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Abstract - A design of multiple-valued circuits based on the
multiple-valued programmable logic arrays (MV PLA’s) by
generalized disjunctive decomposition is presented. Main
subjects are 1) Generalized disjunctive decomposition of
multiple-valued functions using multiple-terminal multiple-
valued decision diagrams (MTMDD’s); 2) Realization of
functions by MV PLA-based combinatorial circuits.
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1. INTRODUCTION

The functional decomposition theory developed by
Ashenhurst, Curtis, Roth, Karp and etc. and applied for
binary and r-valued functions is employed in the design
and testing of logic circuits [1, 2, 3]. The decomposition
technique is to break the many variable function into
several functions with fewer variables. These functions
can be designed independently, and are relatively easier to
design.

Direct application of classical decomposition theory to
design the practical MV circuits involves two problems:

1) the usefulness of the decomposition for a multiple-
valued functions.

2) the computation time and the memory requirements;
As for the first problem, the generalized disjunctive

decomposition allows to increase the number of
decomposable functions and solve this problem [9].

In this paper we develop an algorithm to solve the
second problem. The necessary condition developed in [4]
for switching functions is generalized for the multiple-
valued case. We use MTMDD instead of decomposition
tables. It allows to investigate (n-1) different partition of X
for one MTMDD. MTMDD permits to examine the
functions with many variables. The structure of Shannon

tree generalized for r-valued functions is proposed too.
MTMDD is built from multiple-valued Shannon tree and
has the similar structure like in suggested tree.

The rest of paper is organized as follows. In section 2
we start with describing the basic notations and
definitions. We then discuss the algorithm to find the good
decomposition using MTMDD (Section 3). Here, the
Shannon tree is also generalized for r-valued functions
and the properties of MTMDD are considered too. Design
of MV PLA-based combinatorial circuits is represented in
Section 4. Section 5 is summary of this paper.

2. DEFINITION AND NOTATIONS

Functional decomposition of r-valued function is used
for any algebraic representation of given function. It
allows to choose any functionally complete algebra for
analysis. Using the algebra developed by Rosser [5]
allows to investigate the disjunctive decomposition of r-
valued function. This algebra is chosen for study because
of its simplicity at the realization of r-valued functions
and their system on the combinational MV circuits [6].

D e f i n i t i o n  1 .  The Rosser algebra is defined as
follows: Let x and y be the r-valued variables. Then
(a)  x1Vx2=MAX(x1,x2) is the disjunction operator.
(b)  x1Λx2=x1⋅x2=MIN(x1,x2) is the conjunction operator.

r-1,    x = s,
(c)  xs = 0,      x ≠ s,
where s ∈{0,1,...,r-1}, xs is the literal of a x variable.

D e f i n i t i o n  2 .  Let X is the set of r-valued input
variables. {X1, X2} is a partition of X when X1∩X2=∅ and
X1∪X2=X.

To represent r-valued functions with minimal
expressions, the following notations are adopted:
Er : the set of constants is an r-valued Rosser algebra,

Er={0, 1, ..., r-1}
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X : the set of n r-valued input variables {x1,x2,...,xn},
where n is the number of elements of X.

|X|: the number of elements of the set X.
σ : (σ1σ2…σn)r, where σi∈Er, i=1,2, ..., n.
τ :(τ1τ2…τn1

) r ∈σσ, where τi∈Er, i=1,2,...,n1, |X1|=n1.

η : (η1η2…ηn2
) r ∈σσ, where ηi∈Er, i=1,2,...,n2, |X2|=n2.

D e f i n i t i o n  3 .  Let f(X) be an r-valued function and
{X1, X2} is a partition of X. Then the projection of f(X)
over X1=τ, f(τ, X2) is the value of f(X) evaluated with
X1=τ.

D e f i n i t i o n  4 .  Let f(X) be an r-valued function and
{X1, X2} is a partition of X. Let |X1|=n1 and |X2|=n2. Then
the expansion of f(X) over X1 is given by

rn1-1

f(X)= V x1
τ1⋅ x2

τ2⋅...⋅ xn1
τn1 f(τ, X2) (1)

τ=0
and the projection of f(X) over X1=τ, f(τ, X2) is an r-valued
function such that

rn2-1

f(τ, X2) = V x1
η1⋅ x2

η2⋅...⋅ xn2
ηn2 f(τ, η) (2)

η=0
where f(τ, η) is the value of f(X) evaluated with X1=τ and
X2=η.

Equation (1) defines the Shannon expansion of r-
valued function in Rosser algebra.

D e f i n i t i o n  5 .  An r-valued function f(X) is said to
have a generalized disjunctive decomposition with respect
to X1 if there exist r-valued functions h1,h2,...,hk and g
such that

f(X)=g(h1(X1), h2(X1),..., hk(X1), X2) (3)
where {X1, X2} is a partition of X.

An r-valued function f(X) is said to have a simple
disjunctive decomposition if k=1, in other words

f(X)=g(h(X1), X2) (4)
where {X1, X2} is a partition of X.

The number of elements in the bound and free set will
be denoted by n1 and n2, respectively. The decomposition

is said to be trivial if n1 is 1 or n and if k<rn1. A function
that has a nontrivial generalized disjunctive

decomposition is said to be decomposable.
D e f i n i t i o n  6 .  An r-valued function f(X) is said to

have a multiple disjunctive decomposition if there exist r-
valued functions g, t and h such that
f(X)=g(h(X1), t(X2), X3) (5)
and iterative disjunctive decomposition if
f(X)=g( h( t(X1), X2), X3) (6)
where {X1, X2, X3} is a partition of X.

D e f i n i t i o n  7 .  Let f(X) be a completely specified
r-valued function and {X1, X2} is a partition of X. Let
|X1|=n1 and |X2|=n2. The decomposition table of f(X) is

the truth table of f(X) with rn1 columns defined by set X1

and rn2 rows defined by set X2.
D e f i n i t i o n  8 .  The number of different column

patterns in the decomposition table is called a column
multiplicity of the decomposition, and denoted by μ.

Note that the column multiplicity defines the type of
disjunctive decomposition. An r-valued function f(X) is
said to have a simple disjunctive decomposition if μ is
less or equal to r [7, 8, 9] and a generalized disjunctive

decomposition if μ is less or equal to rn1, where n1 is the
number of elements in set X1 [9].

3. GENERALIZED DISJUNCTIVE DECOMPOSITION
USING MTMDD

Generalized functional decomposition of switching
(binary) functions using binary decision diagrams (BDD)
was studies by T. Sasao [4]. For the same reason like in
[4] the algorithm for an r-valued functions is developed.
In this section we introduce a multiple-valued Shannon
tree and MTMDDs obtained from Shannon tree, present a
decomposition searching algorithm that apply MTMDD.

3.1 MULTIPLE-VALUED SHANNON TREE

By applying the multiple-valued Shannon expansion
recursively to an r-valued function, we can represent a
logic function by an expansion tree.

Fig. 2 shows an example of an expansion tree for a 3-
variable 3-valued function, where the symbol S denotes
the Shannon expansion. This tree is called a multiple-
valued Shannon tree. The terminal nodes represent r-
valued constants 0,1,..., r-1. Each edge has a literal of a
variable as a label. A product (conjunction) of the literals
from the root node to a terminal node represents a product
term that is MIN of all literals composing it. For example,
the left most path defines the product f000x1

0x2
0x3

0, where
f000 is the value of f(X) evaluated with x1=x2=x3=0. This
tree shows the Eq.(2) for f(X).

k
   h1  

…

hk

n2

H
X1

n1

X2

g(h1(X1), ..., hk(X1), X2)G

Fig. 1. Circuit diagram of
f(X)=g(h1(X1), h2(X1),..., hk(X1), X2).



A product term including all variables is called a
minterm, and an expression consisting only of minterms is
called a sum-of-product expression. Note that the products
having zero coefficients disappear. Thus, the number of
non-zero coefficients equals to the number of products in
the expression.

3.2 MULTIPLE-TERMINAL MULTIPLE-VALUED

DECISION DIAGRAMS

A multiple-valued decision diagram (MDD) is a
generalization of a binary decision diagram, in which an
internal node may have more than two children. An MDD
having more than two kinds of terminal nodes
(e.g.0,1,...,r-1) is called a multiple-terminal MDD [10,
11].

The MTMDD describing r-valued logic functions is
obtained by simplifying multiple-valued Shannon tree,
using the following rules:

1. If two sub-graphs are isomorphic, delete one, and

connect the severed edge to the remaining sub-graph (Fig.
3).

2.Delete the Shannon node if its r descendent nodes
are identical (Fig. 4). Delete the 0-terminal node if f(X) is
given by multiple-valued Shannon tree (Fig. 5).
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Fig. 5. Elimination of the 0-terminal node
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Fig. 6. Multiple-valued Shannon tree for 3-valued 3-
variable function
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Fig. 2 Multiple-valued Shannon tree
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Fig. 3 Merging isomorphic sub-graphs
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Fig. 8. After deleting Shannon node and 0-terminal nodes
(Quasi-reduced MTMDD)
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For example, consider the multiple-valued Shannon
tree shown in Fig. 6. In this tree, 3 sub-trees having
Shannon nodes for x3 (It is the set ‘002’) and 3 sub-trees
having Shannon nodes for x3 (It is the set ‘111’) are
isomorphic. If we stay only one of isomorphic sub-tree,
then we have a decision diagrams shown in Fig. 7. In this
diagram, two Shannon nodes have r identical descendent
nodes. Delete these nodes. Because only (r-2) terminal
nodes for constants 1,2,...,(r-1) are necessary, we have the
MTMDD shown in Fig. 8. This process is repeated while

there are isomorphic sub-graphs and Shannon nodes
having r descendent identical nodes. If we cannot simplify
the graph anymore, then such a MTMDD is called
reduced MTMDD (Fig. 9).

An ordered MTMDD is a MDTMD such that the input
variables appear in a fixed order in all the paths of the
graph, and that no variable appears more than once in a
path.

D e f i n i t i o n  9 .  An ordered MTMDD is a Quasi-
Reduced MTMDDD if every path from the root to the
terminal nodes involves all variables, and has no
isomorphic sub-graphs in the same level.

D e f i n i t i o n  1 0 .  The path function of a node in
MTMDD is an r-valued input 2-valued output function
and represents the conditions that there is a path from root
to the node. The sub-path function of a node in MTMDD
is an 2-valued input r-valued output function and
represents the conditions that there is the path from a node
to the terminal node. A sub-path function of a node is the
projection of f(X) over X1=τ, f(τ, X2).

3.3 THE DECOMPOSITION SEARCHING ALGORITHM

In this section we will describe an algorithm to find all
the generalized disjunctive decompositions for r-valued
functions. The algorithm consists of the two phases:
1.  A MTMDD for given function is generated.
2.  This MTMDD are tested for good decomposition.

X1

X2

q1    q2            …   qt

f

Fig. 10 Partition of a MDD

L e m m a . Let {X1, X2} be a partition of X and the
quasi-reduced MTMDD for f(X) is partitioned into two
blocks as shown in Fig. 10. Let qi (i=1, ...,t) be the path
functions of the nodes in the lower block that are adjacent
to the boundary of the blocks. Then, qi⋅qj=0 (i≠j) and qi V
qj=r-1.

(Proof) Suppose that Fig. 10 is a complete r-valued
decision tree of n variables. Then q1, q2,,.., and qt denote
minterms of n1=|X1| variables. These minterms satisfy the
conditions of Lemma. Because of qi (i=1, ..., t) is an r-
valued input binary function. This property is kept even if
the isomorphic sub-trees are merged in the quasi-reduced
MTMDD. (Q.E.D.)

E x a m p l e . Let us consider the quasi-reduced
MTMDD shown in Fig. 8. This MTMDD is partitioned
into two blocks such that the upper block contains the
nodes for X1 and the lower block contains the nodes for
X2, where X1=(x1, x2) and X2=(x3). The paths functions of
the nodes are:



For the left x3 node: q1=x1
0x2

2
 V x1

2

For the right x3 node: q2=x1
0x2

1
 V x1

1

It is clear that q1 and q2 satisfies the conditions of
Lemma.

T h e o r e m . Let {X1, X2} be a partition of X. Suppose
that the reduced ordered MTMDD for f(X) is partitioned
into two blocks such as shown in Fig. 10. Let t be the
number of the nodes in the lower block that are adjacent
to the boundary of the two blocks, and μ be the column
multiplicity of the decomposition f(X)=g(h1(X1),...,
hk(X1),X2)). Then, t=μ.

(Proof) Consider quasi-reduced MTMDD instead of
reduced ordered MTMDD. Let q1, q2,..., and qt be the
boundary nodes in the lower block (1). Let the path
functions of the nodes be q1(X1), q2(X1),..., and qt(X1). By
the property of quasi-reduced MTMDD, qi (i=1,...,t) are
all disjoint, and for the α and β inputs of lower block such
that α,β∈qi, g(h1(α),...,hk(α),X2)= g(h1(β),...hk(β),X2).
This implies that t≥μμ. (2) Let Fig. 10 be the multiple-
valued Shannon tree of an r-valued n-variable function.
Consider the MTMDD which is obtained from multiple-
valued Shannon tree by merging isomorphic sub-trees in
the lower block. Let m be the number of the nodes in the
lower block that are adjacent to the boundary of the
blocks. Then, by the definition of the column multiplicity
m=μ. The quasi-reduced MTMDD is obtained by further
merging this MTMDD. Note that the number of the nodes
will not increase by the reduction of the MTMDD. Thus,
m≥μμ. The reduced ordered MTMDD is obtained by
further reducing the quasi-reduced MTMDD. Note that in
two MTMDDs m is the same. Theorem is proved from (1)
and (2). (Q.E.D.)

E x a m p l e . Fig. 11 shows the three different
partitions of 3 valued 5 variable function:

1) X1={x1, x2}, X2={x3, x4, x5}
2) X1={x1, x2, x3}, X2={x4, x5}
3) X1={x1, x2, x3, x4}, X2={x5}
By Theorem, the column multiplicity for these

decompositions are four, three and two, respectively. The
first partition gives the generalized disjunctive
decomposition, the second and third partitions - simple
disjunctive decomposition.

3.4 DESIGN OF THE MV PLA - BASED

COMBINATORIAL CIRCUITS

In this section, we deal with design of MV PLA-based
combinational circuits using generalized disjunctive
decomposition.

0 edge (xi
0)

1 edge (xi
1)

2 edge (xi
2)

Si - a Shannon node of
the xi variable � �

S1

S2S2

S3 S3

S4S4

S5 S5

μ=4

μ=3

μ=2

Fig. 11 Determination of column multiplicity using
MTMDD

Let us solve the following problem. Let f(X) be an r-
valued function of n variables. Let {X1,X2} be a partition
of X and f(X)=g(h1(X1),...,hk(X1),X2) be generalized
disjunctive decomposition, where k is the fixed number.
Reduce the size and the number of MV PLA’s in
combinational circuit that realize given function.

In order to solve this problem, we use the following.

To obtain the column multiplicity μi  (i=1,..., �
�

�

�

�

=

−

∑
�

�

)

we use reduced ordered MTMDD and Theorem. For an n
variable r-valued function, we have to obtain the column

multiplicities for �
�

�

�

�

=

−

∑
�

�

 different partitions of X. This is

be done efficiently by permuting the order of the input
variables in MTMDDs. To realize efficient MV circuit in
terms of minimal size, we use the following algorithm.
A L G O R I T H M  3 . 1 .
I n p u t  d a t a :  Reduced ordered MTMDD
O u t p u t  d a t a :  Combinational MV PLA- based circuit
1.  Obtain μi.
2.  When μi=r0=1, X does not support function f(X) and

realize the function by the circuit in Fig. 12 (a).
3.  When μi=r1=r, realize the function by the circuit in

Fig. 12 (b) using simple disjunctive decomposition.
4.  When μi=r2, realize the function by the circuit in Fig.

12 (c) using generalized disjunctive decomposition.
 ...
5.  When rk-1≤μi≤rk, realize the function by the circuit in

Fig. 12(d) using generalized disjunctive decomposition.



6.  Otherwise (μi>rk), execute the generalized disjunctive
decomposition for g(h1(X1),...,hk(X1),X2) function and
realize f(X) by the circuit shown in Fig. 12 (e). Here, the
iterative disjunctive decomposition is used.

Note, that the X1 and X2 set is formed for the minimal
column multiplicity μi obtained at the execution of the
searching algorithm.
A L G O R I T H M  3 . 2 .
I n p u t  d a t a :  Reduced ordered MTMDD
O u t p u t  d a t a :  Minimal column multiplicity, μi.

1. For f(X) obtain the column multiplicities μi (i=1,...,
(n-2)n!) for all permutations of input variables.

2. Execute the minimal column multiplicity.
3. Derive the partition of X, using the smallest

multiplicity.
4. According to the column multiplicity, use one of the

realizations in Fig. 12. For each column pattern, assign a
different r-valued vector of k elements. Let h1, h2, ..., hk be
sub-functions obtained by the generalized disjunctive
decomposition.

5. When μi>rk, realize function g by using step 1
through step 5 until μi is equal to or smaller than rk.

4. SUMMARY

A decomposition searching algorithm has been
presented. This algorithm is an extension of the switching
function decomposition algorithm given in [4]. The direct
extension of the binary version requires a definition of
Shannon tree and decision diagrams produced from this
tree for r-valued functions. The method is easy to
implement on a digital computer. The analysis of the time
complexity of proposed algorithm is not considered
because the size of paper is limited.

Future work is carried out in frame of generalization
the developed algorithm for multiple-valued system and
cascaded decomposition.
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Fig. 12 Realization for f(X)=g(h1(X1),...,hk(X1),X2)




