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ABSTRACT Approximate filtering algorithms in nonlinear systems assume Gaussian prior and predictive
density and remain popular due to ease of implementation as well as acceptable performance. However, these
algorithms are restricted by two major assumptions: they assume no missing or delayed measurements. How-
ever, practical measurements are frequently delayed and intermittently missing. In this paper, we introduce a
new extension of the Gaussian filtering to handle the simultaneous occurrence of the delay in measurements
and intermittently missing measurements. Our proposed algorithm uses a novel modified measurement
model to incorporate the possibility of the delayed and intermittently missing measurements. Subsequently,
it redesigns the traditional Gaussian filtering for the modified measurement model. Our algorithm is a
generalized extension of the Gaussian filtering, which applies to any of the traditional Gaussian filters, such
as the extended Kalman filter (EKF), unscented Kalman filter (UKF), and cubature Kalman filter (CKF).
A further contribution of this paper is that we study the stochastic stability of the proposed method for its
EKF-based formulation. We compared the performance of the proposed filtering method with the traditional
Gaussian filtering (particularly the CKF) and three extensions of the traditional Gaussian filtering that are
designed to handle the delayed and missing measurements individually or simultaneously.

INDEX TERMS Delayed measurements, Gaussian filtering, missing measurements, nonlinear Bayesian
filtering.

I. INTRODUCTION

Modern scientific tools and technologies often involve sen-
sors that give noisy data [1], [2]. In non-engineering applica-
tions, survey and experimental data are often noisy [3]. Very
often, noisy data are used for determining the hidden states of
a system (or process). A popular mathematical tool to handle
this problem is estimation, and a recursive process of estima-
tion is known as filtering [1], [2]. Some crucial scientific and
engineering domains involving the applications of estimation
and filtering are target tracking [4], biomedical modeling [5],
industrial diagnosis [6], weather forecasting [3], and forecast-
ing prices of financial derivatives [7].
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A commonly accepted filtering framework is the Bayesian
framework that gives a probabilistic solution in terms
of the prior and posterior probability density functions
(PDF). The popularly known Kalman filter [8] is an opti-
mal linear Bayesian filter. However, no optimal nonlinear
Bayesian filter in closed form is reported in the litera-
ture till today, and the practitioners rely on approximated
methods. The literature witnesses two popular approxi-
mated nonlinear filtering methodologies, known as Gaussian
filtering [9], [10] and particle filtering (PF) [9], [11].
Particle filters require specialized hardware in real time
applications due to their high computational complexity.
We focus on Gaussian filters, i.e., filters which assume
Gaussian prior and posterior densities in this paper, which
are far easier to implement, are very common in engineering
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applications and can also work as a proposal stage for particle
filters.

Gaussian filtering [9], [10] approximates the prior and
posterior PDFs as Gaussian and characterizes them with the
corresponding means and covariances. However, the com-
putation of mean and covariance involves integrals which
are unavailable in close form and need to be numeri-
cally approximated during filtering. Some of the popular
Gaussian filters are the extended Kalman filter (EKF) [1], the
unscented Kalman filter (UKF) [12], the cubature Kalman
filter (CKF) [13], the cubature quadrature Kalman filter
(CQKF) [14], the Gauss-Hermite filter (GHF) [15], and the
exponentially-fitted CKF (ECKF) [16]. The Gaussian filters
are sub-optimal, mainly due to the Gaussian approximation
of arbitrary prior and posterior PDFs. However, they are
often accurate enough for practical applications under lenient
environments. Here, the term ‘lenient environment’ imposes
two major restrictions: i) the measurements are not delayed in
time and ii) definite availability of measurements is ensured
at every sampling instant. This presents difficulties if practi-
cal measurements are often time-delayed and intermittently
missing.

It is worth mentioning that a marginal delay in measure-
ments is inherent due to the response time of the mea-
suring devices. Moreover, the delay may further increase
and become large due to various reasons, such as network
delay [17] and propagation delay [18]. In such cases, ignoring
the measurement time delay may have a serious impact on
the state estimation accuracy. The early literature on filtering
with delayed measurements [19], [20], [21] extended the tra-
ditional Gaussian filters for delays up to one or two sampling
intervals. Later, [22] extended the traditional Gaussian filter-
ing for larger delays, considering that the delay statistics are
known. This method is further extended in [23] for unknown
delay statistics.

Similar to the delay, there are various practical reasons
for intermittently missing measurements. A predominant rea-
son is the inefficient network and communication channels
used for measurement data transmission [24]. Some other
common reasons, such as the use of time-sharing sensors
and the temporal sensor failures, are reported in [25], [26],
and [27]. Besides these possible reasons, the measurements
may become unidentifiable in heavy clutter environment,
which is also addressed as a missing measurement [28].

In an early development on filtering with missing measure-
ments, [26] modified the traditional EKF for partial missing
measurements, assuming that a fraction of each measurement
is available. Later, [29], [30] investigated the UKF for nonlin-
ear stochastic systems with missing measurements. In another
development, [31] introduced a distributed filtering method
for saturated systems. However, its design aspect is limited to
linear dynamical models with certain modifications to handle
the nonlinearity involved due to the saturation.

The above discussed filters [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31] are designed
to handle either the delayed or the missing measurements.
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The literature [18], [32], [33], [34] on filtering with simul-
taneously occurring delayed and missing measurements wit-
nesses some developments for different classes of systems.
For example, [32] considered this problem in coupled neu-
ral networks and developed an estimation method. Simi-
larly, [18] develops a filtering algorithm for the delayed and
missing measurements. In this regard, it introduces sepa-
rate stochastic models for incorporating the delay and miss-
ing measurements possibilities. Subsequently, it introduces a
Ricatti-like equation for designing Kalman filtering method.
However, [18] restricts the delay up to one sampling interval,
wherein the practical delays can often be larger. Further-
more, [33] introduced unbiased finite impulse response-based
filtering approach for finite-horizon case, considering the
presence of delayed and missing measurements. However,
it assumes that the delay is time-stamped, while delays
without time-stamping are observed in many practical sys-
tems [35], [36]. Finally, [34] introduces three new designs
of robust linear Kalman filtering for handling the simulta-
neously occurring delayed and missing measurements. How-
ever, in every design, it restricts the delay as one sampling
interval, which can lead to poor accuracy if the real mea-
surement delay is higher. Moreover, [18], [34] rely on the
augmented state-space approaches, which may increase the
computational complexity significantly.

Although the above-discussed filtering methods
[18], [33], [34] can handle the simultaneously occurring
delayed and missing measurements, they have two broad
limitations: i) they are designed for linear dynamical systems,
ii) they fail to handle delays of more than one sampling
interval without time-stamping. For the nonlinear dynami-
cal systems, [37] is probably the only existing method to
handle the simultaneously occurring delayed and missing
measurements. It integrates a likelihood-based technique
with the nonlinear Gaussian filtering framework for handling
the simultaneously occurring delayed and missing measure-
ments. However, [37] uses an augmented state transition
equation, with the size of the system growing by a factor
of d, where d the maximum number of delays. The authors
also use Gaussian mixture with d components as a likeli-
hood function, and mention computational issues with large
number of components in the likelihood function. Indeed, the
increased size of the covariance matrices itself can present
significant computational issues in multidimensional integra-
tion involved.

In this paper, we develop a new extension of Gaussian
filtering to handle the simultaneously occurring delayed
and missing measurements for nonlinear dynamical sys-
tems. In this regard, we reformulate the measurement model
using a set of Bernoulli random variables to incorporate
the possibilities of delayed and missing measurements.
Subsequently, we re-derive the Gaussian filtering method
for the modified measurement model. It should be men-
tioned that we modify only the measurement model. Con-
sequently, in the redesigned Gaussian filtering, only the
filtering parameters related to the measurements, such as
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the measurement estimate, the measurement covariance, and
the state-measurement cross-covariance, are re-derived. It is
worth mentioning that our contribution is on developing a
generalized Gaussian filtering methodology for the problem
of delayed as well as missing measurements. Thus, it can be
used for extending any of the existing Gaussian filters, such
as the EKF, the UKF, and the CKF, for handling the simul-
taneous occurrence of delayed and missing measurements.
We study the stability of the proposed method by formulating
it under the EKF-based design strategy. We test the perfor-
mance of the proposed method under CKF-based formulation
due to its popularity for high accuracy at a low computational
cost. The performance analysis reveals an improved accuracy
for the proposed method compared to the traditional Gaussian
filtering method and its extensions in presence of delayed and
missing measurements.

In view of the above discussion, we highlight the main
contributions of the manuscript as follows:

« We introduce a stochastically formulated measurement
model that incorporates the possibility of simultaneously
occurring delayed and missing measurements.

o We redesign the traditional Gaussian filtering for the
modified measurement model to handle the simul-
taneous occurrences of the delayed and missing
measurements.

o« We consider arbitrarily large delays without time-
stamping for nonlinear systems, whereas the existing
filters such as those reported in [34] and [18] (without
time-stamping) and [33] (with time-stamping) address
the delayed measurements only for linear systems.
Moreover, our algorithm, in contrast to [37], avoids com-
putationally expensive state augmentation and instead
relies on analytical expressions for the necessary con-
ditional moments (which are additive in the number of
maximum delays).

o« We study the stochastic stability of the proposed
Gaussian filtering structure for the EKF-based
formulation.

« We validate the performance of the proposed Gaussian
filtering methodology by two comprehensive simulation
examples.

The remaining part of the paper is organized as follows.
In Section II, we mathematically formulate the problem
of simultaneously occurring delayed and missing measure-
ments, which is followed by the explanation of the proposed
methodology in Section III. In Section IV, the stochastic
stability of the modified Gaussian filter under the EKF-based
formulation is performed. The simulation results are pre-
sented in Section V, and finally the discussion and conclusion
are highlighted in Section VI.

Il. PROBLEM FORMULATION

Our problem is to develop an advanced Gaussian filter-
ing methodology to handle the simultaneous occurrence of
delayed and missing measurements. The standard represen-
tation of the state-space model in a lenient environment
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(defined in the previous section) is as follows

Xp = filkk—1,k — 1)+ e
zi = hp(xg, k) + vy, 2)

where x; € R” and z; € RY are state and measure-
ment variables, respectively, at k sampling instant, k €
{1,2,..., Ty} with Ty representing the number of sampling
intervals. Moreover, f;: Xx—1 — Xi and h;: Xy — zj are
general nonlinear functions. Finally, 7, and vy are zero-mean
Gaussian noises representing the process and measurement
noises, respectively. The covariances of 5, and v, are denoted
as Q. and R, respectively.

Following our problem statement, we need to reformulate
the measurement model (Eq. (2)) to address the simultaneous
occurrence of randomly delayed and randomly missing mea-
surements. Our reformulation of the measurement model is
based on two sets of Bernoulli random variables, denoted by
o and ®: o corresponds to the missing measurements and ®
corresponds to the delayed measurements.

The measurements are generally received from multiple
sources, and they all may not be missing at the same time.
Thus, we consider that the measurement at any sampling
instant may be partly missing, i.e., specific elements of
the measurement may be missing at any particular instant.
Thus, we define a matrix of Bernoulli random variables,
A= diag{a,ﬁ, Ol]%, e, aZ} witha,’; Vie{l,2,...,q}being g
equiprobable Bernoulli random variables and E[Ax] = p; =
diag{,u,i, u%, R ,uZ}. It should be mentioned that oz,i is either
0 or 1, with a,i = 0 representing that the i element of the
received measurement yi, denoted as y (i), is missing.

For modeling the delay portion, we restrict the maximum
delay to Npgx. Nmax 1s the practitioner’s choice and it can
be assigned with a fairly large value if the expected delay
is large. Therefore, our model and the proposed filtering
technique should not be deemed to be restricted to small
delays. We define N,,4x + 1 equiprobable Bernoulli random
variables: one for each of the current and the N, possible
delayed instants. At k" instant, we denote them as @2 Vj e
{1,2,....Npaxr + 1} with P(®) = 1) = E[O}] = §.
Note that @fl corresponds to j delayed instant. We assign
@2 = 0, and model the actual measurement as

i = M [(1 — OOz + (1 — O — ©,)O;7;

ot (=0 —6h)... (1 — )

Nmax+l
x ©) szmaX]. (3)
The coefficients of zx_,, Vm € {1,2,..., Npax} gOV-
ern the delay extent. For example, if the measurement
is one time-step delayed, i.e., yy = Zr—1, then coeffi-

cient of z;_1, ie., (1 — @2)(1 — ®}()®£ takes the value
one, while the random variables associated with z;_,,
Vm # 1 remain zero. At the same time, A; regulates the
missing measurement possibility. The diagonal elements of
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FIGURE 1. Pictorial diagram representing the sequence to be followed to obtain the received measurement y; from the ideal z;, z,, . . ., z; that

would have been received in the lenient environment.

A; are Bernoulli random variables, which take the values
zero or one. The value one ensures that the measurement is
received, while the value zero indicates that the measurement
is lost.

To this end, let us simplify the notation for the coefficients
of z;_,, as

m
Mmm:(ﬂa—%Q%“W “
J=0
so that the received measurement is m-step delayed if
A(m, j) = 1, which means @' = 1 and @, = 0Vj < m.
Subsequently, Eq. (3) can be represented as

Yk = Ak [Ak(O,j)Zk + Ar(1, Pz

+ e + Ak(Nmax,j)ZkNmax}' (5)

Thus, the measurement model can be finally given as

Nimax
Vi = Ak Z Ay (m, j)zg—m, (6)
m=0
where yi is the actual received measurement due to delay
and missing possibilities. At this end, z; may be considered
as an ideal measurement that might have been received in
the lenient environment. A pictorial diagram representing the
sequence to be followed to get y; fromzy, 7o, . . ., Z; is shown
in Fig. 1. )

It is assumed that a,’; and @2 are independent random
variables V{k, i, j}. Furthermore, o, and @) are independent
of o and Oy, respectively for j # i. Our objective in the
next section is to redesign the Gaussian filtering method for
the state-space model represented by Eqgs. (1) and (6) so that
the possibilities of delayed and missing measurements are
incorporated.

The above discussions emphasize the importance of the
measurement model (6) for developing the proposed fil-
tering algorithm. As mentioned in the previous section,
some of the existing filters, such as [19], [20], [21], [22],
and [26], also formulated similar measurement models. How-
ever, the models in [19], [20], [21], and [22] characterize the
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delay possibilities only, while the same in [26] characterizes
only the missing measurement possibility. Moreover, [19],
[20], [21] characterize only limited and small delays,
while [26] characterizes fractionally available measurements
instead of being completely missing. Thus, they fail to char-
acterize the general practical scenarios of the simultane-
ously occurring delayed and missing measurements. Our
measurement model in Eq. (6) efficiently characterizes the
simultaneously occurring delayed and missing measurement
possibilities. It considers any large delays and completely
missing measurements unlike [19], [20], [21], and [26],
respectively.

Remark 1: Considering the above-discussed competency
of our measurement model, the Gaussian filtering algorithm
designed for this model should accomplish an improved
accuracy for simultaneously occurring delayed and missing
measurements.

1. MODIFIED GAUSSIAN FILTERING FOR DELAYED AND

MISSING MEASUREMENTS

The traditional Gaussian filtering is designed with respect
to the measurement z, modeled in Eq. (2). In this section,
we derive the necessary modifications to the algorithm to deal
with the modified measurement y, modeled in Eq. (6). As the
measurement model is changed, we re-derive all the related
expressions in the traditional Gaussian filtering to propose the
advanced Gaussian filtering for y. The traditional Gaussian
filtering uses only three such expressions, namely the mea-
surement estimate Z, measurement error covariance P#, and
the cross covariance PX%, derived for z. We re-derive all the
measurement related expressions in the Gaussian filtering
algorithm for the modified measurement model above. On a
different note, it should be mentioned that the state dynam-
ics remains unaffected from the simultaneous occurrence of
the delayed and missing measurements. Therefore, the time
update step of the proposed filtering technique remains the
same as the traditional Gaussian filtering [9], [10].

A. MODIFIED GAUSSIAN FILTER
In this part, we re-derive the measurement parameters, such as
y, PYY, and P¥Y. Before proceeding to the derivation, it should
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be mentioned that only one of Ay(m,j) Ym is one and the
others are zero at any instant #; to ensure that only one mea-
surement is received. Although this consideration violates
the independence of A (m,j) for different m (i.e., different
delay), they will be assumed to be statistically independent
in our derivation. We now derive the expressions of y, P¥Y,
and PXY.

1) MEASUREMENT ESTIMATE FOR yy
For y given in Eq. (6), the measurement estimate is

Nmax
[( > MeAi(m, i )} )

m=0
As the missing and delay occurrences are mutually indepen-
dent events, Ay and Ax(m,j) are statistically independent.
Moreover, Ax and Ag(m, j) are independent of the measure-
ment value z; also. Thus, we simplify the above equation as

Yik—1 = Elyx] =

lelX
Va1 = Y EMIE MG DIE [2k-m].  (8)
m=0
Following our previous notations, E [Zx—m] = Zk—mjk—1.

Recalling the previous discussion, we get

E[Ax(m, j)]= [(H(l—d)) ""“)] (1= 84)"8a.

)
Substituting E (2], E [\c], and E [Ag(m, j)] in Eq. (8),
we get
Nmax

ek-1 =Y (1 = 82)"Sak—mji1- (10)
m=0

2) MEASUREMENT ERROR COVARIANCE FOR yj
The measurement error covariance is

Pl =E [(Yk — eik—1) (yx — )A’k\k—l)T] . an
From Egs. (6) and (10), we get

Nmax
Y = Jk—1= D M Ag(m. )z —pm
m=0
Nmax
= > (1 = 80)"Saik—mp—1- (12)
m=0

We can rewrite this expression as

Yk — Yklk—1
anth
=D M AOm, )@ — Tl —1)
m=0
Aq

Nmax

+ Y (e Akm, = (1 =80)"8a) B—mpp—1 - (13)
m=0

Ay
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From Egs. (11) and (13), we can write

Pl = E[AIA] ]+ E[A|A] ] + E[A2A] ] + E[A2AT ].

(14
We can now compute every expectation term individually

for A; and A; defined in Eq. (13) and add them to obtain
leyk |- In this regard, for A; given in Eq. (13), we get

Nmax

EIAATI =Y E [xﬁ] E [Az(m,j)]
m=0
x E [(zk—m - ik—m|k—1)(zk—m—ik—m|k—1)T] .
15)
Following previous discussions, E[ki] = E[A] = my,

E[AZ(m, )] = E[(Ak(m, )] = (1 = 84)"84, and E[(Zx—m —
2k—mlk—l)(zk—m - 2k—m|k—l)T] = Piz,m‘k,]- Thus, Eq. (15)
can be simplified as

A’max

E[AIAT]I =) (1 = 82)"8aPF iy (16)
m=0

Similarly, for Aj and A; given in Eq. (13), we can write

E[A1A]]
Nm(u’
= E[ (Z M Ak (s, )@ — ik_s|k_1))
s=0
NNZCLX T
x (Z (A Ax (2, ) — p(1 = 84)'84) iktlkl) ]
t=0
After further simplification, we get
E[AIA]]
Nmux Nmax
=Y Y E [xkAk(s DAaAr(t. )
s=0 =0

T A .
— (1 = 80)'8a) T—sZf_ 1y — M Ar(s. ))
. T A ~
X (A Ax(t,)) — (1 — 84)'8a) Zk—s|k—1l;{t|k1]-
(17)

After substituting all the expectation terms from previous
discussions and considering that E[Zx—s] = Zx—sk—1, We get

E[AAlT=0. (18)
This also leads to
E[AAT]=0. (19)
Finally, for A; given in Eq. (13), we have
wac
E[A2A]] = E[ D (e Arlm, ) — (1 = 82)™
m=0

2. .
X 84) Zk—mlk—lzzmk]i|- (20
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Applying binomial expansion and simplifying further, we get
NITI(Z.X

E[AAT] =) (E[leE[Ai(m,j)] + (eda(1 = 82)")
m=0

— 2E[M]E[Ag(m, Plpy(1 — 8d)’”<3d>

X Bk 12 i1 1)
Substituting E[A7] = py and E [AZ(m, j)] = (1 — 84)"84,
we obtain

N max

ElAALT = ) (il = 80"8 = (w1 = 80"34)°)
m=0

X Bk 121 (22)
We now substitute E[A1AT], E[A1AT], E[A2AT], and

E[AzAg] from Egs. (16), (18), (19), and (22), respectively,
in Eq. (14) to obtain Pilyk_l as

Nmax Nmax
P, = = > (= 8)" 8P + D (i
m=0 =
2
x (1= 84)"8q — (mi(1 —84)"84)")
X ik—mlk—lijzlmm,] . (23)

3) CROSS-COVARIANCE FOR yy
The cross-covariance between the state and measurement is

Pi‘fk | =EF [(Xk — X~ 1D(Yk — Ykk—1) ] (24)
Substituting yx — ¥xk—1 from Eq. (13), we get
Pifk_l =K [(Xk - ﬁk\k—l)AlT] +E [(Xk - §k|k—1)Ag] .
(25)
For A; given in Eq. (13), we get
E [(Xk — f(k\k—l)AlT]

Nmax

-y <E[xk]E[Ak(m,j)]

m=0
x E [(Xk — Xiek—1)Zk—m — ik—m|k—1)T] ) (26)

Substituting E[A] and E[Ay(m, j)], we obtain

Nmtvc
E [ = %x-nAT | = Z(l—sd)'"adl’ " et M 27)

Similarly, for A, given in Eq. (13), we get
E [(Xk - ?A(klkfl)Ag]

max

=2 F

x(1 - ad>'"5d>]E [ % = Repo2] e ] 28)

|:O~k A(m, j) —
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As Ar and Ag(m,j) are independent, E [ApAr(m,))] =
E [A] E [Ar(m, )] = pi(1 — 84)"84. Thus, we can write

E[(MAkn, ) — me(1 = 82)"84)] = 0. (29)

Substituting this into Eq. (28), we get
E| o — %iu-AT | =0, (30)

Substituting E [(x¢ — Xxp—1)A] | and E [(x¢ — Rik—1)AT |
from Eqgs. (27) and (30), respectively, into Eq. (25), we get

N, max

Pklk 1= Z 8a(1 = 84)" PR iy k- (31)
m=0

As discussed at the beginning of this section, the pro-
posed filtering method modifies the traditional Gaussian
filtering by re-deriving the expressions of measurement
estimate, measurement covariance, and state-measurement
cross-covariance (Egs. (10), (23), and (31), respectively).
Please follow [9], [10] for a detailed discussion on the
traditional Gaussian filtering. The proposed filtering algo-
rithm also follows the same filtering strategy by replac-
ing the expressions of z, P*, and P** with the re-derived
expressions of y, P¥Y, and P¥Y, respectively. We provide the
pseudo-code for implementing the proposed filtering method
in Algorithm 1.

In advancing the traditional Gaussian filtering for handling
various measurement irregularities, such as the delayed and
missing measurements, the major difficulty appears in incor-
porating those irregularities through mathematical models.
The problem becomes yet more challenging if the irregu-
larities are uncertain to appear at any particular sampling
instant, as considered in this paper. We handled this problem
by mathematically characterizing such irregularities, particu-
larly the delayed and missing measurements, by formulating
a stochastic model, as in Eq. (6).

Remark 2: Our measurement model utilizes a sequence of
Bernoulli random variables to characterize the possibility of
a measurement coming from various possible past instants.
A future research problem may be to introduce a more con-
venient model by reducing the required number of random
variables.

Remark 3: Our filter design strategy concludes that han-
dling the measurement irregularities becomes convenient if
an efficient mathematical model for characterizing the con-
cerned irregularities is formulated.

Remark 4: The proposed method fetches some informa-
tion, such as the measurement estimate, measurement covari-
ance, and state-measurement cross-covariance, from past
instants, which causes additional storage capacity require-
ment. Similar additional storage requirements also occur in
existing delay filters, e.g., see [9].

Remark 5: The proposed filtering methodology simplifies
to the traditional Gaussian filtering methodology for zero
probabilities of delay and missing measurements (u' =
8 = 1) and N,,;4r = 0, if we use the convention 00 =1.
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Algorithm 1 Pseudo-Code for Extending the Sigma-Point
Based Gaussian Filters Under the Proposed Filtering
Technique
Input: Qg, Ry, T, u, 84, filter-specific sigma points, and
weights.
Output: )A(k|k.
Initialisation: f(()|0, IA)O‘(), k=1.
1: while k < T; do
2. Compute the predicted estimate and covariance of xi:
Xik—1 and Pre—1 (see, e.g., References [9], [10]).
3:  Compute the estimate and covariance of the ideal mea-
surement (zx): Zkjk—1, Pﬁk—l (see, e.g., References
[91, [10D).
4:  Compute the cross-covariance between state and
ideal measurement z: lezk_l (see, e.g., References
(91, [10]).
5. Compute the estimate and covariance of the received
measurement yx: Yik—1 (Eq. (10)) and PZlyk_ 1
(Eq. (23)).
6: Compute the cross-covariance between X; and
received measurements yy: Pz‘yk_l (Eq. 31)).
7. Kalman gain: K = Pkafl(Pz‘ykfl)_l.
:  Updated estimate: Xxjx = Xxjx—1 + K(yx — Fxjk—1)-
9:  Updated covariance: 13k|k = 13k|k—1 — KPZlykflKT.
10:  return ﬁklk
11: end while

IV. STOCHASTIC STABILITY OF MODIFIED GAUSSIAN
FILTERING

In this section, we analyze the stability of the proposed
method for the EKF-based formulation. It should be men-
tioned that the proposed filtering method is generic and
applicable to any of the existing Gaussian filters, such as
the EKF, UKF, and CKF. The EKF propagates the locally
linearized system models during the filtering, which makes
the stability analysis conveniently realizable. However, other
Gaussian filters, such as the UKF and CKEF, directly propa-
gate the nonlinear systems models, which makes the stability
analysis partially unrealizable with the existing theories of
nonlinear dynamics. Thus, our stability analysis is limited
to the EKF-based formulation of the proposed method only.
In the non-linear filtering literature, it is a common prac-
tice to analyze the stability for the EKF-based formulations
only [38].

In our stability analysis, we formulate a stochastic model
for the estimation error of the EKF-based formulation of the
proposed method. Subsequently, we show that the estimation
error of the EKF-based formulation of the proposed method
is exponentially bounded in a mean square if the filter, noise,
and system parameters satisfy a set of presumed conditions.
In the remaining part of this manuscript, the EKF-based
formulation of the proposed method is abbreviated as
MDEKEF.
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A. STOCHASTIC MODELING OF THE ESTIMATION ERROR
Here, our objective is to formulate the stochastic model rep-
resenting the dynamics of the MDEKF’s estimation error.
Before proceeding further, we would like to introduce the
time update and measurement update steps of the ordinary
EKF that is designed for z. The EKF determines the time
update parameters as

Xipk—1 = Rk—1k—1)

T (32)
Pri—1 = Fr—1Pr—yp—1F_ + Q,

where Xgx—; and Pyx_; are the prior estimate and error
covariance, respectively, at k" sampling instant. Moreover,
Fk— _ f(xk—1)

T =K1kt
of f(xx—1) computed at X; _1x—1.
Furthermore, the EKF determines the measurement update
parameters as

represents the Jacobian matrix

Zi—1 = "Xgji—1)
ngfl = HkPk|k_1H]{ + Ry
P = Prp— H]

Rek = Repe—1 + K (2 — Zee—1)

(33)

dh(xk)
X Ixp=Xp k-1

computed at Xg|k—1.

Assuming that f(-) is a sufficiently smooth function, let us
expand f (Xx), using the Taylor series expansion around X,
as

where H;y = denotes the Jacobian of h(xy)

F&xx) = f i) + Fregp + Wr(Xe, Xepp), (34)

where exx = Xr — Xk represents the estimation error and
Wr(Xx, Xi k) is the remainder term.
A similar expansion of h(x) around f(k‘ k—1 gives

h(xr) = hXgjk—1) + Hiege—1 + Wn(X, Xep—1),  (35)

where exjk—1 = X — Xgk—1 is the prediction error and
Wj,(Xx, Xkjk—1) has an explanation similar to Wr(xXy, Xk k).
Substituting x; and Xgx—i from Egs. (1) and (32), respec-
tively, we obtain

-1 =f(Xk—1) = f Re—1jk—1) + M- (36)
Using Eq. (34), the above equation can be written as
exk—1 = Frorer—ijk—1 + Yy (X1, Xe—1jk—1) + 1. (37)

Similarly, substituting X« from Eq. (33), but for yi, in exjx =
X — gk, we get exk = Xk — Xge—1 — K(yx — Yxjk—1). Then,
substituting X, Y, Yx|k—1, and X k1 from Egs. (1), (6), (10),
and (32), respectively, we get

N, max

exk = f(Xk—1) —f Re—1jk—1) + M — K()»k > Axm. j)
m=0
NmHX
X Zg—m — M Z sa(1 — 5d)mik—m|k—1)~
m=0
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Let us do the following substitutions: 1) Zx—,;, = h(Xk—m) +
Vi, 1) Zx—mk—1 = hXg_mk—1), and iii) f(xx) from
Eq. (34). In the resulting expression, let us substitute 2(Xx—;;)
expanded by Eq. (35). Subsequently, we obtain

e = Frorer—ijk—1 + Wy (X1, Xe—1jk—1) + 1 — Ky

Nmax
X ) Ak(m, Vi
m=0
Nmax
- K[ D O Akm, ) — mida(l = 84)™)
m=0
Nmax
< (RRk—mi—1)+Hi ek —1)+Ax Y Ax(m, j)
m=0

X Wi (Xk—ms Xk—mlk—1)

Nmax
+ Y bl — 3d)mHk—mek—m|k—1i|-

m=0

We expand e;_,;x—1 using Eq. (37) and substitute the
expanded e;_,x—1 in the above equation. Subsequently, after
some rearrangements, we obtain the desired stochastic model
of the error dynamics in the form of Eq. (38), as shown at the
bottom of the page, where I represents an identity matrix of
the appropriate dimension.

It is worth mentioning that Eq. (38) represents the error
dynamics in terms of stochastic difference equation. Inter-
estingly, the state of this difference equation is the error
of the MDEKF. Thus, we can consider Eq. (38) as a
time-series representation of a hypothetical system with the
state being the error of the MDEKEF. Subsequently, the sta-
bility of this hypothetical system ensures the stability of the
MDEKEF.

To this end, it should be mentioned that the literature
contains several notions of stability for nonlinear systems.
The readers may please refer to [39] for a detailed discussion.
In this paper, we particularly use exponential stability, where
the stability is ensured if the system’s convergence is bounded
with an exponential envelope.

B. EXPONENTIAL STABILITY
Before proceeding forward to prove that the error dynamics
presented in Eq. (38) is exponentially bounded, we mathemat-
ically define the exponentially bounded process, as follows.
Definition 1: Let us consider that e; denotes a stochastic
process and k¢’ > 0, & > 0,and 0 < B < 1 are real numbers.
Then, ey is said to be exponentially bounded in mean square
if it satisfies

E[llexl?] < B4E [leol?] +& VEe {1,200 (39)

where ||-|| represents the spectral norm for matrices and
Euclidean norm for vectors.

It should be mentioned that the above definition is general
and does not limit e to be the estimation error only. However,
our notations and discussions will be focused on the estima-
tion error.

In our stability analysis, we approach Eq. (39) in a different
way. In this regard, please refer to the subsequent discussion.

Remark 6: Let us consider that 71 > 0, 7o > 0, ' > 0,
and 0 < ¢ < 1 denote real numbers, and V (ey) represents a
scalar-valued stochastic process, which satisfies

71 llecll? < Vier) < 12 llecl? (40)
and
E[V(ep)lex—1]1 — V(er—1) <y —¢V(ex—1) <0. (41)

Then, the stochastic process e; satisfies
%) y/ k=1 .
E [l < 2E [leol” |0 =)+ =30 9. @2)
i=0

Please refer to [38] and [40], for a detailed discussion.

In the subsequent discussion, we conclude that this remark
is another way of defining the exponential bound in mean
square.

Since Y10y (1 =)' < 32 (1— ) = 1/9, Eq. (42)
can be written as

E [lecl?] = 2 [leol’| 1~ 9 + %. 3)

N, max

exe = (I — 8sKpu He) Fr_y ex—ij—1 +m — K Z (1i8a (1 — 80" Hik— g + A Ak (m, )Vi—m)

=0
Ak "

N max

Ci

+ Wr(xp—1, X—1—1) — K Z (A Ak (m, YRk =, Kk—mi—1)+ 1 8a (1 — 80) " Hi—n W (Xi— 1=y Rk—1=mlk—1))

m=0

B

Nmax Nimax
X —K|: Z ()VkAk(mvj)_lLk(Sd(l_(Sd)m)(h(f(k—mlk—1)+Hk—mek—m|k—l)+Z ﬂk5d(1—Sd)mHk—ka—mek—1—m|k—1]-

m=0

m=1
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It should be mentioned that with 75 /7 =k, 1 — ¢ = 8, and
y'/(t1¢) = &, Eq. (43) is the same as Eq. (39).

Remark 7: In conclusion to the above discussion, we state
that satisfying Eq. (43) for a stochastic process ey ensures that
ey is exponentially bounded.

Remark 8: Since Eq. (43) is concluded from Egs. (40)
and (41), we can further state that if the stochastic process e
satisfies Egs. (40) and (41) for any scalar-valued stochastic
process V(ey), then the stochastic process ey is exponentially
bounded.

We will use Remark 8 as our stability criterion. Alter-
natively, we will conclude the stability of the MDEKF by
inferring that the estimation error of the MDEKEF satisfies
Egs. (40) and (41). The proof is based on several assumptions,
as follows.

o Fy is a non-singular matrix.

o The system, noise, and filter parameters satisfy the fol-

lowing bounds:

Ml < @ and [l < v (44)

W (Xk—1, Rkt DIl < e1llXe—1 — Ke—1k—11*  (45)
IWhxk, Rek—DIl < callxe — Ree—1 11 (46)
[Fell <f and [[Hgl <h (47)

Pl < P < Prik—1 < p2l (48)

[xk—1 — Xk—1p—1] = ||ex—1k—1] <€ 49)
Ixc — %=1 | = |exp—1] <€ (50)

|h G- < P (51)

gl <Qr <¢T and rI<R; < /1,
(52)

with w, v, c1, ¢2, f, h, p1, p2, €, hm, q, ¢, 7, and '/
representing positive real numbers.

Before proving that the MDEKF’s estimation error satisfies
Egs. (40) and (41), we derive a series of inequalities through
the subsequent lemmas. These inequalities will be used in the
final proof.

Lemma 1: For the inequalities presented in Egs. (47), (48),
and (52), the Kalman gain K satisfies

h
I < 2=, (53)

Proof: Let us expand PZ|yk—1 and PZ|yk—1 as follows:
i) substitute Zx_,k—1 and Piz_m‘ «_1 obtained using Egs. (32)
and (33), respectively in PZ|yk71 given in Eq. (23), and

ii) substitute P{* . | from Eq. (33) into P}, ; given in
Eq. (31). Substituting the expanded Pﬁlk—l and szkfl in
Kalman gain expression K = PZTk—l(PZ\Yk—l)_I’ we obtain

Nmtzx Nmax
K=" 8a(1 = 84)" Pk~ H] uk[ > sl —8a)"
m=0 m=0
Nmax
% pp (HePiomi B + R+ (a1 — 8"
m=0

-1
— (pyda(1 — ad>’")2)h(f<km|k1>h(ﬁkm|k1)T} .

It is worth mentioning that Hy Pk,mH,{ > 0 because
Py _mk—1is a positive definite matrix. Subsequently, applying
the norm property, we can write

Nma}c Nmax

> (1=8a)" Py H] H [ > da(1=82)"
m=0 m=0

x py (R 4+ (I = pg8a(l = 80)™")hR—mik—1)

-1
X h(fik—mm—l)T) } :

1K < 8a |l e

For any invertible matrix M, please note that ot (M~!) =
(e~ M)~ !, where o1(-) and o~ (") represent the largest
and smallest singular values, respectively. Thus, substituting
lmill = p and using the inequalities presented in Eqs. (47)
and (48), we get

N, max

IKJ < (pzh (11 =0, )) [o‘( > sa(l — 80"
m=0

X e (R 4 (L= peda(l = 8)" ) h(Ric—mik—1)

-1
X h(fik—m\k—l)T> >] : (54)

The bound presented in Eq. (52) assumes that Ry is a posi-
tive definite matrix. Moreover, (X —mjk—1)hRg—mk—1)" is a
positive semidefinite matrix. Thus, the matrix in the second
factor of the above equation is also positive definite. Subse-
quently, it follows that o~ () = A7(-), with A7 (-) represent-
ing the smallest eigenvalue. We now calculate the smallest
eigenvalue of the second factor by using the Rayleigh-Ritz
characterization [41] in Eq. (55), as shown at the bottom of
the page.

Nmax

F( > 8a(1 = 80)" iRy + (T—84(1 — Sd)mﬂk)h(flkmk1)h(f<kmk1)T)>

m=0

NWllLX
: T m
> min | Xx Sa(1 —84) Rix

leb\'
+ min (xT > (8001 = 80" mx = (341 = 80" me)?) h(ﬁk_mk_nh(ﬁk_mk_lfx). (55)
m=0

Ix[l=1
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AS h(X—mik—1)hXk—mik—1)T is positive semidefinite, the
second term on the right side of Eq. (55) is zero. Subse-
quently, using the bound given in Eq. (5§2), we obtain

Nmax
)»_( Z 8a(1 — 8" iRy + (T = 84(1 — 84)" py.)

m=0

X h(ﬁk—mk—l)h(ﬁk—mk—l)T))

> 1 (1 (- 5,1)Nmﬂx“) r. (56)

As discussed previously, o ~(-) = A7 (-) for positive definite
matrix. Thus, substituting Eq. (56) into Eq. (54) gives the
bound of K as given in Eq. (53).

Lemma 2: For non-singular matrix Fy and 0 < ¢ < 1, the
following inequality holds

T p—
F_, (1 8sKpHy) Py (T— 84KpHy) Fr
<A=Pl . (57

Proof: Please note that Py = E[(Xx — Xgpp)(Xx —
f(k‘k)T]. Substituting x from Eq. (1) and Xxpx = Xgpp—1 +
K(yr — Jrjk—1), we get

Prj = Prje—1 — PZykflKT - K(ngfl)T + KPZ\ykflKT-

Substituting Pkafl and P:Tk—l from Egs. (23) and (31),
respectively, we obtain

Nm(lx Nmax
Pre =Pr—1—)_ 8a(1 — 8" P iK' =K )~ (84
m=0 m=0
x (1= 8)" e PE D7)
NmaX
+K[ Z Hida(l — 8a)" PR
m=0
N"la)[ 2
+ ) (gba(l = 80)" — (rada(l = 8)™)")
m=0

A AT T
X kalklzk—m|k—1:|K :

It is worth mentioning that Zx _px—1, Pzz—m|k—1’ and Pﬁmmq
can be determined using Eq. (33). Substituting these param-
eters in the above expression and simplifying further, we get
Py i in the form of Eq. (58), as shown at the bottom of the

page.

Please note that Ry, is a positive definite matrix in Eq. (58).
Similarly, the positive definiteness of Py_,x—1 ensures that
84(1 = 82)" i Hi Py — 1 HI (I —84(1 — 82)™ py.) is positive
semidefinite. Moreover, A(X—mk—1)(Xk—mjk— DT is a posi-
tive semidefinite matrix. Since the sum of the positive definite
and positive semidefinite matrices is positive definite, we fur-
ther conclude

Nmax
K[ > 8a(1 = 8)" i Hk Py H (1= 84(1 — 84)" )

m=0
lelX

+ 3 (medat = 80" = (medal = 80")°)

m=0

. . T
X W(Xge— ik — 1)k —mjk—1)
Nm{L’C

+ > 81— Sd)’"ukRk:|KT > 0.
m=0
Consequently, the following inequality can be deduced from
Eq. (58):

T
Pre > (I — 84KpHy) Prg—1 (1T — 84 Kp, Hy)
Nma)r
- Pr_mp—1-  (59)
1

m=

Substituting Eq. (32), we can rearrange the above inequality
as

P > (I_3dKILka)FkIPk1k1|:I+Pk_11k_1Fk_11(Qk
-1
— (I—8,Kp Hy)

Ninax
X Z Pi_mk—1(I— 5dKll'ka)T)Fk_T1i|

m=1

x FI_ (1 - 8,Kp Hy)'

Applying the bounds of Egs. (47), (48), and (52), and taking
the inverse, the above inequality can be rearranged as

Fi_ (1= 8K HO Pry (T— 8aKp H) Fros

1 o
= (1 + ,O_Zfz (61 - §2Nmaxp2>> Pk—11|k—l’

where ¢ = G+((I—5dKﬂ,ka)_1 ). We choose ¢, f, and p; for
which 0 < (14 1/(02f*)(q — {*Nuaxp2)) ™ = 1—¢ < 1is

wac

N, max

P =Y (=841 — 8" K He) Pr_ppe—1 (1= 84(1 — 80)"KpHye) " + K[ D 8a(l = 8a)" i (HePs s H

m=0
N”lCLx Nm{L’C

m=0

X (1= 8401 = 82" me) + R+ D (mida(l = 80" = (mida(l = 50)")?) h(ﬁk_m|k_1)h<&k_mk_nT}KT
m=0

m=0
Nm{LX

— > Pt
m=1
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satisfied. Subsequently, the above inequality is simplified to
Eq. (57).

Theorem 1: Let us consider the stochastic error model
given in Eq. (38) and EKF parameters through Egs. (32)
and (33). Furthermore, let us assume that Fy is non-singular
and the conditions given through (45) to (52) hold Yk > 0.
Then, the stochastic process e is exponentially bounded in
mean square, i.e.,

Elew "] = 2 [leon ] 1 - 0+ 2o (60

Proof: Throughout the theorem, we adopt the fol-
lowing simplified notations: Xz_;, Xi—1-m» €x—m, and
€ —1—m TOr Xp ik —1, Xk—1—mlk—1> €k—m|k—1, and €1k —1,
respectively. Then, Eq. (38) can be expressed as

ex ik = Axei—1jk—1 + Bi + Cr + Dy. (61)

We now define a scalar-valued stochastic process V : R" —
R as e,fl kP,;“l(ek“c. It should be mentioned that V is a positive
definite function. Substituting e from Eq. (61) in the expres-
sion of V and simplifying further, we obtain

Viekx) = e,{_llk_lA,{P,:“iAkek_”k_l +B,{P,:‘}((2Ak
x e 1jk—1 + Br) + 2C{ Py,
X (Agex—1jk—1 + By +Dy)
+C{ P, Ci + 2D P (Axer—1jk—1 + Bi)
+ D,{P,:‘}{Dk. (62)

It should be mentioned that the above equation is scalar. Thus,
applying norm property to the second expression on the right
side, we get

HB;{P,Q}{ (2Aker—1jk—1 + By) H
< 1Bl | Pt | GIANIec 111+ IBil) . (63)

We will now calculate the bound of each term in the right side
individually. In this regard, let us recall By defined in Eq. (38)
and use norm property to get

B ||
< IWrXk—1, Xk

Nmax
F UK Ak Ak, YW K- Re—m)l
m=0
lel)(
> 8a(1—=8a)" wHi— Wy Xk~ 1 Re—1-m)

m=0

+ K|

It should be mentioned that the elements of A; are Bernoulli
random variables, which take on values zero or one. Thus,
IAkll < 1. Furthermore, for only a particular value of m,
we get Ag(m,j) = 1, otherwise Ag(m,j) = 0. Subsequently,
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applying the bounds presented in Egs. (45), (46), and (47),
and from Lemma 1, we obtain

pahu(l = (1 - 5d)N’”‘”+l))

IBill < c1€” (1 +

r
heye’
4 P22 6ay
r
Similarly, for Ay given in Eq. (38), we get
p2h? sy
Ak < (L + 8K pHe) [ Fx—1]] = (1 + f)ﬁ
(65)
Applying the bound given in Eq. (48), we have

||Pk_|,16|| < 1/p1. Thus, substituting Eqgs. (49), (64), and (65)
into Eq. (63), it is simplified as

”B,{Pk_“l( (2Arer—1k—1 + Bk)H < xi€”, (66)
where
1 Rl — (1 = §g)Nmax+1
o = _|:Cl <1+ p2h” (1 —( ) ))
p1 r
200h%f 1
» <2+ p2h°f 1néa
r
R (1 — (1 — 8g)Nmast1
bere <1+pz pn(l — (1 —84) )))]
r

Let us now consider the fourth expression on the right side of
Eq. (62). For Cy, defined in Eq. (38), applying ||C,{ I = IICkll
gives

|eirpaic]
N)TMLX
< (nnkn KIS (mida = 800"
m=0

2
—1
) I

We now substitute ||l = ., Il < 1, X0 A(m, j) =

1, and ||P;|,1<|| < 1/p1. Then, using the inequalities presented
in Egs. (44) and (47), and substituting the bound of K from
Lemma 1, we finally get

X Hi—mM—_pm + M Ak, j)Vi—m)

[cTpgicy = . (67)
with x, be a constant, given as
1 h 2
Yo = — (a) + 2 (;La)h(l — (1 = 8g)Nmatly 4 v) ) :
L1 r
(68)

For Dj defined in Eq. (38), applying the matrix norm
property, the fifth expression on the right side of Eq. (62)
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can be expressed as

Nmax
> M Ar(m, ARk —m) + Hi_mex—m)

m=0
Nmux

> 81 = 8a)" mi(hRic—m) + Hi—€x—m)
m=0

]

We now substitute |l = @, Al < 1, and
ZZ’Z& Ag(m,j) = 1. Furthermore, using Egs. (47), (50),
and (51), and applying the bound of K from Lemma 1, the
above equation can be expressed as

Dl SIIKII[

+

Nmax
D 8a(l = 80)" i Hx i mer—1-m

m=1

+

IDi || < p%h<(hm + he') (1 + (1 = (1 — 3d)NW+1)>
+hfe'u(l = a)(1 — (1 = sd>N~w)>_ (©9)

Please note that [[2D] P} (Axex—1k—1 + By)ll < [2D] |
||Pk_|,1(|| l[(Axer—1jx—1 + By)|l. Substituting the bounds of
[IBx]l, | A I, and ||Dg || from Egs. (64), (65), and (69), respec-
tively, into this expression, we get

H2D,{Pk_“1{ (Arer—1jk—1 + Bk)H < x3€, (70)
where
2 [ pah
X3 = _[pi((hm + he') (1 +u(l—(1 - 8d)Nmax+l)>
oL
2 s
+hfe n(l —8)(1 — (1 — ad)Nm"x)) (1 4 PO f“ d
tere 1+/02h2M(1—(1—8d)Nm+1) +p2hcze/
r r X
(71)

Let us now consider the sixth term in the summation on
the right side of Eq. (62). Applying the norm property,
we get ||D,ZPk_|}(Dk|| < ||Dk||2||Pk_‘,1{||. Subsequently, substi-
tuting ||Dg || from Eq. (69), we obtain

IDIPD| = x4, )

where x4 is a positive real number given as
1 [ p2h
= (7 () (14 (1 = (1 = 5"t
2
+hfe n(l —8a)(1 — (1 — 5d)N”“”)>> . (73)
Please note that (I — ;K Hi) Fr_i = Ag. We now sub-

stitute Egs. (66), (67), (70), and (72) into Eq. (62), and apply
Lemma 2. Then, taking conditional expectation, we obtain

E [V(expo)ler—1k—1]
< (1= ) e Pty k-1

VOLUME 10, 2022

+E |:2C,{Pk_|]1( (Akek_1|k—1 + B + Dk)

ek—1|k—lj|

+ (X16’3 + X2 + x3€’ + X4) . (74)

For Cj defined in Eq. (38), we conclude that E [2CZPk_I}C
(Akek,”k,l + By +Dk) |ek,1|k,1] = 0. Then, using the
definition of V (e;) and substituting xe¢’ 34 X2+ x3€ + x4 =
y’, Eq. (74) can be expressed as

E [V(exi)lex—1ji—1] — V(ek—1k=1) <y — ¢V (ex—1jk—1)-
(75)

We select the parameters y” and ¢ such that V(ex—jjx—1) >
y'/¢ satisfies. Then, the above equation is the same as
Eq. (41).

We now consider the inequality presented in Eq. (48).
Taking inverse, then multiplying e,{‘  and ey, from left and
right side, respectively, we get

1 2 1 2
—llexkll” < V(ex) < —lleell” (76)
%] P1

Please note that with 1/p» = 71 and 1/p; = 13, the above
equation is same as Eq. (40). Therefore, we conclude that
Egs. (75) and (76) satisfy Eqgs. (41) and (40), respectively.
It further infers that, for chosen V(ey), ex satisfies Eq. (42)
and hence Eq. (60). Thus, we conclude that MDEKF’s
estimation error remains exponentially bounded in mean
square.

In this section, we proved the stochastic stability of the
proposed method for its EKF-based formulation. The essen-
tial requirements of the proof involve a set of bounds on the
system, noise, and filter parameters. Moreover, the stability
analysis requires the initial estimation error to be bounded.
Note that boundedness of noise and system parameters does
not automatically imply exponential stability. The stability
analysis of the proposed MDEKF reduces to the stability
analysis of the traditional EKF for the delay and missing
measurements probabilities being zero (1’ = § = 1) and
Npax = 0, considering the convention oY =1.

V. SIMULATION RESULTS

In real-life problems, the measurement systems (including the
measuring devices and the supplementary units) are usually
designed to efficiently capture the measurements. Therefore,
they may not be expected to miss many measurements. Sub-
sequently, the missing measurement probability is usually
small. Thus, we consider the missing measurement prob-
ability up to 0.2 for the simulation, which means around
20% of the measurements are missing. On the other hand,
the delay inherently appears in the measurements. Therefore,
we consider a sufficiently large range of the delay probability
0.1 < 1—-384 < 0.9). Moreover, it should be mentioned
that the practical measurement systems are designed for small
delays. Hence, we restrict the maximum possible delay to one
or two time-steps (denoted as 1-delay and 2-delay scenarios),
such as the delay up to one or two sampling intervals.
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For the performance analysis, we considered three pop-
ular and advanced Gaussian filters, namely, the CKF [13],
CQKEF [14], and GHF [15]. With their extensions under the
modified filtering method, which are abbreviated as MDCKEF,
MDCQKF, and MDGHEF, respectively. We use the root mean
square error (RMSE) as our performance metrics. Please note
that we will frequently use the notation u,, = 1 — u to denote
the missing measurements probability.

We compare the MDCKF with the following filters:
i) traditional CKF [13], ii) the CKF-based formulation
of [22], which extends the Gaussian filtering technique for
arbitrary delays, iii) [26], wherein the EKF is modified for
missing measurements, and iv) the CKF-based formulation
of [37], which considers simultaneously occurring delay
and missing measurements. We abbreviate the CKF-based
formulations of [22], and [37] as CKF_RD, and MLCKEF,
respectively, while the EKF-based formulation of [26] is
abbreviated as MEKF. Please note that we use the EKF-based
design of [26] unlike the CKF-based designs for other filters,
as [26] is particularly designed for the EKF and becomes
inapplicable to other filters.

A. PROBLEM 1
In the first problem, we consider a two-dimensional nonlinear
dynamical system with the state-space model given as X
2cos(xk—1) + 1 and zi = /1 +xI x; + i [22].

The true data of the state and measurement are gener-
ated by considering the initial state as Xg [0.1 0.117.
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The filter is initialized with the initial estimate Xoj0 = 0.9x
and Pgyp = 7I,. The noise covariances are assigned as
Qi = 0.1I, and Ry = 0.1. The simulation is performed for
200 time-steps and the RMSEs are obtained by implement-
ing 500 Monte-Carlo simulations.

Figs. 2 and 3 show the mean RMSE plots for varying delay
probability under different scenarios formed by changing the
maximum delay possibility and the missing measurements
probability. It should be mentioned that the mean of the
RMSE:s is obtained over the 200 time-steps. The mean RMSE
plots show a reduced RMSE for the MDCKF compared to
the ordinary CKF, CKF_RD, MEKF, and MLCKF, which
concludes that the proposed filtering method outperforms the
ordinary Gaussian filtering as well as the existing filters for
handling the delay and missing measurements. The relative
computational times of the CKF, MEKF, CKF_RD, MLCKEF,
and MDCKEF are obtained as 1, 2.86, 3.01, 5.78, and 3.04,
respectively. It concludes that the computational time of the
proposed method is marginally increased in comparison to
some of the existing filters, while it remains marginally lower
than others.

B. PROBLEM 2

In the second simulation problem, we consider an identifica-
tion problem of individual sinusoids from the measurements
of multiple superimposed sinusoids [9], [22]. We consider
that the superimposed signal consists of three sinusoids. Iden-
tification of individual sinusoids is equivalent to estimating
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their amplitudes and frequencies from the measurements of
the superimposed signal.

In conclusion to the above discussion, the state-dynamics
is formed as x; = Ix)—1 + n;, where x4 =
ik fok ok aik axx askl!, with a, and f, represent-
ing the amplitude and frequency, respectively, for the n’"
sinusoid. Moreover, the measurement is a two-dimensional
vector representing the superposition of the real and imag-
inary parts of the superimposed sinusoids. Please refer
to [22] and [9] for a detailed discussion on the two mod-
els. The initial true and estimated states are taken as xg =
[200 800 1000 2 3 517 and Rop = [205 785 990 4 2 317,
respectively, while the initial covariance is taken as Poo =
diag([25 50 20 4 1 4]). The noise covariances are taken
as Q¢ = diag([0.01 0.01 0.04 0.25 0.25 0.25]) and
Ry = diag([0.9 0.9]).

The simulation is performed for 800 time-steps and 200
Monte-Carlo runs with a sampling interval of 0.25 millisec-
onds. Please note that the number of Monte-Carlo runs is
reduced to 200 (in comparison to 500 runs used in the first
problem), as the existing MEKF and MLCKEF failed for
higher number of Monte-Carlo runs. We obtain the RMSEs
for the amplitude and frequency by taking the square root of
the average of the mean square errors of the three amplitudes
and frequencies, respectively.

‘We plot the mean RMSE (obtained over the time-steps) for
varying delay probabilities in Figs. 4 and 5 for 1-delay and
2-delay, respectively. The mean RMSE plots show a reduced
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TABLE 1. Problem 1, one-delay scenario: Average RMSEs obtained by
MDCQKF, MDGHF, and their counterparts for different delay probabilities.

States  Filters fon = 0.1 Hn =02
02 05 08 02 05 08
CQKF 165 144 162 173 147 154
vac MDCQKF 150 133 136 159 134 136
GHF 174 167 217 189 169 224
MDGHF 168 136 135 169 136 137
CQKF 156 150 147 158 152 146
vacp MDCQKE 156 143 133 156 143 133
‘ GHF 175 184 204 185 190 207
MDGHF 167 149 133 165 148 134

RMSE for the proposed MDCKF compared to the ordinary
CKF and considered delay and missing filters. It concludes
that the proposed filtering method has improved accuracy
compared to these filters. The relative computational times
for the MEKF, CKF, CKF_RD, MLCKF, and MDCKF are
observed as 1, 1.56, 1.69, 3.24, and 1.72, respectively.
It gives a similar conclusion as discussed in the previous
problem.

C. PERFORMANCE VALIDATION FOR OTHER GAUSSIAN
FILTERS

To compare the estimation accuracy of the proposed method
and the ordinary Gaussian filtering method, we present
the mean RMSEs of CKF-based plots only in Figs. 2-5.
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TABLE 2. Problem 2, one-delay scenario: Average RMSEs obtained by
MDCQKF, MDGHF, and their counterparts for different delay probabilities.

States Filters fn = 0.1 Hn =02
0.2 0.5 0.8 0.2 0.5 0.8
Amplitude CQKF 8.78 10.24 10.54 9.52 10.33 10.51
MDCQKF 555 736 870 6.10 7.61 9.10
GHF 725 857 957 736 8.82 996
MDGHF 501 548 679 415 506 6.62
CQKF 11.70 17.10 18.55 13.89 18.34 18.09
Frequency MDCQKF 3.78 592 871 440 6.61 9.02
GHF 9.27 13.60 18.66 10.60 12.86 17.57

MDGHF 346 589 820 449 6.69 841

TABLE 3. Problem 1, one-delay scenario: Relative computational time
comparison of MDCQKF, MDGHF, and their counterparts for 0.3 delay
probability.

I Filters
m

CQKF MDCQKF GHF MDGHF
0.1 1 1.091 0.812 1.083
0.2 1 1.1 0.813 0.908

However, we further extend the comparative analysis for the
other advanced and popular Gaussian filters, such as the
CQKEF [14] and GHF [15], in Tables 1 and 2. The tables
present the mean RMSEs obtained using the CQKF, GHF,
MDCQKEF, and MDGHEF for various delay and missing mea-
surement probabilities. From the tables, we conclude that
RMSE is reduced for the MDCQKF and MDGHF com-
pared with their traditional counterparts CQKF and GHF,
respectively. It is worth mentioning that the results for
2-delay scenarios are qualitatively very similar and are omit-
ted for brevity. The computational times remain similar for
the proposed and the existing Gaussian filtering methods
(Table 3).

VI. DISCUSSION AND CONCLUSION

The manuscript introduces a new extension of Gaussian filter-
ing to efficiently handle the simultaneously occurring delayed
and missing measurements. The proposed method reformu-
lates the measurement model stochastically to introduce the
possibility of simultaneously occurring delayed and missing
measurements. Subsequently, the proposed filtering method
is designed by re-deriving the traditional Gaussian filtering
method for the modified measurement model. We compare
the proposed filter with the CKF and three well-known filters
which handle the delay and missing measurements individ-
ually or simultaneously. The performance of the proposed
method is validated for two simulation problems. We also
studied the exponential stability of the proposed method for
its EKF-based design. It is worth mentioning that the com-
putational time of the proposed method remains similar to
traditional Gaussian filtering.
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