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ABSTRACT Approximate filtering algorithms in nonlinear systems assume Gaussian prior and predictive
density and remain popular due to ease of implementation as well as acceptable performance. However, these
algorithms are restricted by twomajor assumptions: they assume nomissing or delayedmeasurements. How-
ever, practical measurements are frequently delayed and intermittently missing. In this paper, we introduce a
new extension of the Gaussian filtering to handle the simultaneous occurrence of the delay in measurements
and intermittently missing measurements. Our proposed algorithm uses a novel modified measurement
model to incorporate the possibility of the delayed and intermittently missing measurements. Subsequently,
it redesigns the traditional Gaussian filtering for the modified measurement model. Our algorithm is a
generalized extension of the Gaussian filtering, which applies to any of the traditional Gaussian filters, such
as the extended Kalman filter (EKF), unscented Kalman filter (UKF), and cubature Kalman filter (CKF).
A further contribution of this paper is that we study the stochastic stability of the proposed method for its
EKF-based formulation. We compared the performance of the proposed filtering method with the traditional
Gaussian filtering (particularly the CKF) and three extensions of the traditional Gaussian filtering that are
designed to handle the delayed and missing measurements individually or simultaneously.
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INDEX TERMS Delayed measurements, Gaussian filtering, missing measurements, nonlinear Bayesian
filtering.

I. INTRODUCTION17

Modern scientific tools and technologies often involve sen-18

sors that give noisy data [1], [2]. In non-engineering applica-19

tions, survey and experimental data are often noisy [3]. Very20

often, noisy data are used for determining the hidden states of21

a system (or process). A popular mathematical tool to handle22

this problem is estimation, and a recursive process of estima-23

tion is known as filtering [1], [2]. Some crucial scientific and24

engineering domains involving the applications of estimation25

and filtering are target tracking [4], biomedical modeling [5],26

industrial diagnosis [6], weather forecasting [3], and forecast-27

ing prices of financial derivatives [7].28

The associate editor coordinating the review of this manuscript and

approving it for publication was Feiqi Deng .

A commonly accepted filtering framework is the Bayesian 29

framework that gives a probabilistic solution in terms 30

of the prior and posterior probability density functions 31

(PDF). The popularly known Kalman filter [8] is an opti- 32

mal linear Bayesian filter. However, no optimal nonlinear 33

Bayesian filter in closed form is reported in the litera- 34

ture till today, and the practitioners rely on approximated 35

methods. The literature witnesses two popular approxi- 36

mated nonlinear filtering methodologies, known as Gaussian 37

filtering [9], [10] and particle filtering (PF) [9], [11]. 38

Particle filters require specialized hardware in real time 39

applications due to their high computational complexity. 40

We focus on Gaussian filters, i.e., filters which assume 41

Gaussian prior and posterior densities in this paper, which 42

are far easier to implement, are very common in engineering 43
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applications and can also work as a proposal stage for particle44

filters.45

Gaussian filtering [9], [10] approximates the prior and46

posterior PDFs as Gaussian and characterizes them with the47

corresponding means and covariances. However, the com-48

putation of mean and covariance involves integrals which49

are unavailable in close form and need to be numeri-50

cally approximated during filtering. Some of the popular51

Gaussian filters are the extended Kalman filter (EKF) [1], the52

unscented Kalman filter (UKF) [12], the cubature Kalman53

filter (CKF) [13], the cubature quadrature Kalman filter54

(CQKF) [14], the Gauss-Hermite filter (GHF) [15], and the55

exponentially-fitted CKF (ECKF) [16]. The Gaussian filters56

are sub-optimal, mainly due to the Gaussian approximation57

of arbitrary prior and posterior PDFs. However, they are58

often accurate enough for practical applications under lenient59

environments. Here, the term ‘lenient environment’ imposes60

two major restrictions: i) the measurements are not delayed in61

time and ii) definite availability of measurements is ensured62

at every sampling instant. This presents difficulties if practi-63

cal measurements are often time-delayed and intermittently64

missing.65

It is worth mentioning that a marginal delay in measure-66

ments is inherent due to the response time of the mea-67

suring devices. Moreover, the delay may further increase68

and become large due to various reasons, such as network69

delay [17] and propagation delay [18]. In such cases, ignoring70

the measurement time delay may have a serious impact on71

the state estimation accuracy. The early literature on filtering72

with delayed measurements [19], [20], [21] extended the tra-73

ditional Gaussian filters for delays up to one or two sampling74

intervals. Later, [22] extended the traditional Gaussian filter-75

ing for larger delays, considering that the delay statistics are76

known. This method is further extended in [23] for unknown77

delay statistics.78

Similar to the delay, there are various practical reasons79

for intermittently missing measurements. A predominant rea-80

son is the inefficient network and communication channels81

used for measurement data transmission [24]. Some other82

common reasons, such as the use of time-sharing sensors83

and the temporal sensor failures, are reported in [25], [26],84

and [27]. Besides these possible reasons, the measurements85

may become unidentifiable in heavy clutter environment,86

which is also addressed as a missing measurement [28].87

In an early development on filtering with missing measure-88

ments, [26] modified the traditional EKF for partial missing89

measurements, assuming that a fraction of each measurement90

is available. Later, [29], [30] investigated the UKF for nonlin-91

ear stochastic systemswithmissingmeasurements. In another92

development, [31] introduced a distributed filtering method93

for saturated systems. However, its design aspect is limited to94

linear dynamical models with certain modifications to handle95

the nonlinearity involved due to the saturation.96

The above discussed filters [19], [20], [21], [22], [23],97

[24], [25], [26], [27], [28], [29], [30], [31] are designed98

to handle either the delayed or the missing measurements.99

The literature [18], [32], [33], [34] on filtering with simul- 100

taneously occurring delayed and missing measurements wit- 101

nesses some developments for different classes of systems. 102

For example, [32] considered this problem in coupled neu- 103

ral networks and developed an estimation method. Simi- 104

larly, [18] develops a filtering algorithm for the delayed and 105

missing measurements. In this regard, it introduces sepa- 106

rate stochastic models for incorporating the delay and miss- 107

ing measurements possibilities. Subsequently, it introduces a 108

Ricatti-like equation for designing Kalman filtering method. 109

However, [18] restricts the delay up to one sampling interval, 110

wherein the practical delays can often be larger. Further- 111

more, [33] introduced unbiased finite impulse response-based 112

filtering approach for finite-horizon case, considering the 113

presence of delayed and missing measurements. However, 114

it assumes that the delay is time-stamped, while delays 115

without time-stamping are observed in many practical sys- 116

tems [35], [36]. Finally, [34] introduces three new designs 117

of robust linear Kalman filtering for handling the simulta- 118

neously occurring delayed and missing measurements. How- 119

ever, in every design, it restricts the delay as one sampling 120

interval, which can lead to poor accuracy if the real mea- 121

surement delay is higher. Moreover, [18], [34] rely on the 122

augmented state-space approaches, which may increase the 123

computational complexity significantly. 124

Although the above-discussed filtering methods 125

[18], [33], [34] can handle the simultaneously occurring 126

delayed and missing measurements, they have two broad 127

limitations: i) they are designed for linear dynamical systems, 128

ii) they fail to handle delays of more than one sampling 129

interval without time-stamping. For the nonlinear dynami- 130

cal systems, [37] is probably the only existing method to 131

handle the simultaneously occurring delayed and missing 132

measurements. It integrates a likelihood-based technique 133

with the nonlinear Gaussian filtering framework for handling 134

the simultaneously occurring delayed and missing measure- 135

ments. However, [37] uses an augmented state transition 136

equation, with the size of the system growing by a factor 137

of d , where d the maximum number of delays. The authors 138

also use Gaussian mixture with d components as a likeli- 139

hood function, and mention computational issues with large 140

number of components in the likelihood function. Indeed, the 141

increased size of the covariance matrices itself can present 142

significant computational issues in multidimensional integra- 143

tion involved. 144

In this paper, we develop a new extension of Gaussian 145

filtering to handle the simultaneously occurring delayed 146

and missing measurements for nonlinear dynamical sys- 147

tems. In this regard, we reformulate the measurement model 148

using a set of Bernoulli random variables to incorporate 149

the possibilities of delayed and missing measurements. 150

Subsequently, we re-derive the Gaussian filtering method 151

for the modified measurement model. It should be men- 152

tioned that we modify only the measurement model. Con- 153

sequently, in the redesigned Gaussian filtering, only the 154

filtering parameters related to the measurements, such as 155
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the measurement estimate, the measurement covariance, and156

the state-measurement cross-covariance, are re-derived. It is157

worth mentioning that our contribution is on developing a158

generalized Gaussian filtering methodology for the problem159

of delayed as well as missing measurements. Thus, it can be160

used for extending any of the existing Gaussian filters, such161

as the EKF, the UKF, and the CKF, for handling the simul-162

taneous occurrence of delayed and missing measurements.163

We study the stability of the proposed method by formulating164

it under the EKF-based design strategy. We test the perfor-165

mance of the proposed method under CKF-based formulation166

due to its popularity for high accuracy at a low computational167

cost. The performance analysis reveals an improved accuracy168

for the proposedmethod compared to the traditional Gaussian169

filtering method and its extensions in presence of delayed and170

missing measurements.171

In view of the above discussion, we highlight the main172

contributions of the manuscript as follows:173

• We introduce a stochastically formulated measurement174

model that incorporates the possibility of simultaneously175

occurring delayed and missing measurements.176

• We redesign the traditional Gaussian filtering for the177

modified measurement model to handle the simul-178

taneous occurrences of the delayed and missing179

measurements.180

• We consider arbitrarily large delays without time-181

stamping for nonlinear systems, whereas the existing182

filters such as those reported in [34] and [18] (without183

time-stamping) and [33] (with time-stamping) address184

the delayed measurements only for linear systems.185

Moreover, our algorithm, in contrast to [37], avoids com-186

putationally expensive state augmentation and instead187

relies on analytical expressions for the necessary con-188

ditional moments (which are additive in the number of189

maximum delays).190

• We study the stochastic stability of the proposed191

Gaussian filtering structure for the EKF-based192

formulation.193

• We validate the performance of the proposed Gaussian194

filtering methodology by two comprehensive simulation195

examples.196

The remaining part of the paper is organized as follows.197

In Section II, we mathematically formulate the problem198

of simultaneously occurring delayed and missing measure-199

ments, which is followed by the explanation of the proposed200

methodology in Section III. In Section IV, the stochastic201

stability of the modified Gaussian filter under the EKF-based202

formulation is performed. The simulation results are pre-203

sented in Section V, and finally the discussion and conclusion204

are highlighted in Section VI.205

II. PROBLEM FORMULATION206

Our problem is to develop an advanced Gaussian filter-207

ing methodology to handle the simultaneous occurrence of208

delayed and missing measurements. The standard represen-209

tation of the state-space model in a lenient environment210

(defined in the previous section) is as follows 211

xk = fk (xk−1, k − 1)+ ηk (1) 212

zk = hk (xk , k)+ νk , (2) 213

where xk ∈ Rn and zk ∈ Rq are state and measure- 214

ment variables, respectively, at k th sampling instant, k ∈ 215

{1, 2, . . . ,Ts} with Ts representing the number of sampling 216

intervals. Moreover, fk : xk−1 → xk and hk : xk → zk are 217

general nonlinear functions. Finally, ηk and νk are zero-mean 218

Gaussian noises representing the process and measurement 219

noises, respectively. The covariances of ηk and νk are denoted 220

as Qk and Rk , respectively. 221

Following our problem statement, we need to reformulate 222

the measurement model (Eq. (2)) to address the simultaneous 223

occurrence of randomly delayed and randomly missing mea- 224

surements. Our reformulation of the measurement model is 225

based on two sets of Bernoulli random variables, denoted by 226

α and 2: α corresponds to the missing measurements and 2 227

corresponds to the delayed measurements. 228

The measurements are generally received from multiple 229

sources, and they all may not be missing at the same time. 230

Thus, we consider that the measurement at any sampling 231

instant may be partly missing, i.e., specific elements of 232

the measurement may be missing at any particular instant. 233

Thus, we define a matrix of Bernoulli random variables, 234

λk = diag{α1k , α
2
k , . . . , α

q
k }with α

i
k ∀i ∈ {1, 2, . . . , q} being q 235

equiprobable Bernoulli random variables and E[λk ] = µk = 236

diag{µ1
k , µ

2
k , . . . , µ

q
k}. It should bementioned thatαik is either 237

0 or 1, with αik = 0 representing that the ith element of the 238

received measurement yk , denoted as yk (i), is missing. 239

For modeling the delay portion, we restrict the maximum 240

delay to Nmax . Nmax is the practitioner’s choice and it can 241

be assigned with a fairly large value if the expected delay 242

is large. Therefore, our model and the proposed filtering 243

technique should not be deemed to be restricted to small 244

delays. We define Nmax + 1 equiprobable Bernoulli random 245

variables: one for each of the current and the Nmax possible 246

delayed instants. At k th instant, we denote them as 2j
k ∀j ∈ 247

{1, 2, . . . ,Nmax + 1} with P(2j
k = 1) = E[2j

k ] = δd . 248

Note that 2j+1
k corresponds to jth delayed instant. We assign 249

20
k = 0, and model the actual measurement as 250

yk = λk

[
(1−20

k )2
1
kzk + (1−20

k )(1−2
1
k )2

2
kzk−1 251

+ · · · + (1−20
k )(1−2

1
k ) . . . (1−2

(Nmax )
k ) 252

×2
Nmax+1
k zk−Nmax

]
. (3) 253

The coefficients of zk−m ∀m ∈ {1, 2, . . . ,Nmax} gov- 254

ern the delay extent. For example, if the measurement 255

is one time-step delayed, i.e., yk = zk−1, then coeffi- 256

cient of zk−1, i.e., (1 − 20
k )(1 − 21

k )2
2
k takes the value 257

one, while the random variables associated with zk−m 258

∀m 6= 1 remain zero. At the same time, λk regulates the 259

missing measurement possibility. The diagonal elements of 260
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FIGURE 1. Pictorial diagram representing the sequence to be followed to obtain the received measurement yk from the ideal z1, z2, . . . , zk that
would have been received in the lenient environment.

λk are Bernoulli random variables, which take the values261

zero or one. The value one ensures that the measurement is262

received, while the value zero indicates that the measurement263

is lost.264

To this end, let us simplify the notation for the coefficients265

of zk−m as266

3k (m, j) =
( m∏
j=0

(1−2j
k )
)
2

(m+1)
k , (4)267

so that the received measurement is m-step delayed if268

3k (m, j) = 1, which means 2m+1
k = 1 and 2j

k = 0 ∀j ≤ m.269

Subsequently, Eq. (3) can be represented as270

yk = λk

[
3k (0, j)zk +3k (1, j)zk−1271

+ · · · +3k (Nmax , j)zk−Nmax

]
. (5)272

Thus, the measurement model can be finally given as273

yk = λk
Nmax∑
m=0

3k (m, j)zk−m, (6)274

where yk is the actual received measurement due to delay275

and missing possibilities. At this end, zk may be considered276

as an ideal measurement that might have been received in277

the lenient environment. A pictorial diagram representing the278

sequence to be followed to get yk from z1, z2, . . . , zk is shown279

in Fig. 1.280

It is assumed that αik and 2j
k are independent random281

variables ∀{k, i, j}. Furthermore, αjk and 2
j
k are independent282

of αik and 2i
k , respectively for j 6= i. Our objective in the283

next section is to redesign the Gaussian filtering method for284

the state-space model represented by Eqs. (1) and (6) so that285

the possibilities of delayed and missing measurements are286

incorporated.287

The above discussions emphasize the importance of the288

measurement model (6) for developing the proposed fil-289

tering algorithm. As mentioned in the previous section,290

some of the existing filters, such as [19], [20], [21], [22],291

and [26], also formulated similar measurement models. How-292

ever, the models in [19], [20], [21], and [22] characterize the293

delay possibilities only, while the same in [26] characterizes 294

only the missing measurement possibility. Moreover, [19], 295

[20], [21] characterize only limited and small delays, 296

while [26] characterizes fractionally available measurements 297

instead of being completely missing. Thus, they fail to char- 298

acterize the general practical scenarios of the simultane- 299

ously occurring delayed and missing measurements. Our 300

measurement model in Eq. (6) efficiently characterizes the 301

simultaneously occurring delayed and missing measurement 302

possibilities. It considers any large delays and completely 303

missing measurements unlike [19], [20], [21], and [26], 304

respectively. 305

Remark 1: Considering the above-discussed competency 306

of our measurement model, the Gaussian filtering algorithm 307

designed for this model should accomplish an improved 308

accuracy for simultaneously occurring delayed and missing 309

measurements. 310

III. MODIFIED GAUSSIAN FILTERING FOR DELAYED AND 311

MISSING MEASUREMENTS 312

The traditional Gaussian filtering is designed with respect 313

to the measurement z, modeled in Eq. (2). In this section, 314

we derive the necessary modifications to the algorithm to deal 315

with the modified measurement y, modeled in Eq. (6). As the 316

measurement model is changed, we re-derive all the related 317

expressions in the traditional Gaussian filtering to propose the 318

advanced Gaussian filtering for y. The traditional Gaussian 319

filtering uses only three such expressions, namely the mea- 320

surement estimate ẑ, measurement error covariance Pzz, and 321

the cross covariance Pxz, derived for z. We re-derive all the 322

measurement related expressions in the Gaussian filtering 323

algorithm for the modified measurement model above. On a 324

different note, it should be mentioned that the state dynam- 325

ics remains unaffected from the simultaneous occurrence of 326

the delayed and missing measurements. Therefore, the time 327

update step of the proposed filtering technique remains the 328

same as the traditional Gaussian filtering [9], [10]. 329

A. MODIFIED GAUSSIAN FILTER 330

In this part, we re-derive themeasurement parameters, such as 331

ŷ, Pyy, and Pxy. Before proceeding to the derivation, it should 332
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be mentioned that only one of 3k (m, j) ∀m is one and the333

others are zero at any instant tk to ensure that only one mea-334

surement is received. Although this consideration violates335

the independence of 3k (m, j) for different m (i.e., different336

delay), they will be assumed to be statistically independent337

in our derivation. We now derive the expressions of ŷ, Pyy,338

and Pxy.339

1) MEASUREMENT ESTIMATE FOR yk340

For yk given in Eq. (6), the measurement estimate is341

ŷk|k−1 = E[yk ] = E
[( Nmax∑

m=0

λk3k (m, j)zk−m

)]
. (7)342

As the missing and delay occurrences are mutually indepen-343

dent events, λk and 3k (m, j) are statistically independent.344

Moreover, λk and 3k (m, j) are independent of the measure-345

ment value zk also. Thus, we simplify the above equation as346

ŷk|k−1 =
Nmax∑
m=0

E [λk ]E [3k (m, j)]E [zk−m]. (8)347

Following our previous notations, E [zk−m] = ẑk−m|k−1.348

Recalling the previous discussion, we get349

E [3k (m, j)]=E
[( m∏

j=0

(1−2j
k )
)
2

(m+1)
k

]
= (1− δd )mδd .350

(9)351

Substituting E [zk−m], E [λk ], and E [3k (m, j)] in Eq. (8),352

we get353

ŷk|k−1 =
Nmax∑
m=0

µk (1− δd )
mδd ẑk−m|k−1. (10)354

2) MEASUREMENT ERROR COVARIANCE FOR yk355

The measurement error covariance is356

Pyy
k|k−1 = E

[(
yk − ŷk|k−1

) (
yk − ŷk|k−1

)T ]
. (11)357

From Eqs. (6) and (10), we get358

yk − ŷk|k−1=
Nmax∑
m=0

λk3k (m, j)zk−m359

−

Nmax∑
m=0

µk (1− δd )
mδd ẑk−m|k−1. (12)360

We can rewrite this expression as361

yk − ŷk|k−1362

=

Nmax∑
m=0

λk3k (m, j)(zk−m − ẑk−m|k−1)︸ ︷︷ ︸
A1

363

+

Nmax∑
m=0

(
λk3k (m, j)−µk (1−δd )

mδd
)
ẑk−m|k−1︸ ︷︷ ︸

A2

. (13)364

From Eqs. (11) and (13), we can write 365

Pyy
k|k−1 = E[A1AT

1 ]+ E[A1AT
2 ]+ E[A2AT

1 ]+ E[A2AT
2 ]. 366

(14) 367

We can now compute every expectation term individually 368

for A1 and A2 defined in Eq. (13) and add them to obtain 369

Pyy
k|k−1. In this regard, for A1 given in Eq. (13), we get 370

E[A1AT
1 ] =

Nmax∑
m=0

E
[
λ2k

]
E
[
32
k (m, j)

]
371

×E
[
(zk−m − ẑk−m|k−1)(zk−m−ẑk−m|k−1)T

]
. 372

(15) 373

Following previous discussions, E[λ2k ] = E[λk ] = µk , 374

E[32
k (m, j)] = E[(3k (m, j))] = (1− δd )mδd , and E[(zk−m− 375

ẑk−m|k−1)(zk−m − ẑk−m|k−1)T ] = Pzz
k−m|k−1. Thus, Eq. (15) 376

can be simplified as 377

E[A1AT
1 ] =

Nmax∑
m=0

µk (1− δd )
mδdPzz

k−m|k−1. (16) 378

Similarly, for A1 and A2 given in Eq. (13), we can write 379

E[A1AT
2 ] 380

= E
[(Nmax∑

s=0

λk3k (s, j)(zk−s − ẑk−s|k−1)

)
381

×

(Nmax∑
t=0

(
λk3k (t, j)− µk (1− δd )

tδd
)
ẑk−t|k−1

)T ]
. 382

After further simplification, we get 383

E[A1AT
2 ] 384

=

Nmax∑
s=0

Nmax∑
t=0

E
[
λk3k (s, j)

(
λk3k (t, j) 385

−µk (1− δd )
tδd
)T zk−sẑTk−t|k−1 − λk3k (s, j) 386

×
(
λk3k (t, j)− µk (1− δd )

tδd
)T ẑk−s|k−1ẑTk−t|k−1

]
. 387

(17) 388

After substituting all the expectation terms from previous 389

discussions and considering that E[zk−s] = ẑk−s|k−1, we get 390

E[A1AT
2 ] = 0. (18) 391

This also leads to 392

E[A2AT
1 ] = 0. (19) 393

Finally, for A2 given in Eq. (13), we have 394

E[A2AT
2 ] = E

[ Nmax∑
m=0

(
λk3k (m, j)− µk (1− δd )

m
395

× δd
)2ẑk−m|k−1ẑTk−m|k−1]. (20) 396
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Applying binomial expansion and simplifying further, we get397

E[A2AT
2 ] =

Nmax∑
m=0

(
E[λ2k ]E[3

2
k (m, j)]+ (µkδd (1− δd )

m)2398

− 2E[λk ]E[3k (m, j)]µk (1− δd )
mδd

)
399

× ẑk−m|k−1ẑTk−m|k−1. (21)400

Substituting E[λ2k ] = µk and E
[
32
k (m, j)

]
= (1 − δd )mδd ,401

we obtain402

E[A2AT
2 ] =

Nmax∑
m=0

(
µk (1− δd )

mδd −
(
µk (1− δd )

mδd
)2)

403

× ẑk−m|k−1ẑTk−m|k−1. (22)404

We now substitute E[A1AT
1 ], E[A1AT

2 ], E[A2AT
1 ], and405

E[A2AT
2 ] from Eqs. (16), (18), (19), and (22), respectively,406

in Eq. (14) to obtain Pyy
k|k−1 as407

Pyy
k|k−1 =

Nmax∑
m=0

µk (1− δd )
mδdPzz

k−m|k−1 +

Nmax∑
m=0

(µk408

× (1− δd )mδd −
(
µk (1− δd )

mδd
)2)409

× ẑk−m|k−1ẑTk−m|k−1. (23)410

3) CROSS-COVARIANCE FOR yk411

The cross-covariance between the state and measurement is412

Pxy
k|k−1 = E

[
(xk − x̂k|k−1)(yk − ŷk|k−1)T

]
. (24)413

Substituting yk − ŷk|k−1 from Eq. (13), we get414

Pxy
k|k−1 = E

[
(xk − x̂k|k−1)AT

1

]
+ E

[
(xk − x̂k|k−1)AT

2

]
.415

(25)416

For A1 given in Eq. (13), we get417

E
[
(xk − x̂k|k−1)AT

1

]
418

=

Nmax∑
m=0

(
E[λk ]E[3k (m, j)]419

×E
[
(xk − x̂k|k−1)(zk−m − ẑk−m|k−1)T

])
. (26)420

Substituting E[λk ] and E[3k (m, j)], we obtain421

E
[
(xk − x̂k|k−1)AT

1

]
=

Nmax∑
m=0

(1− δd )mδdPxz
k−m|k−1µk .(27)422

Similarly, for A2 given in Eq. (13), we get423

E
[
(xk − x̂k|k−1)AT

2

]
424

=

Nmax∑
m=0

E
[
(λk3k (m, j)− µk425

× (1− δd )mδd )
]
E
[
(xk − x̂k|k−1)ẑTk−m|k−1

]
. (28)426

As λk and 3k (m, j) are independent, E [λk3k (m, j)] = 427

E [λk ]E [3k (m, j)] = µk (1− δd )
mδd . Thus, we can write 428

E
[(
λk3k (m, j)− µk (1− δd )

mδd
)]
= 0. (29) 429

Substituting this into Eq. (28), we get 430

E
[
(xk − x̂k|k−1)AT

2

]
= 0. (30) 431

Substituting E
[
(xk − x̂k|k−1)AT

1

]
and E

[
(xk − x̂k|k−1)AT

2

]
432

from Eqs. (27) and (30), respectively, into Eq. (25), we get 433

Pxy
k|k−1 =

Nmax∑
m=0

δd (1− δd )mPxz
k−m|k−1µk . (31) 434

As discussed at the beginning of this section, the pro- 435

posed filtering method modifies the traditional Gaussian 436

filtering by re-deriving the expressions of measurement 437

estimate, measurement covariance, and state-measurement 438

cross-covariance (Eqs. (10), (23), and (31), respectively). 439

Please follow [9], [10] for a detailed discussion on the 440

traditional Gaussian filtering. The proposed filtering algo- 441

rithm also follows the same filtering strategy by replac- 442

ing the expressions of ẑ, Pzz, and Pxz with the re-derived 443

expressions of ŷ, Pyy, and Pxy, respectively. We provide the 444

pseudo-code for implementing the proposed filtering method 445

in Algorithm 1. 446

In advancing the traditional Gaussian filtering for handling 447

various measurement irregularities, such as the delayed and 448

missing measurements, the major difficulty appears in incor- 449

porating those irregularities through mathematical models. 450

The problem becomes yet more challenging if the irregu- 451

larities are uncertain to appear at any particular sampling 452

instant, as considered in this paper. We handled this problem 453

by mathematically characterizing such irregularities, particu- 454

larly the delayed and missing measurements, by formulating 455

a stochastic model, as in Eq. (6). 456

Remark 2: Our measurement model utilizes a sequence of 457

Bernoulli random variables to characterize the possibility of 458

a measurement coming from various possible past instants. 459

A future research problem may be to introduce a more con- 460

venient model by reducing the required number of random 461

variables. 462

Remark 3: Our filter design strategy concludes that han- 463

dling the measurement irregularities becomes convenient if 464

an efficient mathematical model for characterizing the con- 465

cerned irregularities is formulated. 466

Remark 4: The proposed method fetches some informa- 467

tion, such as the measurement estimate, measurement covari- 468

ance, and state-measurement cross-covariance, from past 469

instants, which causes additional storage capacity require- 470

ment. Similar additional storage requirements also occur in 471

existing delay filters, e.g., see [9]. 472

Remark 5: The proposed filtering methodology simplifies 473

to the traditional Gaussian filtering methodology for zero 474

probabilities of delay and missing measurements (µi = 475

δ = 1) and Nmax = 0, if we use the convention 00 = 1. 476
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Algorithm 1 Pseudo-Code for Extending the Sigma-Point
Based Gaussian Filters Under the Proposed Filtering
Technique
Input: Qk , Rk , Ts, µ, δd , filter-specific sigma points, and

weights.
Output: x̂k|k .

Initialisation: x̂0|0, P̂0|0, k = 1.
1: while k ≤ Ts do
2: Compute the predicted estimate and covariance of xk :

x̂k|k−1 and P̂k|k−1 (see, e.g., References [9], [10]).
3: Compute the estimate and covariance of the ideal mea-

surement (zk ): ẑk|k−1, Pzz
k|k−1 (see, e.g., References

[9], [10]).
4: Compute the cross-covariance between state and

ideal measurement zk : Pxz
k|k−1 (see, e.g., References

[9], [10]).
5: Compute the estimate and covariance of the received

measurement yk : ŷk|k−1 (Eq. (10)) and Pyy
k|k−1

(Eq. (23)).
6: Compute the cross-covariance between xk and

received measurements yk : P
xy
k|k−1 (Eq. (31)).

7: Kalman gain: K = Pxy
k|k−1(P

yy
k|k−1)

−1.
8: Updated estimate: x̂k|k = x̂k|k−1 +K(yk − ŷk|k−1).
9: Updated covariance: P̂k|k = P̂k|k−1 −KPyy

k|k−1K
T .

10: return x̂k|k
11: end while

IV. STOCHASTIC STABILITY OF MODIFIED GAUSSIAN477

FILTERING478

In this section, we analyze the stability of the proposed479

method for the EKF-based formulation. It should be men-480

tioned that the proposed filtering method is generic and481

applicable to any of the existing Gaussian filters, such as482

the EKF, UKF, and CKF. The EKF propagates the locally483

linearized system models during the filtering, which makes484

the stability analysis conveniently realizable. However, other485

Gaussian filters, such as the UKF and CKF, directly propa-486

gate the nonlinear systems models, which makes the stability487

analysis partially unrealizable with the existing theories of488

nonlinear dynamics. Thus, our stability analysis is limited489

to the EKF-based formulation of the proposed method only.490

In the non-linear filtering literature, it is a common prac-491

tice to analyze the stability for the EKF-based formulations492

only [38].493

In our stability analysis, we formulate a stochastic model494

for the estimation error of the EKF-based formulation of the495

proposed method. Subsequently, we show that the estimation496

error of the EKF-based formulation of the proposed method497

is exponentially bounded in a mean square if the filter, noise,498

and system parameters satisfy a set of presumed conditions.499

In the remaining part of this manuscript, the EKF-based500

formulation of the proposed method is abbreviated as501

MDEKF.502

A. STOCHASTIC MODELING OF THE ESTIMATION ERROR 503

Here, our objective is to formulate the stochastic model rep- 504

resenting the dynamics of the MDEKF’s estimation error. 505

Before proceeding further, we would like to introduce the 506

time update and measurement update steps of the ordinary 507

EKF that is designed for z. The EKF determines the time 508

update parameters as 509{
x̂k|k−1 = f (x̂k−1|k−1)
Pk|k−1 = Fk−1Pk−1|k−1FTk−1 +Qk ,

(32) 510

where x̂k|k−1 and Pk|k−1 are the prior estimate and error 511

covariance, respectively, at k th sampling instant. Moreover, 512

Fk−1 =
∂f (xk−1)
∂xk−1

∣∣
xk−1=x̂k−1|k−1

represents the Jacobian matrix 513

of f (xk−1) computed at x̂k−1|k−1. 514

Furthermore, the EKF determines the measurement update 515

parameters as 516
ẑk|k−1 = h(x̂k|k−1)

Pzz
k|k−1 = HkPk|k−1HT

k + Rk

Pxz
k|k−1 = Pk|k−1HT

k

x̂k|k = x̂k|k−1 +K
(
zk − ẑk|k−1

)
,

(33) 517

where Hk =
∂h(xk )
∂xk

∣∣
xk=x̂k|k−1

denotes the Jacobian of h(xk ) 518

computed at x̂k|k−1. 519

Assuming that f (·) is a sufficiently smooth function, let us 520

expand f (xk ), using the Taylor series expansion around x̂k|k , 521

as 522

f (xk ) = f (x̂k|k )+ Fkek|k +9f (xk , x̂k|k ), (34) 523

where ek|k = xk − x̂k|k represents the estimation error and 524

9f (xk , x̂k|k ) is the remainder term. 525

A similar expansion of h(xk ) around x̂k|k−1 gives 526

h(xk ) = h(x̂k|k−1)+Hkek|k−1 +9h(xk , x̂k|k−1), (35) 527

where ek|k−1 = xk − x̂k|k−1 is the prediction error and 528

9h(xk , x̂k|k−1) has an explanation similar to 9f (xk , x̂k|k ). 529

Substituting xk and x̂k|k−1 from Eqs. (1) and (32), respec- 530

tively, we obtain 531

ek|k−1 = f (xk−1)− f (x̂k−1|k−1)+ ηk . (36) 532

Using Eq. (34), the above equation can be written as 533

ek|k−1 = Fk−1ek−1|k−1 +9f (xk−1, x̂k−1|k−1)+ ηk . (37) 534

Similarly, substituting x̂k|k from Eq. (33), but for yk , in ek|k = 535

xk − x̂k|k , we get ek|k = xk − x̂k|k−1−K(yk − ŷk|k−1). Then, 536

substituting xk , yk , ŷk|k−1, and x̂k|k−1 from Eqs. (1), (6), (10), 537

and (32), respectively, we get 538

ek|k = f (xk−1)− f (x̂k−1|k−1)+ ηk −K
(
λk

Nmax∑
m=0

3k (m, j) 539

× zk−m − µk

Nmax∑
m=0

δd (1− δd )mẑk−m|k−1

)
. 540
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Let us do the following substitutions: i) zk−m = h(xk−m) +541

νk−m, ii) ẑk−m|k−1 = h(x̂k−m|k−1), and iii) f (xk ) from542

Eq. (34). In the resulting expression, let us substitute h(xk−m)543

expanded by Eq. (35). Subsequently, we obtain544

ek|k = Fk−1ek−1|k−1 +9f (xk−1, x̂k−1|k−1)+ ηk −Kλk545

×

Nmax∑
m=0

3k (m, j)νk−m546

−K
[ Nmax∑
m=0

(λk3k (m, j)− µkδd (1− δd )
m)547

×
(
h(x̂k−m|k−1)+Hk−mek−m|k−1

)
+λk

Nmax∑
m=0

3k (m, j)548

×9h(xk−m, x̂k−m|k−1)549

+

Nmax∑
m=0

µkδd (1− δd )
mHk−mek−m|k−1

]
.550

We expand ek−m|k−1 using Eq. (37) and substitute the551

expanded ek−m|k−1 in the above equation. Subsequently, after552

some rearrangements, we obtain the desired stochastic model553

of the error dynamics in the form of Eq. (38), as shown at the554

bottom of the page, where I represents an identity matrix of555

the appropriate dimension.556

It is worth mentioning that Eq. (38) represents the error557

dynamics in terms of stochastic difference equation. Inter-558

estingly, the state of this difference equation is the error559

of the MDEKF. Thus, we can consider Eq. (38) as a560

time-series representation of a hypothetical system with the561

state being the error of the MDEKF. Subsequently, the sta-562

bility of this hypothetical system ensures the stability of the563

MDEKF.564

To this end, it should be mentioned that the literature565

contains several notions of stability for nonlinear systems.566

The readers may please refer to [39] for a detailed discussion.567

In this paper, we particularly use exponential stability, where568

the stability is ensured if the system’s convergence is bounded569

with an exponential envelope.570

B. EXPONENTIAL STABILITY 571

Before proceeding forward to prove that the error dynamics 572

presented in Eq. (38) is exponentially bounded, wemathemat- 573

ically define the exponentially bounded process, as follows. 574

Definition 1: Let us consider that ek denotes a stochastic 575

process and κ ′ > 0, ξ > 0, and 0 < β < 1 are real numbers. 576

Then, ek is said to be exponentially bounded in mean square 577

if it satisfies 578

E
[
‖ek‖2

]
≤ βkκ ′E

[
‖e0‖2

]
+ ξ ∀k ∈ {1, 2, . . . }, (39) 579

where ‖·‖ represents the spectral norm for matrices and 580

Euclidean norm for vectors. 581

It should be mentioned that the above definition is general 582

and does not limit ek to be the estimation error only. However, 583

our notations and discussions will be focused on the estima- 584

tion error. 585

In our stability analysis, we approach Eq. (39) in a different 586

way. In this regard, please refer to the subsequent discussion. 587

Remark 6: Let us consider that τ1 > 0, τ2 > 0, γ ′ > 0, 588

and 0 < φ < 1 denote real numbers, and V (ek ) represents a 589

scalar-valued stochastic process, which satisfies 590

τ1 ‖ek‖2 ≤ V (ek ) ≤ τ2 ‖ek‖2 (40) 591

and 592

E [V (ek )|ek−1]− V (ek−1) ≤ γ ′ − φV (ek−1) ≤ 0. (41) 593

Then, the stochastic process ek satisfies 594

E
[
‖ek‖2

]
≤
τ2

τ1
E
[
‖e0‖2

]
(1− φ)k+

γ ′

τ1

k−1∑
i=0

(1− φ)i. (42) 595

Please refer to [38] and [40], for a detailed discussion. 596

In the subsequent discussion, we conclude that this remark 597

is another way of defining the exponential bound in mean 598

square. 599

Since
∑k−1

i=0 (1− φ)i ≤
∑
∞

i=0 (1− φ)
i
= 1/φ, Eq. (42) 600

can be written as 601

E
[
‖ek‖2

]
≤
τ2

τ1
E
[
‖e0‖2

]
(1− φ)k +

γ ′

τ1φ
. (43) 602

ek|k =
(
I− δdKµkHk

)
Fk−1︸ ︷︷ ︸

Ak

ek−1|k−1 + ηk −K
Nmax∑
m=0

(
µkδd (1− δd )

mHk−mηk−m + λk3k (m, j)νk−m
)

︸ ︷︷ ︸
Ck

+ 9f (xk−1, x̂k−1|k−1)−K
Nmax∑
m=0

(
λk3k (m, j)9h(xk−m, x̂k−m|k−1)+µkδd (1− δd )

mHk−m9f (xk−1−m, x̂k−1−m|k−1)
)

︸ ︷︷ ︸
Bk

× −K
[ Nmax∑
m=0

(λk3k (m, j)−µkδd (1−δd )
m)(h(x̂k−m|k−1)+Hk−mek−m|k−1)+

Nmax∑
m=1

µkδd (1−δd )
mHk−mFk−mek−1−m|k−1

]
︸ ︷︷ ︸

Dk

.

(38)
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It should be mentioned that with τ2/τ1 = κ ′, 1− φ = β, and603

γ ′/(τ1φ) = ξ , Eq. (43) is the same as Eq. (39).604

Remark 7: In conclusion to the above discussion, we state605

that satisfying Eq. (43) for a stochastic process ek ensures that606

ek is exponentially bounded.607

Remark 8: Since Eq. (43) is concluded from Eqs. (40)608

and (41), we can further state that if the stochastic process ek609

satisfies Eqs. (40) and (41) for any scalar-valued stochastic610

process V (ek ), then the stochastic process ek is exponentially611

bounded.612

We will use Remark 8 as our stability criterion. Alter-613

natively, we will conclude the stability of the MDEKF by614

inferring that the estimation error of the MDEKF satisfies615

Eqs. (40) and (41). The proof is based on several assumptions,616

as follows.617

• Fk is a non-singular matrix.618

• The system, noise, and filter parameters satisfy the fol-619

lowing bounds:620

‖ηk‖ ≤ ω and ‖νk‖ ≤ v (44)621

‖9f (xk−1, x̂k−1|k−1)‖ ≤ c1‖xk−1 − x̂k−1|k−1‖2 (45)622

‖9h(xk , x̂k|k−1)‖ ≤ c2‖xk − x̂k|k−1‖2 (46)623

‖Fk‖ ≤ f and ‖Hk‖ ≤ h (47)624

ρ1I ≤ Pk|k ≤ Pk|k−1 ≤ ρ2I (48)625 ∥∥xk−1 − x̂k−1|k−1
∥∥ = ∥∥ek−1|k−1∥∥ ≤ ε′ (49)626 ∥∥xk − x̂k|k−1
∥∥ = ∥∥ek|k−1∥∥ ≤ ε′ (50)627 ∥∥h(x̂k|k−1)∥∥ ≤ hm (51)628

qI ≤ Qk ≤ q′I and rI ≤ Rk ≤ r ′I,629

(52)630

with ω, ν, c1, c2, f , h, ρ1, ρ2, ε′, hm, q, q′, r , and r ′631

representing positive real numbers.632

Before proving that theMDEKF’s estimation error satisfies633

Eqs. (40) and (41), we derive a series of inequalities through634

the subsequent lemmas. These inequalities will be used in the635

final proof.636

Lemma 1: For the inequalities presented in Eqs. (47), (48),637

and (52), the Kalman gain K satisfies638

‖K‖ ≤
ρ2h
r
. (53)639

Proof: Let us expand Pyy
k|k−1 and Pxy

k|k−1 as follows:640

i) substitute ẑk−m|k−1 and Pzz
k−m|k−1 obtained using Eqs. (32)641

and (33), respectively in Pyy
k|k−1 given in Eq. (23), and642

ii) substitute Pxz
k−m|k−1 from Eq. (33) into Pxy

k|k−1 given in 643

Eq. (31). Substituting the expanded Pyy
k|k−1 and Pxy

k|k−1 in 644

Kalman gain expression K = Pxy
k|k−1(P

yy
k|k−1)

−1, we obtain 645

K =
Nmax∑
m=0

δd (1− δd )mPk−m|k−1HT
k µk

[ Nmax∑
m=0

δd (1− δd )m 646

×µk

(
HkPk−m|k−1HT

k + Rk

)
+

Nmax∑
m=0

(
µkδd (1− δd )

m
647

−
(
µkδd (1− δd )

m)2 )h(x̂k−m|k−1)h(x̂k−m|k−1)T]−1. 648

It is worth mentioning that HkPk−mHT
k ≥ 0 because 649

Pk−m|k−1 is a positive definitematrix. Subsequently, applying 650

the norm property, we can write 651

‖K‖≤ δd‖µk‖
∥∥∥∥ Nmax∑
m=0

(1−δd )mPk−mHT
k

∥∥∥∥∥∥∥∥[ Nmax∑
m=0

δd (1−δd )m 652

×µk
(
Rk +

(
I− µkδd (1− δd )

m)h(x̂k−m|k−1) 653

× h(x̂k−m|k−1)T
) ]−1∥∥∥∥. 654

For any invertible matrix M, please note that σ+(M−1) = 655

(σ−(M))−1, where σ+(·) and σ−(·) represent the largest 656

and smallest singular values, respectively. Thus, substituting 657

‖µk‖ = µ and using the inequalities presented in Eqs. (47) 658

and (48), we get 659

‖K‖≤
(
µρ2h

(
1−(1−δd )Nmax+1

)) [
σ−
( Nmax∑
m=0

δd (1− δd )m 660

×µk
(
Rk +

(
I− µkδd (1− δd )

m)h(x̂k−m|k−1) 661

× h(x̂k−m|k−1)T
))]−1

. (54) 662

The bound presented in Eq. (52) assumes that Rk is a posi- 663

tive definite matrix. Moreover, h(x̂k−m|k−1)h(x̂k−m|k−1)T is a 664

positive semidefinite matrix. Thus, the matrix in the second 665

factor of the above equation is also positive definite. Subse- 666

quently, it follows that σ−(·) = λ−(·), with λ−(·) represent- 667

ing the smallest eigenvalue. We now calculate the smallest 668

eigenvalue of the second factor by using the Rayleigh-Ritz 669

characterization [41] in Eq. (55), as shown at the bottom of 670

the page. 671

λ−
( Nmax∑
m=0

δd (1− δd )mµk (Rk +
(
I− δd (1− δd )mµk

)
h(x̂k−m|k−1)h(x̂k−m|k−1)T )

)

≥ min
‖x‖=1

(
xT

Nmax∑
m=0

δd (1− δd )mµkRkx

)

+ min
‖x‖=1

(
xT

Nmax∑
m=0

(
δd (1− δd )mµk −

(
δd (1− δd )mµk

)2) h(x̂k−m|k−1)h(x̂k−m|k−1)T x) . (55)
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As h(x̂k−m|k−1)h(x̂k−m|k−1)T is positive semidefinite, the672

second term on the right side of Eq. (55) is zero. Subse-673

quently, using the bound given in Eq. (52), we obtain674

λ−
( Nmax∑
m=0

δd (1− δd )mµk (Rk +
(
I− δd (1− δd )mµk

)
675

× h(x̂k−m|k−1)h(x̂k−m|k−1)T )
)

676

≥ µ
(
1− (1− δd )Nmax+1

)
r . (56)677

As discussed previously, σ−(·) = λ−(·) for positive definite678

matrix. Thus, substituting Eq. (56) into Eq. (54) gives the679

bound of K as given in Eq. (53).680

Lemma 2: For non-singular matrix Fk and 0 < φ < 1, the681

following inequality holds682

FTk−1
(
I− δdKµkHk

)T P−1k|k
(
I− δdKµkHk

)
Fk−1683

≤ (1− φ)P−1k−1|k−1. (57)684

Proof: Please note that Pk|k = E[(xk − x̂k|k )(xk −685

x̂k|k )T ]. Substituting xk from Eq. (1) and x̂k|k = x̂k|k−1 +686

K(yk − ŷk|k−1), we get687

Pk|k = Pk|k−1 − Pxy
k|k−1K

T
−K(Pxy

k|k−1)
T
+KPyy

k|k−1K
T .688

Substituting Pyy
k|k−1 and Pxy

k|k−1 from Eqs. (23) and (31),689

respectively, we obtain690

Pk|k =Pk|k−1−
Nmax∑
m=0

δd (1− δd )mPxz
k−m|k−1µkK

T
−K

Nmax∑
m=0

(
δd691

× (1− δd )mµk (P
xz
k−m|k−1)

T )
692

+K
[ Nmax∑
m=0

µkδd (1− δd )
mPzz

k−m|k−1693

+

Nmax∑
m=0

(µkδd (1− δd )
m
−
(
µkδd (1− δd )

m)2)694

× ẑk−m|k−1ẑTk−m|k−1

]
KT .695

It is worthmentioning that ẑk−m|k−1,Pzz
k−m|k−1, andP

xz
k−m|k−1696

can be determined using Eq. (33). Substituting these param-697

eters in the above expression and simplifying further, we get698

Pk|k in the form of Eq. (58), as shown at the bottom of the699

page.700

Please note thatRk is a positive definite matrix in Eq. (58). 701

Similarly, the positive definiteness of Pk−m|k−1 ensures that 702

δd (1−δd )mµkHkPk−m|k−1HT
k (I−δd (1−δd )

mµk ) is positive 703

semidefinite. Moreover, h(x̂k−m|k−1)h(x̂k−m|k−1)T is a posi- 704

tive semidefinite matrix. Since the sum of the positive definite 705

and positive semidefinite matrices is positive definite, we fur- 706

ther conclude 707

K
[ Nmax∑
m=0

δd (1− δd )mµkHkPk−m|k−1HT
k
(
I− δd (1− δd )mµk

)
708

+

Nmax∑
m=0

(
µkδd (1− δd )

m
−
(
µkδd (1− δd )

m)2)
709

× h(x̂k−m|k−1)h(x̂k−m|k−1)T 710

+

Nmax∑
m=0

δd (1− δd )mµkRk

]
KT
≥ 0. 711

Consequently, the following inequality can be deduced from 712

Eq. (58): 713

Pk|k ≥
(
I− δdKµkHk

)
Pk|k−1

(
I− δdKµkHk

)T
714

−

Nmax∑
m=1

Pk−m|k−1. (59) 715

Substituting Eq. (32), we can rearrange the above inequality 716

as 717

Pk|k ≥
(
I−δdKµkHk

)
Fk−1Pk−1|k−1

[
I+P−1k−1|k−1F

−1
k−1

(
Qk 718

−
(
I− δdKµkHk

)−1
719

×

Nmax∑
m=1

Pk−m|k−1
(
I− δdKµkHk

)−T )F−Tk−1] 720

×FTk−1
(
I− δdKµkHk

)T
. 721

Applying the bounds of Eqs. (47), (48), and (52), and taking 722

the inverse, the above inequality can be rearranged as 723

FTk−1(I− δdKµkHk )TP−1k|k
(
I− δdKµkHk

)
Fk−1 724

≤

(
1+

1
ρ2f 2

(
q− ζ 2Nmaxρ2

))−1
P−1k−1|k−1, 725

where ζ = σ+((I−δdKµkHk )−1).We choose q, f , and ρ2 for 726

which 0 < (1+ 1/(ρ2f 2)(q− ζ 2Nmaxρ2))−1 = 1− φ < 1 is 727

Pk|k =
Nmax∑
m=0

(
I− δd (1− δd )mKµkHk

)
Pk−m|k−1

(
I− δd (1− δd )mKµkHk

)T
+K

[ Nmax∑
m=0

δd (1− δd )mµk
(
HkPk−m|k−1HT

k

×
(
I− δd (1− δd )mµk

)
+

Nmax∑
m=0

Rk
)
+

Nmax∑
m=0

(
µkδd (1− δd )

m
−
(
µkδd (1− δd )

m)2) h(x̂k−m|k−1)h(x̂k−m|k−1)T]KT

−

Nmax∑
m=1

Pk−m|k−1. (58)
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satisfied. Subsequently, the above inequality is simplified to728

Eq. (57).729

Theorem 1: Let us consider the stochastic error model730

given in Eq. (38) and EKF parameters through Eqs. (32)731

and (33). Furthermore, let us assume that Fk is non-singular732

and the conditions given through (45) to (52) hold ∀k ≥ 0.733

Then, the stochastic process ek|k is exponentially bounded in734

mean square, i.e.,735

E
[∥∥ek|k∥∥2] ≤ τ2

τ1
E
[∥∥e0|0∥∥2] (1− φ)k + γ ′

τ1φ
. (60)736

Proof: Throughout the theorem, we adopt the fol-737

lowing simplified notations: x̂k−m, x̂k−1−m, ek−m, and738

ek−1−m for x̂k−m|k−1, x̂k−1−m|k−1, ek−m|k−1, and ek−1−m|k−1,739

respectively. Then, Eq. (38) can be expressed as740

ek|k = Akek−1|k−1 + Bk + Ck + Dk . (61)741

We now define a scalar-valued stochastic process V : Rn
→742

R as eTk|kP
−1
k|kek|k . It should be mentioned that V is a positive743

definite function. Substituting ek from Eq. (61) in the expres-744

sion of V and simplifying further, we obtain745

V (ek|k ) = eTk−1|k−1A
T
k P
−1
k|kAkek−1|k−1 + BTk P

−1
k|k

(
2Ak746

× ek−1|k−1 + Bk
)
+ 2CT

k P
−1
k|k747

×
(
Akek−1|k−1 + Bk + Dk

)
748

+CT
k P
−1
k|kCk + 2DT

k P
−1
k|k

(
Akek−1|k−1 + Bk

)
749

+DT
k P
−1
k|kDk . (62)750

It should bementioned that the above equation is scalar. Thus,751

applying norm property to the second expression on the right752

side, we get753 ∥∥∥BTk P−1k|k (2Akek−1|k−1 + Bk
)∥∥∥754

≤ ‖Bk‖
∥∥∥P−1k|k∥∥∥ (2‖Ak‖‖ek−1|k−1‖ + ‖Bk‖

)
. (63)755

Wewill now calculate the bound of each term in the right side756

individually. In this regard, let us recallBk defined in Eq. (38)757

and use norm property to get758

‖Bk‖759

≤ ‖9f (xk−1, x̂k−1)‖760

+‖K‖‖
Nmax∑
m=0

λk3k (m, j)9h(xk−m, x̂k−m)‖761

+‖K‖
∥∥∥∥ Nmax∑
m=0

δd (1−δd )mµkHk−m9f (xk−1−m, x̂k−1−m)
∥∥∥∥.762

It should be mentioned that the elements of λk are Bernoulli763

random variables, which take on values zero or one. Thus,764

‖λk‖ ≤ 1. Furthermore, for only a particular value of m,765

we get 3k (m, j) = 1, otherwise 3k (m, j) = 0. Subsequently,766

applying the bounds presented in Eqs. (45), (46), and (47), 767

and from Lemma 1, we obtain 768

‖Bk‖ ≤ c1ε′2
(
1+

ρ2h2µ(1− (1− δd )Nmax+1)
r

)
769

+
ρ2hc2ε′2

r
. (64) 770

Similarly, for Ak given in Eq. (38), we get 771

‖Ak‖ ≤ ‖
(
I+ δdKµkHk

)
‖‖Fk−1‖ = (1+

ρ2h2µδd
r

)f . 772

(65) 773

Applying the bound given in Eq. (48), we have 774

‖P−1k|k‖ ≤ 1/ρ1. Thus, substituting Eqs. (49), (64), and (65) 775

into Eq. (63), it is simplified as 776∥∥∥BTk P−1k|k (2Akek−1|k−1 + Bk
)∥∥∥ ≤ χ1ε′3, (66) 777

where 778

χ1 =
1
ρ1

[
c1

(
1+

ρ2h2µ(1− (1− δd )Nmax+1)
r

)
779

×

(
2+

2ρ2h2f µδd
r

780

+ c1ε′
(
1+

ρ2h2µ(1− (1− δd )Nmax+1)
r

))]
. 781

Let us now consider the fourth expression on the right side of 782

Eq. (62). For Ck defined in Eq. (38), applying ‖CT
k ‖ = ‖Ck‖ 783

gives 784∥∥∥CT
k P
−1
k|kCk

∥∥∥ 785

≤

(
‖ηk‖ + ‖K‖

∥∥∥∥ Nmax∑
m=0

(
µkδd (1− δd )

m
786

×Hk−mηk−m + λk3k (m, j)νk−m
)∥∥∥∥)2 ∥∥∥P−1k|k∥∥∥ . 787

We now substitute ‖µk‖ = µ, ‖λk‖ ≤ 1,
∑Nmax

m=0 3k (m, j) = 788

1, and ‖P−1k|k‖ ≤ 1/ρ1. Then, using the inequalities presented 789

in Eqs. (44) and (47), and substituting the bound of K from 790

Lemma 1, we finally get 791∥∥∥CT
k P
−1
k|kCk

∥∥∥ ≤ χ2, (67) 792

with χ2 be a constant, given as 793

χ2 =
1
ρ1

(
ω +

ρ2h
r

(
µωh(1− (1− δd )Nmax+1)+ v

))2

. 794

(68) 795

For Dk defined in Eq. (38), applying the matrix norm 796

property, the fifth expression on the right side of Eq. (62) 797
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can be expressed as798

‖Dk‖ ≤‖K‖
[∥∥∥∥ Nmax∑

m=0

λk3k (m, j)(h(x̂k−m)+Hk−mek−m)
∥∥∥∥

+

∥∥∥∥ Nmax∑
m=0

δd (1− δd )mµk (h(x̂k−m)+Hk−mek−m)
∥∥∥∥

+

∥∥∥∥ Nmax∑
m=1

δd (1− δd )mµkHk−mFk−mek−1−m

∥∥∥∥].
799

We now substitute ‖µk‖ = µ, ‖λk‖ ≤ 1, and800 ∑Nmax
m=0 3k (m, j) = 1. Furthermore, using Eqs. (47), (50),801

and (51), and applying the bound of K from Lemma 1, the802

above equation can be expressed as803

‖Dk‖ ≤
ρ2h
r

(
(hm + hε′)

(
1+ µ(1− (1− δd )Nmax+1)

)
804

+ hf ε′µ(1− δd )(1− (1− δd )Nmax )
)
. (69)805

Please note that ‖2DT
k P
−1
k|k (Akek−1|k−1 + Bk )‖ ≤ ‖2DT

k ‖806

‖P−1k|k‖ ‖(Akek−1|k−1 + Bk )‖. Substituting the bounds of807

‖Bk‖, ‖Ak‖, and ‖Dk‖ from Eqs. (64), (65), and (69), respec-808

tively, into this expression, we get809 ∥∥∥2DT
k P
−1
k|k

(
Akek−1|k−1 + Bk

)∥∥∥ ≤ χ3ε′, (70)810

where811

χ3 =
2
ρ1

[
ρ2h
r

(
(hm + hε′)

(
1+ µ(1− (1− δd )Nmax+1)

)
812

+ hf ε′µ(1− δd )(1− (1− δd )Nmax )
)(

1+
ρ2h2f µδd

r
813

+ c1ε′
(
1+

ρ2h2µ(1−(1−δd )Nmax+1)
r

)
+
ρ2hc2ε′

r

)]
.814

(71)815

Let us now consider the sixth term in the summation on816

the right side of Eq. (62). Applying the norm property,817

we get ‖DT
k P
−1
k|kDk‖ ≤ ‖Dk‖

2
‖P−1k|k‖. Subsequently, substi-818

tuting ‖Dk‖ from Eq. (69), we obtain819 ∥∥∥DT
k P
−1
k|kDk

∥∥∥ ≤ χ4, (72)820

where χ4 is a positive real number given as821

χ4 =
1
ρ1

(
ρ2h
r

(
(hm + hε′)

(
1+ µ(1− (1− δd )Nmax+1)

)
822

+ hf ε′µ(1− δd )(1− (1− δd )Nmax )
))2

. (73)823

Please note that
(
I− δdKµkHk

)
Fk−1 = Ak . We now sub-824

stitute Eqs. (66), (67), (70), and (72) into Eq. (62), and apply825

Lemma 2. Then, taking conditional expectation, we obtain826

E
[
V (ek|k )|ek−1|k−1

]
827

≤ (1− φ) eTk−1|k−1P
−1
k−1|k−1ek−1|k−1828

+E
[
2CT

k P
−1
k|k

(
Akek−1|k−1 + Bk + Dk

) ∣∣∣∣ek−1|k−1] 829

+

(
χ1ε
′3
+ χ2 + χ3ε

′
+ χ4

)
. (74) 830

For Ck defined in Eq. (38), we conclude that E[2CT
k P
−1
k|k 831(

Akek−1|k−1 + Bk + Dk
)
|ek−1|k−1] = 0. Then, using the 832

definition of V (ek ) and substituting χ1ε′3+χ2+χ3ε′+χ4 = 833

γ ′, Eq. (74) can be expressed as 834

E
[
V (ek|k )|ek−1|k−1

]
− V (ek−1|k−1)≤γ ′ − φV (ek−1|k−1). 835

(75) 836

We select the parameters γ ′ and φ such that V (ek−1|k−1) ≥ 837

γ ′/φ satisfies. Then, the above equation is the same as 838

Eq. (41). 839

We now consider the inequality presented in Eq. (48). 840

Taking inverse, then multiplying eTk|k and ek|k from left and 841

right side, respectively, we get 842

1
ρ2
‖ek|k‖2 ≤ V (ek|k ) ≤

1
ρ1
‖ek|k‖2. (76) 843

Please note that with 1/ρ2 = τ1 and 1/ρ1 = τ2, the above 844

equation is same as Eq. (40). Therefore, we conclude that 845

Eqs. (75) and (76) satisfy Eqs. (41) and (40), respectively. 846

It further infers that, for chosen V (ek ), ek satisfies Eq. (42) 847

and hence Eq. (60). Thus, we conclude that MDEKF’s 848

estimation error remains exponentially bounded in mean 849

square. 850

In this section, we proved the stochastic stability of the 851

proposed method for its EKF-based formulation. The essen- 852

tial requirements of the proof involve a set of bounds on the 853

system, noise, and filter parameters. Moreover, the stability 854

analysis requires the initial estimation error to be bounded. 855

Note that boundedness of noise and system parameters does 856

not automatically imply exponential stability. The stability 857

analysis of the proposed MDEKF reduces to the stability 858

analysis of the traditional EKF for the delay and missing 859

measurements probabilities being zero (µi = δ = 1) and 860

Nmax = 0, considering the convention 00 = 1. 861

V. SIMULATION RESULTS 862

In real-life problems, themeasurement systems (including the 863

measuring devices and the supplementary units) are usually 864

designed to efficiently capture the measurements. Therefore, 865

they may not be expected to miss many measurements. Sub- 866

sequently, the missing measurement probability is usually 867

small. Thus, we consider the missing measurement prob- 868

ability up to 0.2 for the simulation, which means around 869

20% of the measurements are missing. On the other hand, 870

the delay inherently appears in the measurements. Therefore, 871

we consider a sufficiently large range of the delay probability 872

(0.1 ≤ 1 − δd ≤ 0.9). Moreover, it should be mentioned 873

that the practical measurement systems are designed for small 874

delays. Hence, we restrict the maximum possible delay to one 875

or two time-steps (denoted as 1-delay and 2-delay scenarios), 876

such as the delay up to one or two sampling intervals. 877
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FIGURE 2. Problem 1, one-delay scenario: Mean RMSE plots of all filters for varying delay probabilities, considering the missing measurement
probability µm as 0.1 and 0.2.

FIGURE 3. Problem 1, two-delay scenario: Mean RMSE plots of all filters for varying delay probabilities, considering the missing measurement
probability µm as 0.1 and 0.2.

For the performance analysis, we considered three pop-878

ular and advanced Gaussian filters, namely, the CKF [13],879

CQKF [14], and GHF [15]. With their extensions under the880

modified filteringmethod, which are abbreviated asMDCKF,881

MDCQKF, and MDGHF, respectively. We use the root mean882

square error (RMSE) as our performance metrics. Please note883

that we will frequently use the notationµm = 1−µ to denote884

the missing measurements probability.885

We compare the MDCKF with the following filters:886

i) traditional CKF [13], ii) the CKF-based formulation887

of [22], which extends the Gaussian filtering technique for888

arbitrary delays, iii) [26], wherein the EKF is modified for889

missing measurements, and iv) the CKF-based formulation890

of [37], which considers simultaneously occurring delay891

and missing measurements. We abbreviate the CKF-based892

formulations of [22], and [37] as CKF_RD, and MLCKF,893

respectively, while the EKF-based formulation of [26] is894

abbreviated as MEKF. Please note that we use the EKF-based895

design of [26] unlike the CKF-based designs for other filters,896

as [26] is particularly designed for the EKF and becomes897

inapplicable to other filters.898

A. PROBLEM 1899

In the first problem, we consider a two-dimensional nonlinear900

dynamical system with the state-space model given as xk =901

2 cos(xk−1)+ ηk and zk =
√
1+ xTk xk + νk [22].902

The true data of the state and measurement are gener-903

ated by considering the initial state as x0 = [0.1 0.1]T .904

The filter is initialized with the initial estimate x̂0|0 = 0.9x0 905

and P0|0 = 7I2. The noise covariances are assigned as 906

Qk = 0.1I2 and Rk = 0.1. The simulation is performed for 907

200 time-steps and the RMSEs are obtained by implement- 908

ing 500 Monte-Carlo simulations. 909

Figs. 2 and 3 show the mean RMSE plots for varying delay 910

probability under different scenarios formed by changing the 911

maximum delay possibility and the missing measurements 912

probability. It should be mentioned that the mean of the 913

RMSEs is obtained over the 200 time-steps. The mean RMSE 914

plots show a reduced RMSE for the MDCKF compared to 915

the ordinary CKF, CKF_RD, MEKF, and MLCKF, which 916

concludes that the proposed filtering method outperforms the 917

ordinary Gaussian filtering as well as the existing filters for 918

handling the delay and missing measurements. The relative 919

computational times of the CKF, MEKF, CKF_RD, MLCKF, 920

and MDCKF are obtained as 1, 2.86, 3.01, 5.78, and 3.04, 921

respectively. It concludes that the computational time of the 922

proposed method is marginally increased in comparison to 923

some of the existing filters, while it remains marginally lower 924

than others. 925

B. PROBLEM 2 926

In the second simulation problem, we consider an identifica- 927

tion problem of individual sinusoids from the measurements 928

of multiple superimposed sinusoids [9], [22]. We consider 929

that the superimposed signal consists of three sinusoids. Iden- 930

tification of individual sinusoids is equivalent to estimating 931
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FIGURE 4. Problem 2, one-delay scenario: Mean RMSE plots of all filters for varying delay probabilities, considering the missing measurement
probability µm as 0.1 and 0.2.

FIGURE 5. Problem 2, two-delay scenario: Mean RMSE plots of all filters for varying delay probabilities, considering the missing measurement
probability µm as 0.1 and 0.2.

their amplitudes and frequencies from the measurements of932

the superimposed signal.933

In conclusion to the above discussion, the state-dynamics934

is formed as xk = Ixk−1 + ηk , where xk =935

[f1,k f2,k f3,k a1,k a2,k a3,k ]T , with an and fn represent-936

ing the amplitude and frequency, respectively, for the nth937

sinusoid. Moreover, the measurement is a two-dimensional938

vector representing the superposition of the real and imag-939

inary parts of the superimposed sinusoids. Please refer940

to [22] and [9] for a detailed discussion on the two mod-941

els. The initial true and estimated states are taken as x0 =942

[200 800 1000 2 3 5]T and x̂0|0 = [205 785 990 4 2 3]T ,943

respectively, while the initial covariance is taken as P0|0 =944

diag([25 50 20 4 1 4]). The noise covariances are taken945

as Qk = diag([0.01 0.01 0.04 0.25 0.25 0.25]) and946

Rk = diag([0.9 0.9]).947

The simulation is performed for 800 time-steps and 200948

Monte-Carlo runs with a sampling interval of 0.25 millisec-949

onds. Please note that the number of Monte-Carlo runs is950

reduced to 200 (in comparison to 500 runs used in the first951

problem), as the existing MEKF and MLCKF failed for952

higher number of Monte-Carlo runs. We obtain the RMSEs953

for the amplitude and frequency by taking the square root of954

the average of the mean square errors of the three amplitudes955

and frequencies, respectively.956

We plot the mean RMSE (obtained over the time-steps) for957

varying delay probabilities in Figs. 4 and 5 for 1-delay and958

2-delay, respectively. The mean RMSE plots show a reduced959

TABLE 1. Problem 1, one-delay scenario: Average RMSEs obtained by
MDCQKF, MDGHF, and their counterparts for different delay probabilities.

RMSE for the proposed MDCKF compared to the ordinary 960

CKF and considered delay and missing filters. It concludes 961

that the proposed filtering method has improved accuracy 962

compared to these filters. The relative computational times 963

for the MEKF, CKF, CKF_RD, MLCKF, and MDCKF are 964

observed as 1, 1.56, 1.69, 3.24, and 1.72, respectively. 965

It gives a similar conclusion as discussed in the previous 966

problem. 967

C. PERFORMANCE VALIDATION FOR OTHER GAUSSIAN 968

FILTERS 969

To compare the estimation accuracy of the proposed method 970

and the ordinary Gaussian filtering method, we present 971

the mean RMSEs of CKF-based plots only in Figs. 2-5. 972
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TABLE 2. Problem 2, one-delay scenario: Average RMSEs obtained by
MDCQKF, MDGHF, and their counterparts for different delay probabilities.

TABLE 3. Problem 1, one-delay scenario: Relative computational time
comparison of MDCQKF, MDGHF, and their counterparts for 0.3 delay
probability.

However, we further extend the comparative analysis for the973

other advanced and popular Gaussian filters, such as the974

CQKF [14] and GHF [15], in Tables 1 and 2. The tables975

present the mean RMSEs obtained using the CQKF, GHF,976

MDCQKF, and MDGHF for various delay and missing mea-977

surement probabilities. From the tables, we conclude that978

RMSE is reduced for the MDCQKF and MDGHF com-979

pared with their traditional counterparts CQKF and GHF,980

respectively. It is worth mentioning that the results for981

2-delay scenarios are qualitatively very similar and are omit-982

ted for brevity. The computational times remain similar for983

the proposed and the existing Gaussian filtering methods984

(Table 3).985

VI. DISCUSSION AND CONCLUSION986

Themanuscript introduces a new extension of Gaussian filter-987

ing to efficiently handle the simultaneously occurring delayed988

and missing measurements. The proposed method reformu-989

lates the measurement model stochastically to introduce the990

possibility of simultaneously occurring delayed and missing991

measurements. Subsequently, the proposed filtering method992

is designed by re-deriving the traditional Gaussian filtering993

method for the modified measurement model. We compare994

the proposed filter with the CKF and three well-known filters995

which handle the delay and missing measurements individ-996

ually or simultaneously. The performance of the proposed997

method is validated for two simulation problems. We also998

studied the exponential stability of the proposed method for999

its EKF-based design. It is worth mentioning that the com-1000

putational time of the proposed method remains similar to1001

traditional Gaussian filtering.1002

DATA ACCESS STATEMENT 1003

This research did not use any experimentally generated data 1004

or data from any publicly available dataset. Model def- 1005

initions (including the specified probability distributions) 1006

and parameter values (including the initialization parame- 1007

ters) provided in the paper are adequate for reproducing the 1008

exact qualitative behavior of the algorithms illustrated in the 1009

paper. 1010
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