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ABSTRACTModern wearable healthcare devices require new technologies with resource efficiency in terms
of high performance, low energy consumption and diagnostic accuracy. In the field of artificial intelligence,
the convolutional neural network (CNN) has performed as an effective algorithm. Field-programmable gate
arrays (FPGAs) have been extensively utilised to construct hardware accelerators for CNNs. This paper
suggests using an accelerator to create a specific 1-D CNN to classify the electrogram (ExG). ExGs used here
include electrocardiogram, electroencephalogram and electromyography. The pipelined structure is designed
with a register in themiddle to facilitate easy data transfer. A 1-DCNNusing an accelerator to categorise ExG
signals implemented on Xilinx Zynq xc7z045 platform outperforms FPGA peer applications on the same
platform by 1.14× in terms of speed. In addition, the 1-D CNN proposed accelerator operates very efficiently
due to the use of a tristate buffer in the multiplexer and the substitution of the shift for the multiplier,
resulting in a resource-efficient accelerator with 161 GOP/s/W energy efficiency and 28 GOP/s/KLUT,
an improvement of 1.67 over the previous model. Finally, the performance of the accelerator applied to
a Xilinx Zynq xc7z045 FPGA operating at 442.948MHz was calculated, achieving 1.145 TFLOP/s.

INDEX TERMS Electrogram classification, convolutional neural network (CNN), FPGA, healthcare
monitoring, hardware accelerator.

I. INTRODUCTION
Nowadays, thinking about how to use wearable Internet of
Things (IoT) sensors to look at people’s behaviours and deter-
mine how healthy they are is important. Wearable sensors for
tracking are used in the medical field, and IoT assists in data
collection via decision-making tools [1], [2]. Illnesses are
often diagnosed using a cloud computing platform. Also, the
huge amount of data kept and shared by many health research
institutions around the world makes it hard for humans to
find important information in medical data. As a result,
the existing medical system continues to need a remarkable
amount of time and effort from the overwhelming majority
of people to provide a good medical diagnosis. In addition,
the development of a wearable healthcare device with the
potential of high-precision medical diagnostics is urgently
required to address this issue [3]–[6].

Artificial intelligence (AI) models, surgical gadgets and
mixed-reality applications may be used to diagnose and treat
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illnesses more effectively than ever before. Consequently,
the clinical decision support system achieves particular
goals such as the detection of electroencephalograms (EEG)
and electromyography (EMG). AI diagnosis is also more
accurate than manual diagnosis. Moreover, machine learn-
ing (ML)-based models outperform human pathologists and
imaging specialists in terms of precision. With smart diagno-
sis, a patient’s current health status and ailment severity may
be precisely identified, so that a tailored treatment plan can
be established [7], [8].

Electrocardiogram (ECG) is used to visualise the heart’s
electrical activity. ECG contains a wealth of information due
to the simplicity with which it may be monitored. It may
offer vital information about the progression of a myocardial
infarction, the presence of various cardiac arrhythmias and
the effect of hypertension [9]. Moreover, in standard EEG,
electrical activity in the cortex is captured through scalp
electrodes and shown as a waveform. Implanting electrodes
directly on the exposed surface of the brain is necessary
to capture electrical activity from the cerebral cortex. This
process includes expressions of subcortical areas in corti-
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cal regions. In addition, EEG may be used to monitor the
brain’s functional integrity because it reflects the functional
condition of the brain and as a result, aids doctors in identify-
ing a wide range of neurological diseases. It is also critical to
establish a link between scalp potentials and the underlying
neurophysiology. It may detect pathological conditions such
as ordinary headaches and dizziness, epilepsy, brain tumours
and multiple sclerosis as well as sleep problems and move-
ment irregularities [10]–[12].

EMG is a method for recording and analysing signals
produced by the electrical activity of skeletal muscles that
has been around for some time. These signals are also called
myoelectric signals. EMG is utilised as an assessment tool
in a variety of domains such as applied research, physio-
therapy, sports training and other similar fields of study.
Surface EMG provides information on the general function
and conduction of muscles. To obtain myoelectric signals,
electrodes are placed on the surface of the skin.When EMG is
conducted on particular muscles, such as shoulder and upper
trunk, or when it is recorded in monopolar mode, it is often
polluted by ECG. This cardiac artefact in imaging cannot
be prevented. Consequently, to extract suitable, qualitative
information from an EMG signal, removing cardiac artefacts
from the signal and deriving a pure EMG signal from it are
necessary [11], [13], [14].

Many algorithms were previously built on morpholog-
ical features and traditional signal processing techniques
[15]–[24]. Fixed features used in such algorithms cannot
properly discriminate between various forms of ExG because
the ExG waveform and its morphological qualities fluc-
tuate greatly depending on the situation and the patient.
In addition, DL methods were recently developed to
extract features automatically and improve ExG classifica-
tion accuracy. DL approaches have been shown to be very
adaptable and precise in the classification of ExG amongst
other applications [25]. For instance, Cimtay et al. [26]
demonstrated emotion recognition using facial expressions
and EEG, and achieved 91.5% maximum accuracy and
53.8% mean. Oh et al. [27] proposed a hybrid model
that consists of convolutional neural networks (CNN) and
long-term memory (LSTM) to increase the accuracy of
detection of arrhythmias. This model may detect a com-
mon arrhythmia. With variable length data, it achieved good
classification accuracy (98.10%), sensitivity (97.5%) and
specificity (97.5%). Alam et al. [28] proposed a new concept
design with regard to the detection model portion. Human
psychophysiological data were acquired using EMG, electro-
dermal activity and ECG sensors, and processed using a CNN
to detect the hidden emotional state.

Preprocessing, feature extraction and classification meth-
ods are often used in conjunction to achieve ExG classi-
fication. Although LSTM is excellent at processing time
domain data such as EMG, it is only capable of basic feature
extraction in the context of EMG classification. When using
LSTM, sophisticated preprocessing algorithms and classifi-
cation are required to achieve high classification accuracy,

making decreasing resource usage throughout the implemen-
tation on the hardware side challenging [29]–[31]. In contrast
to LSTM, a sophisticated preprocessing technique for the
network to use it need not be developed because of the
remarkable self-learning capabilities and flexibility of CNN.
Thus, building a CNN-based classification model is more
efficient in terms of hardware use.

In this paper, a 1-D CNN structure for the detection and
classification of ExG signals (ECG beats, EMG and EEG
signals) is presented. The 1-D CNN is implemented using an
efficient hardware design. The developed 1-D CNN model
and hardware architecture may also be used for other time
series applications, such as blood pressure and diabetes mon-
itoring. The following are the most substantial contributions
of this work:

1) This paper is the first to design a hardware archi-
tecture using three biomedical signals from ExG in
field-programmable gate array (FPGA) platform for
facilitating CNN acceleration. Additionally, the pro-
posed architecture can compute convolution for any
size of input and modify the stride value.

2) This work discusses a 1-D CNN structure tailored to an
embedded application. By using Python, it produces
an ensemble of output from 1-D CNN layers for each
ExG with 99% accuracy, and the 1-D CNN recognises
the ExG signal.

3) This design maximises the use of hardware resources
whilst minimising the accuracy loss of ExG
categorisation.

4) This work designs a pipelined processing unit array
to achieve great performance and efficiency. It also
includes a sign bit in each processor unit, which not
only minimises power consumption but also lowers the
cost of hardware resources. As a result, the proposed
design achieved a high performance of 1.145 TFLOP /s
at 442.948 MHz and 1.068 KLUT resource utilisation.

5) The design accurately identifies the ExG signal using
FPGA Xilinx and attains a higher speed than classifi-
cation of just one type.

The remainder of this paper is arranged as follows:
Section II discusses the features of ECG, EEG and EMG
signals as well as the history of CNN algorithm and its
applications. Section III presents the proposed accelerator
of 1-D CNN and explains in detail how to design the new
architecture. Section IV focuses on the proposed structure
of the 1-D CNN and other algorithms. Section V discusses
the results and compares them with those of other models.
Section VI summarises the conclusion.

II. RELATED WORKS
CNNs have seen much success in deep learning in recent
years [7]. Using CNNs as the basis for the vector convolution
calculation approach, new concepts for learning with high
classification accuracy have been discovered. This section
includes several relevant research works, such as EEG, EMG
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and ECG signals as well as classification learning research
methods based on CNN and other algorithms, which can
differentiate between CNN and other algorithms in terms of
architecture, accuracy, speed of diagnosis and classification
in healthcare monitoring.

A. EEG SIGNAL
Social integration can be substantially improved by using
EEG-based emotion ratings for patients with early-stage
Alzheimer’s disease and neurological disorders. Moreover,
emotions have traditionally been classified via the use
of software running on computers and working without
an internet connection. However, these classifiers can be
worn, which is important to enhance the social life of
patients. This level of wearability must be achieved by the
deployment of low-power hardware resources that enable
near real-time classification and long durations of opera-
tion. Gonzalez et al. [31] proposed a hardware CNN called
BioCNN that is employed to optimise EEG-based emotion
detection and other biomedical applications. They used Dig-
ilent Atlys Board in conjunction with a low-cost Spartan-6
FPGA to accomplish the training technique. Their results [31]
revealed 100 MHz speed, 26.229 KLUT resource consump-
tion and 0.0629% resource consumption efficiency.

Two key study issues in the field of EEG categorisation
are the detection of epileptic seizures and the identification
of emotional states. Through the development of a real-
time, energy-efficient processor to conduct on-device seizure
detection, informing others in the immediate vicinity or
immediately preventing the seizure by providing instant stim-
ulation will be feasible. Accurate seizure detection requires
precision to be safe [25]. Sahani et al. [32] illustrated that
scalp multichannel signalling and electroencephalography
are both effective methods to detect epileptic seizures in real
time. Additionally, they developed a novel architecture to
extract additional features with great accuracy and speed, and
implemented it using FPGA platform Virtex-5. The archi-
tecture [32] showed that it can detect and identify epileptic
episodes in a steady, reliable manner. Speed was 86.73 MHz,
and resource usage was 11.963 KLUT.

B. EMG SIGNAL
In recent years, EMG processors have received a great
deal of interest because they are often employed in gesture
recognition applications. Tomaximise classification accuracy
whilst minimising power consumption, wearable devices are
generally used for gesture recognition. In [33], a low-power
embedded EMG acquisition and gesture recognition system
was proposed. Software and hardware multilevel design opti-
misation was emphasised. In addition to EMG sensors, iner-
tial and pressure sensors have been utilised to increase gesture
identification and motion tracking accuracy.

The development of specialised CNN accelerators has
opened up new possibilities for edge healthcare and biomed-
ical applications [34]. Franco et al. [35] proposed a set of
readings to analyse surface-Electromyography (sEMG) to
study how the nervous system modulates muscle activity.The

researchers built an FPGA-based real-time Non-Negative
Matrix Factorization (NMF) processor that extracts muscle
synergies from 8-electrode EMG recordings and feeds them
to an SVM classifier. It was implemented on FPGA platform.
In addition, their results [35] revealed 87.74 MHz speed,
38.836 KLUT resource consumption and 7.2 W power con-
sumption. Mostafa et al. [36] proposed an architecture design
and execution for estimating the desired clench strength of the
hand using EMG signal and implemented this using Xilinx’s
XC7Z020 platform. They also showed that the proposed
architecture can be used for any application related to pros-
thetics. In accordance with the findings of [36],speed was
388.20 MHz, resource usage was 4.379 KLUT and power
consumption was 0.344 W.

C. ECG SIGNAL
In medicine, an ECG device is used to record the electrical
activity of the heart’s pulse to diagnose various forms of
cardiac disease. Electrodes are placed on the patient’s body
to attach the ECG [37], [38]. The development of wearable
sensors for healthcare monitoring has the ability to read
and analyse different parts of the ECG [39]. Also, real-
time monitoring systems use a lot of different methods to
identify ECGs [40]. In recent years, IoT has been used to
monitor patients and their health remotely. By training on a
data set such as cardiology, AI algorithms are also used to
classify and identify diseases with high speed and accuracy.
Moreover, appropriate processors are designed for these data
to expedite disease diagnosis [41]–[43]. Lu et al. [44], sug-
gested a hardware design for an integrated ECG classification
using a 1-D CNN with global average pooling. They built
the efficient hardware design on FPGA Xilinx Zynq and
delivered an average rate of 25.7 GOP/s at 200 MHz with
1538 LUT resource usage and optimised resource efficiency
by more than thrice that of the non optimised scenario. The
completely pipelined processing unit array meant to boost
calculation speed. The accuracy of ECG beat classification
was 99.10%.

The design in a study by Guo et al. [45] used the spec-
ifications of Angel-Eye, a programmable, adaptable CNN
accelerator architecture that includes a data quantisation tech-
nique and a compilation tool. The use of a data quantisation
approach may help lower bit width from 16 bits to 8 bits
whilst maintaining minimal accuracy loss. The compilation
tool efficiently adapts a certain CNN model to the available
hardware. According to testing on Zynq XC7Z045 platform,
compared with its equivalent FPGA running on the same
platform, Angel-Eye operated at a faster hardware speed
of 150 MHz with resource utilisation of 183 KLUT and
power usage of 9.63 W. In [45], the model provided com-
parable performance with up to 16% more energy economy.
Gong et al. [46] developed a novel FPGA-based accelerator
architecture that operated synchronously as a pipeline of
instructions. The model also generated focused optimisation,
which may be used to reach the highest possible level of
computing efficiency. The CNN model was used to test the
performance of this accelerator on a variety of platforms,
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including Xilinx Zynq-7020 and Virtex FPGA. The model
obtained 200 MHz speed with 2.15 W power consumption
and 38.136 KLUT.

D. CNN MODEL AND FPGA
Pattern classification and data mining studies have been
enhanced by neural network (NN) success. Many ML tasks
that previously depended largely on handmade feature engi-
neering have lately been transformed by end-to-end deep
learning models such as CNN [47]. A 1-D CONV layer is
generated from numerous computational layers organised as
directed acyclic graphs. Each layer extracts a feature map,
which is an abstraction of the data supplied by the preceding
layer. The output of result yn is shown as

yn = bn +
k−1∑
k=0

wnkxk (1)

where wnk and xk are the kernel weights and the feature map
data, respectively, bn is the bias and k is the number of feature
maps provided. Using the output of result yn as a starting
point, output Yk can be represented as

Yk = f(yn) (2)

Additionally, f represents the activation function, which is
commonly rectified linear unit (ReLU) in CNN.

ReLU (x) = max(0, x) (3)

Convolution, pooling and fully connected layers are the
most popular layers. 1-D CNNs have been frequently utilised
in medical and healthcare applications. A 1-D CNN employs
convolutional layers, which use spatial filters to promote spa-
tial invariance.When convolutional layers are included in 1-D
CNNs, spatial filters are used to enhance spatial invariance,
which is beneficial. Pool layers down-sample input feature
maps spatially by dividing them into subregions and merging
their values into a single value. The pool operators’ max-
pooling and average-pooling employ maximum and average
values for each subregion.The fully connected (FC) layers
link all the neurons in the previous layer to every single neu-
ron in the following layer, forming a network of connections.
To build a relational representation of these characteristics for
each class in the classifier detection set, FC layers join the
features retrieved by the CONV layers and combine them into
a single entity. Finally, a SoftMax classifier is applied to the
outputs of the previous FC layer to obtain normalised class
probabilities for different classes in the final layer.

In addition, FPGA acceleration for CNNs has received
much interest. Using an appropriately designed FPGA accel-
erator for CNN, the full capability of the parallelism of
low latency and fast speed can be achieved because of the
high-performance, high-speed and low-power consumption
needs of various applications. FPGAs are widely used as
cost-effective options in many industries. Furthermore, the
recon durability of FPGAs enables them to adapt quickly to
new CNN designs [48]. Compared with CPU or GPU, FPGA

has better energy efficiency. Making a high-performance
FPGA accelerator is a lengthy process that typically entails
many steps, including parallel architectural discovery, mem-
ory bandwidth optimisation, area and timing tuning, and
software– hardware interface creation. Consequently, auto-
matic compilers were developed for FPGACNNaccelerators,
in which the hardware description of target accelerators can
be generated automatically based on parametric templates,
and design space exploration can be simplified into parameter
optimisation with respect to network structure and hardware
resource constraints [49]. In this work, an FPGA accelerator
is designed for CNNusing three ExGs. The FPGA accelerator
is designedwith fewer hardware and lesser complexity, which
increases classification speed and accuracy. Consequently,
power consumption decreases.

III. THE PROPOSED ACCELERATOR OF 1-D CNN
Signal flow graph is a technique for discrete timemodelling in
systems that illustrates the iterative process of data processing
or classification.This approach is used to explain the 1-D
CNN CONV layer and how the processing element (PE) is
designed in relation to the iterations of data processing and
classification as depicted in Figure 1. The solution achieved
by the multiplication and addition operations of the 1-D
CNN CONV layer is shown in Figure 1. This approach is
represented by variable wnk and hki, which are the concate-
nation of the kernel weights and the feature map of the input
data, respectively, with a bias bn. To reduce the amount of
hardware required for 1-D CNN, the multiplication is shifted
to the left. Continuous collection operations follow, which
necessitates the use of a register (R). After completing the
iterative data processing cycle in R, it is then collected with
bn. Finally, the output of yk is the final result.

In addition, the developed architecture of 1-D CNN
reduces the complexity of multiplication by using shift oper-
ations. The shift in Figure 2 is represented by the symbol im,
which can be stated as shown in the equations below based
on Eq. (1).

Xk = hk,0 + hk,1 × 2m + hk,2 × 22m + . . .+ hk,i × 2im

(4)

Then

Xk = hk,i × 2im (5)

where ith is the partition of kernel weights of the 1-D CNN
with the length of shift m = k/i. In the next step, Eq. (5) is
substituted into Eq. (1) and yields.

yn = bn +
k−1∑
k=0

i−1∑
i=0

hk,i × 2im × wnk (6)

The ultimate shape of the proposed architecture is deter-
mined by Eq. (6). The PE in Figure 2 consists of an XOR gate
that serves as a selector to examine the sign bit. It employs
a tristate buffer instead of other gates in the multiplexer to
decrease the number of devices needed.
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FIGURE 1. Signal flow graph of a 1-D CNN CONV layer.

FIGURE 2. Structure of a PE.

Figure 3 depicts the architecture of the proposed CNN
accelerator, in which data are stored in off-chip memory prior
to the start of classification. Kernels and weights are extraor-
dinarily huge in terms of data size and are consequently stored
in our implementation’s off-chip memory. However, on-chip
buffer is often inadequate for caching all of the parameters
and data for state-of-the-art 1-D CNNs. As a consequence,
off-chip memory is utilised to store all of the network set-
tings as well as the results of each layer. The on-chip buffer
approach was chosen to effectively feed data to the PE arrays
based on two factors. First, by preloading cores and weights
from off-chip memory to on-chip buffer using the data bus,
PE arrays can access the required data at high speeds. Second,
this approach loads a collection of data from off-chipmemory
rather than a single datum at a time, which maximises mem-
ory bandwidth utilisation. The PE array is connected to the
off-chip memory via the on-chip buffer using a data bus. This
enables parallelization of data input/output and computation.
Additionally, the output buffer provides interim results to the
PE array and max pooling if an output channel requires more
than one cycle of computation. This work introduces a 1-D
CNN description interface for data management. In addition,
this allows the user to make full use of the on-chip buffer.

In this study, the 1-D CNN is initially trained using
32-bit floating-point data to determine the data and parameter
ranges of each layer. The bit width used in the proposed archi-
tecture is 16 bits, and the stride is 1. The data are divided into
three categories in the buffer prior to inserting the data into the
PE array. The PE array uses a pipeline structure by placing a
shift register between the layers of the PE array. Moreover,
the shift registers function as a form of local memory for
previously obtained values. The pipeline structure is used
in the proposed architecture to achieve high classification

efficiency and increase speed. After storage in the PE array,
the data are transmitted to the pipelined adder tree, where
they are utilised to complete the calculation. The adder tree is
selected because it produces a high-quality output with a low
critical path latency.

The design of max pooling and its connection to the output
buffer is shown in Figure 3. A MUX is placed in front of the
max pooling to select the verified input data to the associated
max pool to support varying convolution strides and pool size
scenarios. In the suggested design of the pooling, the tristate
buffer mux structure is utilised instead of other gates to
decrease the number of hardware used, and a selector (enable)
is employed to control the output data centrally. A comparator
and a useful feedback register are used in the max pool to
save the final comparator output. According to the suggested
architecture of 1-D CNN, the results for all layers are selected
by max pooling and then sorted.

IV. PROPOSED STRUCTURE OF 1-D CNN AND
OTHER ALGORITHMS
A. WORKFLOW OF THE SYSTEM
Figure 4 depicts the workflow followed throughout the sys-
tem building phase. The collected data set is first saved in a
database for simple retrieval and analysis. Then, preprocess-
ing procedures such as padding, reshaping and resampling
are performed on the stored data. Next, the data are divided
into two sections, 1) testing data and 2) training data, which
are employed in the model-building step. The model creation
phase has two parts, 1) model evaluation and 2) model train-
ing. The training data are used to train the model, and the
testing data are used to evaluate the model’s performance
during the evaluation phase. Then, the ensemble is applied
to the three models to unify the findings and output, and
identify which mode is the best. To select the best model,
this step is performed 10 times using various algorithms of
ML. The system is now ready to accept new data samples for
classification after storing the optimum model. Finally, the
algorithm is implemented on FPGAs and used to create an
accelerator for classification.

B. UTILISED DATA
In this paper, the ExG signal, which contains ECG, EEG and
EMG signals, was utilised because the signal characteristics
of these three types are very similar as shown in Figure 5.
The ECG signal data set from the UCI Machine Learning
Repository was used [50]. There are various variables in this
data set, as well as a target state of heart disease or not having
heart disease. The ECG has a sample size of 303 patients,
4242 parameters, and 76 features, but in published research,
only 14 of these are used. The sampling frequency of the
ECG signal was set at 100 Hz in this work. The data set
of ECG signal contains: age in years; sex (1 = male, 0 =
female); type of chest pain; resting blood pressure; serum
cholesterol; fasting blood sugar (1 = true, 0 = false); resting
electrocardiographic results; maximum heart rate achieved;
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FIGURE 3. Architecture of proposed CNN accelerator.

FIGURE 4. Proposed structure and system workflow for ExG signal
classification.

Exercise-induced angina (1 = yes, 0 = no); ST depression
induced by exercise relative to rest; Normal, a fixed defect,
and a reversible defect are denoted by 3, 6, and 7, respec-
tively; target, whether you have a sickness (1= yes, 0= no).
The data set for EEG signals in [51], [52] used the brain-

wave data set for processing. It also utilised dry electrodes to
represent each positive, negative or neutral state that partic-
ipants encountered. In this paper, sentiments were classified

FIGURE 5. ExG signals for a) EMG, b) EEG and c) ECG.

as melancholy (negative), joy (positive) and neutral (regular)
by the symbols 1, 2, and 3, respectively. The EEG signal has
a sample size of 1492 number of instances, 2548 features,
and the number of parameters is 3801616 with a sampling
frequency of 150Hz. Finally, movie excerpts from various
films were used to illustrate each of the three instances of
emotion.The UCI Machine Learning Repository’s EMG sig-
nal data set was used [53].The EMG data set utilised in this
paper contained a data set used to monitor human activity on
volunteers in states of normal and aggressive actions on the
body as well as the state of effect on them, utilising eight
channels attached to their bodies. The EMG signal has a
sample size of 10,000 number of instances, 8 features, and the
number of parameters used is 723220. In this case, the sample
frequency of the EMG signal was set at 200Hz. For simplicity
of classification, this sheet of EMG signal data was encoded
from 0 to 6, with channel number 7 for the data carrier sensor.

V. RESULTS AND DISCUSSION
The proposed model was tested with three signal data sets
(ECG, EEG and EMG). As mentioned above, the proposed
model was tested with four different algorithms to validate
it and select the best algorithm performance through the
highest possible classification accuracy of the three signal
data sets of ExG. The four techniques utilised were stochastic
gradient descent (SGD), naïve Bayes (NB), support vector
machine (SVM) and CNN. In this section, the performance
of the proposed model for each algorithm is also evaluated,
and the best algorithm for implementation on hardware FPGA
is identified. The FPGA implementation model including a
1-D CNN algorithm that is the most effective in this model
for ExG signal processing is discussed in the second part.

A. ANALYSIS OF TRAINING AND EVALUATION
In this section, the main parameters of each algorithm used,
the structure of the model and the metrics used to evaluate
the performance of the proposed model are discussed. Also,
ECG data sets are split into training, validation, and testing.
With regards to the ECG, 70% of the data set was chosen at
random and positioned in the training set for the purpose of
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obtaining well-trained parameters. To assess the 1-D CNN’s
performance, the remaining data is split evenly by 15% for
the validation and test sets. Additionally, by separating the
EMG and EEG data sets using the same method that was
used to compute the split ratio of the ECG data set. Accu-
racy measures how often a model successfully classifies data
samples, as shown in the equation below for the evaluation of
the module of 1-D CNN and other algorithms based on true
negative (TN), true positive (TP), false positive (FP), and false
negative (FN).

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(7)

The accuracy attained by each algorithm based on the NN
of the proposed model is shown in Figure 6, and the 1-D
CNN acquired 99% maximum level of accuracy. The accu-
racies of the four models were also compared, as shown in
Figure 7. The graph clearly shows that 1-D CNN is more
accurate than the other models. This method was used with
100 iterations with 20 trains.

The main classification metrics were calculated after col-
lecting the confusion matrix values using the classification
report consisting of recall, F1-score and precision. Figure 8
describes the performance of the proposed model of each
algorithm. Precision is the accuracy of positive predictions,
as demonstrated in Eq. (8) and Figure 8(c).

Precision =
TP

TP+ FP
(8)

Recall is the proportion of positive samples accurately
recognised from the real positives, as shown in Eq.(9),
is referred to as recall.Themodels used have lower scores than
the 1-D CNN model, but all scores are excellent, as shown in
Figure 8(d).

Re call =
TP

TP+ FN
(9)

F1-score is the harmonic mean of precision and recall,
as stated in Eq. (10). Each model was assessed with regard
to F1, as demonstrated in Figure 8 (b), indicating that the
proposed models are excellent, but 1-D CNN is the best.

F1 =
2

1
Recall +

1
Precision

(10)

The receiver operating characteristic curve and the area
under the curve (AUC) are two probability models used to
compare the TP rate to the FP rate at various thresholds
through a graphical representation sensitivity against speci-
ficity, as shown in Figure 8(a). AUC indicates the classifier’s
ability to discriminate between distinct classes. The receiver
operating characteristic curve contains three main evaluation
values: A value close to 1 indicates that the classifier is
performing well, a value close to zero indicates that the model
is 100% incorrect and classifying in reverse, and a value close
to 0.5 indicates that the classifier is only guessing. The rela-
tionship between FP rate (specificity) and TP rate (sensitivity)
is depicted in Figure 9. All curves close to 1 indicate that

FIGURE 6. Accuracy of a 1-D CNN with threshold probability to classify as
positive.

FIGURE 7. Model accuracy of CNN, SVM, NB and SGD.

the proposed model classifier performs well, except for the
SGDmodel, which is only guessing because its curve is close
to 0.5.

B. ANALYSIS OF IMPLEMENTATION ON HARDWARE
The proposed architecture of 1-D CNN was designed on
Xilinx Zynq Xc7z045 platform. The same assessment carried
out on the testing set on PC platform was similarly performed
on hardware. In terms of performance and characteristics,
Table 1 highlights the comparison between the proposed 1-D
CNN accelerator based on FPGA platform and other acceler-
ators based on the kind of data processed on the accelerator
to meet the standards and the specifications. A 2-D CNN
and other models were used instead because no 1-D CNN
accelerators were used during the comparison. Studies in the
area of EMG and EEG in 1-D CNN accelerator are limited,
and the studies were selected, as stated in Table 1. The
proposed accelerator achieved a high speed of 442.948 MHz
compared with the highest speed of 388.29 [36] prior to this
work, as shown in Figure 10(a).

Lu et al. [44] proposed a layout of the accelerator based
on CNN that achieves the highest efficiency within the use of
hardware resources of 16.71 GOP/s/kLUT. However, the pro-
posed architecture of this work improved resource efficiency
to 28 GOP/s/kLUT and is now the highest one, surpassing
the previous 16.71GOP/s/kLUT. The results demonstrate that
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TABLE 1. Comparison between CNN accelerator on Zynq xc7z045 performance with other fpga accelerators.

FIGURE 8. Comparison of four models in terms of (a) Area under the
curve, (b) F1-score, (c) Precision and (d) Recall.

FIGURE 9. The receiver operating characteristic curve of four models.

our solution can reach a peak performance of 161 GOP/s/W
energy efficiency on Zynq xc7z045 processor, which is much
better than the previously reported results for other tech-
niques. Several ExG biosignals, such as EMG, EEG and
ECG, were described in this paper. The approach was imple-
mented on FPGA platform and enabled multiclass learning
and classification of the signals. Several methods were also
employed to decrease the number of devices used. For exam-
ple, in the multiplexer, a tristate buffer was used to reduce the
number of resource utilisations that contain sign-enabled util-
isation for central control. Moreover, in this work, the lowest

FIGURE 10. Description of proposed 1-D CNN accelerator: a) Frequency
comparison between the proposed structure and other models
b) Resource utilisation comparison (KLUT).

value of resource utilisations was 1.067 KLUT, as shown in
Figure 10 (b). In addition, the sign bit was considered because
the XOR gate was configured as a selector to control the
sign bit.

The bandwidth requirement of off-chip memory is deter-
mined directly by the access datawidth of thememory. So, the
bandwidth requirement of the memory in off-chip memory is
directly proportional to the access data width of the memory.
When accessing 32-bit data, the bandwidth requirement of
the memory is 1.8 GB/s, but when accessing 512-bit data,
the bandwidth requirement of the memory rises to 28.4 GB/s.
In this work, the access data width is set to 512-bit in order to
optimise memory bandwidth. Kernels and weights have been
meticulously structured to accommodate the 512-bit access
mode that is operating at 442.948 MHz.

At the end of this study, the peak single-precision through-
put (TFLOP/s) of mainstream FPGA devices is measured
by the method proposed in [54]. The proposed design has a
peak single-precision throughput of 1.145 TFLOP/s, which
is higher than the earlier designs [44], [45], which had
358.907 GFLOP/s and 2.262 GFLOP/s, respectively.

VI. CONCLUSION
This paper proposes a new model for classifying aggregated
ExG signals consisting of ECG, EEG and EMG. When
the proposed model is applied to four algorithms to ensure
that it works properly, the average accuracy of 1-D CNN
algorithm can reach 99%, which is higher than that of the
rest of the models. In addition, the proposed model with
the highest average accuracy of a 1-D CNN accelerator is

VOLUME 10, 2022 60493



A. K. Jameil, H. Al-Raweshidy: Efficient CNN Architecture on FPGA Using High Level Module for Healthcare Devices

implemented to classify ExG signals in wearable healthcare
devices. The pipelined structure is designed with a register
in the middle to facilitate easy data transfer. The proposed
1-D CNN accelerator works very efficiently due to using a
tristate buffer in the multiplexer and replacing the multiplier
by shift, which results in a resource-efficient accelerator
with 161 GOP/s/W energy efficiency and 28 GOP/s/KLUT
that is improved by 1.67× comparedwith the previousmodel.
Also, the floating-point processing parts have a peak rate of
1.145 TFLOP/s, while the off-chip memory has a capacity of
28.4 GB/s. A 1-D CNN with an accelerator for classifying
ExG signals implemented on Xilinx Zynq xc7z045 platform
outperforms FPGA peer applications on the same platform
by 1.14× in terms of speed. In the future, new technologies
that improve classification performance, speed and efficiency
whilst using less hardware resources will be investigated.
An accelerator that enables the integration of additional appli-
cations, speed evaluation and execution at any moment with
minimal power usage will be developed. The CNN accelera-
tor will be extended to other biological applications using a
variety of signalling and processing approaches.
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