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Abstract

Standard financial techniques neglect
extreme situations and regards large market
shifts as too unlikely to matter. Such
approach accounts for what occurs most of
the time in the market, but does not reflect
the reality, as major events happen in the
rest of the time and investors are ‘surprised’
by ‘unexpected’  market movements. An
alternative fuzzy approach permits
fluctuations well beyond the probability
type of uncertainty and allows one to make
fewer assumptions about the data
distribution and market behaviour.
Fuzzifying the present value criteria, we
suggest a measure of the risk associated
with each investment opportunity and
estimate the project’s robustness towards
market uncertainty. The procedure is
applied to thirty-five UK companies traded
on the London Stock Exchange and a neural
network solution to the fuzzy criterion is
provided to facilitate the decision-making
process. Finally, we suggest a specific
evolutionary algorithm to train a fuzzy
neural net - the bidirectional incremental
evolution will automatically identify the
complexity of the problem and
correspondingly adapt the parameters of the
fuzzy network.

Keywords: Finance, Evaluating fuzzy
expressions, Neural networks, Evolutionary
algorithms.

1     Introduction

Investment projects are typically chosen on the basis
of a restricted information set, while the volatility

literature claims that stock prices are too volatile to
accord with simple present value models. To
approach the problem, we model the restricted
information and incorporate price uncertainty into
calculations. Uncertain share prices and dividend
yields, associated with a family of possible streams
of future cash flows, as well as uncertain discount
rates are handled by the introduction of fuzzy
variables, whose values are restricted by possibility
distributions. Alternatively, fuzzy numbers are
suggested with corresponding membership
functions. Increasing the range of uncertainty
modelled by the fuzzified data, we determine the
robustness of the investment risk associated with
each project. Neural networks yield a mechanism to
facilitate the solution of the fuzzy criterion. Once
trained to evaluate a project, a neural net provides
investors with a simple re-evaluation tool when the
information available is subject to change. Finally,
as a direction for future research, we suggest a fuzzy
neural net, as it will directly handle fuzzy market
data, and recommend the bidirectional incremental
evolution as an effective training mechanism.

2     Net present value models

NPV evaluations are increasingly being used in the
UK [14,17]. The technique is broadly adopted in
practice, managers are comfortable with it, and it is
reasonable to consider the fuzzy alternative to take
account of more general forms of uncertainty. Fig. 1
describes the interrelations between standard and
soft computing techniques as well as between
theoretical and empirical research, all involved into
the process of formulating the fuzzy criterion.1

The standard NPV formula has been continuously

                                                  
1 For a detailed discussion, see [19].
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revised. It has been realised that the removal of any
of the perfect market assumptions destroys the
foundation and reduces the effectiveness of the
method. We do not attempt to cope with a specific
drawback of the technique but permit into the model
structure as much uncertainty as the market could
possibly suffer. The calculation based on the
standard criterion may be re-optimised due to
investment irreversibility [8] and altered because of
the effect of capital and labour market rationing [15]
or impact of a project on the investor’s total risk
[20]. Whatever reason one has for modifying the
classic result, the allowances provided by the fuzzy
criterion will cover these specific circumstances and
will include the modified values. The outcome is an
effective method under restricted information,
uncertain data and market imperfections.

Fuzzy net present value was first introduced in [2],
then considered in a broader framework of
accumulation and discount models in [6], and
recently modified with an alternative fuzzification of
the project duration in [13]. All these studies are
theoretical. The major difference here is the
emphasis we place on the empirical results - we
evaluate 35 projects investing in UK companies
traded on the LSE. Concurrently, it is the analysis of
the empirical results that facilitates the formulation
of measures for the investment risk and the project
robustness towards market uncertainty, and assists
the definition of an alternative ranking technique.
Thus the fuzzy criterion evolves into a considerably
informative and advantageous to investors method.
Further, we build a neural network to solve the fuzzy
investment criterion. In result, investors are provided
with an effortless instrument for risk re-evaluation,
any time they update a project. We also suggest a
fuzzy neural net and recommend an effective
evolutionary training algorithm. In conclusion,

combining the advantages of various soft
methodologies, the article balances empirical and
theoretical results, with the driving force being the
investor's benefit.

3 Investment project evaluation using a fuzzy
criterion with a constant discount rate

We apply two methods of evaluating fuzzy algebraic
expressions from [3]. First, if positive real triangular
fuzzy numbers tP

~ , tYD
~  and R

~  are substituted for
the share price Pt , dividend yield DYt and discount
rate R, then FNVP

~  is the triangular-shaped fuzzy
number providing a set of values that belongs to the
present value with various degrees of membership.
Form the α-cuts of the price time-series
P
~

(α)={ tP
~

(α)}  and the dividend-yield time-series

YD
~

={ tYD
~

}  for 1≤t≤N, and find FNPVΩ (α).
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Then the first solution is defined by µ( FNPVx | FNVP
~

):

µ( FNPVx | FNVP
~

)=sup{ α| FNPVx ∈ FNPVΩ (α)} (1d)

Second, if tP
�

, tYD
�

 and R
�

 are positive real fuzzy
variables with triangular possibility distributions
Poss[ tP

�
=xPt]=µ(xPt| tP

~
), Poss[ tYD

�
=xDYt]=µ(xDYt| tYD

~
)

and Poss[ R
�

=xR]=µ(xR|R
~

), correspondingly, then
FVVP

�
 is the fuzzy variable, whose values are

possible solutions to the fuzzy present value criteria.
Form the joint possibility distribution of share-price
time-series and dividend-yield time-series
πP=

Nt1
min

≤≤
{ Poss[ tP

�
=xPt]} =

Nt1
min

≤≤
µ(xPt| tP

~
)} (2a)

πDY=
Nt1

min
≤≤

{ Poss[ tYD
�

=xDYt]} =
Nt1

min
≤≤

µ(xDYt| tYD
~

)} (2b)

and find the joint possibility distribution FVPVπ ,

FVPVπ =min{ πP,πDY,Poss[ R
	

=xR]} (2c)

assuming that tP



, tYD
�

and R
�

 are non-interactive.
Then, the possibility distribution of the second
solution is

Poss[ FVVP



=
FVPVx ]=sup{

FVPVπ |
FVPVx =
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The two solutions are identical but we present them
both, as the first provides the computational
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Fig. 1: Interrelations in investment appraisal techniques
�  standard and soft computing; theoretical and empirical studies



Figure 3: Results for BP AMOCO under t6-calibration
�  fuzzy present value and fuzzy cash-flow

algorithm and the second justifies the uncertainty-
modelling technique.

We use monthly (DataStream) data on share prices
and dividend yields covering 35 UK companies for
Jan.’75-Jan.’00. The discount rate equals the average
3-month UK treasury-bill rate. The support of the
triangular membership function of each tP

~ , tYD
~ ,

and R
~ , is 2.5% wider than the 99% normal-

distribution confidence interval. The calculations
involve relation (3) and Fig. 2 presents the graphics
for BBA GROUP.2
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The character of the fuzzy cash-flow stream affects
the form of the fuzzy present value. There exists a
unique for each company αcritical where the initial-
outlay line crosses the present-value membership
function. Then the critical level of uncertainty is
ucritical=1-αcritical. A project is profitable at any u<ucritical,
while at u≥ucritical there is a chance of being
unprofitable. Table 1 presents part of the results.3

Table 1: Constant discount rate with normal calibration -
critical values

company BBA BOC BP AMOCO DIXONS
αNcritical 0.245 0.000 0.000 0.656

company GOODWIN HANSON N. FOODS WOLSELEY

αNcritical 0.421 0.507 0.339 0.000

4     Measuring the investment risk and its
robustness

The results in section 3 show that a critical level of
uncertainty is associated with each project. The
solution procedure applied allows for finding the set
of the project’s present values that corresponds to all
the share prices, dividend yields and discount rates
possible at some level of uncertainty. This set is

                                                  
2 See [18] for the complete set of graphics.
3 See [19] for the full table of results.

situated at the same level of uncertainty. Therefore,
there is a critical level of uncertainty, ucritica,
embodied in the market data we use to evaluate the
project and this level delimits the project’s
investment risk. We suggest 1-ucritical=αcritical ∈  [0,1] as
a risk measure. The following reasons support the
suggestion. The lower the critical level of
uncertainty at which there is a chance for the project
being unprofitable, the higher the investment risk.
Second, αcritical is the membership level of the fuzzy
present value, below and at which it is certain that
the solution includes values below or equal to the
initial outlay, and above which the project is
definitely profitable.

Further, evaluating the same projects under
increased uncertainty of the market environment and
comparing the resultant critical values, we derive
estimates of the investment risk robustness,
∆α=αt6critical-αNcritical. To model increased market
uncertainty, a calibration procedure is applied based
on the 95% t6-confidence interval rather than the N-
interval, thus producing fatter-tail possibility
distributions. Fig. 3 illustrates how this affects the
results for BP AMOCO.2 Some of the values are
shown in Table 2.3

Raising the market uncertainty, we logically obtain
decreased critical levels ucritical. For all the projects,
the relation ut6critical≤uNcritical holds, which indicates
that the chance of a project being unprofitable now
occurs at lower levels of uncertainty embodied in the
data. Simultaneously, the relation αt6critical≥αNcritical

reveals increased investment risk. Now we formulate
an alternative rating procedure. First, the companies
are ordered according to their risk in the increased-
uncertainty case, αt6critical. Then, the more robust
investments are preferred when choosing between
projects with close risks. Thus the companies are
accordingly reordered. For example, HANSON is
preferable to NORTHERN FOODS, BBA GROUP
and BP AMOCO, because the project is more
robust, although with slightly higher investment risk.
By analogy, NORTHERN FOODS and GOODWIN

Figure 2: Results for BBA GROUP under N-calibration
�  fuzzy present value and fuzzy cash-flow
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are preferable to BBA GROUP and BP AMOCO.

Table 2: Constant discount rate -
investment risk robustness and project rating

company αt6critical rating ∆α robustness new rating
BBA 0.527 3rd 0.282 low 6th
BOC 0.000 1st 0.000 high 1st

BP AMOCO 0.529 4th 0.529 none 7th
DIXONS 0.713 8th 0.057 high 8th

GOODWIN 0.575 7th 0.154 medium 5th
HANSON 0.573 6th 0.066 high 3rd
N. FOODS 0.543 5th 0.204 medium 4th

WOLSELEY 0.000 1st 0.000 high 1st

Remember that the standard method will not quite
distinguish between the above projects, as they all
have a positive crisp net present value. The generally
accepted technique will not tell us how to choose
between projects with close crisp net present values.
It will not reveal whether projects with higher NPV
are less robust and less preferable. The standard
results are less informative and can be misleading.

5 Investment project evaluation using a fuzzy
criterion with a time-varying discount rate

The assumption of time-varying returns transforms
the price-dividend relation into nonlinear and a
loglinear approximation is required. We equate the
log present value lpv  with the log share-price
estimation p̂  at t=0. Then a project is profitable if
lpv0= 0p̂ >p0. The real fuzzy numbers to be substituted
for the log share-price pt, log dividend-yield dyt and
log discount-rate rt, are correspondingly tp~ , tyd

~ , tr~ .
The level-log data transformation causes triangular-
shaped rather then triangular membership functions
for tp~ , tyd

~  and tr~ . Now find the α-cut
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Then the first solution for the fuzzy log present
value is defined by its membership function,
µ( fnlpvx | fnvp~l )=sup{ α| fnlpvx ∈ ( )αΩ fnlpv } (4b)

By analogy with section 3, the triangular-shaped
possibility distribution of the second solution is
Poss[ fvvpl

Â
= fvlpvx ]=sup{ fvlpvπ =min{ πp,πdy,πr} |

| fvlpvx = ( )( )[ ] N
N

N
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=
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where the possibility distributions of the real fuzzy
variables tp

Ã
, tyd

Ä
 and tr

Å
 are described by

Poss[ tp
Æ

=xpt]=µ(xpt| tp~ ), Poss[ tyd
Ç

=xdyt]=µ(xdyt| tyd
~

) and

Poss[ tr
È

=xrt]=µ(xrt| tr~ ), respectively. The two solutions
are identical, as

fnvp~l (α)= ( )αΩ fnlpv ={ fvlpvx |Poss[ fvvpl
É

= fvlpvx ]≥α} ,0≤α≤1

and the calculations include
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We consider the t6-calibration and the assumption of
a time-varying discount rate enforces the
employment of N fuzzy numbers tr~ , 1≤t≤N. Table 3
includes part of the results. We have not further
increased the uncertainty modelled in the t6-data,
only introduced a variable discount rate. But a
comparison between the t6 constant and time-
varying results reveals characteristics similar to
increased market uncertainty: ulogcritical≤ut6critical≤uNcritical

and αlogcritical≥αt6critical≥αNcritical. Further, when projects
are assessed under t6 calibration and a time-varying
discount rate, real market conditions are approached,
and this allows an improved evaluation of the
investment risk and its robustness. Table 3 repeats
the ranking procedure  from the previous  section
with the new results. The projects are first ordered
according to the risk αlogcritical, then the order is
refined corresponding to the robustness indicator
∆αlog=αlogcritical-αNcritical.

Table 3: Time-varying discount rate -
risk robustness and project rating

company αlogcritical rating ∆αlog robustness new rating
BBA 0.696 5th 0.451 low 6th
BOC 0.000 1st 0.000 high 1st

BP AMOCO 0.904 6th 0.904 none 7th
DIXONS 1.000 u   n   p   r   o   f   i   t   a   b   l   e

GOODWIN 0.925 7th 0.504 low 6th
HANSON 0.673 4th 0.166 medium 3rd
N. FOODS 0.656 3rd 0.317 low 4th

WOLSELEY 0.092 2nd 0.092 high 2st

6     Using neural networks to evaluate the
fuzzy criterion

In this section, we apply a technique for evaluating
fuzzy expressions suggested in [4,5] and train a
neural network to evaluate investment projects
according to the fuzzy present value criterion. The
time-varying-rate case is considered and the three-
layer feedforward neural net in fig. 4 is employed.
For bias terms θj, sigmoidal transfer functions
g(x)=(1+e-x)-1 and weights wj i, uji, zji, vj , its output is

lpvnn= ( )∑ ∑
= =
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
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Let us imply that the network is trained to
approximate the crisp log-present value:

lpvnn≈∑
=

−ρ
N

1i

1i [(1-ρ)(dyi+pi)+k-ri]+ρnpn . (6b)

If we input the α-cuts of ip~ , ir~ , iyd
~

, and perform
interval arithmetic within the net to get the
corresponding α-cut of the fuzzy output nnvp~l , the
result is
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In order vp~l nn to be an approximation to the solution

fnvp~l  described earlier and to provide that vp~l nn>0

for fnvp~l >0, the following sign restrictions are
introduced on the weights.
wji≥0, uji<0, zji≥0, vj≥0, 1≤i≤N, 1≤j≤m, (6c)
Then, if the net is trained to approximate (6b) under
(6c), we get
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The problem is programmed using the neural
network toolbox of Matlab4. We choose the training
function trainlm based on the Levenberg-Marquart
technique, as it is the fastest backpropagation
algorithm available. The toolbox allows function
customisation giving the user control over the

                                                  
4 All programmes in Sections 3, 4, 5, 6 are written in Matlab.

initialising, simulating and training algorithms. We
have modified trainlm to provide the satisfaction of
the sign constraints. After training, the net is
simulated using test vectors for each project, while
no element of the training set is included in the test
set. For all companies, ss

s
etargtnetmax − ≤0.021 and

for most of them ss
s

etargtnetmax − ≤0.01, where s

stands for the s-th element of the test set. It is a good
approximation and concludes that fnnn vp~lvp~l ≈ .

If an investment decision has to be taken within a
period of time, we can first fuzzify the data using the
information available at the beginning of the period
and then train a neural network to approximate the
fuzzy log present value of the project. The decision-
maker will be provided with the trained network and
at any moment he or she acquires new information,
the net will be simulated with modified inputs.

7     Future research

If one fuzzify the 3N-m-1 network structure from
Figure 4, it will handle fuzzy signals - fuzzy market
data - at once instead of α-cut by α-cut. The fuzzy
network takes fuzzy weights and fuzzy shift terms.
The error of the approximation E is a distance
measure D between the fuzzy log-present value

fnvp~l  and the fuzzy neural net output fnnvp~l .
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Evolutionary algorithms are the most promising tool
in training FNN - they are well capable of searching
for the optimal weights and shits while minimising
E. As N is very large, a scalability problem occurs.
To solve it, we suggest a specific algorithm,
bidirectional incremental evolution. The incremental
evolution is applied in training neural networks in
[9], where a control problem in evolutionary
robotics is approached. Unfortunately, it requires
advanced knowledge of the complexity of the
problem. The bidirectional incremental evolution
allows us to overtake this problem. Its major
advantages are the automatic identification of the
complexity of the task, and the automatic change in
the parameters so that the system adapts to the
complexity. Bidirectional incremental evolution has
been already applied in evolvable hardware [12] and
the experimental results have proved it to be a
powerful technique for tuning systems
automatically.
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Figure 4: Neural net architecture to solve
the fuzzy log present value problem



7     Future research

Our effort lies on the bridge towards a new paradigm
of investment selection, where the perception of
concepts inherent or surrounding the investment
process, whose character is not principally
measurable, is best handled by ’nonnumeric’
mathematics. [1] We presented some preliminary
ideas in [11] and further develop here the technique,
introducing fuzzy dividend yields and a second type
of calibration. We suggest measures of the
investment risk and its robustness. Also neural
network solution is worked out and the number of
companies is considerably extended. Finally a
promising direction for future research is outlined.

The results reveal that there is a critical level of
uncertainty, ucritical, embodied in the market data we
use to assess a project and this level delimits the
project’s investment risk, αcritical. Evaluating the
same project under increased uncertainty of the
market environment, we derive an estimate of the
risk robustness ∆α. Investment opportunities are
first rated in correspondence with their risk and then
the order is revised according to their robustness.
The more robust investments are preferable when
choosing between projects with close risks, and this
suggests an alternative ranking technique. It is
important for investors to pick out projects having
not only a small but also a highly robust investment
risk. The fuzzy present value provides them with the
necessary information and facilitates their decision,
while the crisp technique is less informative and
even misleading. Further, empirical tests have
convinced financial analysts that stock returns are
time-varying rather than constant. In response, we
introduce fuzzy log present value. Finally, a trained
neural network provides investors with an effortless
instrument for risk revaluation, any time they need
to update and reconsider a project.

The mathematics underlying the standard financial
techniques neglects extreme situations and regards
large market shifts as too unlikely to matter. Such
techniques may account for what occurs most of the
time in the market, but the picture they present does
not reflect the reality as major events happen in the
rest of the time. The soft computing approach allows
for market fluctuations well beyond the probability
type of uncertainty, does not impose predefined data
or market behaviour, and efficiently works out a
solution, producing better investment appraisal and
allowing project revaluation.
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