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The proposed paper demonstrates that a hybrid fuzzy neural network can serve as a risk classifier of
stock investment projects. The training algorithm for the regular part of the network is based on
bidirectional incremental evolution proving more efficient than direct evolution. The approach is
compared with other crisp and soft investment appraisal and trading techniques, while building a
multimodel domain representation for an intelligent decision support system. Thus the advantages of
each model are utilised while looking at the investment problem from different perspectives. The
empirical results are based on UK companies traded on the London Stock Exchange.
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1 Introduction

Standard investment appraisal techniques have been continuously revised. The criteria have
been reoptimised due to investment irreversibility [14] and the impact of a project on the
investor’s total risk [45]. It has been realised that the removal of any of the perfect market
assumptions destroys the foundation and reduces the effectiveness of the methods.
Alternatively, a fuzzy criterion does not attempt to cope with a specific drawback of standard
techniques but permits into the calculations as much uncertainty as the market could possibly
suffer. The outcome is an effective method under restricted information, uncertain data and
market imperfections. A fuzzy criterion and investment rating technique are first introduced in
[5], then considered in a broader framework of accumulation and discount models in [10], and
recently modified with an alternative fuzzification of the project duration in [30]. While those
studies are theoretical in nature, the empirical results are a major emphasis in [23,40,42,43],
where stock projects are evaluated and UK companies traded on the London Stock Exchange
are considered. Simultaneously, the analysis of the empirical solutions to the fuzzy criterion
facilitates there the induction of three general conclusions. An investment risk measure, an
estimate of the project robustness towards market uncertainty modelled with the fuzzified
data, and an alternative ranking technique based on the two measures.

When compared with previous studies, the proposed paper demonstrates the following
advantages. First, nine representative projects are chosen from the database employed in [40],
thus consistently emphasising the empirical results. Second, the projects are rated according to
a modification of the risk measure suggested there, extending further the developed method.
Third, a fuzzy-valued criterion is formulated and a regular fuzzy neural network, trained with
a genetic algorithm, approximates its solution. Hence, the benefits of various soft techniques
are blended to achieve a synergy in handling the investment appraisal problem. In
comparison, [5,6,10,23,30] only study fuzzy criteria. Forth, the network is hybridised to
discriminate between low-risk and high-risk projects. The threshold is agent-dependent,
communicating the acceptable levels of risk. The variety of market agents work within diverse
risk ranges. In the extreme, the behaviour of an investment fund differs from the behaviour of
an individual investor. Consequently, an agent-dependent threshold will benefit the decision-
maker. Fifth, an efficient training algorithm is suggested for the regular part of the fuzzy
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network. Genetic algorithms are a promising tool in training fuzzy networks and recent studies
successfully apply direct evolution to optimise the fuzzy weights in small regular networks
resembling particular types of univariable fuzzy functions [8]. In comparison, here the
network approximates a multivariable criterion and the number of nodes depends on the
investment horizon. The complexity of the problem requires a corresponding evolutionary
strategy and the implementation of bidirectional incremental evolution is suggested.
Incremental strategy has been already applied to evolve neural networks controlling a robot’s
motion [18]. In addition to incremental evolution, the bidirectional strategy further
incorporates divide-and-conquer evolution. Thus the complex task is first gradually divided
into simpler subtasks, then each subtask is evolved separately, and lastly the evolved
subsolutions are merged incrementally to optimise the overall solution. The technique allows
overcoming the stalling effect in direct evolution and has already proved more efficient in
evolving logic functions [24].

Finally, the developed classifier is compared with other classical and soft investment
appraisal and trading methods, and the advantages of each approach are utilised while
building a multimodel knowledge domain for an intelligent decision support system. This will
allow looking at the investment problem from various conceptual or purpose angels and
choosing an adequate technique for each situation. A beneficial feature of such knowledge
organisation, in comparison with single-model representations, is the flexibility it offers in
overcoming specific model drawbacks. Navigating within a space of multiple models has been
already applied to technical and medical domains [4,26,27,29]. There, the increased capability
of the related intelligent systems in supporting users trough various tasks is examined, and
particularly in overcoming limitations inherent in mono-model approaches. In the investment
domain, such system will enhance the ability of the decision-maker to analyse projects from
multiple perspectives, and will support him in solving problems with varying objectives and
complexity.

The proposed approach is developed for the following reasons. First, there have been
suggested fuzzy techniques for investment appraisal and based on them ranking procedures
[5,40], but no investment classifier is yet considered. Therefore, a decision would only be
taken after applying the fuzzy criterion to all available projects, then rating them accordingly,
and finally choosing the acceptable opportunities. The introduction of a classifying system
will significantly simplify the process, especially for a large number of continuously updated
projects and regularly taken investment decisions. Once trained, the network will be an
effortless instrument in the hands of the decision-maker, whenever the information available
is subject to change. Second, standard neural networks have been successfully applied to
classify takeover targets [17]. Third, there have been already developed soft intelligent trading
systems and artificial stock markets [12,32,46,47,48] that will further benefit from the
introduction of the multiple modelling-perspective approach. It will power an investment
agent to perform preliminary project evaluation and rating, risk analysis and classification of
admissible stocks, and trading simulation.

Figure 1 describes the interrelations between financial, soft computing and artificial
intelligence techniques, as well as between theoretical and empirical studies. All these
approaches are involved into the process of formulating the investment classifier and building
the multimodel intelligent system. The organisation of the paper follows a step by step
approach, outlying the soft classifier in Section 2, building the multimodel knowledge
representation in Section 3, and presenting the empirical results in Section 4. The classifier is
introduced by first formulating in subsection 2.1 a fuzzy-valued criteria that is better capable
of investment evaluation under uncertain market data then a crisp criteria. Next, in subsection
2.2, the structure of a hybrid fuzzy neural network is identified that is effective in
approximating the above criteria. Finally, in subsection 2.3, a genetic algorithm is suggested
and a bidirectional incremental evolutionary strategy is developed that is efficient in training
the fuzzy network. The second part of the paper ends by stating the advantages of the soft
investment classifier. In the third part, a multimodel investment domain is built up including
the developed classifier. First, in subsection 3.1, a number of relevant models are referred to
and their characteristics are analysed. The models are chosen with the purpose to give the
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Figure 1: Technique interrelations in formulating the investment classifier
and building the multiple-model intelligent system
Boxes in bold follow the development of the proposed approach.

intelligent system the ability to perform various tasks. From preliminary crisp evaluation of a
project, through more informative fuzzy investment appraisal and ranking, going on with
project risk and robustness estimation, an agent-dependent risk classification and
recommendation of attractive projects, and finally suggesting stock-trading strategies. Next, in
subsection 3.2, the position of the models is considered according to several conceptual
perspectives as rigidity, resolution, precision, and a mulitperspective domain space is
constructed. The paper ends with presenting empirical results based on UK companies traded
on the London Stock Exchange, and discussing the advantages of the multimodel intelligent
system.
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2 Soft Classifier

2.1 Fuzzy valued criterion

The need for classical investment model revision and the grounds for new types of
models are well recognised. Various modifications [14,45] eliminate only some of the
problems associated with the standard criteria and it has been realised that the removal of any
of the perfect market assumptions typically destroys the foundations of generally accepted
investment-selection techniques. In [45], it is emphasised that having rules which lead to
correct decisions in the presence of capital market imperfections would lead to a situation
where modern finance theory can be applied consistently. Furthermore, the mathematics
underlying the standard financial techniques neglects extreme situations and regards large
market shifts as too unlikely to matter. Such techniques may account for what occurs most of
the time in the market, but the picture they present does not reflect the reality, as major events
happen in the residual time and investors are ‘surprised’  by ‘unexpected’  market movements.
It is reasoned in [2] that that the perception of concepts inherent or surrounding the investment
process, whose character is not principally measurable, is best handled by the soft
mathematics emerging from the theory of fuzzy sets. Thus, a fuzzy approach allows for
market fluctuations well beyond the probability type of uncertainty permitted by the standard
financial methods. It does not impose predefined data or market behaviour, there is only an
attempt to model as much uncertainty as the environment can possibly embody, producing
better estimates of the investment risk.

Considering the above arguments, we formulate a fuzzy-valued criterion at the first stage
of the proposed investment appraisal method. The initial point is the price-dividend
relationship, where we consider time-varying stock return. Prices are too volatile to be rational
forecasts of future dividends discounted at a constant rate and empirical tests have convinced
many financial economists that stock returns are time-varying rather than constant [11].
Allowing time-varying returns transforms the price-dividend relation into nonlinear. If its
loglinear approximation is considered, and the resulting equation is solved forward for the log
stock price, a price estimation 0p̂  is produced in period 0t = , (see Appendix A1 for details).
Let T  be the investment horizon, then a project is profitable when the estimated share price
exceeds the market share price 00 pp̂ >  at 0t = .

Based on this, the fuzzy-valued criterion is formulated following a procedure in four
steps. First, for each project, the parameters of linearisation δ  and λ  are obtained and
considered crisp. Second, market uncertainty is introduced to the data covering share prices,
dividend yields and returns, applying a specific calibration technique to produce positive

nonlinear fuzzy coefficients Tt1,C
~

,B
~

,A
~

ttt ≤≤ . Third, the fuzzy-valued log share price P
~

at
0t =  is presented as

( )( )[ ]

,1,0,ggC
~

...gB
~
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~
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~

...gA
~
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~

rB
~
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~

dyC
~

1P
~
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=+−++−= ∑
=

− λδλλ
(1)

where all g  functions are continuous and defined on the crisp market data employed to
evaluate a project. Thus, the fuzzy log share price from [40] is transformed into a continuous
multivariable fuzzy-valued function. The modification provides that the fuzzy neural network

introduced in the next subsection is capable of approximating 0P
~

 to an arbitrary degree of
accuracy. Forth, applying the extension principle, the nonlinear membership function of the

solution is obtained. For the specific formulation of 0P
~

, the α -cut ( )αΩ
0P  is equivalent to the

interval arithmetic solution. The details of the four-step procedure are described in Appendix
A1.
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Solving equation (1) identifies the set of estimated log share-price values corresponding
to all future log share prices, dividend yields and returns possible at some level of uncertainty,
u . This set is situated at the same level u . Therefore, there is a critical level of uncertainty,

projectu , embodied into the market data we use to evaluate a project, and this level delimits the

project’s investment risk. The risk measure projectα  below is derived from the membership

level ( )00 P
~

|pµ  of the market price 0p  to the evaluated fuzzy share price 0P
~

.

( ) { } [ ],1,0u1,py|supP
~

|p projectproject0P00project ∈=−=== ααµα (2)

The following reasons advocate such risk definition. The lower the critical level of uncertainty
at which there is a chance for the project being unprofitable, the higher the investment risk.
Furthermore, projectα  is the membership level of the fuzzy log share price, below and at which

the solution includes values smaller or equal to the initial log market price, and above which
the project is profitable.

Finally, as the variety of market agents work within diverse risk ranges, the same project
will be acceptable for some of them and too risky for others. Thus, an agent-dependent
threshold will benefit the decision-maker. In conclusion, the investment criterion is described
with

agentproject αα ≤  , (3)

where agentα  communicates the admissible risk value. Consequently, for a particular agent, a

project is worth investing in if the associated risk does not exceed an acceptable level.

2.2 Fuzzy neural network

The second stage of the method consists of building a regular fuzzy neural network, to

approximate the continuous multivariable fuzzy-valued function 0P
~

, and subsequently
including two more layers to discriminate between risky projects. The approximating
capabilities of regular fuzzy networks have been intensively studied in the last few years. It is
demonstrated in [8,9] that such neural nets are not able to represent continuous fuzzy
functions to an arbitrary degree of accuracy. On the other hand, [33] proves that they are
universal approximator for continuous fuzzy-valued functions.

Let  is the real number set, and 0F ( ) is the set of all fuzzy numbers on . Then a

continuous fuzzy function fuzzyF  is a mapping from and to the fuzzy number set

0fuzzy F:F ( ) 0F→ ( ). A continuous fuzzy-valued function 
valued
fuzzyF − , on the other hand, is a

projection from the real number set to the set of fuzzy numbers, :F
valued
fuzzy− 0F→ ( ). We have

constructed the share price as a function of the second type, as described in the previous
subsection.

Based on the theorems proved in [33] about single-variable functions, we formulate four
Remarks concerning the multivariable case. Detailed mathematical explanation is given in
Appendix A2. Thus a particular class of regular fuzzy networks is identified that are capable
of representing multivariable continuous fuzzy-valued functions. The neural net structure
includes four layers, with sigmoid transfer functions and shift terms in the first hidden layer,
and identity transfer functions with no shift terms in the input, the second hidden and the
output layer. In order to reduce the complexity of the network training task without weakening
the approximating capabilities of the neural net, the weights and the shift terms are restricted
to be real numbers with the exception of the weights to the output layer that are triangular
fuzzy numbers.
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Figure 2 introduces the network structure classifying investment projects according to the
agent-dependent risk criterion (3). The configuration consists of a regular fuzzy neural
network part and a hybrid segment. The dashed box outlines the regular module. Its input
layer is fed with crisp data - log stock prices tp , log returns tr  and log dividend yields tdy  -

while the output layer produces the nonlinear fuzzy number RFNNP
~

.

( ) ( ) ,dyzrupweV
~

,dy,...,dy,r,...,r,p,...,pP
~ q

1i

m

1j

T

1
jjjjijiT1T1T1RFNN ∑ ∑ ∑

= = =
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


 +++= �

������

∈m,q , 0i FV
~ ∈ ( ) , ∈���

jjjjij z,u,w,,e θ , (4)

where jlw , jlu , jlz  and ije  are real weights, jθ  are real shift terms, iV
~

 are triangular fuzzy

weights, σ  is the sigmoid transfer function, T  is the investment horizon, m and q  are the

Figure 2: Neural network structure classifying projects with acceptable risk levels
Regular Fuzzy Neural Network is outlined in the dashed box

network size: ( ) 1qmT3 ×××∗
T  is the investment horizon
m and q  are the number of nodes in the first and second hidden layer, respectively

crisp inputs: log stock prices tp , log returns tr  and log dividend yields tdy
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second hidden layer: identity transfer functions i  with no shift terms
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number of nodes in the first and second hidden layer respectively. RFNNP
~

 is an approximation

of the estimated fuzzy log price 0P
~

, and is illustrated with its membership function in the
network diagram below. The extension principle and the interval arithmetic evaluation of such

fuzzy networks are equivalent and the α -cuts of the output RFNNP
~

 are computed as in
Appendix A2. The hybrid part includes two nodes with transfer functions ϕ  and ψ ,

correspondingly. The first node produces the investment risk 
FNN
projectα  relevant to the evaluated

share price RFNNP
~

 and the market price 0p  at 0t = . Thus ϕ  is described with

( ) ( ) { }0PFNN00FNN
FNN
project py|supP

~
|pp,P

~
FNN

==== αµϕα , (5)

where µ  is the nonlinear membership function of RFNNP
~

, ( )FNN0 P
~

|pµ  is the level of

membership of 0p  to RFNNP
~

, and 
FNN
projectα  can take any value in the closed interval [ ]1,0 .

Finally, 







agent

FNN
project,ααψ  is a hard limit transfer function comparing the evaluated risk level

of the investment project under consideration and the acceptable risk level agentα  of the

concerned market agent. The tolerable risk agentα  can take any value in the open interval ( )1,0

and act as a threshold in ψ . As a result, only projects that are admissible for the particular
investment agent will be recommended with a network outcome of 1, and the rest of the
projects will be rejected producing 0  that indicates they are quite risky to be considered as
investment opportunities. Each agent can also revise the threshold to suit his current position.
Thus, it is recognised that the same project will have different bearings on the risk position of
various market players and their particular circumstances at that time. Such differentiation
suggests that if we consider the outcomes of 1 and 0  as recommendations to buy and sell,
then the advice is also agent-dependent. This is a distinctive feature of the method in
comparison with the general practice of project-related only recommendation.

2.3 Bidirectional incremental evolution

At the next stage of the developed technique, the regular part of the fuzzy network in Figure 2

is trained to approximate the fuzzy log share price 0P
~

, using a genetic algorithm and
following a bidirectional incremental evolutionary strategy. The genetic algorithm is specified
with its initialisation, selection and recombination operators. The initialisation step includes

chromosome encoding and generating the first population. Let a triangular fuzzy weight iV
~

 be

presented with three real numbers ( )c
i

b
i

a
i v,v,v  corresponding to its support and vertex. Then

the relations c
i

b
i

a
i vvv << , qi1 ≤≤ , are valid. Thus the neural net can be coded into a

chromosome χ  of size q3qmmmT3M +++= , where M  is equal to the number of real
weights and shift terms plus three times the number of fuzzy weights in the network. The
initial population X  of s individuals χ  is generated simultaneously as a matrix of size

sM × . The elements of X  are realisations of a random variable with standard normal
distribution. A block representation of X  helps to concurrently sort its elements according to
the inequality restrictions above. Next, a breeding subpopulation SUBX  is selected, which

consists of the 1s  best-fitted chromosomes, where ss1 < . The selection is based on the fitness

function ξf ,
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( )î



≤−
>

=
ABA

A

,*

,0
f

ξξξξξ
ξξ

ξ , (6)

where Aξ  and Bξ  are parameters related to the approximating precision of the coded network,
and ξ  represents the error of the fuzzy network for the corresponding chromosome.
Consequently,

{ }
( ) ( ) ( ) ( )( )( ) ,PP,PPmaxmax RFNN0RFNN0

1,...,1.0,0
ααααξ

α
−−=

∈
(7)

where ( ) ( )[ ]αα RFNNRFNN P,P  and ( ) ( )[ ]αα 00 P,P  are the α -cuts of the output RFNNP
~

 and the

share price 0P
~

, correspondingly. Thus the best subpopulation SUBX  is identified, and on its

basis the recombination process finally builds the new generation NEWX . A multipoint

crossover operator is applied on SUBX  to produce a temporary full-size population TEMPX .
The number and position of crossover points is randomly chosen every generation. A real-
number network parameter is recognised as a gene within the chromosome, and a triplet
representing a fuzzy-number parameter is also considered as a single gene. Then crossover
points are only set between genes. Randomly chosen chromosomes from SUBX  are combined

as in Figure 3 to obtain two offspring, only one of which is included in TEMPX .

The mutation operator concludes the recombination step, transforming the temporary
population into the new generation of fuzzy-network representations. This step involves a
constant mutation rate τ , where 2.00 <<τ . Thus the number of mutated genes is constant

( )qqmmmT3 +++∗τ , but their place in the chromosome is randomly chosen every
generation. Modified elements are generated as realisations of a random variable with
standard normal distribution. All the mutated triplet genes are concurrently sorted according
to the inequality restrictions above.

This genetic algorithm is applied within a bidirectional incremental evolutionary strategy,
suggested on the following grounds. A complex task is difficult to evolve, as it is not possible
to directly discover a general solution. The stalling effect in direct evolution may be defeated
by implementing incremental strategies, where neural networks learn complex behaviour
while starting with simple functioning and gradually increasing the complexity of the task
[18,21]. The problem is that the relevant subset of simple tasks as well as their sequence is not
uniformly defined, and so is an incremental strategy. Consequently, it is appropriate to

Figure 3: Multipoint crossover operator
The crossover points are only set between genes. A single gene consists either of one
real-number network parameter or of a triplet representing a fuzzy-number weight. The
parent chromosomes belongs to the best subpopulation SUBX . Only the first-child

chromosome is added to SUBX  to form the temporary full-size population TEMPX .

gene1; gene2; ...... ....................... ...... ...... ; gene3mT+m+qm+q
...

gene1; gene2; ..... ....................... ...... ......; gene3mT+m+qm+q
...

First Parent

Second Parent
crossover points

gene1;gene2; ...... ....................... ...... ......; gene3mT+m+qm+q

gene1;gene2; ..... ....................... ...... ...... ; gene3mT+m+qm+q

First Child

Second Child

...

...
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identify the efficient subset of tasks and their efficient sequence [24]. Bidirectional
incremental evolution applied here deals with the question of efficiency by first identifying
the subtasks and their sequence, then evolving them separately, and finally merging the tasks
gradually while following the efficient sequence. When the investment paradigm is
considered, the domain of subtasks is described as follows. If T is the investment horizon, N1

is the number of periods in which projects are available,

[ ] [ ]Tt,tt,...,Tt,tt
111 N0N0N01011 +=+= ∆∆ , and 2N  is the number of companies, then there

are 21 NNN ∗=  single-company single-period projects constituting the first level of subtasks
with lowest complexity. The next levels involve increasing number of single projects. They
may concern the same company over several periods or the same type of companies over one
or a number of periods, or may include different types of companies. According to its
investment risk, there exist three modes of a single project. It can be profitable and not risky
when 0project =α , risky for 10 project <<α , or too risky and unprofitable when 1project =α .

There are also five types of companies. Those with investment risk 0  over all the periods are
quite rare, having in mind that the market is modelled as highly uncertain. The other types
include companies with continuously improving levels of risk, and companies with unstable
risk levels 10 project ≤≤ α  without a particular direction. Finally, those with constantly

worsening investment risk, and the ones with 1project =α  over all periods. Providing the

training set includes companies of all types and single projects covering the three important
modes of projectα , then the evolved regular fuzzy neural network will sufficiently predict the

fuzzy log share price 0P
~

 of new investment opportunities.
The overall idea of the evolutionary strategy is presented below, while detailed

description is provided in Appendix A3. The fitness function applied throughout the evolution
is ξf  from definition (6), while the objective function is dynamic and is updated at each step

of the strategy. First a random initial population of size s  is generated and a fuzzy network is
evolved over the full set of single projects for a probing number of generations genN  using

ξf . Then, if the objective, based on the average value of the error ξ  over the resulting

subpopulation of 1s best-fitted chromosomes, is above a test limit ( )( ) 1DEC

s

1i
i

n
1

1

max
s

1 ξχξ >∑
=

,

the evolution starts again with a new random initial population. Otherwise the single projects
are probed with an updated objective function over the best subpopulation. If there does not
exist a single project with an objective value below an updated test limit, then a new full-size
population is generated by recombination of the best subpopulation and the evolution is
continued for another genN  iterations. Otherwise, the projects satisfying the condition are

probed again opposite the second limit to identify project sets of maximum size rather then
single projects with a satisfying combined objective value. Then the full training set n  is
partitioned into subsets { }2J1j111 n,n,...,n,...,nn = , where J  is the number of subsets of

projects satisfying the second limit, and 2n  is the subset of single projects that do not satisfy
the condition. This is the first decomposition level of the training set. Now 1J +  different
full-size populations are generated by recombination of the same breeding subpopulation and
a separate fuzzy network is evolved in genN  generations for each training subset of n . Then

the steps up to here, with revised objective functions, are repeated for each training subset.
Thus several levels of decomposition of the training set are identified, and each level is
characterised with a unique partitioning into subsets and a specific number J . The
decomposition stage of the evolutionary strategy completes when the neural networks evolved
over each training subset reaches an average value of the error over the first half of the best
subpopulation below a test limit DECENDξ . Then, the incremental part of the evolution starts
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from the highest decomposition level. Each of the training subsets at this level has an evolved
best subpopulation associated with it. A full-size population is generated by recombination
based on all subpopulations. The evolution continues over the whole training set existing at
the highest decomposition step until a revised objective function gets below INCξ . This is the
first incremental step. Then the second highest decomposition level is considered. The training
set existing at this level includes by definition the whole training set from the highest
decomposition step and some further subsets of projects. Again one full-size population is
generated by recombination of the breeding subpopulations associated with each training
subset here. The subset equivalent to the highest decomposition set of projects is presented
with the best subpopulation evolved at the first incremental level. The objective limit is again

INCξ  but the objective function includes more projects. This is the second incremental level.
The procedure continues by analogy until the first decomposition step is reached, where the
partitioning was applied over the initial full training set. It will be the final incremental level.
A neural network is evolved until the error of one chromosome only, rather than over a
subpopulation of chromosomes, but including all the projects, falls below INCENDξ  where

INCINCEND ξξ < . This best chromosome best
INCENDχ  represents the completely evolved regular

fuzzy neural network.
Figure 4 above represents the evolutionary strategy. For simplicity, the decomposition

part is slightly generalised in the diagram omitting the test limits )k(
4DECξ , (see Appendix A3).

The bidirectional incremental algorithm implements a dynamic objective function. Its fitness
function ξf , on the other hand, will be the same over all steps, and equal to the one used in

direct evolution, for an easy comparison of the results.

2.4 Conclusions

In conclusion, the advantages of the developed method cover the following aspects. The
investment classifier is based on a fuzzy-valued criterion that better handles uncertain market
data than crisp criteria [11]. Whatever reason one has for modifying the classic result [14,45],
the allowances provided by the fuzzy-valued criterion will cover these specific circumstances
and will include the modified value, as well as other possible values, increasing the flexibility
of the involved calculations. Moreover, a measure for the risk associated with each project is
suggested, thus providing grounds for an alternative investment ranking. This result
emphasises the method as more informative to the decision-maker, in comparison with other
fuzzy approaches [5,6,10,30]. Next, a fuzzy neural network structure is identified capable of
approximating the multivariable criteria. The configuration is derived by developing further
the result for single-variable fuzzy-valued functions from [33]. Then, a genetic algorithm is
suggested for optimising the parameters of the network. Starting with a procedure from [8] for
a simple network configuration, and recursively testing it on and modifying it for the more
complex structure from Figure 2, the algorithm is developed to demonstrate increased speed
and efficiency. Finally, a bidirectional incremental evolutionary strategy is outlined that is
particularly effective in training fuzzy networks with a larger number of nodes and layers.
Direct evolution fails to solve the task. We can compare our empirical results (see subsection
4.1) with other applications of genetic algorithms to optimising fuzzy network parameters. In
[8] quite a simpler structure is trained, with direct evolution only, to approximate an
elementary single-variable fuzzy function.

Optimising the classifier is time-consuming and the complexity of the task increases with
expanding the investment horizon. Still, it is not a disadvantage of the method, as the model is
only incorporated into the intelligent system after training, and then instantly provides support
to the decision-maker. Moreover, several soft classifiers can be included into the multimodel
based system (see Section 3), each trained to give recommendation over different horizon-
length. Another beneficial feature is the agent-dependent recommendation. Rather than
providing an abstract advice, the model relates every investment project to the possible
circumstances or preferences of each major type of market agents.
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3 Multimodel knowledge representation

3.1 Model selection

The financial techniques to be incorporated into the multimodel domain are chosen with
the purpose to give the intelligent system the ability to support a decision-maker through
various investment inquiries. Starting with a share-price estimation based on the log-
linearisation of the price-dividend relation which is solved forward over the project length
[11]. This will provide a preliminary project evaluation, handling time-varying returns. If the
estimated figure encouragingly diverges positively from the market price, further investigation
can be undertaken. A slightly more flexible criterion will be employed to tackle the timing of
the initial outlay. It is shown in [14] that if the value of the project at the time it is evaluated is
stochastically fluctuating and depending on a random start time, then there exists a trade-off
between a larger versus a later net benefit. Thus the optimal timing of buying the shares will
be identified, taking into account investment irreversibility. The best start period equals the
time at which the benefit reaches a threshold. In comparison, if the standard criterion were
used, then the agent would invest sooner but rely on larger rates to get the same profit.

Up until now the decision-maker has an idea which projects could be beneficial and is
intent to get more reliable evaluation. Although with increasing flexibility in comparison with
standard investment criteria, all models above are crisp and therefore working under relatively
narrow presumptions about the underlying distributions and market behaviour. Next some
fuzzy criteria will be introduced into the multimodel domain that are effective under a high
level and diverse forms of uncertainty, i.e. market imperfections, absence of complete or
precise data, and presence of human involvement in price formation. In [5] an evaluation
technique is suggested that can be applied here in the following aspect. Using the standard
arithmetic of fuzzy numbers, and modelling uncertain amounts in the project cashflow as well
as the estimated rate with nonlinear trapezium membership functions, two different formulae
are applied when an amount is positive or negative. For example, if the project involves
buying shares in the beginning and selling them in the end, the first formula will be only
relevant. If the project prescribes various optimal points in time for buying and selling
different shares, then the two formulae will be involved. Other fuzzy models extend even
further the flexibility of the evaluation technique. In [10], the option of associating a different
rate to each amount is offered. The main contribution in [30] consists in fuzzifying the project
duration over the relevant time periods. Usually fuzzified duration is presented as a discrete
fuzzy set with a membership function defined by a collection of positive integers each
corresponding to the end of a time period according to the accepted time division, e.g. months,
weeks, days. Alternatively in [30], the duration is a real fuzzy number allowing for the project
to finish at any moment, not only at the end of a time period, i.e. in the middle of the month or
throughout the week. Finally, among this group of fuzzy criteria mainly based on the stock-
price evaluation, the technique from [36] finds its place. There, a hybrid network is developed
and a fuzzy membership array is embedded into a neural network. Although the approach is
applied to predicting a stock index, it effectively can be used in single-asset or portfolio price
evaluation. The out-of-sample forecasts of the hybrid net up to 24 months ahead without
updating the model are compared with these of several crisp regressions and the neuro-fuzzy
model is found to perform substantially better.

The next group of models will present the decision-maker with still reliable but further
progressively informative solutions, comparing with the above techniques. Questions
considered include fuzzy ranking, investment risk evaluation, measuring project robustness
towards market uncertainty, and agent-dependent classification of attractive projects. Using a
procedure suggested in [5], the projects can be ranked according to the evaluated membership
functions for the fuzzy criterion. Further in [23,43], a risk measure is proposed and an
alternative risk-based ranking technique is described. The solution procedure there involves a
multiple interval analysis, which enables investors to consider a project and take decisions
based on varying levels of uncertainty. Increasing the range of uncertainty modelled into the
fuzzy data, one can determine the robustness of the investment risk associated with each
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project , as in [40,42]. Thus the ranking technique is refined and based on both the projects’
risk and robustness evaluation. Analogous risk measure is used in [41] and in Section 2 here,
when building the soft classifier. Several such fuzzy networks can be included into the
multimodel intelligent system, each network trained over projects with different duration. All
the classifiers will be trained prior to entering the system, and ready to provide agent-
dependent recommendation. The classifying model can go one step further by incorporating
into the neural network structure the robustness measure as well. Thus there will be agent-
dependent thresholds for both investment risk and project robustness, following the intuition
that projects with a small and a highly robust investment risk are preferable. Consequently, the
fuzzy criterion evolves into a considerably informative method.

Table 1: Selected models for the multiperspective intelligent system
models characteristics major

log-linearised
price evaluation
[11]

Good for preliminary project evaluation. Handles time-varying rates.
Slightly increased flexibility and accuracy, in comparison with
standard investment criteria.

optimal rules for
irreversible
investment [14]

Helps identify the optimal time of buying the assets, considering
investment irreversibility and a benefit threshold. Increased flexibility
in handling market data. A crisp criterion.

preliminary

evaluation,

crisp criteria

fuzzy present
value [5]

Increased reliability in market evaluation. A fuzzy criterion.

generalised fuzzy
criterion [10]

Allows a different rate to be associated with each amount in the
project cashflow.

generalised fuzzy
criterion [30]

Provides alternative fuzzification of the project duration.

neuro-fuzzy price
evaluation [36]

Exploits financial market inefficiencies and extracts nonlinear
patterns that even sophisticated econometric models can not cope
with. Combines fuzzy logic with a neural network.

reliable

evaluation,

fuzzy or soft

techniques

fuzzy ranking [5] Suggests a technique for ranking fuzzy numbers and considers the
membership functions of projects’  fuzzy present value.

investment risk
evaluation [23,43]

Applies α -cut arithmetic in fuzzy price evaluation, instead of
standard fuzzy arithmetic. Derives an investment risk measure and
ranks the projects accordingly.

project robustness
evaluation [40,42]

Uses two calibration procedures when fuzzifying the market data, thus
modelling an increased range of uncertainty. Identifies which projects
are more robust based on the change in the investment risk measure
under varying data calibration. Suggests an alternative ranking using
both the risk and robustness measures.

classifying low-
risk projects
[41,manuscript]

Develops a genetic algorithm and a bidirectional evolutionary strategy
to train a fuzzy neural network to classify stock projects according to
the investment risk measure and an agent-dependent threshold.

classifying highly-
robust projects
[future rresearch]

Will incorporate the measure of the project robustness into the soft-
classifying model, following the heuristic that low-risk and highly-
robust projects are preferable.

informative

ranking and

classification,

fuzzy and soft

techniques

portfolio selection
[46]

Investment expert knowledge is reflected into the stock return
possibility or fuzzy probability distributions. Selection is based on
minimising corresponding parameters in the portfolio distribution.

dynamic portfolio
management [35]

Manages an optimal stock portfolio in a fuzzy dynamic environment
by solving a fuzzy linear tracking problem.

trading model [32] Integrates neural nets and fuzzy Delphi methods. An effective trading
approach without and under transaction costs.

trading model [22] A genetic-fuzzy model for discovering trading knowledge.
artificial stock
market [12]

An agent-based artificial stock market evolving successful traders.

artificial stock
market [47]

Suggests that the agents have the ability to compress numerous crisp
trading rules and conditions into a few fuzzy notions and analyse
them using fuzzy logic.

portfolio

selection and

stock trading,

soft or hybrid

techniques



14

The final set of models suggests portfolio-selection and stock-trading strategies. In [46],
two portfolio selection models are proposed where investment expert knowledge is reflected
into the fuzzy probability or possibility distributions of stock returns. Distributions are
obtained depending on stock possibility grades offered by experts. The aim is to minimise the
variance of the fuzzy probability distribution or to minimise the spread of the possibility
distribution of the return on the portfolio. Further in [35], a dynamic portfolio selection is
outlined. A fuzzy control model is used to manage a portfolio in a fuzzy dynamic environment
in the presence of financial constraints. One riskless and n risky assets are employed,
modelling the factor imprecision with fuzzy sets. A fuzzy linear tracking problem is solved
using the Kalman filter. Next, the effort in [32] is to develop a stock-trading system,
integrating neural nets and fuzzy Delphi methods. The result shows that without and under
transaction costs the integrated model outperforms the single neural network. Although the
genetic-fuzzy model in [22] is applied to currency trading, no further adjustment is necessary
to use it in stock trading, as the techniques has all the features to cope with the problem
efficiently. The approach provides an automated method for discovering trading knowledge.
Finally, an architecture for an artificial stock market is suggested in [12] that is agent-based
and includes evolving successful traders. In [47] another artificial stock market model is
introduced. It is proved there that similar results can be obtained, either considering traders
capable of handling a large number of rules with numerous conditions, or allowing the
reasoning process to be severely limited. In the tatter case the results are even improved. This
case is also closer to reality, and agents have the ability to compress information into a few
fuzzy notions that they can process and analyse with fuzzy logic. All selected models are
included in Table 1. The system is still open for more models, but each choice should be
justified.

3.2 Building the multiperspective model space

A multimodel investment domain will help the decision-maker with the process of
multiperspective analysis and multilevel reasoning. Being exposed to a variety of possible
interpretations, will effortlessly enriches his vocabulary of relationships and enlarges his
search space for hypothesis construction. He will be able to look at the investment problem
from various angles thus improving his ability to understand and solve specific queries.

Building the multimodel space starts with choosing the modelling dimensions
[26,27,28,29]. This is the set of properties that represents fundamental characteristics
associated with the context or framing of the investment problem. Each dimension - i.e. scope,
resolution, rigidity - denotes a different context, which directs the multiperspective reasoning.
For example, scope is concerned with the extent of the problem being modelled. We may
simply want to evaluate a project. Broadening the scope, an optimal portfolio can be
identified. Finally, the functioning of an artificial stock market may be under question.
Further, resolution dictates how much detail is included in a model. As an illustration, the
factor analysis when managing a dynamic portfolio may be based on a few major
determinants only. Increasing the resolution, some minor factors will be included, or the major
determinants can be decomposed into several smaller ones and their effect studied separately.
When rigidity is considered, we focus on the ability of the model to handle uncertain data and
real-market situations. In this sense, the crisp models are most rigid, and progressing along the
fuzzy and soft techniques, the hybrid approaches are most flexible.

The multimodel space can be visualised as a geometrical shape with several axes or
dimensions. It is easier to think of a cubical form and Figure 5 presents the three dimensions
described above: scope, resolution and rigidity. In practice, there are more perspectives and
each component cube explodes into another cubical structure. This time axes are different, e.g.
generality, precision and accuracy, and provide support for considering additional aspects of
context. By choosing a value for every dimension, one can navigate to a specific model in the
multiple structure. Neighbouring models differ only slightly, i.e. two soft classifiers
recommending projects over different investment horizon. Distantly related techniques, on the
other hand, are quite unlike.
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This approach to knowledge representation produces a domain structure with a valuable
inherent quality. The multimodel space provides enhanced flexibility in problem solving. For
example, a lower-resolution technique will be sufficient in one situation, while a larger-scope
model will be required in another, and a less rigid method in yet another case. Thus positions
on each of the modelling dimensions will be associated with the demands of a particular
investment problem. Moreover, changing models is beneficial practice in seeking alternatives
during the solution process. For instance, moving from an artificial stock market with
numerous crisp trading rules and conditions to a market model with only a few efficient fuzzy
rules, can provide an improved solution to the initial problem, and help the market agent
better reason about the result. Further, the multimodel approach also caters for the dynamic
knowledge immanent in the interaction between different models. To illustrate, the decision-
maker may not just look for the answer to a single question, but rather work out the result of a
set of problems, or test an investment strategy involving several models. Navigating through
the model space, this challenge is comfortably met.

4 Empirical results and conclusions

4.1 Empirical results

The empirical data involve three UK companies - Goodwin, Dixons Group and
Marks&Spencer - over the period from June 1998 to December 1999. They are chosen from a
database of 35 firms to represent three major types of company behaviour. In Figure 6, the
fuzzy log-dividend time-trajectory related to each firm illustrates modelled market
uncertainty. Furthermore, a six-month investment horizon is selected, producing three projects
per company and nine in total. This set of projects is divided into three subsets, used
correspondingly for training, testing and predicting with the fuzzy neural network. Table 2
introduces the division of the data set and the accepted project notation. Table 3 presents the
risk level for each project evaluated with the fuzzy criteria.
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Figure 6b: Dixons Group
Fuzzy log-dividend: July’98–Dec’99.
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Figure 7: Investment risk  858.0project =α
Project 9: Dixons Group, July–Dec’99.
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Table 2: Data division
period / company Goodwin Dixons Group Marks&Spencer

July-December, 1998 Project 1: training Project 3: training Project 5: training
January-June, 1999 Project 2: training Project 4: training Project 6: training
July-December, 1999 Project 7: testing Project 9: predicting Project 8: testing

Table 3: Investment risk evaluation

period / company
Goodwin

project: risk projectα
Dixons Group

project: risk projectα
Marks&Spencer

project: risk projectα
July-December, 1998 Project 1: 1 Project 3: 1 Project 5: 1
January-June, 1999 Project 2: 0.683 Project 4: 0 Project 6: 1
July-December, 1999 Project 7: 0 Project 9: 0.858 Project 8: 1

In the second column of Table 3, Goodwin demonstrates a continuously improving risk
measure, reaching 0project =α  for project 7. In the third column, Dixons Group indicates

oscillating levels 10 project ≤≤α , without a particular direction over the related projects.

Finally, Marks&Spencer exhibits the highest risk level 1project =α  all over. Thus, it is

provided that three major types of companies are represented. It is also guaranteed that the
training set includes single projects covering the three important risk modes: 0project =α
(project 4), the open interval 10 project <<α  (project 2), and 1project =α  (projects 1,3,5 and 6).

Figure 6a: Goodwin
Fuzzy log-dividend: July’98–Dec’99.
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Figure 6c: Marks&Spencer
Fuzzy log-dividend: July’98–Dec’99.
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Figure 7 illustrates how the risk measure for a project is derived based on the estimated fuzzy-

valued log share price 0P
~

 and the market price 0p .
Next, the genetic algorithm and the bidirectional incremental evolutionary strategy from

subsection 2.3 are applied to train the regular fuzzy network module to approximate the fuzzy-
valued log share price over the training set, project 1 to project 6. Each project comprises six-
month data on log share prices, returns and dividend yields. Consequently, the number of
nodes in the input layer of the network is 1863T3 =∗= . Then experimenting with several
network structures and considering the trade-off between a simpler configuration and
evolution convergence, the values 5m=  and 3q =  are selected, for the number of nodes in
the first and second hidden layer correspondingly. Detailed results for each step of the
evolutionary strategy from Appendix A3 are provided in Appendix A4. Here, only the major
conclusions are discussed. The strategy involves a decomposition and an incremental part.
During the decomposition part, the problem is accordingly divided into subtasks of decreasing
complexity by partitioning the training set of projects at several levels. Figure 8 presents the
identified partitioning. Then the subtasks are merged incrementally in reverse direction.

The number of levels and the partitioning at each level is unique to every simulation of the
bidirectional strategy. Consequently, it is not possible to average the performance of the
strategy over several simulations, as the fitness function trajectory over the generations will go
through different training subsets addressed at different times. On the other hand, direct
evolution is easily averaged. For more representative comparison, Figure 9 presents a
simulation of bidirerctional incremental evolution against the averaged result from five direct-
evolution simulations. Maximum fitness per generation is presented for each strategy. The
bidirectional strategy evolves a fully functional fuzzy network in 148,243 generations. Direct
evolution reaches only 46.33% maximum fitness in 500,000 generations. Thus, the empirical
results prove decisively the efficiency of the developed evolutionary strategy.
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Figure 8: Training-set partitioning and increment
during bidirectional incremental evolution

Decomposition part: the training set is partitioned at several levels, evolving the fuzzy
network towards tasks with decreasing complexity.
Incremental part: the training subsets are merged incrementally in reverse direction,
evolving the network towards solving the integral problem.
A dynamic objective function is applied at each decomposition and incremental level.
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Once the regular fuzzy network module is optimised over the training set, it is applied to
the test set, project 7 and project 8 (see Table 2). Thus, the out-of-sample performance of the
module is examined in approximating the fuzzy-valued log share price. The error ξ  from

definition (7) is applied to measure the divergence of RFNNP
~

 from 0P
~

, and consequently the
performance of the module. The test results, provided in Table 4, corresponds to quite
satisfactory approximating capabilities. Consequently, we can use now the hybrid network
over the predicting subset, project 9, to estimate the investment risk. In Table 5, the predicted
risk value approaches the true value from Figure 7.

Table 4: Test results for the regular fuzzy network module (RFNN)

period / company Goodwin
project: RFNN error ξ

Marks&Spencer
project: RFNN error ξ

July-December, 1999 Project 7: 0.0091<0.01 Project 8: 0.0024<0.01

Table 5: Predicting investment risk with the hybrid fuzzy network

period / company Dixons Group
project: predicted risk 

FNN
projectα

Dixons Group
project: true risk projectα

July-December, 1999 Project 9: 0.88 Project 9: 0.858

Finally, if the agent-dependent threshold is at 0.9 risk level, than the project will be accepted.
On the other hand, if the limit is at 0.8, then this asset will be rejected over the related
investment horizon.

Figure 5: Performance of bidirectional incremental evolution and direct evolution
in maximum fitness per generation

Black line: bidirectional incremental evolution advances through several decomposition
and incremental tasks and solves the general problem in 148,243 generations.

Lighter line: direct evolution makes some initial progress and then stalls.
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4.2 Conclusions

A soft classifier has been constructed that recommends projects according to their evaluated
risk and an agent-dependent threshold for the acceptable risk levels. The model is developed
in three stages. First, an alternative investment criterion is formulated, including a fuzzy-
valued share price estimate. The approach is more reliable than analogous crisp techniques, as
it is derived allowing market fluctuations well beyond the probability type of uncertainty
permitted by standard financial methods. The criterion is also more informative in comparison
with other fuzzy approaches, as it further suggests an investment risk measure. The second
stage in the soft model development involves identifying a fuzzy network structure capable of
approximating the criterion formulated at stage one. Building on previous studies of fuzzy
network approximating qualities concerning simple fuzzy functions or single-variable fuzzy-
valued functions, we deduce a structure adequate for the multivariable criterion. The final
stage focuses on training the network. A genetic training algorithm is developed that
demonstrates high speed and efficiency. Then, an effective bidirectional evolutionary strategy
is elaborated, as direct evolution fails to rich a solution to the complex problem of optimising
the weights and shift terms in the fuzzy network over a set of investment projects. The
strategy involves a decomposition and an incremental part. The integral problem is first
divided into subtasks of decreasing complexity by partitioning accordingly the training set of
projects. Then the subtasks are merged incrementally to optimise the integral solution.

We next explain how the classifier, once developed and trained, can be used in problem
solving. It will be incorporated into a mulitmodel domain knowledge structure that is to be the
expert module in an intelligent system. Building the system includes three stages. First,
relevant models are selected to give the environment the ability to generate answers to a
variety of queries with increasing complexity. From single-project evaluation, through ranking
and agent-dependent risk-classification of available stocks, up to trading recommendation and
market simulation. In addition to addressing various though related investment questions, the
models have different mathematical grounds. From crisp, through fuzzy and soft computing
techniques, up to artificial intelligence and hybrid methods. Thus the same problem can be
solved using more or less rigid mathematical approaches. Furthermore, in each model the
number of parameters may be reduced or increased according to the nature of the inquiry. The
second stage in building the multiple expert structure of the system concerns the identification
of major contextual perspectives. We have recognised the dimensions of scope, resolution,
rigidity, generality, precision, and accuracy. All models are arranged along these axes,
creating a cubical structure where each three-dimensional component explodes into a
secondary cubical structure, thus accommodating all six dimensions. So constructed, the
multimodel domain facilitates a multiperspective analysis of a single problem. It further
provides a powerful environment, in comparison with mono-model based intelligent systems,
for solving a variety of problems rather than one particular query. Finally, investment
strategies can be tested that involve an ordered set of queries and require a decision at each
step. Navigating through the model space, the optimal solution trajectory will be drawn. The
third stage in developing the environment is the software design of an intelligent-agent
architecture for the system, where the multimodel expert module is incorporated. This step is
not addressed here, but the work on it is in progress. In [25], ideas on object-oriented patterns
for model-based reasoning are presented that are particularly suitable for designing the
multimodel domain, and in [4] an intelligent-agent architecture is described for a system based
on such expert module. One further quality of the multimodel based system is the flexibility it
can provide in diagnosing user behaviour in order to provide a better decision support, and
this is a topic for future research.
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Appendix

A1. Formulating the fuzzy valued criterion
Preliminary: Let us consider the loglinear approximation of the price-dividend relation under time-varying returns,

( ) t1t1t1t pdy1pr −−++≈ +++ λδ  ,

where 1tp + , 1tr +  and 1tdy +  stand for the log share price, log return and log dividend yield, correspondingly. If the equation is

solved forward for the log stock price, the following estimation is produced in period 0t = ,
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where the parameters of linearisation, δ  and λ , are evaluated with continuous functions of ( )T1 dy,...,dy . I f the investment

horizon is T , then a project is profitable at 0t =  when the estimated share price exceeds the market share price, 00 pp̂ > . Based

on this, the fuzzy valued criterion is formulated following a procedure in four steps.
Step 1: For each project, parameters δ  and λ  are considered crisp and obtained from
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Step 2: Market uncertainty is introduced applying initially a calibration technique based on the %95  confidence interval of
Student’ s distribution t  for the market level data. Thus, triangular fuzzy numbers are produced corresponding to fatter-tail
possibility distributions. Then, the level-log data transformation causes nonlinear rather then triangular membership functions for

the fuzzy log share prices tiP
~

, rates of return tiR
~

 and dividend yields Ni1,Tt1,YD
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ti ≤≤≤≤ . Here T  is the investment horizon
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and the initial calibration is slightly modified, assuming
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Step 3: The fuzzy log share price P
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at 0t0 =  is presented as
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where ( ) ( ) ( ) ( ) ( ) ( ) ,0dy,2lnr0,0p,Tt1,dy,...,dy,r,...,r,p,...,px,xgg,xgg,xgg,xgg tttT1T1T1CtCtBtBtAtAt <<<>≤≤=====

are continuous functions defined on the market data employed to evaluate a project. Thus, the fuzzy log share is described as a
continuous multivariable fuzzy-valued function.

Step 4: Applying the extension principle, the nonlinear membership function of the solution is defined by
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and for the specific formulation of 0P
~

, the α-cut ( )αΩ
0P  is equivalent to the interval arithmetic solution

( ) ( ) ( )[ ] ,P,P 00P0
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A2. Identifying the network structure
Remark 1: Let →×× k1 UU:f 4 is a multivariable continuous crisp function on the compact sets ⊂iU , ki1 ≤≤ . If

0FA
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∈ ( ) is a fuzzy number and 0k1 FUU:F →×× 5 ( ) is a multivariable fuzzy-valued function, where
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describes the class of four-layer regular fuzzy neural networks with sigmoid transfer functions and shift terms in the first hidden
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Then ℑ  and 0ℑ  are universal approximators for the multivariable continuous fuzzy-valued function 0k1 FUU:F →×× = ( )

from Remark 1.
Remark 3: Let n1 F,...,F  are multivariable continuous fuzzy-valued functions as the one in Remark 1, then ℑ  and 0ℑ  from

Remark 2 are universal approximators for ( )∑
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Remark 4: The evaluated share price 0P
~

 in equation (1) is a multivariable continuous fuzzy-valued function of the type in

Remark 3. Consequently, there exists a four-layer regular fuzzy neural network 0RFNN ℑ∈  approximating 0P
~

 to an arbitrary

degree of accuracy.
Regular network module evaluation: The extension principle and the interval arithmetic evaluation are equivalent for fuzzy

networks of the identified class 0ℑ  and the α -cuts ( )αΩ RFNN  of RFNNP
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A3. Bidirectional incremental evolution: algorithm

I: Define the training set of projects Nn ⊂  and obtain their 0P
~

 from equation (1).

II: Choose the probing step of generations genN  and the parameters ( ) ( ) ( ) ( ) ( )
INCENDINCDECEND

k
5DEC

k
4DEC

k
3DEC

k
2DEC

k
1DEC ,,,,,,, ξξξξξξξξ ,

(see subsection 2.3). Here ,...2,1k =  is the corresponding level of decomposition and partitions are to be identified.

III: Initialise ( ) nn,1k 1 == , and generate a random initial population 
s
IP  of size s .

IV: Evolve the regular fuzzy neural network for genN  generations, using the complete training set ( )kn . During evolution,

evaluate RFNNP
~

 from equation (1), and apply fitness function Qf  from definition (6).

V: Keep the result of the evolution - the breeding subpopulation ( )
1s

kX  - where 1s  is the number of breeding chromosomes

and ss1 < .

VI: Apply the objective function 
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1DECξ , then go to step III .

VII: Apply the objective function ( ) ( ) 0
s
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ξχξ . If there do not exist single projects satisfying the condition, then
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k

s
XIP  by recombination of ( )
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kX . Go to step IV.
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VIII: Group the single projects satisfying the condition in step VII into ( )k
1n  subsets of projects, ( ) ( ) ( ) ( ){ }k
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XIII: Evolve a fuzzy network, using the training set ( )k
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j1

s
XIP .

Else, go to step XV.

XV: Evolve a regular fuzzy neural network for genN  generations, using the training set ( )k
j1n . Keep the result of the evolution–

the breeding subpopulation ( )k
j1

s1

X . Go to step XI.

XVI: If ( )
( )

( )( ) ( )k
4DEC

s

1i
i

n
1

k
3DEC

1

k
j1

max
s

1 ξχξξ << ∑
=

 and ( )k
j1n  consists of a subset of projects, then generate a full-size population

( ) 





 k

j1
s

j1
s 1

XIP . Consider the subset ( )k
j1n  as a complete training set ( ) ( )k

j1
1k nn =+  and increase 1kk += . Go to step IV.

XVII: If ( )
( )

( )( ) ( )k
2DEC

s

1i
i

n
1

k
4DEC

1

k
j1

max
s

1 ξχξξ << ∑
=

 and j1n  consists of a subset of projects, then generate a new full-size population

( ) 



1s

k
11

s
XIP . Consider the subset ( )k

j1n  as a complete training set and increase decomposition level 1kk += . Go to step

IV.

XVIII: Apply objective function 
( )

( )( ) ( ) 0max
s

1 k
5DEC

s

1i
i

n
1

1

k
2

<−∑
=

ξχξ . If it is satisfied, then generate a full-size population ( ) 





 k

s
2

s 2
1

XIP ,

else generate a new initial population ( ) 





 k

s
2

s 1

XIP . Consider ( )k
2n  as a complete training set and increment 1kk += . Go to

step IV.

XIX: If ( )k
2n  consists of a single project, then evolve a fuzzy network until the objective 

( )
( )( ) DECEND

2s

1i
i

n
1

1

k
2

max
s

2 ξχξ <∑
=

 is met and

keep the result ( )k
END2

2s1

X . Else consider ( )k
2n  as a complete training set, increment 1kk +=  and go to step IV.

XX: Set k  at the highest level of partition ( )kmaxKk == . Consider the training set ( ) ( ) ( ) ( ){ }K
2

K
J1

K
11

K n,n,...,nn
K

=  and generate a

full-size population ( ) ( ) ( )







 K
END2

2s

K
ENDKJ1

2s

K
END11

2s
INC

s 111

X,X,...,XIP .

XXI: Evolve a fuzzy network, using the training set ( )kn , until 
( )

( )( ) 0max
s

2
INC

2s

1i
i

n
1

1

k
<−∑

=

ξχξ . Keep the result ( )k

INC2s1

X .

XXII: Decrease 1kk −= , which is equivalent to increasing the incremental level. Consider the training set

( ) ( ) ( ) ( ) ( ){ }1kk
2

k
J1

k
11

k nn,n,...,nn
K

+==  and generate a full-size population ( ) ( ) ( )





 +1k
INC

2s

k

ENDkJ12s

k
END11

2s
INC

s 111

X,X,...,XIP . I f 1k > , go to

step XXI.

XXIII: Evolve a regular fuzzy neural network, using the training set ( )1n , until the error of the best chromosome gets below

INCENDξ , ( ) ( )( ) 0max INCEND
best
INCEND

n 1
<−ξχξ . Keep the best chromosome best

INCENDχ . It represents the completely evolved network.
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A4: Bidirectional incremental evolution: empirical results

During evolution apply fitness function ( )î



≤−
>

=
1515.0,5.1/1000*1515.0

1515.0,0
f

ξξ
ξ

ξ .

Decomposition part

a:Start with the training set ( ) { }6project,5project,4project,3project,2project,1projectn 1 = . Generate a random initial

population 
s
IP  of size 100s = , and evolve a fuzzy neural network for 000,10Ngen =  generations. The result for the first

objective function is ( )( ) ( ) 1525.01276.0max
s

1 1
1DEC

s

1i
i

n
1

1

=<=∑
=

ξχξ . Consequently, keep the evolved breeding subpopulation

( )
1s

1X  of size 30s1 = .

b:Check which single projects satisfy the second objective, ( ) ( ) 0525.0
s

1 1
2DEC

s

1i
i

1

1

=<∑
=

ξχξ .

objective / project project 1 project 2 project 3 project 4 project 5 project 6

( )∑
=

1s

1i
i

1s

1 χξ 0.1255 0.1276 0.1114 0.1206 0.0972 0.0703

All six projects produce larger numbers then the parameter ( ) 0525.01
2DEC =ξ . Consequently, no partition is possible yet.

c: Generate a full-size population ( ) 



1s

1

s
XIP  by recombination of best subpopulation ( )

1s

1X  and continue training with ( )1n  for

another 000,10Ngen =  generations.

objective / project project 1 project 2 project 3 project 4 project 5 project 6 projects 1 & 5

( )∑
=

1s

1i
i

1s

1 χξ 0.0448 0.0739 0.0691 0.0633 0.0472 0.0531 0.0557

Now the value for project 1 is less then the second parameter ( ) 0525.01
2DEC =ξ  and so is the value for project 5, while both

projects together produce a larger number then 0525.0 . Consequently, the following first-level decomposition is identified.

Level1: ( ) ( ) ( ) ( ){ }1
2

1
12

1
11

1 n,n,nn = , ( ) { }1projectn 1
11 = , ( ) { }5projectn 1

12 = , ( ) { }6project,4project,3project,2projectn 1
2 =

Keep the resultant breeding subpopulation in ( )
1s

1X .

d:Generate different full-size populations ( ) 



1s

1
11

s
XIP , ( ) 




1s

1
12s

XIP , ( ) 



1s

1
2

s
XIP  by recombination of the same breeding

subpopulation ( )
1s

1X , and evolve a separate fuzzy network in 000,10Ngen =  generations for each training subset of ( )1n .

project 1 project 5 project 2&3&4&6

( )
( )( ) ( ) 0125.00064.0max

s

1 1
3DEC

s

1i
i

n
1

1

1
11

=<=∑
=

ξχξ
( )

( )( ) ( ) 0125.00036.0max
s

1 1
3DEC

s

1i
i

n
1

1

1
12

=<=∑
=

ξχξ
( )

( )( ) ( ) 0775.00644.0max
s

1 1
5DEC

s

1i
i

n
1

1

1
2

=<=∑
=

ξχξ

Consequently, keep the evolved breeding subpopulations ( )1

11s1
X , ( )1

12
s k
1

X  and ( )1

2s1
X .

e: Generate full-size populations ( ) 





 1

11s
11

s 1

XIP  and ( ) 





 1

12
s

12
s k

1

XIP , and evolve a separate fuzzy neural net for each subset ( )1
11n  and

( )1
12n , until the average value of the network error ξ  over the first half of the breeding subpopulation ( )

2s

k

1

X  is less than

DECENDξ .

project objective number of generations

project 1 ( )
( )( ) 0025.0002482.0max

s

2
DECEND

2s

1i
i

n
1

1

1
11

=<=∑
=

ξχξ 9,014

project 5 ( )
( )( ) 0025.00024996.0max

s

2
DECEND

2s

1i
i

n
1

1

1
12

=<=∑
=

ξχξ 13,465

Consequently, keep the first half of the breeding subpopulations, ( )1
END11

2s1

X  and ( )1
END12

2s1

X . Their size is 152s1 = .

f: Check which single projects, elements of ( ) ( ) { }6project,4project,3project,2projectnn 21
2 == , satisfy the objective

( ) ( ) 0225.0
s

1 2
2DEC

s

1i
i

1

1

=<∑
=

ξχξ .

objective / project project 2 project 3 project 4 project 6

( )∑
=

1s

1i
i

1s

1 χξ 0.0644 0.0631 0.0608 0.0181

The value for project 6 is less than 0225.0 . Consequently, the following second-level decomposition is identified.

Level2: ( ) ( ) ( ){ }2
2

2
11

2 n,nn = , ( ) { }6projectn 2
11 = , ( ) { }4project,3project,2projectn 2

2 =

g:Generate a full-size population ( ) 





 1

2s
11

s 1

XIP  and evolve a separate network for ( )2
11n  until the average error ξ  over the first half
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of the breeding subpopulation ( )
2s

2

1

X  is less than DECENDξ .

project objective number of generations

project 6 ( )
( )( ) 0025.0002468.0max

s

2
DECEND

2s

1i
i

n
1

1

2
11

=<=∑
=

ξχξ 5,147

Consequently, keep half of the breeding subpopulation ( )2
END11

2s1

X .

h:Generate a full-size population ( ) 





 1

2s
2

s 1

XIP  and evolve for 000,10Ngen =  generations a separate network with the training set

( ) ( ) { }4project,3project,2projectnn 32
2 == . The result for the next objective is 

( )
( )( ) ( ) 064.00638.0max

s

1 3
1DEC

s

1i
i

n
1

1

3
=<=∑

=

ξχξ .

Consequently, keep the evolved breeding subpopulation ( )3

s1
X .

i: Generate a full-size population ( ) 




 3

ss 1

XIP  and evolve further the network with ( )3n , for a multiple of genN  generations, until

some of the elements of ( )3n  meets the objective ( ) ( ) 0425.0
s

1 3
2DEC

s

1i
i

1

1

=<∑
=

ξχξ . Only after 40,000 generations we get the

result.
objective / project project 2 project 3 project 4 projects 3&4

( )∑
=

1s

1i
i

1s

1 χξ 0.0554 0.0380 0.0381 0.0421

Project 3 and project 4 meet the condition. Moreover, they meet the condition together, as well. Consequently, the following

third-level decomposition is identified.

j: Evolve a separate fuzzy neural network for ( )3
11n  and for ( )3

2n , until the average network error ξ  over the first half of the

breeding subpopulation ( )
2s

3

1

X  is less than DECENDξ .

project objective number of generations

projects 3&4 ( )
( )( ) 0025.0002426.0max

s

2
DECEND

2s

1i
i

n
1

1

3
11

=<=∑
=

ξχξ 1,403

project 2 ( )
( )( ) 0025.0002476.0max

s

2
DECEND

2s

1i
i

n
1

1

1
12

=<=∑
=

ξχξ 1,312

Keep half of the breeding subpopulations, ( )3
END11

2s1

X  and 3
END2

2s1

X . This concludes the decomposition part of the bidirectional

evolutionary strategy, as ( )3
2n  consists of a single project.

Incremental part

k: Consider the training set and generate a full-size population ( ) ( ) 





 3

END2
2s

3
END11

2s
INC

s 11

X,XIP . Evolve a

network unti l the objective 
( )

( )( ) 002.0max
s

2
INC

2s

1i
i

n
1

1

3
=<∑

=

ξχξ  is met. Keep half of the resulting breeding subpopulation ( )3

INC2s1

X .

projects objective number of generations

2&3&4 ( )
( )( ) 002.0001962.0max

s

2
INC

2s

1i
i

n
1

1

3
=<=∑

=

ξχξ 1,918

l: Consider the training set and generate a full-size population ( ) ( ) 





 3

INC2s

2
END11

2s
INC

s 11

X,XIP . Evolve

a network until another objective 
( )

( )( ) 002.0max
s

2
INC

2s

1i
i

n
1

1

2
=<∑

=

ξχξ  is satisfied. Keep the resulting half-subpopulation ( )2

INC2s1

X .

projects objective number of generations

2&3&4&6 ( )
( )( ) 002.0001984.0max

s

2
INC

2s

1i
i

n
1

1

2
=<=∑

=

ξχξ 503

m: Consider the training set and generate a full-size population

( ) ( ) ( ) 





 2

INC2s

1
END12

2s

1
END11

2s
INC

s 111

X,X,XIP . Evolve a network until the error of the best chromosome is 0015.0INCEND =< ξξ .

projects objective number of generations
1&2&3&4&5&6 0015.00014904.0 INCEND =<= ξξ 15,481

Keep the best chromosome best
INCENDχ . It represents the fully evolved fuzzy neural network.

( ) ( ) ( ){ }3
2

3
11

3 n,nn =

( ) ( ) ( ){ } ( ) ( ){ }32
11

2
2

2
11

2 n,nn,nn ==

( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }21
12

1
11

1
2

1
12

1
11

1 n,n,nn,n,nn ==

Level3: ( ) ( ) ( ){ }3
2

3
11

3 n,nn = , ( ) { }4project,3projectn 3
11 = , ( ) { }2projectn 3

2 =




