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Summary
We shall consider the the problem of determining the correct electrostatic field
produced when an infinite two dimensional line source is influenced by an adjacent
infinite dielectric wedge. This result corrects a number of previous attempts at
this problem which are shown to be in error. The method avoids using the Mellin
transform which has lead to some of these earlier errors.The method is used to solve
a more general problem of the electrostatic field produced by an arbitrary number of
line sources located in an arbitrary number of contiguous dielectric wedges.

1. Introduction

In the design and manufacture of of electronic circuit boards, thin film circuit systems, and
antennas with novel surface materials the accurate calculation of the fields and currents is
important. In the plane of these thin surface electronic systems the fields can be considered
to be two dimensional. As such it is necessary that accurate results are required for the field
calculations of two dimensional problems. This is especially so for dielectric patch surfaces
with corners to ensure the avoidance of spark and resultant material degradation. This will
occur if the electrostatic field at the corners result in electrical breakdown. To this end the
object of the present work is to point out and correct extant errors for the dielectric wedge
problem.

The electric field produced by a line-charge lying between two plane conductors which
intersect at an angle α = π/n,(n an integer), may be solved by the method of images
to give a finite sum of the image contributions. When the angle α is not of the form
π/n the problem becomes more complicated and has been investigated by several authors.
These authors replace the summand of the finite image sum by an integral representation,
then interchange the order of summation and integration, sum the integrand and then use
analytic continuation to extend the range from rational wedge angles to any wedge angle.
If instead of considering the two intersecting planes to be conductors, we assume that two
contiguous dielectric wedges occupy the regions defined by, see Figure 1,

D1 : 0 < r <∞, |z| <∞,−β � θ � β, |β| > 0,

and
D2 : 0 < r <∞, |z| <∞,−α � φ � α, |α| > 0,
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Fig. 1 Geometry of the Dielectric wedge and line source.

with dielectric constants ε1, and ε2 respectively, then the problem is much more complicated.
To the author’s knowledge there are six published solutions to the two dimensional

problem of the electrostatic field produced by an infinite line charge running parallel to
the generators of an infinite dielectric wedge. They are chronologically Rice(1), Smythe(2),
Grinberg(3), Lebedev(4)(Problem 412 p192), Lewis and McKenna(5), and Scharstein(6).
The solution derived by Grinberg(3) is used by Lebedev(4)†, and therefore we will
concentrate on Grinberg’s solution.

Apart from the two authors Rice(1), and Smythe(2), they all use a Mellin transform
approach, which would seem to be the natural method to apply. However the solutions
or methods all seem to be in error. The errors are various, but basically come down to
the fact that the source representations are inappropriate dimensionally, or if appropriate
dimensionally, do not have a Mellin transform. We shall discuss each of the solutions and
indicate the flaws in the analysis. The solution that was given by S. O. Rice(1) was derived
incorrectly from a more generalized problem. In this work Rice derives rigourously, and
quite elegantly, the correct solution for the three dimensional problem of a point charge

† Some of these results are obviously dimensionally wrong which can be corrected by replacing E
(2)
r by

rE
(2)
r ,and E

(2)
ϕ by rE

(2)
ϕ . However the point of interest here is that the first source term of E

(1)
r should be

replaced by
r+a cos(ϕ)

2R2
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near a dielectric wedge. At the end of this paper he then derives the result for an infinite
line source by integrating the point source solution over an infinite line. In effect, in carrying
out this complicated integration process, to derive his equation (19), he seems to ignore the
fact that the integral

lim
A→∞

∫ A

−A

dz√
z2 + a2

,

is divergent. The end result is the equations (21a) and (21w); which are clearly wrong
from a dimensional point of view. We could correct the solution by the use of the dubious
argument, often used in electrostatics, that the addition of an arbitrary constant does not
effect the result. However, for a given source location there is only one physical solution.
Therefore, this lack of uniqueness is not very satisfactory from a mathematical† point of
view. It is worth noting that from the footnote on page 39 of Rice(1) he seems to have had
problems dealing directly with the two dimensional problem. The approach of Smythe(2)
used the logarithmic cosine transform

fc(r) =
∫ ∞

0

F (ν) cos[ν log(
r

a
)]dν

to represent the electrostatic potential due to a line source located parallel to a dielectric
wedge for which a > 0, 0 < r <∞. He was unaware that a representation of the above form
is not suitable when 0 < r <∞ because only the data known for 0 < r < a or a < r <∞ is
sufficient to uniquely determine F (ν)(i.e. the inverse transform). His results are therefore
divergent, see Idemen(9).

The solution of this two dimensional problem would seem to be a natural candidate
for an application of the Mellin transform. However, care has to be taken in using this
method to derive the solution for arbitrary positions of the source and the observation
point. A formal application of the Mellin transform approach was used by Scharstein(6).
Unfortunately there are serious lapses of mathematical rigour in this work that renders the
results unreliable. For example, in applying the Mellin transform to equation (13) of (6),
the author fails to realize that the Mellin transform of ψ1(r, φ), that involves the logarithmic
line source he considers, does not exist at the limits of integration. For convergence at the
lower limit it is required that �(s) > 0,whereas at the upper limit �(s) < 0; and therefore
the integrated parts are divergent. This renders equation (14) incorrect. This would not
be the case for ψo(r, φ) when the transform exists for −1 < �(s) < 0. Scharstein also
makes a number of other omissions and typographical errors which he tries to correct in the
publication of a subsequent errata (7). However this errata is still not correct. The argument
used in section E to derive the incorrect discontinuous constant terms (qua function of φ)
w±(r) is opaque and suspect.

The errors committed by Grinberg are similar to those of Lewis and McKenna and are
of a more subtle nature, related to the choice of the contour of integration of the inverse
transform. We shall concentrate on the work of Lewis and McKenna(5), this being more
readily available; similar lapses of reasoning occur in Grinberg’s work. Lewis and McKenna
make the problem dimensionless by choosing a line source located at unit distance from the

† See K O Friedrichs(8) for an interesting discussion of the uniqueness of the two-dimensional electrostatic
problems.
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edge of the wedge. The application of the Mellin transform is correctly carried out up to the
point of choosing the contour of integration of the inverse transform in the expression (15).
In (15) they choose −1 < c < 0; however this choice excludes the origin which contributes
crucially towards the final solution. In effect, in the limit as c→ 0 the contour is indented
wrongly. This gives rise to the incorrect‡ solution given by (16) and (17). To obtain the
correct solution the contour needs to be indented to the right(left) and the contour closed
in the left(right) half plane for r > 1(r < 1). Therefore no single inversion contour can
be used for both the large and small r behaviour. It is also worth mentioning that in the
limit as the root −s0 → 0 the contour integral (15) becomes an unbounded principal value
integral§. A similar mistake is made in the related magnetostatic wedge problem considered
by Baker(10) when he states how to invert his solution for large and small r in the first
paragraph under equation (45).

The boundary value problem will be stated with Gauss’s conservation of charge for a
two dimensional electrostatic potential field. We shall then derive an appropriate source
representation for a two dimensional line source for all locations of the source point and the
observation position suitable for wedge shaped regions. This will then be used to derive the
correct solution for a line source located near a dielectric wedge. This two wedge domain
problem, see figure 1, is then generalized to an n-wedge domain problem, see figure 2.

2. Formulation of the Boundary Value Problem.

The basic equations of electrostatics that we are dealing with for three dimensional dielectric
regions are

E = −∇u, ∇2u = −4πρ/ε,

Q =
∫

V

ρdv = − 1
4π

∮
S

ε
∂u

∂n
ds, (2.1)

where u is the potential of the electrostatic field E, ρ(M) is the volume density of charge
at the point M, ε is the dielectric constant of the medium, Q is the total charge inside a
volume of space enclosed by a surface S, and ∇ is the Gradient operator. The Figure 1
shows the cross-section of the system at z = 0. From the geometry and field equations of
the problem all physical quantities will be the same for any other value of z. Thus with
∂
∂z = 0 in equation (2.1) we need only consider the two dimensional Gradient problem, and
replace the integral relationship by its two dimensional form

Q =
∫

A

ρdv = − 1
2π

∮
C

ε
∂u

∂n
ds, (2.2)

where Q is the total superficial charge inside an area A enclosed by a contour C, in the
plane z = 0. The expression (2.2) will be used as a check on the correctness of our solution.
For the convenience of comparison purposes we shall adopt the co-ordinate system used

‡ It can be seen that expression (16) does not reproduce the dominant behaviour of w1 ∼ r as r → 0,
and the expression (17) does not give the dominant behaviour w1 ∼ log(r) as r → ∞.

§ To give a simple example of this phenomena consider the integral I(a) =
� ı∞

ı∞
dz

z(z+a)
, a �= 0, ı =

√−1,

and the contour indented to the left of the imaginary axis. In the limit as a → +0, I(+0) = 0,whereas in
the limit a → −0, I(−0) = P

� ı∞
ı∞

dz
z2 → ∞.
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by Rice(1) which ensures the solution is single valued in the angular variables. In the two
domains S1 and S2 two sets of of cylindrical co-ordinates are used, namely, (r, θ, z) and
(r, φ, z). In accordance with the convention of measuring the angles shown in the figure it
follows that −β < θ < β, −α < φ < α, and α+ β = π. Hence working with the potentials
u1(r, θ), u2(r, φ) we have the following boundary value problem to solve:

∇2u1(r, θ) = −4πqδ(r − r0)δ(θ − θ0)/(rε1), (−β � θ � β), (2.3)

∇2u2(r, φ) = 0, (−α � φ � α), (2.4)

where u1(u2) is the potential respectively in region D1(D2). The field at infinity where
r → ∞ must tend asymptotically to:

u1(r, θ) ∼ −κ log(r), (−β � θ � β), (2.5)

u2(r, φ) ∼ −κ log(r), (−α � φ � α), (2.6)

where the constant κ is dependent on the material and charge distribution.

[u1(r, θ)]θ=β = [u2(r, φ)]φ=−α ,

[
ε1
∂u1(r, θ)

∂θ

]
θ=β

=
[
ε2
∂u2(r, φ)

∂φ

]
φ=−α

. (2.7)

[u1(r, θ)]θ=−β = [u2(r, φ)]φ=α ,

[
ε1
∂u1(r, θ)

∂θ

]
θ=−β

=
[
ε2
∂u2(r, φ)

∂φ

]
φ=α

. (2.8)

We shall assume without loss of generality that u1 = u0 + u where u0 is a line source of
charge q per unit length, located at r = r0, θ = θ0 in D1 and is given by

u0(r, θ; r0, θ0) =
2q
ε1

log
[√

rr0
R

]
,

where R =
√
r2 + r20 − 2rr0 cos (θ − θ0); and that

∇2u0(r, θ) = −4πqδ(r − r0)δ(θ − θ0)/(rε1),

and,
∇2u(r, θ) = 0.

3. Representation of the solution
We shall use the integral representation for the line source u0 valid for all real r > 0, r0 >
0,−β < θ < β,−β < θ0 < β, 0 < β < π,

u0(r, θ; r0, θ0) =
ıq

ε1
P

∫ ı∞

−ı∞

cos ν(π − |θ − θ0|)
ν sin νπ

(
r

r0

)ν

dν, (3.1)

where 0 < |θ − θ0| < 2π, and P stands for the principal value of the integral. We shall
assume a solution of the form
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u1(r, θ; r0, θ0) =
ıq

ε1
P

∫ ı∞

−ı∞

cos ν(π − |θ − θ0|)
ν sin νπ

(
r

r0

)ν

dν

+
ıq

ε1
P

∫ ı∞

−ı∞
(a(ν) cos νθ + b(ν) sin νθ)

(
r

r0

)ν

dν, (3.2)

u2(r, φ; r0, θ0) =
ıq

ε1
P

∫ ı∞

−ı∞
(c(ν) cos νφ+ d(ν) sin νφ)

(
r

r0

)ν

dν. (3.3)

Clearly ∇2u2 = 0, ∇2u1 = −4πqδ(r − r0)δ(θ − θ0)/(ε1r), and u1 ∼ −2q log(R)/(ε1) as
R→ 0. Substituting the expressions (3.2), (3.3) into the first boundary condition of (2.7)
gives,

P

∫ ı∞

−ı∞

(
cos ν(π − |β − θ0|)

ν sin νπ
+ a(ν) cos νβ + b(ν) sin νβ

) (
r

r0

)ν

dν

= P

∫ ı∞

−ı∞
(c(ν) cos να− d(ν) sin να)

(
r

r0

)ν

dν. (3.4)

The satisfaction of the first condition of (2.8) is obtained from (3.4) by replacing replacing
α by −α and β by −β giving

P

∫ ı∞

−ı∞

(
cos ν(π − | − β − θ0|)

ν sin νπ
+ a(ν) cos νβ − b(ν) sin νβ

) (
r

r0

)ν

dν

= P

∫ ı∞

−ı∞
(c(ν) cos να+ d(ν) sin να)

(
r

r0

)ν

dν. (3.5)

The satisfaction of the equations (3.4) and (3.5) gives

a(ν) cos νβ + b(ν) sin νβ − c(ν) cos να+ d(ν) sin να

= −cos(π − (β − θ0))
ν sin νπ

,

(3.6)

a(ν) cos νβ − b(ν) sin νβ − c(ν) cos να− d(ν) sin να

= −cos(π − (β + θ0))
ν sin νπ

.

(3.7)

Substituting expressions (3.1), (3.2) into the second boundary condition of (2.7) gives,
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ε1P

∫ ı∞

−ı∞

(
sin ν(π − |β − θ0|)

sin νπ
− a(ν)ν sin νβ + b(ν)ν cos νβ

) (
r

r0

)ν

dν

= ε2P

∫ ı∞

−ı∞
(c(ν) sin να+ d(ν) cos να)

(
r

r0

)ν

dν. (3.8)

The satisfaction of the second condition of (2.8) is obtained from (3.8) by replacing
replacing α by −α and β by −β giving

ε1P

∫ ı∞

−ı∞

(
sin ν(π − | − β − θ0|)

sin νπ
+ a(ν)ν sin νβ + b(ν)ν cos νβ

) (
r

r0

)ν

dν

= ε2P

∫ ı∞

−ı∞
(−c(ν) sin να+ d(ν) cos να)

(
r

r0

)ν

dν. (3.9)

The satisfaction of the equations (3.8) and (3.9) gives

−ε1a(ν)ν sin νβ+ ε1b(ν)ν cos νβ − ε2c(ν)ν sin να− ε2d(ν)ν cos να

= −ε1 sin(π − (β − θ0))
sin νπ

,

(3.10)

ε1a(ν)ν sin νβ+ ε1b(ν)ν cos νβ + ε2c(ν)ν sin να− ε2d(ν)ν cos να

= ε1
sin(π − (−β − θ0))

sin νπ
.

(3.11)

Adding (3.6) and (3.7), and subtracting (3.10) from (3.11) gives

a(ν) cos νβ − c(ν) cos να = −cos να cos νθ0
ν sin νπ

, (3.12)

ε1a(ν) sin νβ + ε2c(ν) sin να = ε1
sin να cos νθ0
ν sin νπ

. (3.13)

Subtracting (3.7) from (3.6),and adding (3.10) and (3.11)gives

b(ν) sin νβ + d(ν) sin να =
sin να sin νθ0
ν sin νπ

, (3.14)

ε1b(ν) cos νβ − ε2d(ν) cos να = −ε1 cos να sin νθ0
ν sin νπ

. (3.15)

Solving equations (3.12) and (3.13) for a(ν) and c(ν) (3.14) and (3.15) for b(ν) and
d(ν) gives
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a(ν) =
(ε1 − ε2) cos νθ0 sin 2να

2ν sin νπΔαβ(ν)
, (3.16)

c(ν) = ε1
cos νθ0
νΔαβ(ν)

; (3.17)

b(ν) =
(ε2 − ε1) sin νθ0 sin 2να

2ν sin νπΔβα(ν)
, (3.18)

d(ν) = ε1
sin νθ0
νΔβα(ν)

; (3.19)

where

Δαβ(ν) = ε2 sin να cos νβ + ε1 cos να sin νβ, (3.20)

=
(ε1 + ε2)

2
sin νπ +

(ε1 − ε2)
2

sin ν(β − α).

Then if we let
F (ν, θ) = a(ν) cos νθ + b(ν) sin νθ,

F (ν, θ) =
(ε2 − ε1) sin 2να

2 sin νπ

[
−cos νθ cos νθ0

νΔαβ(ν)
+

sin νθ sin νθ0
νΔβα(ν)

]
; (3.21)

G(ν, φ) = c(ν) cos νφ+ d(ν) sin νφ,

G(ν, φ) = ε1
cos νφ cos νθ0
νΔαβ(ν)

+ ε1
sin νφ sin νθ0
νΔβα(ν)

. (3.22)

Hence substituting these results into (3.2) and (3.3) we have

u1(r, θ; r0, θ0) =
2q
ε1

log
[√

rr0
R

]
+
ıq

ε1
P

∫ ı∞

−ı∞
F (ν, θ)

(
r

r0

)ν

dν,

(3.23)

u2(r, φ; r0, θ0) =
ıq

ε1
P

∫ ı∞

−ı∞
G(ν, φ)

(
r

r0

)ν

dν. (3.24)

These results are valid for all r > 0, r0 > 0. We notice that the first term of F (ν, θ) and
of G(ν, φ) has a double pole at the origin. We can replace the principal value integral by
an indented closed contour, by adding and subtracting half the residue at the origin. How
we indent at the origin and then displace the contour depends on whether r > r0 or r < r0.
For r0 > r(r0 < r) we can indent, and shift the contour to the right(left); convergence being
assured. In carrying out this procedure and using the fact that F (ν, θ) and G(ν, φ) have no
singularities for 0 < |�ν| < 1

2 , we get
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u1(r, θ; r0, θ0) =
2q
ε1

log
[√

rr0
R

]
∓ qα(ε2 − ε1)
ε1(ε2α+ ε1β)

log
(
r

r0

)

+
ıq

ε1

∫ ı∞± 1
2

−ı∞± 1
2

F (ν, θ)
(
r

r0

)ν

dν,

(3.25)

u2(r, φ; r0, θ0) = ± qπ

(ε2α+ ε1β)
log

(
r

r0

)

+
ıq

ε1

∫ ı∞± 1
2

−ı∞± 1
2

G(ν, φ)
(
r

r0

)ν

dν;

(3.26)

where the upper and lower signs correspond to r0 ≷ r. Infinite series representation
can be obtained from the above expressions by summing the residues to the right(left) of
�ν = 1

2 (�ν = − 1
2 ). As a check on the results we shall use the result (2.2). Letting r → ∞,

with r0 finite it is not difficult to show that uniformly in the angular variables

u1(r, θ; r0, θ0) = − qπ

(ε2α+ ε1β)
log r + o(1 ); (3.27)

u2(r, φ; r0, θ0) = − qπ

(ε2α+ ε1β)
log r + o(1 ). (3.28)

Now let the contour C in (2.2) be a large circle of radius r centred at the origin. Then
substituting (3.27) and (3.28) into (2.2) gives as r → ∞

Q =
1
2π

∫ β

−β

qπ

(ε2α+ ε1β)
ε1
∂ log r
∂r

rdθ

+
1
2π

∫ α

−α

qπ

(ε2α+ ε1β)
ε2
∂ log r
∂r

rdθ

= q.

We remark that the results (3.27) and (3.28) make explicit the constant κ occurring in the
far field behavior (2.5) and (2.6).

As a further check we shall derive the near field behavior at the wedge tip as r → 0. In
this limit as we shift the contour of integration to the right towards �ν = 2 the poles that
give rise to residue contributions arise from the roots of

Δαβ(ν) = 0, ⇒ sin νπ = (
ε2 − ε1
ε1 + ε2

) sin ν(π − 2α), (3.29)

Δβα(ν) = 0, ⇒ sin νπ = (
ε1 − ε2
ε1 + ε2

) sin ν(π − 2α). (3.30)
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Both of these equations are of the form

sinx = R sin ax, (3.31)

where x = νπ, and a = 1 − 2α
π , with R = ± ε1−ε2

ε1+ε2
. The transcendental equation (3.31) has

been studied in detail by Meixner(12). It is shown that for −1 ≤ R ≤ 1 and −1 ≤ a ≤ 1
the equation (3.31) has only real simple roots which lie symmetrically on either side of the
imaginary ν axis; also that no root lies in the region 0 < �ν < 1/2, and at least one root lies
in the region 1/2 < �ν < 2. Thus in the range 1/2 < �ν < 2 the first roots of the equations
(3.29) and (3.30) exist. A graphical analysis of the equation (3.31) shows that the smallest
root x1 occurs for R and a of the same sign in the interval π/2 < x1 < π; whereas when
R and a are of the opposite sign the smallest root occurs in the interval π < x1 < 3π/2.
Hence for β −α and ε2 − ε1 of the same(opposite) sign then ν1 < π/α(ν1 > π/α), where ν1
is the smallest root of the equations (3.29) and (3.30). We also note that if α = β or ε1 = ε2
the smallest root for both equations becomes ν1 = π/α. Without loss of generality, we shall
assume β > α(or π > 2α); in which case the near field as r → 0 becomes for ε2 > ε1 to

u1(r, θ) ∼ − 2πq(ε2 − ε1) sin 2ν1α cos ν1θ cos ν1θ0
ε1ν1 sin ν1π(π(ε1 + ε2) cos ν1π + (π − 2α)(ε1 − ε2) cos ν1(π − 2α))

(
r

r0

)ν1

+
qπ

(ε2α+ ε1β)
log

(
r

r0

)
, (3.32)

u2(r, φ) ∼

4πq cos ν1φ cos ν1θ0
ν1(π(ε1 + ε2) cos ν1π + (π − 2α)(ε1 − ε2) cos ν1(π − 2α))

(
r

r0

)ν1

+
qπ

(ε2α+ ε1β)
log

(
r

r0

)
; (3.33)

whereas for ε1 > ε2 then

u1(r, θ) ∼

2πq(ε2 − ε1) sin 2ν1α sin ν1θ sin ν1θ0
ε1ν1 sin ν1π(π(ε1 + ε2) cos ν1π − (π − 2α)(ε1 − ε2) cos ν1(π − 2α))

(
r

r0

)ν1

+
qπ

(ε2α+ ε1β)
log

(
r

r0

)
, (3.34)

u2(r, φ) ∼

4πq sin ν1φ sin ν1θ0
ν1(π(ε1 + ε2) cos ν1π − (π − 2α)(ε1 − ε2) cos ν1(π − 2α))

(
r

r0

)ν1

+
qπ

(ε2α+ ε1β)
log

(
r

r0

)
. (3.35)

It is not difficult to show that these expressions satisfy the boundary conditions on the
wedge faces. They also exhibit the correct edge field behavior at the apex of the wedge.
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Fig. 2 The closed and indented contour of integration for r > r0.
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Fig. 3 The closed and indented contour of integration for r0 > r.

4. Generalised problem and solution
We shall now consider a more general problem and indicate how to determine the solution
using the results in the body of this paper. We suppose that a number of line sources q,
where q is an integer 1 ≤ q ≤ n, are located in an arbitrary number n of dielectric sectors,
where we assume that n contiguous dielectric wedges occupy the regions defined by, see
Figure 3,

Dk : 0 < r <∞, |z| <∞, βk−1 � θ � βk,

k = 1, 2, ..., n− 1, n;β0 = 0, βn = 2π, with dielectric constants εk.
We shall assume a solution of the form

ui(r, θ) = δi,quq(r, θ) + ıP

∫ ı∞

−ı∞
(ai(ν) cos νθ + bi(ν) sin νθ)rνdν, i = 1, 2, ..., n, (4.1)

where δi,q is the Kronecker delta function and

uq(r, θ) =
2qq
εq

log
(
rrq
Rq

)
, q ∈ (1, n),

with qq is the charge on the q−th line source; and where Rq =
√
r2 + r2q − 2rrq cos (θ − θq).
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θ=
θ=βk-

εk+1

εk

εk-1

βk

βk

βk-2π

.δkquq

βk-1

βn-1-2π

θq

θ= βk-1

  2π

θ=   βk-1 -2π

ε1

ε2

εn

εn-1

εn-2

εn-3

β2

β1

βn-2-2π

Fig. 4 Geometry of the n contiguous Dielectric wedges and line sources.

Considering an arbitrary k-th sector (k = 1, 2, ..., n(mod(n)), see Figure 4, then on the
interface with θ = βk with no interfacial charges we have

uk(r, βk) = uk+1(r, βk − 2π) , εk
∂uk(r, βk)

∂θ
= εk+1

∂uk(r, βk − 2π)
∂θ

; (4.2)

with un+1 = u1, εn+1 = ε1. By using the integral representation (6.1) for the source
term uq(r, θ) and substituting the resulting expression given by (4.1) into the boundary
conditions (4.2) gives

P

∫ ı∞

−ı∞

(
δk,q

cos ν(π − |βk − θq|)
rν
q ν sin νπ

+ ak(ν) cos νβk + bk(ν) sin νβk

)
rνdν

= P

∫ ı∞

−ı∞

(
δk+1,q

cos ν(π − |βk − 2π − θq|)
rν
q ν sin νπ

+ ak+1(ν) cos ναk − bk+1(ν) sin ναk

)
rνdν.

(4.3)
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θ=
θ=     k

εk+1

εk

εk-1

βk

βk

βk -2π

.δkquq

β

βk-1

βk-1-2π

θq

θ=βk-1

-2π

θ=   βk-1-2π

Fig. 5 Geometry of interfaces of the k-th Dielectric wedge and a line source.

εkP

∫ ı∞

−ı∞
(δk,q

sin ν(π − |βk − θq|)sign(βk − θq)
rν
q sin νπ

+ (4.4)

−ak(ν)ν sin νβk + bk(ν)ν cos νβk)rνdν

= εk+1P

∫ ı∞

−ı∞
(δk+1,q

sin ν(π − |βk − 2π − θq|)sign(βk − 2π − θq)
rν
q sin νπ

+

ak+1(ν)ν sin ναk + bk+1(ν)ν cos ναk)rνdν,

(4.5)

where the complimentary angle αk = 2π − βk. A sufficient condition for the satisfaction of
these equations for r > 0 is the satisfaction of the equations:

ak(ν) cos νβk + bk(ν) sin νβk − ak+1(ν) cos ναk + bk+1(ν) sin ναk

= δk+1,q
cos ν(π − αk − θq)

rν
q ν sin νπ

− δk,q
cos ν(π − βk + θq)

rν
q ν sin νπ

,

(4.6)
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a(ν)εk sin νβk − bk(ν)εk cos νβk + ak+1(ν)εk+1 sin ναk + bk+1(ν)εk+1 cos ναk

= εkδk,q
sin ν(π − βk + θq)

rν
q ν sin νπ

+ εk+1δk+1,q
sin ν(π − αk − θq)

rν
q ν sin νπ

.

(4.7)

The system of equations may be written in matrix-vector form Au = b, where,

u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

b1
a2

b2
...
ak

bk
...
an

bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1,q
cos ν(π−θq)
rν

q ν sin νπ − δn,q
sin ν(π−θq)
rν

q ν sin νπ

δ2,q
cos ν(π−α1−θq)

rν
q ν sin νπ − δ1,q

cos ν(π−β1+θq)
rν

q ν sin νπ

δ2,qε2
cos ν(π−α1−θq)

rν
q ν sin νπ + δ1,qε1

sin ν(π−β1+θq)
rν

q ν sin νπ

δ3,q
cos ν(π−α2−θq)

rν
q ν sin νπ − δ2,q

cos ν(π−β2+θq)
rν

q ν sin νπ

δ3,qε3
cos ν(π−α2−θq)

rν
q ν sin νπ + δ2,qε2

sin ν(π−β2+θq)
rν

q ν sin νπ

...
δk+1,q

cos ν(π−αk−θq)
rν

q ν sin νπ − δk,q
cos ν(π−βk+θq)

rν
q ν sin νπ

δk+1,qεk+1
cos ν(π−αk−θq)

rν
q ν sin νπ + δk,qεk

sin ν(π−βk+θq)
rν

q ν sin νπ

...
δn,q

cos ν(π−αn−1−θq)
rν

q ν sin νπ − δn−1,q
cos ν(π−βn−1+θq)

rν
q ν sin νπ

δn,qεn
cos ν(π−αn−1−θq)

rν
q ν sin νπ + δn−1,qεn−1

sin ν(π−βn−1+θq)
rν

q ν sin νπ

δ1,qε1
sin ν(π−θq)
rν

q ν sin νπ + δn,qεn
sin ν(π−θq)
rν

q ν sin νπ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 · · · 0 1
c
(β)
1 s

(β)
1 −c(α)

1 s
(α)
1 0 0 · · · 0 0

ε1s
(β)
1 −ε1c(β)

1 ε2s
(α)
1 ε2c

(α)
1 0 0 · · · 0 0

0 0 c
(β)
2 s

(β)
2 −c(α)

2 s
(α)
2 0 · · · 0

0 0 ε2s
(β)
2 −ε2c(β)

2 ε2s
(α)
2 ε2c

(α)
2 0 · · · 0

0 0
. . . . . . . . . . . . · · · 0 0

0 0 c
(β)
k s

(β)
k −c(α)

k s
(α)
k 0 · · · 0

0 0 εks
(β)
k −εkc(β)

k εks
(α)
k εkc

(α)
k 0 · · · 0

0 0
. . . . . . . . . . . . · · · 0 0

0 0 0 0 0 c
(β)
n−1 s

(β)
n−1 −c(α)

n−1 s
(α)
n−1

0 0 0 0 0 εn−1s
(β)
n−1 −εn−1c

(β)
n−1 εn−1s

(α)
n−1 εn−1c

(α)
n−1

0 ε1 0 0 0 0 · · · 0 −εn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

s
(α)
k = sin (ναk), s

(β)
k = sin (νβk), c

(α)
k = cos (ναk), s

(α)
k = sin (ναk).
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In the special case of n = 2, q = 1, α3 = α1, β3 = β1 this system reduces to

⎡
⎢⎢⎣

−1 0 1 0
cos νβ1 sin νβ1 − cos να1 sin να1

ε1 sin νβ1 −ε1 cos νβ1 ε2 sin να1 ε2 cos να1

0 ε1 0 −ε2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
a1

b1
a2

b2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cos ν(π−θ1)
rν
1 ν sin νπ

− cos ν(π−β1+θ1)
rν
1 ν sin νπ

ε1 sin ν(π−β1+θ1)
rν
1 ν sin νπ

ε1 sin ν(π−θ1)
rν
1 ν sin νπ

⎤
⎥⎥⎥⎥⎦ ;

and when solved gives:

a1(ν) = a2(ν) − cos ν(π − θ1)
ν sin νπ

,

b1(ν) =
ε2
ε1
b2(ν) +

sin ν(π − θ1)
ν sin νπ

,

where

a2(ν) =
2ε1ε2 sin ν(β1 − θ1)(cos νβ1 − cos να1) + 2ε1 cos ν(β1 − θ1)(ε2 sin νβ1 + ε1 sin να1)

νΔ(ν)
,

b2(ν) =
−2ε21 cos ν(β1 − θ1)(cos νβ1 − cos να1) + 2ε1 sin ν(β1 − θ1)(ε1 sin νβ1 + ε2 sin να1)

νΔ(ν)
,

Δ(ν) = 2ε1ε2(1 − cos να1 cos νβ1) + (ε21 + ε22) sin να1 sin νβ1,

= (ε1 + ε2)2 sin2 νπ − (ε1 − ε2)2 sin2 ν(π − α1),

= 4(ε1 sin
να1

2
cos

νβ1

2
+ ε2 sin

νβ1

2
cos

να1

2
)(ε1 sin

νβ1

2
cos

να1

2
+ ε2 sin

να1

2
cos

νβ1

2
).

As a check, after some trigonometrical algebra, involving a change of coordinates to the
line of symmetry of the wedge problem in Figure 1 these results agree with the previous
results derived for the more symmetrical two media problem.

5. Conclusions
We have brought to light the several errors in the solutions already given by a number of
authors to the electrostatic problem of the field produced by a line charge near an infinite
dielectric wedge. We rectify these errors by using an approach that uses an appropriate
source representation for a line of charge for any location of the line of charge and the
observation point. As a check on our result we have derived the explicit edge field behavior
near the apex of the wedge. This method avoids the use of the Mellin transform. The
Mellin transform can be applied, but with great care, especially on using the inversion
formula. There is no strip of convergence in applying the inversion formula, only a broken
line. Aspects of this property in the application of Mellin transforms are also covered in a
recent publication by Martin (13) and Paris and Kaminski(11) and references given therein.
We also remark that to some extent an analogous situation occurs in the application of the
Kontorovich-Lebedev transform to electromagnetic problems; which is overcome by either
using a technique that introduces unknown constants, see Jones(14), or by an appropriate
integral representation of the source,see Osipov(15). In the limit as the wave-number tends
to zero in these dynamical problems the dynamic line source does not tend uniformly to
the electrostatic source result given in the appendix of this work.
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6. Appendix
In this appendix we shall prove the result:

2 log
(√

rr0
R

)
= ıP

∫ ı∞

−ı∞

cos ν(π − |ψ|)
ν sin νπ

(
r

r0

)ν

dν, (6.1)

where R =
√
r2 + r20 − 2rr0 cosψ,−2π < ψ < 2π, r > 0, r0 > 0, and P stands for the

Cauchy principal value integral.
Let us denote the integral by I and initially assume r0 > r;

I = ıP

∫ ı∞

−ı∞

cos ν(π − |ψ|)
ν sin νπ

(
r

r0

)ν

dν, r0 > r.

It is not difficult to show that for r0 > r the integrand is exponentially bounded in the region



18 a.d rawlins

�ν > 0. Then by adding and subtracting the residue of the double pole singularity at the
origin we can replace the principal value integral by a closed contour C+. This contour C+

is indented to the right at the origin and closed by an infinite semicircle in the right half
plane �ν > 0. Then

I = ı

∮
C+

cos ν(π − |ψ|)
ν sin νπ

(
r

r0

)ν

dν − ıπRes

[
ı
cos ν(π − |ψ|)

ν sin νπ

]
ν=0

,

I = ı

∫ 1
2+ı∞

1
2−ı∞

cos ν(π − |ψ|)
ν sin νπ

(
r

r0

)ν

dν + log
(
r

r0

)
,

I = 2
∞∑

n=1

cosnψ
n

(
r

r0

)n

+ log
(
r

r0

)
.

Now substituting the well known identity:

logR = log r0 −
∞∑

n=1

cosnψ
n

(
r

r0

)n

r0 > r,

gives

I = 2(log r0 − logR) + log r/r0 = 2 log
(√

rr0
R

)
.

In a similar method it is not difficult to show that for r > r0 the integrand is exponentially
bounded in the region �ν < 0. Then by adding and subtracting the residue of the double
pole singularity at the origin we can replace the principal value integral by a closed contour
C−. This contour C− is indented to the left at the origin and closed by an infinite semicircle
in the left half plane �ν < 0. Then

I = ı

∮
C−

cos ν(π − |ψ|)
ν sin νπ

(
r

r0

)ν

dν + ıπRes

[
ı
cos ν(π − |ψ|)

ν sin νπ

]
ν=0

,

I = ı

∫ 1
2+ı∞

1
2−ı∞

cos ν(π − |ψ|)
ν sin νπ

(
r

r0

)ν

dν − log
(
r

r0

)
,

I = 2
∞∑

n=1

cosnψ
n

(
r

r0

)−n

+ log
(r0
r

)
.

Now substituting the well known identity:

logR = log r −
∞∑

n=1

cosnψ
n

(r0
r

)n

, r > r0,

gives

I = 2(log r − logR) + log r/r0 = 2 log
(√

rr0
R

)
;

which verifies the result (4.1).


