made from Figure 5.13, above, is that across most plots the UKF error is 

shown to exhibit a cyclic error pattern. This is because the KF does not reach a steady state as the 

Constant Velocity trajectory model applied is not describing the true target motion. The LSS also 

exhibits a sinusoidal pattern, which is amplified for sensor sequences 3 and 4.  

A more pertinent observation from Figure 5.13, is that when comparing Sensor Sequence 1 

and 2, it appears as though the sensor sequence effects the stability of the UKF estimation process. 

This is distinctly indicated by the increased fluctuation in MPE. For Sensor Sequence 3 and 4, the 

increase in measurement noise results in a large deviation of the somewhat cyclic error pattern. From 

this brief study, insight is given into the variability of the sampling sequence between four sensors and 

attention is drawn to the effects this may have on the system response. While variations in sensor 

sequence exhibit consistent RMSE, due to the stability of the response, sensor sequence 1 was 

employed throughout the remainder of the studies within this thesis.  
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5.4.3.1.2 Sampling Time Errors  

The Asynchronous sampling scenario assessed within this thesis considers a sampling structure in 

which the estimation latency Δ𝑇 is dictated by the number of sensors and the IML equation (5.4). 

Naturally, due to the variability of a target’s trajectory over time, tracking solutions such as the UKF 

which rely on predictive models, suffer under increased estimation periods. With this in consideration, 

it is reasonable to suggest that the errors observed by the increased IML scenarios are primarily a 

matter of larger estimation intervals. To evaluate this, one can consider the equivalent estimation 

interval but with no IML and as a result, no temporal or spatial misalignment between measurements. 

By comparing errors resulting from synchronous measurements of equivalent estimation periods to 

those of delayed measurements, considered within this thesis, it is possible to assess the contributions 

of error from the estimation periods and the latency components individually.  

To do so, the Reference Simulation Scenario is considered for the UKF solution and the 

average MPE over 1000 iterations for a single path cycle. The results are displayed in Figure 5.14. To 

isolate the effects of IML more effectively, the minimum value of measurement noise (𝜎 = 1 mm) is 

applied to a path angle of 0.4 rad for three different values of Estimation Period Δ𝑇. The three values 

of Δ𝑇 applied are consistent with a 𝑁 = 4 sensor system and IML values of 1e-3 s, 7.2e-3 s, 1e-1 s. 

From Figure 5.14, the evidence clearly indicates the majority of error arises from the asynchronous 

measurements and the IML error component.  

 

 

Figure 5.14 - Comparison of UKF estimation errors for variable IML vs No IML for equivalent sampling 

periods 

The optimal acceleration noise magnitude values for the asynchronous sampled measurements, as 

obtained in Section 5.4.2.5, are applied to the UKF solution under both asynchronous and non-

asynchronous measurements. While these are not the optimal 𝜎  values for the non-asynchronous 
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case, one can only expect the response to improve under correct tuning which further reinforces the 

argument that the majority of errors are inflicted by the asynchronous sampling. 

 

5.4.4 Evaluating Existing Asynchronous Localisation Techniques  

This section has so far considered the effects of IML errors on single sensor range estimates and used 

this analysis to draw observations for conventional multisensor tracking systems where asynchronous 

sampling is applied. The following section presents recent solutions to the asynchronous sampling 

problem for nonlinear measurements and assesses them against non-asynchronous sampling 

techniques.  

 

5.4.4.1 Shi’s Solution  

From the literature review the author, of this thesis, notes the solution presented by Shi et al. [44], 

where the scenario considers sequential sampling and therefore in line with the one studied 

throughout this thesis. The presented solution considers the time between individual samples to be 

constructive data, that can be utilised under a CV target trajectory assumption to infer the target 

velocity. However, the simulated study presented by Shi et al. is limited to an idealised constant 

velocity target trajectory.  

To evaluate the solution further, this section first puts forward a reduced form of the solution 

presented in Shi et al. that does not consider clock offsets and anchor node positioning error. The 

simplified solution is then evaluated under various system parameters against the SUKF, LSS and UKF 

techniques, that both do and do not consider the effects of IML. Finally, a modified solution based on 

the principles of the approach presented by Shi et al. is proposed and evaluated. The following 

describes the reduced and general form of the batch solution presented by Shi et al.  

Consider the estimation interval [𝑡 , 𝑡 ] where the target state vector to be estimated at 

the end of the sequential sequence (𝑡 ) is given by 𝑋 = 𝑆 , 𝑉 , where 𝑆 =

𝑥 , 𝑦  describes the target’s position at the start of the sampling period and the target’s 

velocity is given by 𝑉 = 𝑣 , 𝑣 . The target is observed by 𝑁 individual sensors which are set to 

obtain range measurements in sequence such 𝑡 < 𝑡 < ⋯ < 𝑡 < ⋯ < 𝑡 .  The range 

measurement from sensor 𝑖 is given by  [44]:  

 

 

𝑑 = 𝑑 + 𝑛 , 

 

 

 

(5.26) 
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𝑑 =  𝑆 + 𝑉 Δ𝑡 − 𝑆 . 

 
 

(5.27) 

Where 𝑛  is the independent measurement noise, 𝑆  is the 𝑖 𝑡ℎ sensors position and Δ𝑡  is the time 

difference between the 𝑖 𝑡ℎ sensor measurement and the start of the estimation interval Δ𝑡 = 𝑡 −

𝑡 . Within the constant IML scenario explored within this thesis the interval Δ𝑡  can also be 

expressed as an integer multiple of the IML: 

 

  
Δ𝑡 = 𝑖 ∗ Δ𝑡 . 

 
 

(5.28) 

The retrieved range measurements are collected into 𝑑 = 𝑑 , 𝑑 , ⋯ 𝑑  which gives the 

following  [44]:  

 
𝑑 =  �̅� + 𝑛 . 

 
 

(5.29) 

Where �̅�  represents the vector of true sensor-to-target distances and  𝑛  is a zero mean Gaussian 

random vector with a diagonal covariance matrix 𝐶 .  

The process and relationships are illustrated below in Figure 5.15:  

 

 

Figure 5.15 - Illustration of sequential sampling structure for four sensors and a target with a 

constant velocity trajectory 

The following describes the formulation of the reduced Shi solution presented and carried out in 

[44]: Re-arranging (5.26) and squaring both sides gives  [44]:  
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𝑑 − 𝑛 = 𝑆 + 𝑉 Δ𝑡 − 𝑆 . 

 
 

(5.30) 

Taking 𝑆 + 𝑉 Δ𝑡 − 𝑆 = 𝑆 + 𝑉 Δ𝑡 − 𝑆 𝑆 + 𝑉 Δ𝑡 − 𝑆  as in Wang et al. 

[263] and Shi et al. [44].  

 

𝑑 − 2𝑑 𝑛 + 𝑛

= 𝑆 + 2 𝑆 𝑉 Δ𝑡 − 2 𝑆 𝑆 +  Δ𝑡 𝑉

− 2 𝑆 𝑉 Δ𝑡 + 𝑆 . 

 

(5.31) 

Re-arranging (5.31) to give: 

 

2 𝑆 𝑆 + 2 𝑆 𝑉 Δ𝑡 − 𝑆 − Δ𝑡 𝑉 − 2 𝑆 𝑉 Δ𝑡

= 𝑆 − 𝑑 − 2𝑑 𝑛 + 𝑛 . 

 

(5.32) 

Under the small noise assumption, the second order error term is ignored. The reparametrized vector 

is given by 𝜃 = 𝑋 , 𝜃 , 𝜃 , 𝜃 ∈ ℝ , where 𝜃 = − 𝑆 , 𝜃 = − 𝑉  and 𝜃 =

 − 𝑆 𝑉 . (5.32) is then given in matrix form as  [44]:  

 

𝐴 𝜃 = 𝑏 + 𝜀 . 

 

(5.33) 

Where 𝐴 = 𝑎 , 𝑎 , ⋯ , 𝑎 , 𝑏 = 𝑏 , 𝑏 , ⋯ , 𝑏  and 𝜀 = 𝐷 𝑛  with the 

following matrices: 

𝑎 = 2(𝑆 , 2(𝑆 ) Δ𝑡 , 1, Δ𝑡 , 2Δ𝑡 ], 

𝑏 =  𝑆 − 𝑑 , 

𝐷 = 2 ∗ 𝑑𝑖𝑎𝑔 [𝑑 , 𝑑 , ⋯ , 𝑑 ] . 

 

(5.34) 

The covariance matrix of the error vector 𝜀  is then given as  [44]:  

 

𝐶 = 𝐷 𝐶 𝐷 . (5.35) 
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The final WLS solution for (5.33) and its covariance matrix is finally given by (5.36) and (5.37) 

respectively  [44]: 

𝜃 = 𝐴 𝐶 𝐴 𝐴 𝐶 𝑏 , 

 

(5.36) 

𝐶 = 𝐴 𝐶 𝐴 . (5.37) 

 

During the first stage, the relationship between 𝑋  and the nuisance variables (𝜃 , 𝜃 , 𝜃 ) is 

ignored. During the second stage, this relationship is exploited in order to refine the estimates of 𝑋 .  

While Shi et al. propose a Gauss Newton iterative solution with a stopping criteria function, 

considering the covariance of the positioning errors they present, the approach taken in this thesis is 

a single second stage iteration. This more closely reflects the Two Step Weighted Least Squares 

(TSWLS) work from Wang et al. [263] which much of Shi et al.’s work can be derived from. The 

derivation of the second stage can be considered through the explanation therein. 

Taking the initial estimate of 𝑋  produced within the first stage result of 𝜃  to be 𝑋 , the 

error Δ𝑋  increment is given and estimated as 𝛥𝑋  in (5.38) and (5.39) respectively  [44]: 

 

Δ𝑋 = 𝑋 − 𝑋 , 

 

(5.38) 

𝛥𝑋 = 𝐽 𝐶  𝐽 𝐽 𝐶 �̃� . 
(5.39) 

 

Where the respective matrices are given by  [44]:  

 

�̃� = 𝜃 − 𝑋 , − 𝑆 , − 𝑉 , − 𝑆 𝑉 ,    𝐽 =  
𝐼 ∗

𝐽
,  

and 

𝐽 =  

−2𝑥 −2𝑦 0 0

0 0 −2𝑣 −2𝑣

−𝑣 −𝑣 −𝑥 −𝑦

. 

 

 

 

(5.40) 

The solution of (5.39) is then added to the initial estimate of 𝑋  to refine the final estimate of 𝑋 . 

The reduced form of the solution presented by Shi et al. summarised in Algorithm 13  ignores the 
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sensor position uncertainties, clock offset and clock skew which are irrelevant to the work within this 

thesis.  

 

Algorithm 13: The Shi solution17  [44] 

 Initialisation  

1: Under a static sensor and constant IML scenario, Preconfigure matrix 𝐴  (5.34) and (5.28) 

2: Preconfigure matrix 𝐶  

 Estimation Loop 

3: For k = (1: 𝑘 ) 

  Initial Estimate 

4:  Collect 𝑁 range measurements 𝑧  from 𝑁 sensors  𝑖 = (1: 𝑁) 

5:  Use measurements to populate 𝑏  and 𝐷  as in (5.34) 

6:  Determine 𝐶  as in (5.35) 

7:  Compute the initial solution 𝜃  and covariance matrix 𝐶  from (5.36) and (5.37) respectively 

  Second Step  

8:  Populate �̃�  and 𝐽  using the initial estimate 𝜃  as given in 

 

(5.40) 

9:  Compute error estimate 𝛥𝑋  as in (5.39)  

10:  Correct initial state estimate 𝑋  with error estimate  𝛥𝑋  using (5.38) 

11:  Obtain 𝑆  from 𝑋  

12: End 

 

 

5.4.4.2 Modified Backward Propagation Model  

The linear solution proposed by Shi et al. [44] is a straightforward technique that relies upon the 

constant velocity principle of the target trajectory. An initial observation of the solution is that within 

the arrangement of the timing sequence, the estimated position 𝑆  refers to the start of the 

sampling frame. As such, two sources of error can be expected.  

Firstly, in conventional real-time tracking solutions, the objective is to attain the target 

position at the most recent instant. With this in consideration, the solution proposed by Shi et al. is 

therefore counter intuitive. Secondly, the measurements in the sequence are all considered to refer 

 
17 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop. 
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to the estimated position with a partial influence of the velocity component. Within a typically non-

constant velocity scenario this invokes a partial error into each measurement value.  

 Based on these observations, the author, of this thesis, proposes an adaptation of the Shi 

solution in a reversed propagation format, where the target position to be obtained within the interval 

[𝑡 , 𝑡 ), is 𝑆 , such that 𝑋 = 𝑆 , 𝑉 .While this acquires a more recent and therefore 

more accurate result when compared to the targets latest position, this formulation additionally 

utilises the most recent measurement without any added velocity assumptions. To reflect this change, 

the proposed solution of (5.27) becomes:  

 

 
𝑑 =  𝑆 − 𝑉 Δ𝑡 − 𝑆 . 

 
 

(5.41) 

Where instead of Δ𝑡 , one now considers the Measurement Latency (Δ𝑡 ) which represents the time 

difference between the sensor 𝑖 measurement 𝑡  and the estimation instant (𝑡 ). As before, this 

can also be expressed as an integer multiple of the IML:  

 

  
 Δ𝑡 = 𝑡 − 𝑡 = (𝑁 − 𝑖) ∗ Δ𝑡 . 

 
 

(5.42) 

Repeating the same processes described in (5.30) - (5.32) produces a similar result to that of (5.33) 

where: 

𝜃 =  𝑆 𝑉 , 

𝑎 = 2(𝑆 , −2(𝑆 ) Δ𝑡 , 1, Δ𝑡 , 2Δ𝑡 ]. 
(5.43) 

For the refinement in the second stage the matricies �̃�  and 𝐽  are now given by:  

 

�̃� = 𝜃 − 𝑋 , − 𝑆 , − 𝑉 , 𝑆 𝑉 , 

𝐽 =  

−2𝑥 −2𝑦 0 0

0 0 −2𝑣 −2𝑣

𝑣 𝑣 𝑥 𝑦

. 

 

(5.44) 

The resultant second stage estimates obtained from the simplified and proposed modified approach 

of Shi et al.’s technique are denoted as 𝑋  and 𝑋  respectively.  

 

The Algorithm for the Modified backward propagation solution, given by Algorithm 14, follows the 

same process as that of the Shi solution but with the relevant changes made to the matrices. 
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Algorithm 14: The Modified backward propagation Shi solution18  

 Initialisation  

1: Under a static sensor and constant IML scenario, Preconfigure matrix 𝐴  from (5.43) and (5.42) 

2: Preconfigure matrix 𝐶  

 Estimation Loop 

3: For k = (1: 𝑘 ) 

  Initial Estimate 

4:  Collect 𝑁 range measurements 𝑧  from 𝑁 sensors  𝑖 = (1: 𝑁) 

5:  Use measurements to populate 𝑏  and 𝐷  as in (5.34) 

6:  Determine 𝐶  as in (5.35) 

7:  Compute the initial solution 𝜃  and covariance matrix 𝐶  from (5.36) and (5.37) respectively 

  Second Step  

8:  Populate �̃�  and 𝐽  using the initial estimate 𝜃  as given in  

 

(5.40) with 𝐽  calculated from (5.44) 

9:  Compute error estimate 𝛥𝑋  as in (5.39)  

10:  Correct initial state estimate 𝑋  with error estimate  𝛥𝑋  using (5.38) 

11:  Obtain 𝑆  from 𝑋  

12: End 

 

Figure 5.16 is provided to further illustrate the variation between Algorithm 13 and Algorithm 14.  

 

 
18 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop.  
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Figure 5.16 - Comparison between principles of a) Algorithm 13 and b) Algorithm 14 

Notably, as illustrated by the placement of the mobile device in Figure 5.16, the principle of the 

Modified Shi algorithm is to obtain the position of the UE at the most recent timepoint 𝑡  within each 

sampling interval [𝑡 , 𝑡 ), as opposed to the Shi solution which identifies the previous estimation 

instant 𝑡 . To reflect these changes forward in time the relationship between distance 

measurements, time and the estimation instant of interest are reversed as indicated by the red dotted 

lines in Figure 5.16. As such, the sensor distance measurements in Algorithm 14 are no longer related 

to the previous estimation instant by (5.27) and (5.28) but to the most recent estimation instant by 

(5.41) and (5.42). Consequently matrix 𝐴  must be updated on initialisation as reflected in step 1) of 

Algorithm 14 and 𝚥̂  is modified in step 8). 

 

5.4.4.2.1 Simulation Results  

Prior to comparison with the UKF and LSS solutions under the Reference Simulation Scenario, a 

comparison is made for the reduced Shi solution and the modified backward propagation model 

presented by the author of this thesis. These are henceforth referred to as the ‘Shi’ and ‘Modified-Shi’ 

solution respectively.  

The initial scenario considered here follows the same sampling protocol and model 

parameters as the Reference Simulation Scenario however, the scenario considers a completely linear 

target trajectory, as described in the studies conducted by Shi et al. [44] and Pu et al. [190]. The 

sensors Baseline distance is maintained at 10 m.  

The target trajectory starts from the coordinates (0,5) and then travels with a velocity of 

1 m/s across the 𝑥-axis only. The simulation concludes once the target reaches the boundary formed 
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by the square formation of sensors at coordinates (10,5). For the 𝑘′𝑡ℎ estimation step, the Position 

Error (PE), denoted by 𝜀 , is taken as the Euclidian distance of the targets true position at the 

estimation instant and position estimate provided by the respective technique:  

 

𝜀 = 𝑆 − 𝑆 . (5.45) 

From the formulation of the Shi solution, it is known that the estimate for the targets position at the 

previous estimation instant is provided, such that 𝑆  describes 𝑆 . The metrics are therefore also 

provided for the accuracy of the Shi solution, considering the prior target position: 

 

𝜀 = 𝑆 − 𝑆 . (5.46) 

In this manner, the errors owing to the time delay from estimating the previous estimation instant are 

eliminated, and the solutions accuracy alone can be identified. These Time-Corrected (TC) Shi solution 

metrics are henceforth referred to as ‘Shi-TC’. The average PE for each estimation instant is given for 

the linear trajectory scenario and displayed in Figure 5.1719. Within this scenario, 500 iterations of all 

three variations of the Shi solution and LSS estimate are compared. The LSS estimate is provided here 

as a control metric, given its lack of response to the IML or Measurement noise. The simulation is 

considered for five different IML values (columns) and four different Measurement noise standard 

deviation values (rows).  

 
19 Notably, y-axis data is varied according to the number of estimations carried out along a set path length for different sampling latencies. 

Additionally, attention should be paid to the inconsistent x-axis values which are included for readability.  
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Figure 5.17 - Shi solution, Shi-TC solution and modified Shi solution positioning errors given for the linear trajectory scenario for different magnitudes of measurement noise 

and IML. 
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From Figure 5.17 one can observe that, when not correcting for the time delay, the Shi solution 

performs significantly worse than all other solutions considered. Comparing the Shi solution results to 

those of the Shi-TC solution highlights the magnitude of error which is simply established by the 

estimation latency.  

Generally, the variations of the Shi solution do not prove to withstand measurement noise 

adequately, which is evident from the considerably lower error produced by the LSS. With respect to 

measurement noise, the proposed modified Shi approach is consistently the most resilient, which can 

be attributed to the reduction in applied velocity estimations. It is also worth noting that due to the 

poor performance under measurement noise, the measurement noise values considered within this 

scenario are far less than those considered previously within this section, at a maximum of 1 cm and 

1 m respectively.  

Another observation that can be made from the results presented in Figure 5.17, is that as 

IML increases from 0.005 s to 0.01 s, the modified Shi solution presents the best performance for both 

latency and noise. Comparing the modified Shi approach against the Shi-TC solution highlights the 

improvements to the position estimation when disregarding the latency error of the Shi solution. In 

these cases, the modified solutions performance is therefore improved because of the lack of the 

additional velocity assumptions. However, for IML that surpasses 0.05 s, the modified Shi approach 

begins to diverge from the path, which creates large instabilities and positioning errors. In these cases 

where the IML is higher, the Shi-TC solution demonstrates a much more stable performance.  

From this study, one can conclude that the adaptations made to the Shi solution in the 

proposed modified approach improves the resilience to noise but at the cost of poorer performance 

at higher IML values. However, one can also ascertain that the Shi solution variants generally do not 

provide a great deal of improvement against the standard LSS solution. While the Shi-TC solution is 

more impressive at higher IML values, the solution may only be beneficial for non-realtime tracking, 

where improved accuracy is needed in a sequential scenario. Due to the demands of real time tracking 

considered within this thesis, the Modified Shi solution is considered going forward, with the Shi-TC 

solution provided for reference.  

 

5.4.4.3 The Sequential Unscented Kalman Filter - SUKF  

The Sequential Unscented Kalman Filter (SUKF) is fundamentally a sequential version of the Unscented 

Kalman Filter (UKF). For this reason, the equations are identical to those presented in literature review 

Section 2.2.4.1, and are therefore not repeated within this section.  

The only variation between the UKF and SUKF solutions is that for the SUKF solution, the estimations 

are carried out across Δ𝑡  and not Δ𝑇. Each received measurement is thereby fused to the time it was 
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attained at the sensor or equivalently, the FC under the zero-transmission delay assumption. The SUKF 

approach is summarised in algorithm 12, below.  

 

Algorithm 15: SUKF20 

 Initialisation  

1: Initial state vector 𝑋 = 𝑥 , 𝑦 , 𝑣 , 𝑣  given coordinates from initial LSS estimate and velocities 

of 1 m/s for both axes.  

2: State covariance matrix 𝑃  given as identity matrix 

3: Under constant IML scenario populate 𝑄 matrix (5.17) and apply empirically tuned acceleration noise 

magnitude multiplier dependant on the IML and Measurement noise values.    

 Estimation Loop 

4: For k = (2: 𝑘 ) 

5:  For 𝑖 = (1: 𝑁) range measurements  

   Prediction  

6:   Compute the sigma points 𝜒  and respective weightings 𝑊  and 𝑊 (2.45) -(2.52)  (where 

i=1, 𝜒  refers to 𝜒 ) 

7:   Propagate the sigma points through the nonlinear process function (2.53), where 𝛥𝑡 = 𝛥𝑡 , to 

obtain the transformed set 𝜒  

8:   Compute the transformed state 𝑋 and covariance 𝑃  with (2.54) and (2.55) respectively  

   Update  

9:   Propagate the transformed set of sigma points through the nonlinear measurement function 

(2.56) 

10:   Determine the estimated measurement mean �̂� and respective innovation covariance matrix 

𝑃  from (2.57) and (2.58) respectively  

11:   Calculate the cross covariance 𝑃  as given by  (2.59) 

12:   Compute the Kalman gain 𝐾 with (2.60) 

13:   Determine the updated state 𝑋 and state covariance matrix 𝑃  using (2.61) and (2.62) 

respectively  

14:  End  

15: End 

In contrast to the batch process of both the Shi and Modified Shi solutions, presented in Algorithm 13 

and Algorithm 14, the SUKF solution sequentially estimates the UE position at each sensor sampling 

 
20 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop. 
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instant. This is reflected in Figure 5.18 by the multiple sensor-coloured UE’s along the trajectory. As 

described in steps 6-8 of Algorithm 15, for each sensor measurement a prediction of the UE position, 

illustrated by a red UE within Figure 5.18, is initially generated using a trajectory model. Similarly to 

the Shi and Modified Shi process, the CV trajectory model illustrated in Figure 5.18 applies an assumed 

velocity component 𝑉 for a known period of time Δ𝑡  to the previously estimated target position. The 

SUKF solution however offers more flexibility with regards to the applied trajectory model. 

Subsequently, the prediction and sensor measurement are then fused to produce a state estimate as 

described in steps 9-13 of Algorithm 15, and the process is repeated.  

 

 

Figure 5.18 - Illustration of SUKF process 

While other SUKF studies presented in the literature review introduced fading factors [36], [126], [189] 

and other constraints, this thesis considers a constant IML, where there is therefore no unknown 

stochastic noise parameter. This deterministic error component can be estimated using empirical 

data, following the KF trial and error system identification process as described in Section 5.4.2.5 and 

summarised in Algorithm 12.  

Due to the influence that the process noise covariance matrix 𝑄 and the measurement noise 

covariance matrix 𝑅 have on the response of the KF, the optimal acceleration noise magnitude, which 

directly effects 𝑄, provides significant insight into the behaviour of the KFs. Figure 5.19 below 



183 

 

illustrates the optimal acceleration noise magnitude values for the SUKF and UKF systems, 

implementing the aforementioned trial and error system identification process.  

 

 

Figure 5.19 - Optimal Acceleration noise magnitude values for both SUKF (opaque) and UKF 

(translucent) solutions at different IML and Measurement noise scenarios. 

Figure 5.19 demonstrates that generally, compared to the UKF optimal acceleration noise magnitude, 

the SUKF solution presents a vastly more linear response. This can be attributed to the fact that the 

IML errors do not exist when measurements are processed for the time they are acquired. As such, 

the SUKF response is not affected by IML in the same manner as the UKF response.  

The SUKF does however rely strictly on single sensor measurements, which makes it far more 

susceptible to individual sensor errors. The result of this is that as the IML increases, the estimation 

periods also increase as shown by the IML to estimation period relationship given in  (5.4). As the 

process noise is time dependant, as indicated by (5.17), this therefore increases with greater IML 

values. In response to larger IML, the magnitude of the acceleration component decreases to some 

extent, in order to improve stability and avoid overdependence on the measurements.  

Conversely, as the measurement noise increases, the optimal acceleration noise magnitude 

also increases, in order to avoid over-reliance in the process noise which can lead to divergence. In 
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this respect, the tuning effect that Q and R have within the KF is apparent and one can ascertain that 

an optimal balance must be maintained in order to provide a smooth but stable response.  

 

5.4.4.4 Simulation Results  

Within this section Algorithm 13, Algorithm 14 and Algorithm 15 are evaluated under the Reference 

Simulation given in Algorithm 11 for 500 iterations. The results are then compared against those 

obtained for the UKF and LSS in Section 5.4.3 as control studies. Figure 5.20  illustrates the RMSE for 

each considered location estimation technique, across all considered IML and Measurement noise 

values. Within this figure, the solutions are individually included as ‘layers’ for illustrative purposes 

and the two rows of graphs reflect the results obtained from a path angle of 0.2rad and 1rad 

respectively. Tabulated data for Figure 5.20  is provided in Appendix B of this thesis. 
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Figure 5.20 - 3D RMSE plots for all considered IML and Measurement noise values at path angles of 0.2rad and 1rad 
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From Figure 5.20 , it is clear that SUKF displays the best overall performance, as it exhibits significantly 

lower RMSE for all scenarios considered. The results for the Shi solutions reflect observations of the 

results obtained from the earlier linear trajectory test. With the minimum level of measurement noise, 

the Shi-TC and Modified Shi Solution do reduce the error compared to the LSS and the UKF solutions. 

Again the Modified Shi solution shows a prominent improvement against the Shi-TC solution which is 

notably time corrected and does not illustrate the Shi solution errors for realtime tracking. However, 

as IML increases, the linear velocity assumption clearly fails under a circular trajectory and both Shi-

TC and Modified Shi approaches illustrate gradual increases in error. As with the Linear trajectory test, 

given by Figure 5.17, the proposed Modified Shi approach is not as suitable for higher IML values. 

Regardless, due to the small noise assumption involved in the Shi solutions, the noise quickly corrupts 

all estimates, further deeming the Shi solutions highly unsuitable for most considered scenarios.  

For the top row of data displayed in Figure 55, where the path angle is 0.2 rad, the 

circumference of the path trajectory forms a tangent along the boundary formed by the four sensors. 

At this path angle the Shi solution and Modified Shi solution both exhibit sudden high positioning 

errors at specific estimation instants, which results in an increased RMSE. This is attributed to flip 

ambiguities and can be resolved in one of two ways. The first is through the inclusion of an additional 

sensor somewhere not on the circumference of the circle that the other existing sensors lie along. 

Alternatively, this can be achieved by moving a single sensor to ensure that it does not lie on the plane 

on which the other sensors are positioned.  

Overall, the modified Shi process provides consistently superior results than even the Time 

corrected Shi (Shi-TC) process, which illustrates its dominant resilience to measurement noise. 

However, the performance in contrast to the alternative solutions remains highly unattractive for all 

applications considered within this thesis.  

Figure 5.21, below, presents a more quantifiable comparison of the various location 

estimation methods. The results presented are for all considered IML values at measurement noises 

of both 1 mm and 1 m and path angles of both 0.2 and 1 rad.  
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Figure 5.21 - RMSE for all IML values at different measurement noises and path angles 

Initially, when comparing the SUKF and UKF approaches, the sequential processing is proven to 

successfully reduce the effects of IML and sequential measurement acquisition. As the random 

measurement noise dominates over the IML error, and the effects of IML are therefore dampened, 

one can observe the performance of the UKF and SUKF become nearly identical to one another. This 

relationship is evident from the indistinguishable lines within Figure 5.21.  

To provide a clearer visual representation of the difference in RMSE between the SUKF and 

UKF solutions, Figure 5.22 presents the percentage difference in RMSE performance between them 

as given by (5.47): 

 
𝑅𝑀𝑆𝐸% = 100 ∗

𝑆𝑈𝐾𝐹 Δ𝑡 , 𝜎 , 𝜃 −  𝑈𝐾𝐹 Δ𝑡 , 𝜎 , 𝜃

𝑈𝐾𝐹 Δ𝑡 , 𝜎 , 𝜃
. (5.47) 
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 Within this figure, the effects of path angle are also distinctly more visible. As path angle 

increases, the UKF approach performance degrades under greater IML, however, as measurement 

noise increases, the UKF is shown to be far more resilient. This is because as the measurement noise 

increases and the IML effects are minimised, the SUKF solution is more susceptible to single sensor 

errors whereas the UKF is able to combine multiple measurements and consequently produce more 

stable results.  

As with the UKF solution, an increase in the nonlinearity of the target trajectory leads to an 

increase in the estimation error, which can be attributed to the CV model and increased prediction 

intervals. More significantly, when the path angle is increased, the SUKF solution does indicate a more 

prominent increase in error at higher IML values.  

 

 

Figure 5.22 - RMSE positioning error performance comparison between UKF and SUKF for all 

considered path angles 

To evaluate the computational complexity and energy required by each solution, the computation 

times are evaluated according to (5.25), where 𝑁 = 50  and each loop resolves all 7854 estimations. 

This is repeated for 50 iterations. The Estimation Runtimes (ER) are given in Table 5.2 for IML, 𝜎  and 

path angle set to 1e-3 s, 1e-3 m and 0.2 rad respectively. Both Shi and Shi-TC solutions are computed 

in the same manner and are therefore represented by a singular ER value.  
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Table 5.2 - Comparative table of computation runtimes for each evaluated solution under the same 

test parameters 

Solution LSS UKF Shi MShi SUKF 

Estimation 

Runtime /s 

8.87e-6 6.03e-5 6.78e-5 6.81e-5 7.37e-5 

 

Table 22 demonstrates that LSS obtains the fastest time by far, due to its simplicity and low matrix 

dimensions. The UKF follows with the second-fastest time, due to the computationally intensive 

Unscented Transforms utilised. The Shi and MShi solutions then obtain similar times, as there is a 

considerable lack of variation between them. Notably, while these solutions are extensions of the LSS, 

the matrix dimensions and two-stage process require far more computations than that of the LSS. 

Finally, the SUKF process incurs the most significant time to compute and, therefore demands the 

highest computational effort.  

  

5.5 Chapter Summary 

While it has been recognised within literature [44], [264] that the effects of asynchronous sampling 

have negative impacts on nonlinear location estimation, this chapter has expanded on that 

understanding by evaluating the degree to which asynchronous range estimates affect both single 

sensor range estimates and multi-sensor position estimates. Comprehensive simulations were 

conducted on various existing processes that do and do not consider asynchronous measurements to 

assess their response under variable degrees of asynchronous sampling, sensor measurement noise 

and path nonlinearity.  

Results highlight that while some solutions perform better than others in general, asynchronous 

sampling solutions do entail additional computation costs, as shown by the significantly greater 

computation times of the Shi variant solutions and the SUKF solution.  

The proposed Modified Shi solution is shown to be more effective at resisting the effects of sensor 

measurement noise while improving on the latency of the original Shi solution [44]. For low sensor 

measurement noise and higher IML values, the Shi-TC and Modified Shi solutions are evidently 

effective at reducing estimation error brought on by IML. However under low IML and increased 

sensor measurement noises both Shi solutions exhibit greater errors than conventional sysnchronous 

solutions while being more susceptible to ambiguities. Considering the poor resistance to 

measurement noise, coupled with the increased complexity and computation time, the Shi solutions 

are not considered to be a highly effective solution for asynchronous sampling.  
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The SUKF is shown to be the optimal solution with regards to accuracy and reliability for most 

cases at a much greater computational cost which dictates a more extensive energy demand. This 

presents a trade-off between complexity and precision that can be used to suit the requirements of a 

positioning system. It is shown that for substantial measurement noise, the effects of IML are less 

prominent, and the performance of the optimal SUKF solution degrades such that it becomes 

comparable, if not, worse than the UKF solution. Within these cases, the author of this thesis 

encourages the use of the less demanding UKF solution, which is not so reliant on single sensor 

performance. Regardless, a system designer should account for the more frequent estimation updates 

enabled by sequential filtering.  

Building on this research, the following chapter considers the computational demand of 

asynchronous sampling solutions coupled with the understanding of efficient localisation processes 

to develop a more computationally efficient solution.  
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6 A computationally Efficient Approach to Asynchronous 

Localisation under Nonlinear Measurements 

6.1 Introduction  

6.1.1 Key Insights So Far in this Area 

Chapter 5 highlighted the negative impacts or errors that asynchronous sampling can have on 

localisation performance and, using a variety of parameters, assessed the effectiveness of specific 

asynchronous localisation solutions in reducing the accumulated error.  While these showed improved 

accuracy and reliability over non-asynchronous localisation solutions, for certain degrees of 

measurement noise and asynchronous sampling, the greater complexity of these solutions resulted in 

increased latency. Latency reflects computational complexity and therefore the energy required by 

these processes. For mobile device applications that operate using battery power the energy efficiency 

of functions must be minimised to lengthen battery life, reduce processor demands and decrease 

maintenance costs for the user. The importance of energy efficiency and reduced latency has been 

extensively addressed in wireless localisation techniques and processes [14], [15], [89], [90], [142], 

[170], [173], [175], [182], [265]–[267], and highlighted by 3GPP specifications [202].  

Consequently, whilst asynchronous solutions are required to achieve good positioning 

accuracy, the computational efficiency of these solutions need to be reduced. To this end, a novel and 

more efficient solution to the tracking problem of asynchronously sampled nonlinear range 

measurements, referred to as the Kalman Extrapolated Least Squares (KELS) solution is proposed.  

 

6.1.2 Chapter Contributions  

Within this chapter the author of this thesis proposes a novel and more computationally efficient 

solution for target localisation under asynchronous sampling for nonlinear range measurements. This 

is done by utilising existing low complexity localisation solutions. 

 

6.1.3 Overview of Chapter  

This chapter presents the underlying principles of the proposed KELS solution and then evaluates the 

solution against existing non-asynchronous localisation methods. Following analysis of the results 

additional processes are then reasoned and applied to improve the performance resulting in an 

improved KELS solution.  
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6.2 Development of the Proposed Asynchronous Nonlinear Localisation Solution 

6.2.1 Extrapolating Range Measurements  

Chapter 5 showed the optimality of the Least Squares Solution (LSS) with regards to latency and is 

therefore considered for efficient position estimation within the proposed IoRL approach. 

Multilateration within an asynchronously sampled system means each sensor describes the target at 

a different point in space and time. The high sensitivity of Lateration schemes, to inaccuracies in 

distance measurements, is shown to cause high errors within the asynchronous scenario. A common 

principle observed in the LSS [44], Measurement Augmentation (MA) [184] and Extrapolation [191] 

techniques is the development of a set of pseudo measurements that relate to a single point in time, 

simulating synchronised measurements and thereby mitigating the errors attributed to IML. Once 

artificially synchronised, conventional synchronous estimation techniques can then be applied.  

In the previous chapter both sequential nonlinear KFs and linear constant velocity solutions 

were evaluated with regards to SUKF and the Shi solution. As introduced in chapter 2, the concept of 

extrapolation has been used throughout the literature to time align measurements established from 

asynchronous sensors. This process to date has been limited to linear extrapolations of target 

positions (poses) or IMU and bearing measurements. The author of this thesis recognises that to the 

best of their knowledge the extrapolation approach has not previously been applied directly to range 

estimates for use within asynchronous localisations. Due to its simplicity, and hence computational 

efficiency, the principle of extrapolation is therefore considered for time alignment of measurements 

in the proposed KELS approach.  

The initial principle for the proposed asynchronous solution is to extrapolate range 

measurements linearly to a common point in time, where they can be processed as synchronous 

measurements using efficient synchronous position estimation techniques.  

The extrapolation process itself is suboptimal as it is based on the assumption of a linear 

change in measurement value across a sampling period. Therefore, to reduce the number of 

adjustments required the measurements are all extrapolated to the known timepoint of the most 

recent measurement. Under a homogenous sensor network, it is reasonable to assume this most 

recent measurement is the most accurate, and within a sequential sampling scenario suffers no Inter 

Measurement Latency (IML) error. In this case the final sensor measurement is not extrapolated. A 

geometrical illustration of this concept is presented for four sensors in Figure 6.1. In which 

measurements sampled sequentially are represented by the respective colour of the mobile device 

and sensor. Solid and dotted lines represent the initial range measurements and extrapolated 

measurements respectivly. Dotted arrows represent the extrapolation of each measurment and 

colours are used to relate datasets to the individual sensor. 
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Figure 6.1 - Graphical representation of the extrapolation of range based sensor measurements.  

6.2.1.1 Direct Linear Extrapolation for Multilateration 

The proposed approach applies extrapolation techniques directly to the range measurements and is 

referred to as Direct Extrapolation (DE) further in this thesis. The following section outlines the DE 

process for the asynchronous sampling scenario described in Section 5.2. A denotation change is 

applied to avoid confusion later in the chapter. General range measurements sampled by the 𝑖 𝑡ℎ 

sensor within the Fusion Centre (FC) sampling period of [𝑡 , 𝑡 ), are denoted as 𝑑 . The estimation 

instant or point in time the measurement is to be extrapolated to, is denoted by 𝑡  alone. The solution 

requires that the FC can store the range estimates from the previous estimation interval [𝑡 , 𝑡 ). 

A simple linear extrapolation for sensor 𝑖 during the sampling period [𝑡 , 𝑡 ), is given as follows: 

 

 
𝛼 =

𝑡 −  𝑡

𝑡  −  𝑡
𝛥𝑑

,
, 

 

(6.1) 

In which, 

 𝛥𝑑
,

 = 𝑑 − 𝑑 . (6.2) 
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Here 𝛼  denotes the sensor measurement extrapolation value, for the time 𝑡 . 𝛥𝑑
,

 representing 

the change in distance value between the two consecutive measurements 𝑑  and 𝑑 , received at 

times 𝑡  and 𝑡  respectively. Measurements are received periodically at the 𝑖′𝑡ℎ sensor at times 𝑡  

and 𝑡 , therefore: 

 ∆𝑇 =  𝑡 −  𝑡 . 

 

(6.3) 

In which ∆𝑇  represents the constant sampling period of the sensor. Following on from the 

extrapolation, the pseudo measurement considered at the estimation instant is given by the 

combination of the most recent measurement and the additional calculated extrapolated value:  

 

 𝑑
,

=  𝑑  + 𝛼  

 

(6.4) 

A single extrapolation period, concerning two FC sampling periods, is illustrated in Figure 6.2. for a 

four sensor system with a constant IML (𝛥𝑡 ) value and a sensor sequence such that 𝑡 < 𝑡 < ⋯ 𝑡 . 

Given the constant IML and fixed sequence, the following relationship can be derived for the 𝑖′𝑡ℎ 

sensor measurement during the 𝑘 𝑡ℎ sampling period 𝑑  which is received at time 𝑡 : 

 

 𝑡 = 𝑡 + (𝑖 ∗ 𝛥𝑡 ).  (6.5) 

 

Figure 6.2 – Extrapolation process for a 𝑁 = 4 sensor system across two estimation intervals. 

(Highlighted by different background colours) 
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Notably, the IML is set to be a constant and the sensors all have the same sampling period (Δ𝑇) such 

that: 

 ∆𝑇 =  ∆𝑇  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = (1 ⋯ 𝑁). 

 
(6.6) 

Due to the sequential nature of the system, the Sampling period (Δ𝑇) is defined by the number of 

sensors and the IML such that: 

 ∆𝑇 =  𝑁 ∗ 𝛥𝑡 . 

 

(6.7) 

Since a previous measurement is required for extrapolation in (6.1), the initial set of measurements 

retrieved within [𝑡 , 𝑡 ) cannot be extrapolated upon. Because of this, the first provided state estimate 

cannot be computed until 𝑘 > 1. The Estimation instant 𝑡  is set to the same time as  

when the fourth sensor measurement is received such that: 

 

  𝑡 =  𝑡  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑜𝑓 𝑘 ≥ 1. 

 

(6.8) 

The period of the 𝑖 𝑡ℎ sensors extrapolation component is given by the Measurement Latency (MLa) 

given again as: 

 

 Δ𝑡 =  𝑡 −  𝑡 . 

 

(6.9) 

Therefore using equations (6.4), (6.6) and (6.7) one can simplify (6.1) to:  

 

 
𝛼 =

Δ𝑡

𝑁 ∗ 𝛥𝑡
𝛥𝑑

,
. 

 

(6.10) 

Using (6.8), Δ𝑡  is also equivalent to 𝑡 −  𝑡 . Substitution of (6.5) into (6.9) obtains: 

 

 Δ𝑡 =  𝑡 −  𝑡 = 𝑡 + (𝑁 ∗ 𝛥𝑡 ) − ( 𝑡 + (𝑖 ∗ 𝛥𝑡 ))  = (𝑁 − 𝑖) ∗ 𝛥𝑡 . 

 

(6.11) 

 

Therefore, substituting (6.11) into  (6.10) and simplifying:  

 

 
𝛼 =

𝑁 − 𝑖

𝑁
𝛥𝑑

,
. 

 

(6.12) 
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From here one can retrieve the 𝑁 − 1 individual extrapolated and the 𝑁′𝑡ℎ non-extrapolated 

measurement from (6.12) and (6.4) to give: 

 

 
𝑑

,  =  𝑑 +
𝑁 − 𝑖

𝑁
𝛥𝑑

,
. 

 

(6.13) 

These are then entered into the LSS Multilateration algorithm, as described in Section 0, using the 

matrix form 𝐺𝜗 = 𝑏 as follows [91]:  

 

 2𝑥 2𝑦 1
⋮ ⋮ ⋮

2𝑥 2𝑦 1

𝑥
𝑦

(𝑥 ) + (𝑦 )

 = 
(𝑑

,
) −(𝑥 ) −(𝑦 )

⋮ ⋮ ⋮
(𝑑

,
) −(𝑥 ) −(𝑦 )

. 
(6.14) 

The LSS is calculated using [91]: 

 

 𝜗 = (𝐺 𝑊 𝐺) 𝐺 𝑊 𝑏. (6.15) 

 

This process is repeated for each sampling instant as a batch process. This concludes the explanation 

of the Direct Extrapolation (DE) approach, which is summarised in Algorithm 16. 
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Algorithm 16: Direct Extrapolation21  

INPUT: Sensor coordinates 𝑺𝒊 for 𝒊 = (𝟏, ⋯ , 𝑵) 

1. For 𝑘 = (2: 𝑘 ) 

2.  For 𝑖 = (1: 𝑁) 

3.   Retrieve sensor distance measurement 𝑑  and previous sampling period 

measurement 𝑑  

4.   Determine measurement difference 𝛥𝑑
,

 using (6.2) 

5.   Calculate the extrapolated measurement estimate 𝑑 ,  from (6.13) 

6.  End 

7.  Compute Target coordinates using (6.14) and (6.15). Exclude last component of  𝜗 

8. End 

 

6.2.1.1.1 DE Simulation Analysis  

Referring back to Chapter 5, to evaluate the response of the DE approach in comparison to existing 

solutions, Algorithm 16 is evaluated under the Reference Simulation given in Algorithm 11 for 500 

iterations. The RMSE results for different sensor measurement noises, Inter Measurement Latency 

(IML) and path angle (PA) values are compared to the results obtained by the UKF and LSS approaches 

in Section 5.4.3 and presented in Figure 6.3.  

In chapter 5 IML was introduced and the effects of Measurement Latency (MLa) were 

evaluated for asynchronous measurements, when related to a later estimation instant. In this chapter, 

the MLa error is mitigated using extrapolation techniques. Since the proposed DE approach is an 

adaptation of the LSS it is important to note that the difference in errors, between the DE and LSS, 

shown in Figure 6.3 are related to the pseudo measurements and the linear extrapolations applied. 

Figure 6.3  shows that, in contrast to the LSS (orange) and UKF (blue) techniques, the DE (purple) 

approach is highly effective in reducing IML effects under low levels of measurement noise. Although, 

the DE technique does well to supress the effects of IML for low values of measurement noise, there 

is a sudden and significant increase in error for higher measurement noise values. This effect is 

exaggerated under a greater path angle, due to the applied linear extrapolation not being ideal under 

greater path non-linearity. Relevant tabulated RMSE data for the DE solution is provided in Appendix 

C of this thesis.  

 
21 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop.  
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While the DE solution is effective against most considered levels of IML, the effects of 

measurement noise are clearly apparent and show a drastic increase in error, quickly surpassing both 

the LSS and UKF with increased noise. This can be explained by the extrapolation process 

simultaneously exacerbating both the measurement and the noise component. 
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Figure 6.3 - Result plot from comparing LSS, UKF and proposed Direct Extrapolation method 
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While Figure 6.3 provides an overview of the system performance, to further assess the proposed DE 

solution, the following section evaluates the DE response at the sensor level. Specific parameters are 

isolated and adjusted as defined in Table 6.1. With a focus on IML throughout this thesis, the range of 

parameter values are selected to highlight the IML effects on sensor Range Error (RE), both regarding 

the obtained measurement error 𝜀  
, , as in (5.12), and the extrapolated estimate 

error 𝜀 , ,  obtained by the DE process. These are referred to as the Measurement Range Error (MRE) 

and the Extrapolated Range Error (ERE) respectively: 

 

 𝜀  
, =  𝑑 − 𝑑 , 

 

(6.16) 

 𝜀 , , =  𝑑 − 𝑑 , . 

 

(6.17) 

Where 𝑑  is the true distance between the 𝑖 𝑡ℎ sensor position and the target’s true position at the 

𝑘 𝑡ℎ estimation instant, 𝑑  is the sensor measurement obtained within the sampling period [𝑡 , 𝑡 ) 

and 𝑑 ,  is the extrapolated estimate generated by the DE process (6.13).  

In addition, for further insight, the rate of change between consecutive measurements 

Δ𝑑
,

 is also given in the following plotted results. Due to the scale of Δ𝑑
,

  values in relation 

to the RE components the Δ𝑑
,

  value is halved to allow for better comparison on a single axis.  

 

Table 6.1 - Values evaluated for the Sensor level study on DE response 

Test  IML (𝚫𝒕𝒎) /s Measurement noise 𝝈𝒛 /m Path angle 𝜽𝒑𝒂𝒕𝒉 /rad 

1 0.1 [0.1,0.01,0.001] 0.2 

2 [0.1,0.0518,0.01] 0.001 0.2 

3 0.1 0.001 [0.2,0.6,1] 

 

Throughout the following studies, Algorithm 16 is evaluated under the Reference Simulation given in 

Algorithm 11 but for the fixed values given in Table 6.1. To avoid eliminating the random sensor 

measurement noise, the simulation is iterated only once. Additionally, to clearly indicate the cyclic 

pattern of error only a single path cycle is presented in the following plots. Figure 6.4 is provided for 

reference throughout the following analysis.  
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Figure 6.4 - Target trajectories and labelled estimation intervals for simulated scenario. Numbers 

indicate the iteration of the estimation instants. Triangles mark the sensor positions, numbered 

according to their identifier and subsequent sequence. Dashed lines used to illustrate the points at 

which the target exhibits a constant change in measurement value respective to the sensor. 

 

6.2.1.1.1.1 DE Sensor Response Under Variable Measurement Noise 

The individual sensor responses under Test 1 conditions are illustrated in Figure 6.5 which highlight 

the effects of sensor measurement noise on the extrapolated Range Errors (REs).  

 In accordance with the RMSE results from Figure 6.3, under low sensor measurement noise, 

as shown in Figure 6.5a- Figure 6.5d, the proposed DE approach significantly reduces the overall error 

as illustrated by the MRE  and lower ERE values. 

The extrapolation process however incurs errors due to the linear change assumption. This is 

because the linear extrapolations do not correctly describe the true change between consecutive 

distance measurements. This is identified more easily using the plotted Δ𝑑
,

 values, where the 
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extrapolated errors are shown to be greatest when the rate of change is at a maximum. Similarly, the 

EREs are negated where the rate of change is zero and the linear assumption is satisfied.  

Moreover, using the plotted trajectories given in Figure 6.4, the estimation instant at which the peak 

occurs for each sensor can be identified. This occurrence of peak ERE correlates to the target’s 

trajectory relative to the sensor, as discussed in the previous IML studies in chapter 5. The scenario 

observations in Figure 5.4 indicate how the target’s trajectory, relative to the sensor, effects the IML 

error. This can also be perceived as the change in the true measurement value over time. In these 

scenarios, the change in measurement values were seen to follow a linear relationship, or a highly 

non-linear relationship, depending on the target’s velocity relative to the sensor position. From this, 

the most non-linear change in measurements occurs when the target travels along the tangent path 

off the circle formed by the previous measurement. This correlates to the nearest and furthest points 

on the circular path relative to the sensor. The linear extrapolations fail to accurately describe the true 

rate of change in measurements in these highly non-linear instances, resulting in greater EREs. 

Additionally, as shown in Figure 5.4 Scenario 2, the higher non-linearity was observed for shorter 

distances. Hence why the linear extrapolations exhibit more significant REs as the target passes closest 

to the respective sensor. At these instances, relative changes in range measurements are more abrupt. 

In short, where the change in measurements is least consistent, the linear extrapolations lead to the 

highest extrapolated REs. This is evaluated further in later test results. Observing the increase in sensor 

measurement noise in Figure 6.5, the noise quickly corrupts the EREs. This is where the extrapolation 

method is sensitive to noise since the process augments not only the measurement but the noise 

component too.  
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Figure 6.5 - DE sensor Range errors under variable sensor measurement noise 𝜎  , Path angle = 0.2 rad, IML = 0.1 s 
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DE Sensor Response Under Variable IML  

The individual sensor responses under Test 2 conditions are illustrated in Figure 6.6, where to identify 

the EREs more easily, the measurement RE and Δ𝑑
,

 plots are omitted. Most noticeably the IML 

is seen to exacerbate the EREs across all sensors.  

As established in the analysis of Test 1 results, given in Section 6.2.1.1.1.1, the linear 

extrapolations are prone to errors. The magnitude of these extrapolation errors correlates to the 

sensor sequence, such that sensor one and sensor four exhibit the greatest and least ERE respectively. 

This effect is attributed to the extended period of required extrapolation to compensate for the 

greater MLa. Since the estimation is carried out at the instant of the most recent (𝑖 = 4) 

measurement, there is no MLa for the last measurement and therefore no need for extrapolation. In 

this case the resultant ERE is purely measurement noise. This is highlighted in Figure 6.5 where the 

REs are equivalent.  

Test 2 results also reflect the observations made for Test 1. Whereas the IML increases, the 

error becomes more systematic, and the errors become less random.  



205 

 

 

Figure 6.6 - Direct Extrapolation Sensor errors for variable IML. Path angle = 0.4 rad and 

Measurement noise =1 mm.  

6.2.1.1.1.2 DE Sensor Response Under Variable Path Angle   

The individual sensor responses under Test 3 conditions are illustrated in Figure 6.7, where it can be 

observed that the larger Path Angle (PA) leads to an increase in RE but a more evenly distributed error.  

Firstly, the PA impacts the linear change assumption. As the target’s trajectory becomes more 

non-linear, the change in measurement is more significant. Therefore, the ERE increases due to the 

applied linear extrapolation assumption failing to correctly describe a less constant change in distance. 

While it is not fairly represented in Figure 6.7, as the x-axis scales are not equivalent, it should be 

noted that for greater PA, the same change in measurement value is carried out over significantly less 

estimation intervals.  

Secondly, where the PA is increased, the radius of the trajectory path is reduced. The radius of 

the circular path affects the relative distances from the sensor to the nearside and the far-side of the 

circular path. Consequently, the rate of change in measurements is more evenly distributed resulting 

in a higher positive to negative error ratio.
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Figure 6.7 - DE Sensor range errors under variable Path angle for IML = 0.1 s and Measurement noise = 1 mm.
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From the sensor level study conducted in Tests 1, 2 and 3, it is evident that the EREs, much like the 

IML error component, are a function of the random sensor measurement noise. The true change in 

measurement values is attributed to the target’s velocity vector and position of the target relative to 

the sensor as well as the IML which affects the extent of extrapolations and consequently exaggerates 

the extrapolation error.  

The results highlight that the principle of the DE approach works well to counter the effects 

of asynchronous measurements. However, small sensor measurement noise values reduce the 

effectiveness of the solution considerably and present the greatest challenge. This occurs because the 

extrapolation process exacerbates both the measurement and the noise component of the 

observation. Additionally, the rate of change described by the linear extrapolation process suffers lag 

under the nonlinear scenario. Critically, to attain a better response from the proposed solution the 

measurement noise must first be reduced. The following section considers noise reduction using 

Kalman Filter (KF) techniques.  

 

6.2.1.2 The Proposed Kalman Extrapolated Least Squares (KELS) Solution 

Linear Kalman Filters (LKFs) can be effectively applied to each sensor measurement for noise reduction 

and prediction. LKFs, unlike non-linear Kalman filters present a much lower computational burden, 

therefore should not significantly increase the complexity of the proposed approach. The less noisy 

output of the LKF is extrapolated to form a set of pseudo measurements which are applied to the LSS 

multilateration approach for state estimation. The following section describes the proposed KELS 

method.  

 

6.2.1.2.1 The Linear Kalman Filter Model 

Within the Fusion Centre (FC) sampling period [𝑡 , 𝑡 ), the proposed KELS solution employs a LKF 

for all sensor measurements. During the prediction phase the LKF must initially predict the 

measurement value 𝑑  for 𝑖 = (1, ⋯ , 𝑁). These predicted measurements are subsequently fused 

with sensor observations 𝑧  for 𝑖 = (1, ⋯ , 𝑁) to determine the optimal measurement values. The 

𝑖 𝑡ℎ sensor measurement at 𝑡  can be predicted using a Constant Velocity (CV) model: 

 

 𝑑 =  𝑑 + Δ𝑇
,

∗ 𝑉
,

. 

 

(6.18) 
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Where 𝑑  is the obtained range measurement received in the previous estimation period 

[𝑡 , 𝑡 ), Δ𝑇
,

 is the estimation period given by 𝑡 − 𝑡  and 𝑉
,

 is the velocity, given 

by the range displacement over time: 

 
𝑉

,
=  

𝑑 −  𝑑

𝑡 − 𝑡
=

Δ𝑑
,

Δ𝑇
,

. 

 

(6.19) 

For a generalized asynchronous scenario, the process equation is given in the matrix form 𝑋 =

𝐴 𝑋  as: 

 𝑑

𝑉
,

=
1 Δ𝑇

,

0 1
 

𝑑

𝑉
,

. (6.20) 

Where 
𝑑

𝑉
,

 is the state 𝑋  to be determined and 
1 Δ𝑇

,

0 1
 is the state transition matrix 

𝐴 . 

Throughout runtime, the timestamps of the received data are compared to establish the estimation 

period Δ𝑇
,

= 𝑡 − 𝑡 . For initialisation the first two measurements 𝑑  𝑎𝑛𝑑 𝑑  and their 

respective timestamps 𝑡  𝑎𝑛𝑑 𝑡  would be applied within (6.19) to establish the initial velocity value 

of 𝑉
,

. Due to this initialisation process, the proposed solution does not produce an estimate until 

the third estimation interval, consequently the initialised state vector is  𝑋 . 

 

6.2.1.2.2 Batch vs Sequential Approach  

Noticeably the matrix dimensions for a single sensor as shown above are very low, allowing for high 

computational efficiency. However, for a sensor network of 𝑁 sensors applying this to a batch process 

equation for the system would be as follows: 

 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑑

𝑉
,

⋮
𝑑

𝑉
, ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
1 ∆𝑇

,
⋯ 0 0

0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 ∆𝑇

,

0 0 ⋯ 0 1 ⎦
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑑

𝑉
,

⋮
𝑑

𝑉
, ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. (6.21) 

Where the given state dimensions are 2𝑁 ∗ 1, the KF process is expected to suffer from dimensionality 

in which the expansion of the KF dimensions, due to higher sensor numbers, will lead to a reduced 

performance as high dimension matrix multiplication is computationally costly. 
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Furthermore, in a batch process the computation cannot begin until the 𝑁 𝑡ℎ sensor 

measurement is received by the FC, resultantly the Kalman filtering, extrapolation and multilateration 

processes will only commence at the end of the sampling period. Consequently, a batch approach is 

expected to lead to an increase in estimation latency and a surge in processing power.  

Alternatively, drawing inspiration from sequential KF approaches [175], [188], the use of 

multiple lower dimension LKFs (6.31) may be employed sequentially.  

The proposed KELS process uses an individual Linear Kalman filter (𝐿𝐾𝐹 ) for each sensor. 

Each sensor specific LKF can be executed the instant a measurement is received, thereby spreading 

the computations throughout the sampling period. This results in a lower overall estimation latency 

and even distribution of processing demands. Furthermore, the sequential approach reduces the 

dimension of the KF matrices and thus redundant calculations.  

For each sensor, once a measurement is obtained, the prediction stage for the 𝑖 𝑡ℎ sensor KF 

𝐿𝐾𝐹  is computed [133]: 

 

 𝑋 = 𝐴 𝑋 , 

𝑃 = 𝐴 𝑃
 

𝐴 + 𝑄
,

. 

(6.22) 

(6.23) 

The predicted sensor range estimate is then compared in the measurement update stage [133]: 

 

 
𝐾 = 𝑃 𝐻 𝐻𝑃 𝐻 + 𝑅 , 

𝑋 = 𝑋 + 𝐾 𝑧 − 𝐻𝑋 , 

𝑃 = 𝐼 − 𝐾 𝐻 𝑃 . 

(6.24) 

(6.25) 

(6.26)  

 

In which, 

 
𝑃 =

𝜎 𝜎 𝜎

𝜎 𝜎 𝜎
 , 𝐻 =  [1 0], 𝑅 = 𝜎 . (6.27) 

In which, 𝜎  is the standard deviation of the range estimate, 𝜎  is the standard deviation of the 

estimated velocity and 𝜎  is the variance of the sensor measurement noise which is assumed to be 

known and derived from empirical measurements. As the process employs a CV model, the applied 

process noise covariance matrix 𝑄
,

 is given by the Discrete-time Nearly Constant Velocity (DNCV) 

matrix structure [142]: 

 

 
𝑄

,
=  

(∆𝑇
,

/4 (∆𝑇
,

) /2

(∆𝑇
,

) /2 (∆𝑇
,

)
𝜎 . (6.28) 
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Note that matrices 𝐻 𝑎𝑛𝑑 𝑅 are fixed values and therefore not denoted with a time subscript.  

 

6.2.1.2.3 Kalman Filter Prediction for Extrapolation  

The KELS solution so far employs Kalman filtering to reduce measurement noise, extrapolation for 

pseudo-measurement synchronization and the LSS for state estimation. Applying the predictive ability 

of KFs, like the SUKF solutions presented by Zhang et al. [188] and similar to predictive tracking for 

latency reduction [7], [124], [125], the sensor KFs can be used to carry out an additional prediction 

stage. This is referred to as the ‘synch prediction’, to attain the estimate of the sensor measurement 

at the fusion instant.  

The synch prediction stage is conducted to synchronise each sensor measurement to the 

estimation instant. Due to the differing magnitudes of MLa for each sensor the synch prediction is 

carried out over the MLa period. For a general asynchronous sensor network, where the IML is not 

constant, the MLa is variable and given for the 𝑘′𝑡ℎ estimation instant by:  

 

 Δ𝑡 , = 𝑡 − 𝑡 . (6.29) 

Taking the generalized set of equations, given by (6.20), the prediction stage is repeated where  

∆𝑇
,

is given by Δ𝑡 , .  

 

Figure 6.8 -Timing sequence of estimates and processes for KF range smoothing and extrapolation 

Figure 6.8 illustrates the timing process and predictive nature of the individual KFs approach for 

extrapolation. Measurements are obtained during the [𝑡 , 𝑡 ) and [𝑡 , 𝑡 ) estimation periods.  
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6.2.1.2.4 Sequential Sampling Adjustment of KELS Algorithm  

The proposed solution presented above is given for a generalised asynchronous solution where the 

IML may not be constant through each estimation period. 

Throughout this thesis the considered sampling scenario given in Section 5.2 regards 

sequential sampling with constant IML values. As such the sampling rate of each sensor ∆𝑇
,

 is 

assumed constant and equal to ∆𝑇. One can simplify the discrete time process of the range 

measurements to a Constant Change (CC) model in which the range measurement at the next time 

instance is equivalent to the sum of the previous measurements and the rate of change in 

measurement distance per sampling period: 

 

 
𝑑 =  𝑑 + ∆𝑇 ∗

𝑑 −  𝑑

∆𝑇
=  𝑑 + ∆𝑑

,
. 

 

(6.30) 

The CC model involves initialising ∆𝑑
,

 at the start of the process, where 𝑘 = 2. The CC process 

equation for the 𝑖′𝑡ℎ sensor LKF (𝐿𝐾𝐹 ) therefore can be simply represented in the following matrix 

form 𝑋 = 𝐴𝑋 : 

 𝑑

∆𝑑
,

=
1 1
0 1

 
𝑑

∆𝑑
,

. (6.31) 

Where 
𝑑

∆𝑑
,

 is the state 𝑋  to be determined and 1 1
0 1

 is the state transition matrix 𝐴. The 

synch prediction stage is then given by a repeated prediction step with a sensor specific state 

transition matrix 𝐴  and process noise covariance matrix 𝑄  [142]:  

  

 
𝐴 =  

1 Δ𝑡  
0 1

,   𝑄 =  
(Δ𝑡 ) /4 (Δ𝑡 ) /2

(Δ𝑡 ) /2 (Δ𝑡 )
𝜎  (6.32) 

In which the MLa is fixed and given by: 

 
Δ𝑡 =

Δ𝑡 (𝑁 − 𝑖)

𝑁
. (6.33) 

 

6.2.1.2.5 The Kalman Extrapolated Weighted Least Squares Solution 

The consideration of applied weightings is evaluated in the next part of this chapter. In general, for a 

homogenous system of sensors, the sensor measurement errors are equivalent. Therefore, the use of 

evenly distributed errors provides no additional information to the solution. Where sensors present 
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different measurement errors, these differences can be proportionally weighted. The weighted 

estimates are then considered within the WLS solution given in Section 2.1.3.1.5.1. leading to the 

Kalman Extrapolated Weighted Least Squares (KEWLS) solution.  

So far, the proposed KELS solution has only considered the LSS since the sensors are 

homogenous. However, the extrapolated pseudo measurements no longer retain equivalent error 

distributions. This can be seen by the distribution of sensor EREs shown in the three previous DE test 

results. In the simulated scenario due to the AWGN, the sensor measurement noise is evenly applied 

to all sensors. In contrast, the sensor sequence dictates a variability of MLa between all sensors, which 

results in a greater distribution of errors for the earlier sensors in the sequence.  Due to the equidistant 

sensor separations, sampling configuration and target trajectory considered, the PA affects the sensor 

errors of those that experience MLa evenly. There is a slight disparity when considering the 𝑁′𝑡ℎ 

sensor under variable PA, as this is not subjected to any MLa and therefore no additional extrapolation 

errors arise in the 𝑁′𝑡ℎ sensor from a change in PA. As such, while the PA varies all sensors except the 

last experience a change in error. This is observable in the results of the DE scenario for Test 3 as 

shown in Figure 6.7. While this may be explored in greater detail in further work, this PA disparity only 

effects a single sensor. Therefore, during this study, only the disparity between sensor error 

distributions due to MLa effects, which effect all sensors and are considered to have a more prominent 

effect, are considered.  

The effects of MLa can be clearly seen in the results of the DE scenario for Test 2 as shown in 

Figure 6.6. To compensate for this, the more recently obtained measurement should be weighted 

higher than earlier measurements. However, this generalized assumption does not hold true for all 

time instances because EREs are dependent on both the velocity vector and the sensor position 

relative to the sensor. The simulated scenario considered throughout this thesis highlights the 

fluctuations in EREs with peaks of errors visible at distinct estimation intervals. Therefore, at a given 

estimation instant the errors may not correlate with the sensor sequence.  

Whilst this is acknowledged, the adaptive identification of the error magnitude, at distinct 

instances respective of the targets position and dynamics relative to each sensor, presents additional 

complexity to the solution which is not in line with the scope of this chapter.   

When assessing computational efficiency, the assumption applied is that the sensors 

weightings are relative to the sensor sequence. This can be neatly extracted from state estimate 

covariance matrix provided by the individual KFs after the synch prediction. These measurement 

variances can be applied to a WLS solution as measurement weightings. The inclusion of weightings 

within the KELS process is referred to as the KEWLS solution. The weightings approach and how it is 

applied is described below. 
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6.2.1.2.5.1 Weighting approach 

The respective variances 𝜎
,

of each pseudo-measurement 𝑑 ,   are extracted from the state 

estimate covariance matrix as 𝑃 (1,1). These are then applied as weightings using a Weighted Least 

Squares (WLS) approach [44]. 

  

 �̅� = (𝐺 𝑊 𝐺) 𝐺 𝑊 𝑏.   (6.34) 

Where 𝑊 is given as in (2.17).  

 𝑊 =  𝐷𝐶 𝐷. 

 

(2.17) 

In which, 𝐷 and 𝐶  are diagonal matrices of the extracted pseudo-measurements and the variances 

respectively.  

 𝐷 = −2 ∗ 𝑑𝑖𝑎𝑔 𝑑 , , 𝑑 , , ⋯ , 𝑑 , , 

 

𝐶 = 𝑑𝑖𝑎𝑔 𝜎
,

, 𝜎
,

, ⋯ , 𝜎
,

. 

(6.35) 

 

(6.36) 

 

The Proposed KELS and KEWLS solution is summarised in Algorithm 17. The author of this thesis notes 

that the state and covariance estimates generated from the synch prediction may be applied directly 

to generate the following state and state covariance within the subsequent prediction stage. For ease 

of explanation, this alternative approach is not reflected in this thesis. Alternatively, the results of the 

synch prediction step are utilised for multilateration and then subsequently ignored. 
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Algorithm 17: The Proposed KELS and KEWLS Solution22 

INPUT: Sensor positions 𝑺𝒊 = [𝒙𝒊, 𝒚𝒊]𝑻 for 𝒊 = (𝟏: 𝑵)  

 Initialisation: Under the given static sensor and constant IML scenario:  

1: Establish Δ𝑇 from (6.7) 

 Compute each sensors fixed Kalman filters  

2: For 𝑖 = (1: 𝑁) 

  Determine initial matrices 

3:  𝑃  initialised as an identity matrix 

4:  For k = (1:2) 

5:   Compute 𝛥𝑑 ,  from (6.2) using 𝑧 → 𝑑  

6:   Initialise 𝑋 = 𝑑 , Δ𝑑
,

 

7:  End 

  Determine synch matrices  

8:  Determine Δ𝑡  from (6.33) 

9:  Compute 𝐴  and 𝑄  as per (6.32) 

10: End 

11: Generate 𝐻 = [1 0 ] & 𝐴 = [10; 01] as per (6.31) 

12: Compute 𝑄 ,  using (6.28) where 𝛥𝑇 → 𝛥𝑇 ,  

 Estimation Loop 

13: For k = (3: Number of estimation intervals) 

14:  For 𝑖 = (1: 𝑁) 

15:   Execute 𝐿𝐾𝐹  prediction (6.22) & (6.23) using 𝑖′𝑡ℎ sensor filter matrices 𝑋  & 𝑃  

16:   Obtain 𝑖 𝑡ℎ sensor observation 𝑧  and respective covariance matrix 𝑅 

17:   Execute 𝐿𝐾𝐹  update (6.24) - (6.26) using 𝑖′𝑡ℎ sensor filter matrices 𝑋  & 𝑃  

18:   Perform synch prediction  

19:   Obtain 𝑋 , 𝑃  by executing 𝐿𝐾𝐹  prediction (6.22) & (6.23) using updated 𝑖′𝑡ℎ sensor filter 

matrices 𝑋 , 𝑃  and the 𝑖 𝑡ℎ sensor synch prediction matrices 𝐴  and 𝑄 .  

20:  End 

21:  If performing KELS computation  

22:   Extract predicted measurements from 𝑋  for 𝑖 = (1, ⋯ , 𝑁) 

23:   Using sensor position data formulate the LSS matrices (6.14) 

24:   Compute position estimate from LSS using (6.15) 

25:  Else If performing KEWLS computation  

 
22 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop. 
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26:   Compute 𝐷 and 𝐶  from (6.35) and (6.36) respectively 

27:   Determine 𝑊 from (2.7) 

28:   Carry out WLS using (6.34) 

29:  End 

30: End 

 

6.3 Simulation Study Against Existing Techniques 

The following sections compare the proposed KELS and KEWLS solutions against the DE and SUKF 

methods. Within this section the proposed KELS and KEWLS methods, given by Algorithm 17 are 

evaluated under the Reference Simulation given in Algorithm 11 for 500 iterations. 

 

6.3.1 System Identification of KELS  

The system identification process employed throughout this thesis is applied again to the proposed 

KELS solution where the optimal acceleration noise magnitude is equivalent for all sensor LKFs and 

selected to give the lowest average RMSE for both the highest and lowest PA values. The optimal 

values of the acceleration noise magnitude for all evaluated IML and measurement noise values are 

shown in Figure 6.9. Noticeably this exhibits an extremely linear and steady change in optimal 

acceleration noise magnitude across most scenarios. The sudden peaks visible at the higher IML values 

represent a region where the optimal acceleration noise magnitude reaches a plateau. At this point, 

the change in acceleration noise magnitude, across a region of values has a negligible effect on the 

response of the filter. While these peaks may be removed, they are the product of the utilised codes 

attempt to find a minimum and are kept for observation purposes and due to their lack of influence.  

The difference between KELS and KEWLS is only the use of weightings in the final estimation stage, 

therefore the optimal process noise values are equivalent in both solutions.  
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Figure 6.9 - Optimal acceleration noise magnitudes for the proposed KELS and KEWLS solutions at 

each considered scenario value. 

6.3.2 Simulation Results & Analysis  

Due to the superior accuracy performance of the SUKF solution demonstrated in chapter 5, the KELS 

and KEWLS approaches are evaluated against the SUKF alone. The results highlight only a slight 

difference and are illustrated in Figure 6.10 below as the Percentage difference between each SUKF 

and KELS RMSE value for the given IML (Δ𝑡 ), Sensor measurement noise (𝜎 ) and PA (𝜃 ) as given 

in:  

 

 𝑅𝑀𝑆𝐸% = 100

∗
𝐾𝐸(𝑊)𝐿𝑆 Δ𝑡 , 𝜎 , 𝜃 −  𝑆𝑈𝐾𝐹 Δ𝑡 , 𝜎 , 𝜃

𝑆𝑈𝐾𝐹 Δ𝑡 , 𝜎 , 𝜃
 

(6.37) 
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Figure 6.10 - RMSE Positioning error difference between the optimal SUKF and proposed KELS approach 
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The KEWLS and KELS approaches are highly similar in their relationship to SUKF therefore only the 

KELS % errors with respect to SUKF are shown in Figure 6.10. With the exception of only a few 

instances, indicated by the black regions in Figure 6.10, the SUKF obtains a higher accuracy than the 

KELS solution across all cases as shown by the positive difference. For the more non-linear trajectories, 

this improvement is very slight across most cases, as the SUKF solution suffers under the CV process 

model assumption.  

Relevant tabulated RMSE data for KELS-CV and KEWLS-CV is provided in Appendix C of this 

thesis and comparative tabulated data for KELS-CV and KEWLS-CV vs SUKF is provided in Appendix D. 

The average percentage difference for both the KELS and KEWLS solutions are provided in Table 6.2, 

from which the average percentage error for the KELS solution are shown to range from 20.51-13.31%.  

The KEWLS solution performance is considerably improved with lower minimum, average and 

maximum percentage errors. In the majority of cases, the KEWLS solution proves superior compared 

to the SUKF solution. It is important to note that the proposed approaches all suffer significantly at 

greater IML values where the linear extrapolations fail to accurately respond to changes in 

measurements. This is observed and analysed in Figure 6.6. However, under scenarios with 

measurement noise both KELS and KEWLS solutions perform comparably with the SUKF with no 

significant trends. 

For the more linear trajectories, given by 𝜃 = 0.2, the SUKF approach performs 

significantly better on average than either KELS or KEWLS. This is to be expected as the more linear 

trajectory is ideally suited to the process model of the SUKF. However, as the PA increases the 

proposed approaches KELS and KEWLS show significant improvements across a majority of scenarios. 

Nevertheless, the greater PA amplifies the errors at higher IML where linear extrapolations perform 

poorly.  

In cases where the IML is higher the shortcomings of the proposed solutions, which decrease 

performance over greater angles, are clearly seen. In general, the proposed approaches KELS and 

KEWLS perform best across the midrange of angles and show comparable performance to the SUKF 

solution for a wide range of scenarios. 

 

 

 

 

 

 

 



219 

 

 

Table 6.2 – Percentage difference of KELS and KEWLS vs SUKF 

Path Angle 𝜽𝒑𝒂𝒕𝒉 

(rad) 

0.2 0.4 0.6 0.8 1 

 KELS - SUKF 

Min. % diff 1.85 2.30 0.81 -0.25 -3.18 

Avg. % diff 20.51 13.31 14.56 16.49 18.31 

Max. % diff 63.61 192.29 221.35 233.92 243.62 

 KEWLS - SUKF 

Min. % diff -10.49 -2.37 -1.68 -1.55 -3.76 

Avg. % diff 5.33 4.48 6.35 7.76 8.89 

Max. % diff 29.86 107.63 121.26 129.60 135.54 

 

6.3.2.1 KELS vs KEWLS 

To compare the proposed approaches, Figure 6.11 below illustrates the percentage error difference 

between the KELS and KEWLS approach given by:  

 

 
𝑅𝑀𝑆𝐸% = 100 ∗

𝐾𝐸𝑊𝐿𝑆 Δ𝑡 , 𝜎 , 𝜃 −  𝐾𝐸𝐿𝑆 Δ𝑡 , 𝜎 , 𝜃

𝐾𝐸𝐿𝑆 Δ𝑡 , 𝜎 , 𝜃
 (6.38) 

The SUKF comparison above, detailed in Table 23, shows that the addition of the assumed weightings 

in the proposed KEWLS solution provides a consistent benefit across most scenarios. Considerable 

improvements are seen at lower PAs. As the PA increases the general improvements provided by the 

weightings have less impact. However, the opposite is true for larger IML scenarios where the 

weightings provide a markedly superior performance. 
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Figure 6.11 - Comparison of proposed KELS and KEWLS approaches 
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While the weighting is shown to be effective, the convenience of the simplified scenario under which 

this is tested cannot be dismissed. Given the equidistant sensor positions and circular trajectory each 

sensor is subjected to an equal distribution of range measurements. However, it can be reasoned that 

if the target were to favour a single region of the tracking area, the errors received by each sensor 

would not be equivalent. The sensor measurement noise is also assumed homogenous, which from 

the data in chapter 1 is evidently not the case, even for sensors of the same type. Furthermore, in 

practical scenarios measurement noise may fluctuate due to increased distances as is typical of RSS 

measurements which are worse at greater ranges, or multipath or noises exhibited at different areas 

within the environment. The IML within this simple scenario is also considered constant, whereas 

variations in IML between consecutive sensors may differ however the amount of MLa. For these 

reasons discussed the weightings applied to the KEWLS solution may be idealised to the given scenario 

and further testing, under non-idealised conditions, should be considered.  

 

6.3.2.2 Timing Performance  

The accuracy of the proposed solutions is shown to achieve comparable results to the optimal SUKF 

solution however the complexity of the proposed solutions are far less. This is tested by calculating 

the Estimation Runtime (ER) for both KELS and KEWLS in the same manner as previous chapters. The 

ER describes the average time it takes the processor to complete a single estimation. This is used to 

provide insight into the computational complexity of a solution. The simulation runtime is calculated 

using the inbuilt ‘tic/toc’ function in MATLAB software which, as documented [259], is unreliable for 

runtimes less than 10 ms. The individual localisation techniques are therefore looped 𝑁  times within 

the Reference Simulation Scenario, given by Algorithm 11, and later averaged out. The calculation is 

repeated below for clarity.  

 

 

𝐸𝑅 =
1

𝑁

𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑑

7854 ∗ 𝑁
 

 

 

 

  

(5.25) 

 

For this test 𝑁 = 50, each loop computing all 7854 estimations and repeating the test for 50 

iterations. The ER as computed in (5.25) for IML, 𝜎  and PA set to 1e-3s, 1e-3m and 0.2rad respectively. 

The KELS and KEWLS solution obtain ER values of 2.35e-5s and 3.31e-5s respectively.  

Comparing these ER values to the alternative approaches presented in Table 5.2, KELS and KEWLS are 

the second and third fastest solutions, only slower than the LSS solution which gives substantially 

reduced accuracy. In comparison to the optimal SUKF approach the KELS and KEWLS ERs present 
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68.11% and 55.1% improvements respectively. This shows that the proposed solutions, KELS and 

KEWLS, require one third and less than half of the time and energy to achieve highly similar results, 

respectively. The computational complexity of the SUKF is instigated from the repeated use of 

complex nonlinear Unscented Transforms. While the KELS and KEWLS approach apply more efficient 

LKFs, prediction and LSS techniques. 

Furthermore, the solutions presented throughout this thesis are given for 2D systems. In 

contrast to the SUKF and UKF approaches, for three-dimension systems, the computation 

improvements of KELS and KEWLS can be expected to increase further. This is due to the fact the 

dimension of the LKFs within KELS and KEWLS remains constant for all dimensions and only the 

dimension of the multilateration state matrix is required to increase. Whereas the SUKF and UKF 

techniques will require a state dimension increase of two states, pertaining to the third axis 

coordinates and its velocity component.  

 

6.3.2.3 Summary  

The SUKF solution is optimal with regards to accuracy but computationally costly whereas the 

proposed KELS and KEWLS solution are shown to be far more computationally efficient while 

performing comparably to the optimal SUKF solution in most of the considered scenarios. Naturally, 

this presents a compromise that must be made between energy efficiency and accuracy. While the 

decision is subjective to the application demands, the difference in accuracy between the proposed 

solutions and the SUKF solution is so slight that the proposed solutions can be argued to present a 

more significant advantage. Regardless the following work considers adaptations to further improve 

the accuracy of KELS and KEWLS.  

 

6.4 Further Development of KELS and KEWLS 

While the performance of the proposed KELS and KEWLS solutions are comparable to the optimal 

SUKF, but at a much lower computation cost, there is scope to improve the techniques further. This 

section further develops the KELS and KEWLS approach to improve accuracy, while attempting not to 

compromise latency and energy benefits.  

 

6.4.1 Analysis of the KELS/KEWLS Constant Change Model  

From the comparable response to the SUKF solution, the KEWLS and KELS approach is indirectly shown 

to have significantly improved performance compared to the earlier DE approach. The application of 

KFs has shown to greatly reduce the noise within the sensor measurements and therefore improve 

the accuracy of the LSS estimates. However, the performance of the LKFs relies heavily on the model 

used to predict and accurately smooth the errors. It should be noted that prior to the LSS estimation, 
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the KELS and KEWLS solutions follow the same process and exhibit identical range estimates. 

Therefore, the following section refers to both KELS and KEWLS equally but for ease of reading is 

described using KELS. 

To highlight the KF response the KELS approach is compared to the DE solution at a sensor 

level. Figure 6.12 below provides the average EREs over 5000 iterations given by the Reference 

Simulation Scenario, for Δ𝑡 = [0.0193,0.0373]/𝑠 and 𝜎 = [0.0046,0.022]/𝑚 over a single path 

cycle. The IML and sensor measurement noise values are selected to highlight the trends in the KELS 

solution 

The averaging process lessens the effects of the random sensor measurement error 

component, isolating the systematic error brought on by the linear extrapolations. The LKF process 

model effectively applies a linear extrapolation to reduce noise in the estimates and this process 

increases the systematic extrapolation error. The DE RE appears lower than the KELS RE in most cases.  

This is highlighted at the fourth sensor, where the DE approach applies no extrapolation and 

the RE is entirely due to sensor measurement noise. For the fourth sensor the KELS process applied 

no synch prediction step, however the KF process can be observed to introduce a systematic error 

component as indicated by the generally higher error and noticeable peak, in Figure 6.12. This peak 

correlates to where the constant change model is shown to be least applicable, as discussed in the 

previous DE studies.  

Figure 6.12 is constructed of 16 sensor level RE plots from four scenarios. Going from the left 

column to the right column illustrates an increase in sensor measurement noise while observing the 

top four plots against the bottom four plots shows a decrease in IML. 

Observing first the effects of an increase in sensor measurement noise across both levels of 

IML, as shown from the left to right columns of Figure 6.12, a greater level of RE for the KELS solution 

is observed. While not evident from the scaling, the systematic component of the DE RE is unaffected 

by the measurement noise since the DE solution ignores measurement noise and therefore this is 

averaged out. As discussed in Section 2.1.3.2.1.1, the response of the KF is heavily dictated by the 

noise parameters. Within this scenario, the increase in sensor measurement noise increases the KF 

weighting towards the predictions which are generated using the constant change model. Therefore, 

the response increases the systematic extrapolation error. This is more prominent for lower IML 

values where the random noise is dominant.  

For decreased IML, as shown from the top four figures against the bottom four figures in 

Figure 6.12, systematic error is reduced for both the DE and KELS solution due to a reduced estimation 

period. Comparatively, this reduction is less prominent within the KELS solution due to the dual use of 

linear assumptions within the initial prediction and the synch prediction.  
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Figure 6.12 - Sensor range errors for KELS and Direct Extrapolation Approaches for a single path 

trajectory cycle.  

Figure 6.12 presents four different scenarios of parameter sets which are given to be the four 

quadrants of the figure and differnetiated by darker or lighter backgrounds. For each scenario, the 

average Extrapolation Range Error for the DE and KELS techniques are given for the four individual 

sensors in separate graphs, or rows of Figure 6.12. The right column shows an increase in sensor 

measurement noise (𝜎 = 0.022 m) compared to the left column (𝜎 = 0.005 m), while the top four 

plots present a greater level of IML (Δ𝑡 = 0.04 s) than the bottom four (Δ𝑡 = 0.02 s). KFs are 

shown to be effective in reducing the random sensor measurement noise, however when isolating 

systematic error, it is clear that the Constant Velocity (CV) process model used in the proposed KELS 

approach is not optimal for describing the change in measurements. This is evident from the high 

systematic errors attributed to the KFing in Figure 6.12. This is also the case for the various 
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observations made throughout the DE analysis in Section 6.2.1.1.1. Even for a target travelling on a 

constant velocity trajectory, the change in distance relative to the sensor is not always constant and 

as such suggests the need for higher order filtering. This will therefore be applied in the following 

section.  

 

Remark 7 - The process model described here refers to the estimation of distances and not the 

trajectory of the target. The error within the simulations carried out can be expected to lessen if a 

solution describing the trajectory of the model, such as the UKF or SUKF, were to apply a constant 

acceleration model as opposed to a constant velocity model. Nevertheless, the study conducted in 

Section 5.3.1 describes constant velocity trajectories where the range estimates are best described by 

a constant rate of change model. From this, one can state that the KEWLS approach does not provide 

any overfitting advantage when compared to a CV SUKF or CV UKF approach, under the premise that 

the constant rate of change (CA solution) is more applicable, for estimating range measurements, 

under both linear and nonlinear target trajectories.  

 

Constant Acceleration Process model  

The application of a higher order, Constant Acceleration (CA), model within the KELS and KEWLS 

solution is discussed in this section. The CV and CA processes are differentiated through the suffix ‘-CV’ 

or ‘-CA’ respectively.  

The process for the KELS-CA and KEWLS-CA solutions is identical, except for the modifications 

required to the KF matrices and initialisation process.  

 

6.4.1.1 Generalised Solution  

For a general asynchronous scenario, where IML values may not be constant, the LKFs are adjusted to 

a CA process where the state to be estimated is given by:  

 

 
𝑋 = 𝑑 , 𝑉

,
, 𝑎

, ,
. (6.39) 

In which 𝑎  is the acceleration component of measurement displacement for the 𝑖 𝑡ℎ sensor, given 

by:  

 

𝑎
, ,

=
𝑉

,
− 𝑉

,

𝑡 − 𝑡
=

Δ𝑑
,

Δ𝑇
,

−
Δ𝑑

,

Δ𝑇
,

Δ𝑇
,

. 

(6.40) 
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Where Δ𝑇
,

 is the period between measurements given by timestamps 𝑡 − 𝑡 . 𝑉
,

is given 

by (6.19). On initialisation, due to the intervals required to establish an initial estimate of 𝑎
, ,

 

the proposed approach does not provide an estimate until the fourth estimation interval. The 

respective CA state transition matrix is given by [141]:  

 

 
𝐴 =  

1 Δ𝑇
,

(Δ𝑇
,

) 2⁄

0 1 1
0 0 1

. 
(6.41) 

 

The process noise covariance matrix, presented in Section 2.1.3.2.1.6, is given by the Discrete-time 

Nearly Constant Velocity (DNCV) matrix structure [141]:  

 

 

𝑄 = 𝐹𝐹 𝜎 =  

⎣
⎢
⎢
⎢
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,

1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝜎 .  (6.42) 

Where 𝐹 =
(

,
)

, Δ𝑇
,

, 1  is from Section 2.1.3.2.1.6. The covariance matrix 𝑃  is initiated 

as an identity matrix and the Measurement Matrix 𝐻 = [1 0 0]. The synch prediction stage is carried 
out over the Measurement Latency value in the same manner as before where  Δ𝑡 , = 𝑡 − 𝑡 . 
 

6.4.1.2 Thesis Applied Solution  

Following the simplified sequential sampling scenario considered throughout this thesis, in 

accordance with the proposed demonstration IoRL sampling scheme, the above process and matrices 

are applied as follows in the later simulations:  

Due to a constant sensor sampling period,  Δ𝑇
,

=  𝑡 − 𝑡 , for all 𝑘>2, the subscript 

and superscript can be omitted, and the state transition matrix and process noise covariance matrix 

are given as fixed values. Substituting Δ𝑇 for all the different instances of Δ𝑇  in (6.40) the acceleration 

component 𝑎
, ,

 is defined by: 

 

 
𝑎

, ,
 =  

Δ𝑑
,

− Δ𝑑
,

Δ𝑇
. (6.43) 

Therefore, the process equation 𝑋 = 𝐴𝑋  can more simply be represented as:  
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In which,  

 ΔΔ𝑑
, ,

=  Δ𝑑
,

− Δ𝑑
,

. (6.45) 

 

The process noise covariance matrix 𝑄 is given by [141]: 

 

 

𝑄 = 𝐹𝐹 𝜎 =  

⎣
⎢
⎢
⎢
⎡

Δ𝑇 Δ𝑇

Δ𝑇 1 ⎦
⎥
⎥
⎥
⎤

𝜎 .  (6.46) 

 

The covariance matrix 𝑃  is initiated as an identity matrix and the Measurement Matrix 𝐻 = [1 0 0].  

The Synch prediction step carries out a repeated prediction stage with a sensor specific state transition 

matrix 𝐴  and process noise covariance matrix 𝑄  [141]:  

  

 

𝐴 =  
1 Δ𝑡  

Δ𝑡

2
0 1 ∆𝑡
0 0 1

,    

𝑄 =  

(∆𝑡 ) /4 (Δ𝑡 ) /2 (Δ𝑡 ) /2

(∆𝑡 ) /2 (Δ𝑡 ) Δ𝑡

(Δ𝑡 ) /2 Δ𝑡 1

𝜎 . 

(6.47) 

 

In which the MLa is fixed and given by: 

 

 Δ𝑡 = Δ𝑡 ∗ (𝑁 − 𝑖).          (6.48) 

 

A summary of the proposed KELS-CA solution is given in Algorithm 18 below.  
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Algorithm 18: The Proposed KELS-CA Solution23 

INPUT: Sensor positions 𝑺𝒊 = [𝒙𝒊, 𝒚𝒊]𝑻 for 𝒊 = (𝟏: 𝑵) 

  𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒔𝒂𝒕𝒊𝒐𝒏: 𝑼𝒏𝒅𝒆𝒓 𝒕𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒔𝒕𝒂𝒕𝒊𝒄 𝒔𝒆𝒏𝒔𝒐𝒓 𝒂𝒏𝒅 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝑰𝑴𝑳 𝒔𝒄𝒆𝒏𝒂𝒓𝒊𝒐:  

1: Establish Δ𝑇 from (6.7) 

 Compute each sensors fixed Kalman filters  

2: For 𝑖 = (1: 𝑁) 

  Determine initial matrices 

3:  𝑃  initialised as an identity matrix 

4:  For k = 3 

5:   Compute 𝛥𝑑
,

 and 𝛥𝑑
,

  from (6.2) using 𝑧 → 𝑑  

6:   Compute ΔΔ𝑑
, ,

 from (6.45) 

7:   Initialise 𝑋 = 𝑑 , 𝛥𝑑
,

, ΔΔ𝑑
, ,

 

8:  End 

  Determine synch matrices  

9:  Determine Δ𝑡  from          (6.48) 

10:  Compute 𝐴  and 𝑄  as per (6.47) 

11: End 

12: Generate 𝐻 = [1 0 0 ] & 𝐴 as per (6.44) 

13: Compute 𝑄 using (6.46)  

 Estimation Loop 

14: For k = (4: 𝑘 ) 

15:  For 𝑖 = (1: 𝑁) 

16:   Execute 𝐿𝐾𝐹  prediction (6.22) & (6.23) using 𝑖′𝑡ℎ sensor filter matrices 𝑋  & 𝑃  

17:   Obtain 𝑖 𝑡ℎ sensor observation 𝑧  and respective covariance matrix 𝑅 

18:   Execute 𝐿𝐾𝐹  update (6.24) - (6.26) using 𝑖′𝑡ℎ sensor filter matrices 𝑋  and 𝑃  

19:   Perform synch prediction  

20:   Obtain 𝑋 , 𝑃  by executing 𝐿𝐾𝐹  prediction (6.22) & (6.23) using updated 𝑖′𝑡ℎ sensor filter 

matrices 𝑋 , 𝑃  and the 𝑖 𝑡ℎ sensor synch prediction matrices 𝐴  and 𝑄 .  

21:  End 

22:  If performing KELS computation  

23:   Extract predicted measurements from 𝑋  for 𝑖 = (1, ⋯ , 𝑁) 

24:   Using sensor position data formulate the LSS matrices (6.14) 

25:   Compute position estimate from LSS using (6.15) 

 
23 Ranges of values are represented in the following manner: (initial value : incremental value : end value) and may, in some cases, be 

assigned equivalent to a variable. Where an incremental value is not given, the increments are defaulted to integers of one. When used as part 

of a ‘For’ loop, each value in the given range is applied individually within a single loop. 
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26:  Else If performing KEWLS computation  

27:   Compute 𝐷 and 𝐶  from (6.35) and (6.36) respectively 

28:   Determine 𝑊 from (2.7) 

29:   Carry out WLS using (6.34) 

30:  End 

31: End 

 

6.5 Simulation Study  

The following sections compare the proposed KELS and KEWLS solutions against the DE and SUKF 

methods. Within this section the proposed KELS-CA method given by  Algorithm 18 and KEWLS-CA 

method given by the described substitutions to  Algorithm 18, are evaluated under the Reference 

Simulation given in Algorithm 11 for 500 iterations. 

 

6.5.1 KELS-CA System Identification  

The system identification process employed throughout this thesis is applied again to the proposed 

KELS-CA solution where the optimal acceleration noise magnitude is equivalent for all sensor LKFs and 

selected to give the lowest average RMSE for both the highest and lowest PA (𝜃 ) values. The 

optimal values of the acceleration noise magnitude for all evaluated IML and Measurement noise 

values are shown in Figure 6.13. The optimal acceleration noise magnitude values for the KELS-CV 

approach are given for comparison. As with the KELS-CV and KEWLS-CV solutions, the difference 

between KELS-CA and KEWLS-CA is in the final estimation stage therefore the optimal process noise 

values are equivalent 

With the understanding that the 𝜎  value scales the process noise covariance 𝑄, and therefore 

affects the weightings of the measurements and process equations within the KFs, a lower 𝜎  indicates 

optimal performance due to a greater reliance on the process model. Visual comparison between the 

optimal values for KELS-CV and KELS-CA indicates a clear improvement in the suitability of the CA 

process model.  
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Figure 6.13 - Optimal Acceleration noise magnitude for the proposed KELS-CA (opaque) solution, and 

KELS-CV (translucent) for reference 

6.5.2 RMSE Results 

The RMSE results of both the proposed KELS-CA method given by Algorithm 18, evaluated under the 

Reference Simulation given in Algorithm 11 for 500 iterations, are presented in Figure 6.14 for all 

considered scenarios as a percentage difference between the proposed KELS-CA and SUKF approach 

calculated using (6.37). Relevant tabulated RMSE data for KELS-CA and KEWLS-CA is provided in 

Appendix C of this thesis and comparative tabulated data for KELS-CA and KEWLS-CA vs SUKF is 

provided in Appendix E of this thesis.  
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Figure 6.14 – RMSE percentage difference between the SUKF and proposed KELS-CA solution 
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A summary of the RMSE percentage differences for both the KELS-CA and KEWLS-CA solutions is 

given below in Table 6.3.  

 

Table 6.3 – Percentage difference of KELS-CA and KEWLS-CA vs SUKF 

Path Angle 𝜽𝒑𝒂𝒕𝒉/

𝒓𝒂𝒅 

0.2 0.4 0.6 0.8 1 

 KELS-CA - SUKF 

Min. % diff -13.88 -25.51 -30.12 -32.84 -33.02 

Avg. % diff 15.30 1.36 -2.40 -3.41 -1.01 

Max. % diff 40.96 32.13 75.06 62.56 81.68 

 KEWLS-CA - SUKF 

Min. % diff -24.61 -29.39 -31.82 -33.52 -33.13 

Avg. % diff -0.33 -5.35 -6.40 -6.57 -4.15 

Max. % diff 22.93 19.74 65.54 55.36 57.77 

 

Position estimation performance of the KELS-CA solution is significantly more accurate than the KELS-

CV solution, as indicated by lower percentage differences for all cases. These results are further 

improved through the weighted KEWLS-CA approach, where again, the weighting proves highly 

effective. As indicated by the blue region in Figure 6.14 and the negative average values in Table 6.3, 

the proposed KELS-CA and KEWLS-CA solutions provide substantial accuracy improvements, in most 

considered cases, compared to the optimal SUKF approach.  

 It can be seen that the SUKF solution is better suited to more linear trajectories that better 

satisfy the CV process model applied. However, as the path nonlinearity increases, the KELS-CA and 

KEWLS-CA solutions achieve higher accuracy for lower IML scenarios. As observed for the KELS-CV and 

KEWLS-CV solutions, the extrapolations lead to more significant errors for greater IML values; 

however, the CA model reduces these negative impacts considerably.  

 It should be noted that for substantially high IML and sensor measurement noise, the 

proposed solutions can be seen to obtain a poorer performance than the optimal SUKF solution.  

However, drawing on observations from chapter 5, the high measurement noise region, in 

which the KELS-CA and KEWLS-CA solutions diminishes in comparable accuracy to the SUKF, the SUKF 

performance is similar to that of the more computationally efficient UKF.  

The author of this thesis, therefore, argues that within these high sensor measurement noise 

regions, where the SUKF solution is dominant over the proposed approach, the need for an 

asynchronous solution is redundant. The noise is so great that the more computationally efficient UKF 

solution should be appointed due to its comparable performance. This is illustrated in Figure 6.15, 
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where the optimal RMSE obtained between the KELS-CA, SUKF and UKF solutions are presented for 

all considered scenarios. In summary, the proposed KELS-CA and KEWLS-CA solution are shown to 

achieve optimal accuracy across the majority of evaluated strategies, for high IML values, the SUKF is 

still optimal in regards to accuracy while the more efficient UKF solution should be applied for higher 

measurement noise cases.  

 

 

Figure 6.15 - Accuracy comparison of KELS-CA, SUKF and UKF solutions under various scenarios 

6.5.3 Sensor Level Performance   

The improved performance of the KELS-CA solution can be attributed to it being a better-suited 

process model to the scenario, correctly capturing that the change in measurements are typically not 

constant. To illustrate this point, Figure 6.16 presents the ERE from the DE, KELS-CV and KELS-CA 

solutions for the same simulated parameters considered in Section 6.4.1 and shown in Figure 6.12. 

The author of this thesis notes that the ERE values are equivalent for both the KELS and KEWLS 

solutions therefore, only the KELS solution is referred to in the following analysis.  
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Figure 6.16 - Sensor Range Errors over 1000 iterations for the DE, KELS-CV and KELS-CA solutions.  

Figure 6.16 presents four different scenarios of parameter sets which are given to be the four 

quadrants of the figure and differnetiated by darker or lighter backgrounds. For each scenario the 

average Extrapolation Range Error for the DE, KELS-CV and KELS-CA techniques are given for the four 

individual sensors in separate graphs, or rows of Figure 6.16. The right column shows an increase in 

sensor measurement noise (𝜎 = 0.022 m) compared to the left column (𝜎 = 0.005 m), while the 

top four plots present a greater level of IML (Δ𝑡 = 0.04 s) than the bottom four (Δ𝑡 = 0.02 s). 

The CA process model still introduces more systematic noise than the DE approach; however, from 

Figure 6.16, the systematic errors produced by the extrapolation estimations are shown to visibly 

reduce, in most cases, when comparing the CA to the previous CV model. This is evident in the peaks 

and across the range of estimates throughout the path cycle in all plots of Figure 6.16. Additionally, 
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each CA response during the sharper change in measurement values is seen to overshoot, producing 

two peaks in the absolute value.  

Otherwise, similar trends regarding the Kalman filtering response with regards to the IML and sensor 

measurement noise are observed for both the CA and CV models as discussed in Section 6.4.1.  

 

6.5.4 Energy Efficiency  

To evaluate the complexity of the proposed KELS-CA and KEWLS-CA solutions the Estimation Runtime 

(ER) is calculated, this is taken to reflect the energy demand of the solutions and therefore the energy 

efficiency.  

As in Section 6.3.2.2, 𝑁 = 50 where each loop computes all 7854 estimations and repeats 

the test for 50 iterations. The Average Estimation Runtime (ER) as computed in (5.25) for IML, 𝜎  and 

PA set to 1e-3s, 1e-3m and 0.2rad respectively. The ER values obtained for the proposed KELS-CA and 

KEWLS-CA solutions are 2.51e-5s and 3.5e-5s respectively. For comparison, the computation time of 

all proposed variations of the proposed solutions are presented in Table 6.4. Compared to the CV 

based solutions the proposed CA based solution results in a slightly higher increase in computational 

complexity due to the greater state dimensions. Regardless of this, the proposed KELS-CA and KEWLS-

CA solutions are 65.94% and 52.21% more efficient than the SUKF solution respectively.  

 

Table 6.4 – Performance summary of existing and proposed localisation solutions 

 

To better visualise the magnitude of the difference the average runtime for all 50 iterations is 

presented in Figure 6.17 below. From Figure 6.17 it is evident that the weighting process in the KEWLS 

solutions is more demanding than the additional state dimensions required of the CA model.  

 

Solution LSS KELS-

CV 

KEWLS-

CV 

KELS-

CA 

KEWLS-

CA 

UKF SHI MSHI SUKF 

Estimation 

Runtime /s 

8.87e-6 2.35e-5 

 

3.31e-5 

 

2.51e-5 

 

3.50e-5 

 

6.03e-5 6.78e-5 6.81e-5 7.37e-5 
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Figure 6.17 - Comparison of Average Estimation Runtime for various localisation methods 

6.6 Chapter 6 Conclusions  

Throughout this chapter, a simple and effective novel solution has been proposed to achieve accurate 

and computationally more efficient localisation when considering a system using nonlinear range 

measurements that are sequentially sampled. Through various simulation studies and analysis, the 

proposed solution is shown to outperform the optimal Sequential Unscented Kalman Filter (SUKF) 

significantly in regard to computational efficiency while obtaining superior accuracy and reliability for 

most considered values of IML, sensor measurement noise and path nonlinearity. The Proposed KELS 

and KEWLS solution enables energy savings of over 50% and can be applied to any range-based 

localisation technique. However, one must also consider the estimation frequency advantage 

provided by the SUKF. 

With regards to the IoRL project, where sequential measurement sampling is shown to be 

present, the VLC RSSI accuracies presented within Chapter 3 are within the centimetre range, and the 

IML values are given to be 1ms. Therefore, given these values, the proposed KELS and KEWLS methods 

are the optimal solutions for VLC position estimation within the IoRL project. The mmWave accuracies 

are undetermined within the IoRL project and cannot be commented on.  

While the proposed solutions show strong promise, the simplified scenario considered 

throughout this thesis should be extended to assess the proposed solutions further and evaluate the 

use of weightings applied in the KEWLS solution within a more general sense. This is discussed in 

further works.  
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7 Thesis Conclusions and Further Work 

7.1 Conclusions 

This digital era, needs high accuracy and low latency communications and positioning to support 

emerging markets and Location Based Services (LBS) for more densely populated and challenging 

environments. To satisfy these requirements, novel Radio Access Networks (RAN) and software 

solutions will be implemented within the latest and fifth generation of networks. Financed by Horizon 

2020, the Internet of Radio Light (IoRL) is an example of one such international research venture into 

5G networks for buildings using mmWaves and Visible Light Communications (VLC) technology. The 

research presented in this thesis explores the communication protocols and performance of the IoRL 

Indoor Positioning System (IPS) using measured and simulated data. The author of this thesis identifies 

the challenges within Visible Light Positioning (VLP) due to the use of light sources with non-

Lambertian emission patterns and the computational burden of existing techniques to resolve 

asynchronous sampling of non-linear range measurements. 

  

7.1.1 Visible Light Positioning  

For the widespread deployment of 5G networks, VLC technology is an immensely viable and exciting 

potential solution due to the minimal required adaptations to existing infrastructure, illumination, and 

cost benefits. With demands for improved communication and localisation, VLC sources should be 

expected in all manner of existing lighting systems. As such, the necessary measures need to be taken 

to ensure that the potential localisation performance is not hindered despite the lens or source 

structure. In an initial evaluation of the VLC data obtained through the IoRL measurement campaign, 

the author of this thesis, identifies the negative implications of directly applying the widely adopted 

Lambertian assumptions to a non-Lambertian source for traditional 2D multilateration techniques.  

This thesis then presents a novel calibration method and modification of the Lambertian range 

estimation, identifying and correcting the non-Lambertian region of the given light source. The 

proposed Halo-Lens Compensation (HLC) method significantly reduces Lambertian modelling errors 

by 50% when using average datasets and 39% for individual datasets. While this work evaluates a 

particular Total Internal Reflection (TIR) lens with a centrally frosted diffuser, it highlights the negative 

implications of applying Lambertian channel models to non-Lambertian sources for Visible Light 

Positioning (VLP) and the need for suitable calibration of channel parameters. This also demonstrates 

the potential for using non-Lambertian sources to achieve high positioning accuracy comparable to 

existing solutions using Lambertian sources. This principle can be applied to more varied lens 

structures, widening the suitable range of light fittings for VLP solutions.  
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7.1.2 Internet of Radio Light Data Fusion    

The thesis then considers the proposed IoRL architecture for achieving high quality and low latency 

localisation by fusing both mmWave and VLC data. The HCL method and obtained results are then 

combined through simulations with modelled mmWave data, where 2D tracking shows promising 

centimetre to millimetre levels of accuracy across a range of mmWave noise levels. This study 

highlights the potential of the IoRL architecture and provides preliminary insight into further system 

developments.  

  

7.1.3 Efficient Localisation for Asynchronously Sampled Non-Linear Range Measurements  

Within the IoRL architecture, different degrees of asynchronous sampling of range measurements are 

identified. While localisation solutions exist for asynchronous sampling of non-linear measurements, 

this thesis aims to understand better the effects of asynchronous measurements and the necessity of 

these solutions for various levels of sensor measurement noise, target trajectory and asynchronous 

sampling latencies. Through comprehensive simulations and analysis, the author of this thesis, 

identifies the latency effects of single and multi-sensor systems with and without sensor measurement 

noise. Collected data shows that while the performance of asynchronous techniques can vary, the 

optimal solution of the Sequential Unscented Kalman Filter (SUKF) provides a significant accuracy 

advantage over non-asynchronous localisation techniques at lower sensor measurement noise levels 

but at a greater computational cost. This highlights the trade-off between accuracy and cost, which is 

subject to individual application requirements. However, where sensor measurement noise is higher, 

the accuracy advantage presented by SUKF is reduced and even negated.  

As localisation performance improves, sensor measurement noise within wireless sensor 

networks will expectedly reduce. Therefore, the benefits of asynchronous solutions to achieve greater 

accuracy will be emphasised. However, the computational demand is not suitable for mobile 

applications where battery life and functionality are hindered. Therefore, the author of this thesis 

proposes a novel localisation solution for asynchronously sampled non-linear measurements by 

implementing low-cost linear techniques. In doing so, a weighted and non-weighted solution referred 

to as KEWLS-CA and KELS-CA are shown to achieve comparable, if not superior, results to that of the 

optimal SUKF solution with 52% and 66% energy reduction, respectively. 

 

 These presented solutions indicate substantial energy savings that can support a range of 

scenarios and prove to be optimal for use within the IoRL project, which exhibits 1 ms Inter 

Measurement Latencies (IML) and centimetre level accuracies. 
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In conclusion, this work demonstrates both the capability for high-performance VLP from non-

Lambertian sources and the potential for energy-efficient localisation for sequentially sampled range 

measurements without compromising accuracy. 

 

7.2 Further Work  

7.2.1 Non-Lambertian Sources  

In the later chapters of this thesis, a key emphasis is placed on the accuracy versus the cost of 

positioning systems. However, this was not the case in earlier work regarding the proposed HLC 

method. While the additional HLC process is slight, the computational demand of it should be 

considered against the accuracy benefits.  

Building on this notion of energy, the workload required for fingerprinting solutions is a 

significant negative factor in why scene analysis is not widely adopted. While the author of this thesis 

uses the data available to avoid the same challenges as Fingerprinting, the dimension of both the 

dataset required for the proposed calibration and the number of measurements within each dataset 

should be evaluated. While existing literature specifies that as little as two points may define a 

Lambertian distribution, this is not the case for non-Lambertian scenarios.  

This thesis explicitly considers the non-Lambertian lenses used within the IoRL Remote Radio 

Light Heads (RRLHs). While results prove the efficacy of non-Lambertian sources for high accuracy VLP, 

to support wider adoption of VLC technology, further analysis should be conducted on various lens 

structures.  

Despite the brief discussion and application of subcarrier influence within chapter 3, the 

conventional notion of using the highest subcarrier power was not absolute, and further analysis 

should be considered for optimising performance as specific subcarriers. 

Overall, the results of the IoRL VLP system are promising, however insight into 3D positioning 

solutions and angles of incidence should be conducted for non-Lambertian sources.   

 

7.2.2 Internet of Radio Light (IoRL) Data Fusion Modelling  

Chapter 4 presents an improved IoRL model than those previously developed by the author of this 

thesis. However, various developments should be considered to provide a more comprehensive 

overview of the performance of the IoRL solution. 

While the VLC errors suitably fit a normal distribution and are modelled as additive white 

Gaussian noise, the errors are not expected to be uniform throughout the tracking area. 
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 Modelling of individual range errors should be performed to reflect the noise parameters of 

respective light sources more appropriately. Regarding mmWave modelling, more sophisticated 

techniques such as raytracing, that consider the environment's geometry, signal frequency, system 

bandwidth, and multipath effects can be expected to provide a more accurate response.  

Further measurements, particularly in the case of mmWave, will aid in correctly describing the 

response of the system. More extensive data collection will enable proper 3D modelling, where the 

existing system is limited to a 2D plane. Additionally, the solution should be tried on more realistic and 

challenging trajectories where more sophisticated process models can be used. The Location Server 

structure could also be improved to facilitate multiple users and reduce the overall latency, thereby 

enhancing the system response and properly utilising each dataset.  

  

7.2.3 Survey of Asynchronous Sampling Techniques  

Chapter 5 presents an evaluation of existing localisation solutions that both do and do not consider 

asynchronous sampling. While the conducted study provides critical insight into sequential sampling, 

as is experienced within the IoRL system, the modelled parameters are strongly simplified for 

preliminary evaluation. Further considerations could give a more comprehensive overview of these 

solutions for Indoor Positioning System (IPS) designers.  

 Regarding the sampling protocol, the sequential sampling structure doesn’t account for the 

delay between sampling intervals. These would be expected from the IoRL sampling during the first 𝑁 

subframes of the transmission block. Moreover, the current solution ignores transmission delays, 

which are evident within the IoRL IPS as tested in chapter 3. In this case, the final sensor 

measurements would not be free from extrapolation and may incur additional errors. For a wider 

approach, a more generally asynchronous system could be considered, in which the sampling periods 

of individual sensors is not equivalent, measurements might suffer delays and might arrive out of 

sequence.  

Regarding the system parameters, the system should be extended to evaluate a more 

significant number of parameters. Such as for a varied number of sensors, arbitrary placement of 

sensors, and different target trajectories. Additionally, analysis of the localisation techniques for 3D 

positioning could be more effective, where specific solutions may be less accurate or suffer more 

significant latencies. 

  

7.2.4 Further Evaluation of KELS and KEWLS 

The work presented in chapter 6 offers novel solutions to the asynchronous sampling problem 

however faces many of the same criticisms regarding the oversimplifications made in chapter 5. A 
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more comprehensive study might highlight necessary changes or potential limitations within the 

proposed solutions. Most notably, the KELS and KEWLS solutions are presented in a generalised 

manner. However, in keeping with the IoRL protocol, the conducted simulations consider the 

simplified sequential scenario. Furthermore, while measurement noise is considered and therefore 

system reliability is evaluated, consideration of corrupt or missing data sets would be of interest for 

application in practical systems.  

The series of tests conducted throughout this thesis are limited to 2D tracking, and while the 

processes can be easily extended to 3D space; the exact effects remain unknown. The KELS and KEWLS 

approaches strictly utilise single dimension KFs; therefore, applications within 3D positioning would 

only require modifications within the Least Squares Solution (LSS) multilateration process at the end. 

However, for the SUKF and UKF approaches, the state vector increases by two variables for each 

dimension and these additional calculations are carried through the computationally extensive 

Unscented Transforms (UT). Therefore, it is suggested that for 3D solutions, the proposed KELS and 

KEWLS solutions may provide an even greater computational advantage over the UKF and SUKF 

approaches, but this is yet to be tested.  

 One key advantage of the SUKF approach remains the estimation update frequency, which 

considerably reduces estimation latency. This is a critical advantage when considering larger sensor 

networks in which batch process solutions present greater overall delays. Additionally, this might lead 

to extended extrapolation errors within the proposed solutions. To further increase the suitability of 

the proposed KELS and KEWLS solutions above existing systems, additional methods could be 

considered which would increase the estimation frequency and explore more extensive sensor 

networks.  

 As discussed in chapter 6, the proposed weighted solution KEWLS utilises a simplified 

assumption of sensor error distributions concerning the sampling sequence. Despite this assumption 

proving consistently beneficial within the considered scenario, one must consider the simplifications 

made to the trajectory, sensor placement, noise distribution and sequencing. To this end, the author 

of this thesis proposes that further testing is required to explore the suitable extent of this weighted 

approach in a broader setting.  
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