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Abstract 

Carbon dioxide (CO2, R744) is a natural working fluid with interesting thermophysical properties that have 

stimulated strong attention by the academic and industrial communities for a broad range of energy applications. The 

technology readiness level of CO2-based energy systems is very diverse due to the increasing consideration that the 

fluid has been receiving since the 1990s. Hence, the state of the art in CO2 energy research spans from fundamental 

thermofluid and chemistry science to commercial system innovations. After a brief compendium on ongoing 

activities, this paper proposes a roadmap for CO2 energy research with reference to the cooling, heating and power 

sectors. The key knowledge gaps and the main challenges at system and component levels are critically discussed. 

Pathways to advance the understanding and the technological maturity of CO2 energy systems are also outlined. 

 

1. Introduction 

Carbon dioxide, also known with its chemical formula as CO2 or R744 in industry, has been one of the first working 

fluids employed in the refrigeration industry, as evidenced by Twining’s patent dated 1850 [1,2]. Despite the early 

uses, during the 1930s CO2 was gradually displaced by Chlorofluorocarbons (CFCs) Hydrochlorofluorocarbons 

(HCFCs) and Hydrofluorocarbons (HFCs) that, by operating in the sub-critical region with lower working pressures 

on the high pressure side of the system, offered better performance than transcritical CO2 refrigeration systems. 

The Montreal protocol entered into force in 1989 and the related actions to mitigate anthropogenic impacts on the  

environment renewed interest in natural refrigerants and the use of CO2 [3] which, besides being non-flammable 

(A1 safety classification) and non-toxic, also has a zero Ozone Depletion Potential (ODP) and a Global Warming 

Potential (GWP) of one which is negligible compared to the much higher GWPs of alternative working fluids [4]. 

Soon after its deployment to refrigeration applications, CO2 has begun attracting increasing attention for heat to 

power and power to heat applications. 

Despite progress to date, the mass scale deployment of CO2 energy systems is still hindered by technology 

challenges [5,6]. Latest advances in the technology have been recently reviewed for refrigeration applications [7-

13], heat pumps [14-18] and the power generation sector [19-26]. 

This paper summarises these developments and emerging trends to guide future research initiatives towards 

further improvement of CO2 vapour compression refrigeration and heat pumping technologies, and acceleration 

of the development and commercialisation of CO2 heat to power technologies. 

 

2. Knowledge and technological gaps 

This section recalls the knowledge and technology gaps to be overcome for an increased maturity of CO2 energy 

systems. Although some research challenges are not application specific, the brief summary here focuses on three 

end uses of CO2 energy systems, namely cooling, heating and power. 

 

2.1. Refrigeration and air conditioning 

Refrigeration is the most mature application sector for CO2 energy systems. Transcritical CO2 cycles have been 

historically improved through an extensive research effort that has led to the following technological advances: 

single-stage compression with oil flooding and an internal heat exchanger, two-stage compression with either 

compressor intercooling or vapour injection, economisation, sub-cooling, etc. [27]. Barta et al. [28] provided a 

comprehensive review of the stationary and transport CO2 refrigeration and air conditioning technologies. 
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Commercial solutions for CO2 refrigeration systems are currently available in the market and gained increased 

popularity for applications at low and moderate temperature climates. The most popular application sector is 

supermarket refrigeration, in which CO2 systems have prevailed over systems with alternative refrigerants due to 

lower footprint and environmental impacts, and capability to achieve low temperatures [29]. At warm climates, CO2 

refrigeration and air conditioning applications experience techno-economic challenges due to the complexity of the 

transcritical cycles and additional components (e.g. ejectors) that may be required to sustain the efficiency of the 

whole system [30] during operation at high ambient temperatures; this concept has been clearly addressed in the 

work of Azzolin et al. [31], presenting an integrated experimental/modelling approach to further develop ad-hoc 

control strategies to deal with the warm climate issue for CO2 transcritical cycles. Despite the technical benefits, the 

high cost of equipment and shortage of technical expertise are key barriers to the application of CO2 technologies to 

road transport applications. In this context, further research is needed for the development of new knowledge and 

tools to advance the efficiency benefits of CO2 refrigeration systems and reduce further the costs of CO2 technology. 

Regardless of cycle architecture, a promising area for research relates to the improvement of the Coefficient of 

Performance (COP) through the replacement of expansion valves with active (expanders) or passive (ejector) devices 

that can lower the net power input through a recovery or a reduction of the compression work respectively. Although 

know-how is currently available in these areas, most of the published literature focused on technology development, 

but not its integration in the whole refrigeration system [32,33]. In this sense, the use of storage technologies, to 

decouple the demand-side form the supply side, should be further investigated [34]. Unfortunately, the large-scale 

deployment of ejector-based systems is hindered by the influence of the ejector operation on the performance of the 

integrated system [35]. To address this, extensive effort towards novel design, optimisation and operation strategies 

is needed [36]. Barta et al. [37] proposed a design tool for two-phase flow ejectors for vapour compression cycles, 

whereas Haida et al. [38] experimentally studied performance and instabilities of the R744 vapour compression 

system equipped with a two-phase ejector. It should be noted that such design tools should consider local-scale fluid 

dynamics and should be validated against test data [39]. For example, Romei and Persico [40] presented a novel 

computational fluid dynamics tool to simulate compressible two-phase flows of carbon dioxide operating in the 

proximity of the thermodynamic critical point and at supercritical conditions. It should be noted that, near the critical 

point, thermophysical properties of CO2 are characterized by steep gradients and, in this sense, property tables if 

used, should have high resolution [41]. Better understanding and prediction of convective boiling heat transfer, two-

phase flow patterns and pressure drops are also crucial in achieving accurate and improved design of high-

performance CO2 heat exchangers [42]. To this end, and similarly to ejectors, the use of additive manufacturing 

technologies could pave the way for new generations of cost-effective CO2 equipment. 

Lastly yet importantly, improvements in the CO2 compression technologies are required not only for refrigeration 

but also for heat pump applications, especially the high temperature ones. In this context, key areas for research relate 

to volumetric and energy performance improvements, high pressure and temperature ratings, reliability and cost. 

 

2.2. Heat pumps 

Despite the early work of Lorentzen in the 1990s, CO2 heat pumps received significant interest only from the 

early 2000s, with Japan the pioneering country. Rony et al. [43] presented a comprehensive review of 

transcritical CO2 heat pump technologies. It should be noted that the use of heat pumps has been recognized as 

a preferential pathway toward the decarbonisation of energy systems. The reader may, for example, refer to 
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Bianchi et al. [44] for an estimation of the waste heat recovery in the European Union industrial sector. Typical 

uses of CO2 heat pumps are water and space heating, drying and, more recently, heat integration in industries 

[45] and electric vehicles [46,47]. As such, the heat is usually supplied at temperatures above the critical point 

of CO2 (31.0 °C, 7.38 MPa). Unlike transcritical refrigeration systems, CO2 heat pumps experience large exergy 

losses that, over time, have stimulated academia and industry to develop a number of technological innovations 

that span from an internal heat exchanger to parallel and cascade systems depending on the application and the 

heat source (air, water or ground) [48]. Furthermore, the use of heat pumps to upgrade the waste heat in 

industrial applications has sparked an increased consideration but also new challenges. 

Besides the need for high-efficiency machines, high temperature heat pumps require new generations of CO2 

compressors whose outlet temperature can exceed 140 °C [49]. This poses challenges to thermofluid science as 

well as tribology and materials. 

Gas cooler design is another crucial aspect to be addressed through fundamental and applied research since these 

heat exchangers operate in a range where the thermophysical properties of CO2 experience the largest variation, 

namely at supercritical pressures (74 - 91 bar) and in a temperature range between 25°C and 65°C [50]. An 

alternative way to tackle this challenge could be the use of CO2 blends, e.g. 60% CO2, 40% C3H8 (propane). 

The optimisation of the pressure at the outlet of the Electronic Expansion Valve (EEV) is a key parameter affecting 

the heat pump COP. Adjustable EEVs as well as variable opening ejectors and expanders are all approaches that 

can lead to efficiency improvements. This requires further research into dynamic simulation and control strategies 

[51-53]. The hybridisation of conventional heat pumps with solar or geothermal energy may be additional ways 

to further decarbonise the heating sector but does involve comprehensive investigations. 

 

2.3. Power generation 

The use of Rankine or Joule-Brayton cycles for power generation has shown to offer significant potential. In Rankine 

architectures, CO2 is conventionally pumped from a sub-cooled liquid state while Joule-Brayton cycles consider gas 

compressions at lower pressure ratios than those in Rankine cycles [19]. Although pumping a liquid would demand 

less energy than compressing a gas, in the case of CO2 this is not always achievable at all operating conditions since 

it has a low critical temperature, 31.0 °C, and critical pressure of 7.38 MPa. Ongoing research is currently tackling 

this challenge in two very different ways: a) the use of blends between CO2 and other compounds, e.g. TiCL4, C6F6 

[54,55], to shift the critical point above ambient conditions and therefore ensure that the working fluid is still in the 

liquid phase at moderate heat sink temperatures and, b) the design and control of turbo-compressors to operate 

slightly above the critical point, where CO2 experiences low compressibility and, in turn, requires low power to be 

compressed [56-59]. The CO2 heat to power research is relevant and spans the whole power generation spectrum: 

fossil-fuelled, nuclear, waste heat, geothermal and concentrated solar power (CSP) [21]. 

A variant of the regenerative Joule-Brayton cycle which includes oxy-fuel combustion and carbon capture is the 

so-called Allam-Fetvedt cycle [60]. The inherent integration of a carbon capture system in the power plant as well 

as the high efficiency and compactness of sCO2 power cycles enabled a fast development of this thermodynamic 

concept into a full-scale demonstration (up to 10MWe). Despite the ongoing sCO2 projects in the US (STEP, 

NetPower), the technology readiness level of sCO2 equipment and systems is still not mature and requires full 

scale demonstration of the technology in different applications for it to gain the confidence of investors. 
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With reference to sCO2 turbomachinery, the knowledge and technology gaps are several and diverse. From a more 

methodological viewpoint, sCO2 turbines and compressors are being designed with state-of-the-art numerical 

tools that were not developed for sCO2 applications. They rely on the use of unreliable loss correlations that were 

developed and validated for air turbomachines. Even more importantly, near the critical region, CO2 experiences 

strong real gas effects that correlations or simplified equations of state implemented in most of the engineering 

software do not consider [61]. From a numerical perspective, the large variations of thermophysical properties 

also lead to solver instability and high computational effort [62,63]. As such, more fundamental studies on flow 

topology and novel mathematical formulations for the calculation of thermophysical properties of CO2 and its 

blends are required to advance current design tools and ensure sound design methodologies. Besides the 

aerothermal design of sCO2 turbomachinery, research on bearings, seals and other ancillary equipment is 

paramount to ensure high net global efficiency of sCO2 power cycles. In this context, an even more challenging 

aspect relates to the technology upscaling. In fact, most of the experimental test rigs available worldwide currently 

employ radial machines which are optimal for small pressure ratios and low mass flow rates. However, beyond 

10 MWe, the most suitable design configurations for sCO2 turbomachines are expected to rely on axial machines, 

whose operating principle and operational features are different from radial ones, e.g. lower revolution speeds, 

multi-stage arrangement etc. As such, since the knowledge generated to date cannot be fully transposed from 

radial turbomachinery, new efforts are required for the study of axial units. 

Advances in heat transfer equipment are also crucial for the success of sCO2 technology. Heat exchangers are 

responsible for the largest share of the capital expenditure of sCO2 power systems [64]. This is one of the main reasons 

why simple cycle layouts have been so far preferred over more complex configurations. The development of sCO2 

heat exchangers is not a trivial task since it must address several challenges that primarily depend on their function 

within the power cycle. For instance, sCO2 heaters are critical for materials, recuperators for the heat duty while coolers 

need to deal with the design shortcomings related to the real gas effects in the critical region [21]. As concerns the heat 

transfer and flow mechanisms, the influence of buoyancy effects should be considered for the development of 

empirical correlations and the design of sCO2 heat exchangers. Moreover, unique universal correlations should be 

developed to cover a wide range of test parameters and demonstrate the local heat transfer performance [23]. 

The highly variable pressure and temperature loads, the corrosive behaviour of CO2 on steel above approximately 550 

°C, and the likelihood of impurities in the working fluid all require innovations in materials and manufacturing methods 

for sCO2 power equipment and systems [65]. Even though nickel and titanium-based alloys are capable of withstanding 

harsh operating conditions, material and manufacturing costs directly impact the economic viability of sCO2 power 

systems [66]. Furthermore, these costs not only relate to the actual components but also affect the installation costs, 

which can be as high as the cost of the sCO2 power block, especially in retrofit solutions. To advance the state of the art 

in this area, additional research is required to characterise existing and novel materials at the operating conditions of 

sCO2 power applications. This is crucial especially for direct fired sCO2 power systems, which are expected to 

experience pressures up to 300 bar and temperatures up to 1200 °C [67]. As concerns corrosion and erosion resistance 

tests, new procedures and standards should be developed to accelerate the tests and expedite the research. 

The control of sCO2 power systems is an area not extensively researched at present. This is also due to lack of 

sufficient information available from the published literature or equipment providers on the geometrical and 

performance data required to develop low order models. Transient modelling and control are however crucial to 

ensure the success of sCO2 power technology, especially in relation to the flexibility feature [68,69]. Besides the 
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challenges related to the optimal control of sCO2 power blocks during normal operation, more research is needed 

to assess the operational scenarios at system start-up and shut-down. These regimes are significantly different 

from the power generation one and involve several ancillary systems, potentially also storage systems, to be 

included in the modelling platforms [70,71]. As such, more holistic control approach should be considered in 

future research to outline sound, safe and efficient test and operational procedures. 

 

3. Outlook 

Carbon dioxide (CO2, R744) technology has all the important characteristics to make it one of tomorrow’s most 

attractive energy systems: natural availability, eco-friendliness and inherent safety. Energy systems using CO2 as 

the working fluid are today at commercial maturity in the commercial and industrial refrigeration applications for 

low and medium temperature climates. The strong interest toward the electrification of the heating sector and the 

need for flexible power generation systems will be additional strategic drivers for CO2 energy research in the 

forthcoming decades. However, the diverse technology readiness levels of CO2 energy technologies call for joint 

and complementary efforts by academia and industry to advance the state of the art and technology readiness level 

of heat to power and high temperature power to heat technologies. 

The CO2 refrigeration sector will likely focus on performance and cost optimisations to enable a higher penetration 

of CO2 technology in the market. Streamlined design configurations equipped with compact heat exchangers, 

ejector or expander recovery devices as well as suitable controls for application in any climate zone demand for 

holistic approaches, whereas advances in thermofluids research will have to support not only the design but also 

the operation of the CO2 energy system. In this context, recent advances in artificial intelligence and additive 

manufacturing technologies could open the way to new design solutions. 

Heat pump is a highly promising field for CO2 technology and research, especially if high-temperature industrial 

applications are considered. In this area, research will need to focus on novel compression equipment and compact 

heat exchangers, whose development further requires new fundamental heat transfer knowledge in the 

supercritical region and in relation to CO2 blends with other refrigerants. A strong effort on controls is additionally 

required, especially in the case of solar assisted heat pumps and demand side management. 

The ongoing research programmes and the strong interest shown by industry and end users make supercritical CO2 

(sCO2) power generation one of the key areas where researchers and engineers will focus in the forthcoming years 

to enhance the maturity and strengthen the competitive position of this technology. Industry and academia will have 

to collaborate to advance innovation and the state of the art.  Industrial efforts will aim at demonstrating sCO2 power 

systems at full scale. This will not only build confidence in end users but also develop economies of scale in the 

manufacture of components. A full-scale demonstrator will however need either private capital or government 

support to de-risk initial investment. The role of research will be enhancing multidisciplinary knowledge to advance 

design methodologies and tools. Fundamental research on thermophysical properties and thermofluids should be 

supported by more applied investigations focused on technology ideation and benchmarking. The harsh operating 

conditions and the need for bespoke equipment make the development of experimental facilities for sCO2 power 

research very difficult due to the high costs involved. Besides a higher engagement from public and private funders, 

a strong collaborative approach is therefore paramount to develop knowledge networks that can rely on 

complementary infrastructure rather than individual assets. Academic research will ultimately transfer the knowledge 

generated through research into educational programmes to develop new generations of talent for the future ahead. 
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