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Abstract

Background: Both genetic background and diet are important determinants of cardiovascular diseases (CVD).
Understanding gene-diet interactions could help improve CVD prevention and prognosis. We aimed to summarise
the evidence on gene-diet interactions and CVD outcomes systematically.

Methods: We searched MEDLINE® via Ovid, Embase, PubMed®, and The Cochrane Library for relevant studies
published until June 6th 2022. We considered for inclusion cross-sectional, case—control, prospective cohort, nested
case—control, and case-cohort studies as well as randomised controlled trials that evaluated the interaction between
genetic variants and/or genetic risk scores and food or diet intake on the risk of related outcomes, including myo-
cardial infarction, coronary heart disease (CHD), stroke and CVD as a composite outcome. The PROSPERO protocol
registration code is CRD42019147031.

Results and discussion: We included 59 articles based on data from 29 studies; six articles involved multiple stud-
ies, and seven did not report details of their source population. The median sample size of the articles was 2562
participants. Of the 59 articles, 21 (35.6%) were qualified as high quality, while the rest were intermediate or poor.
Eleven (18.6%) articles adjusted for multiple comparisons, four (7.0%) attempted to replicate the findings, 18 (30.5%)
were based on Han-Chinese ethnicity, and 29 (49.2%) did not present Minor Allele Frequency. Fifty different dietary
exposures and 52 different genetic factors were investigated, with alcohol intake and ADH1C variants being the most
examined. Of 266 investigated diet-gene interaction tests, 50 (18.8%) were statistically significant, including CETP-
TaqlB and ADH1C variants, which interacted with alcohol intake on CHD risk. However, interactions effects were sig-
nificant only in some articles and did not agree on the direction of effects. Moreover, most of the studies that reported
significant interactions lacked replication. Overall, the evidence on gene-diet interactions on CVD is limited, and lack
correction for multiple testing, replication and sample size consideration.
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Introduction

Cardiovascular diseases (CVDs), including ischemic
heart disease and stroke, are the leading cause of mortal-
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have been associated with CVD incidence, diet being one
of the most studied [2].

Contradictory findings have been reported on the role
of micro-and macro-nutrients [3], specific foods [4],
and dietary patterns [5] on CVD. These contradictions
could be explained by the exclusion of genetic factors [6],
which has a causal association with CVD onset [7-9].
Therefore, studying the combined impact of food intake/
dietary patterns and genetic risk on CVD may improve
CVD prevention and care precision [10]. Several studies
have shown dietary components such as carbohydrates,
micronutrients, vegetables, fatty acids, and alcohol to be
linked with different genetic factors on CVD [11-17].
However, no systematic review summarising the evi-
dence on diet-gene interaction on CVD has been pub-
lished to date.

Previous systematic reviews published on the topic
have primarily focused on evaluating gene-diet interac-
tions on specific genes or have been restricted to particu-
lar dietary groups [18, 19]. In addition, understanding
the association between pathological pathway factors
requires distinguishing between statistical and biological
interactions. In the context of gene-environment interac-
tion (GxE), statistical interaction is understood as a devi-
ation from the additivity of the effects of two exposures
(genetic and environmental) on the outcome. In contrast,
biological interactions are defined as the co-participation
of two exposures in the same causal mechanism for the
development of the outcome, regardless of their statisti-
cal ascertainment [20]. This paper focuses on statistical
interactions, more frequently tested in the epidemiologi-
cal literature [21]. Identifying exposure-disease interac-
tions may help recognise groups at increased risk due
to genetic susceptibility and help tailor prognostic tools
and intervention strategies [22]. Therefore, we aimed
to systematically summarise the evidence on gene-diet
interactions and cardiovascular disease risk: CHD, myo-
cardial infarction (MI), stroke, and CVD as a composite
outcome.

Methods

The protocol of this systematic review was registered
in PROSPERO (https://www.crd.york.ac.uk/prospero/
dayisplay_record.php?ID=CRD42019147031). For the
conduct and reporting of this systematic review, we fol-
lowed the steps proposed by Muka et al. [23] and Synthe-
sis without meta-analysis (SWiM) in systematic reviews:
reporting guideline [24].

Literature search

Studies were primarily identified through structured
searches in MEDLINE® via Ovid, Embase, PubMed®,
and The Cochrane Library, where we were searched for
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articles published until June 6th 2022 without language
restriction. The search strategy was designed and imple-
mented in collaboration with an experienced medical
librarian (BM). This search strategy was designed based
on subject headings (e.g. MeSH terms) and free text
words related to three search domains: (1) diet, food,
nutrition, (2) gene-diet interaction, and (3) cardiovascu-
lar diseases. Additional file 1: Appendix S1 contains the
complete search strategies.

Study selection criteria

Studies conducted in the adult population were eligible
for inclusion if (i) they were cross-sectional, case—con-
trol, prospective cohort, nested case—control or case-
cohort studies, or randomised controlled trials; (ii)
evaluated dietary intakes (micro- and macro-nutrients,
specific food items, food groups, dietary scores, indexes,
or patterns) Additional file 2: Table S1 [25]; (iii) evaluated
incident or prevalent CVD as a composite outcome or
any of the following outcomes: CHD, MI or stroke; (iv)
evaluated the interaction between any genetic variant or
genetic risk score (GRS) and food or diet intake; and (v)
reported a statistical test for gene-diet interaction. We
excluded epigenetic studies and publications that did not
report a statistical test and p-values for the interaction
between diet and genetics. Abstracts, cost-effectiveness
studies, letters to the editor, conference proceedings, sys-
tematic reviews and meta-analyses were excluded.

Screening and study selection

All studies initially identified were screened indepen-
dently by two authors applying the selection criteria.
After that, the full texts of the studies that met the selec-
tion criteria were further evaluated independently by two
authors. When there were discrepancies, the two authors
reached a consensus or asked for the help of a third sen-
ior author.

Data extraction

Information from the included articles was registered in
a pre-designed form; the data were first extracted by the
first author and additionally reviewed and confirmed by
a second author. We collected the author’s name, year of
publication, country of origin of the population, ethnic-
ity, setting, study design, name of the cohort, sample size,
number of cases (CVD as a composite outcome, CHD,
ML, or stroke), definition of the reported cases, percent-
age of women included, follow-up time, dietary intake
evaluated, dietary intake measurements, genes, genetic
variants assessed, minor allele frequency (MAF), and
main findings. The estimates and p-values for gene-diet
interactions were taken from the most adjusted model.
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Assessing the quality of studies

We applied a quality score designed for gene-diet inter-
action studies [26]. The score evaluates eight items:
interaction as primary study goal, test for interaction,
correction for multiple testing, correction for ethnicity,
Hardy-Weinberg equilibrium, test for group similarity at
baseline, sample size, and sufficient details of the study
procedure. Based on a range scale from — 8 to 8, stud-
ies were rated as high quality (6 to 8 points), intermediate
quality (2 to 5 points), and poor quality (—8 to 1 point).
All the included studies were treated equally regardless of
their quality.

Synthesis methods

A meta-analysis could not be carried out given the diver-
sity of dietary exposures, gene-diet interactions, and the
methodological heterogeneity of the included studies
(different dietary exposures, gene variants and assessed
interactions). We summarised the gene-diet interactions
finding qualitatively and decided to group the included
studies in two stages. First, we grouped the studies
according to the assessed outcome into the following cat-
egories: CHD, stroke, and CVD as a composite outcome.
Second, we presented the gene-diet interaction informa-
tion according to five dietary intake groups (macronu-
trients, micronutrients, food and food items categories,
other dietary components and dietary scores, indexes, or
patterns) Additional file 2: Table S1 [25].

The principal characteristics and findings of the
included studies are presented in tabular format. Addi-
tionally, we represented the interaction between dietary
intake groups and genetic variants with CHD, stroke, and
CVD through a heat map where p-values of diet-gene
interactions are represented by colour intensity where the
lowest p values have the most intense colour, and values
near 1 have the lightest colour. All heat maps were created
in R software environment for statistical computing [27]
with RStudio environment [28] using the ggplot2 pack-
age [29]. To standardise the amount/frequency of alcohol
intake reported in the interaction with an alcohol dehy-
drogenase 1C (ADH1C) variant, we transformed grams/
day into drinks/week taking as reference the "standard"
drink (14 g of pure alcohol) reported by the National Insti-
tute on Alcohol Abuse and Alcoholism (NIAAA) [30].

Results

Study identification and selection

We identified 8700 articles, of which 5402 were unique
citations. After screening titles and abstracts, we
screened the full texts of 182 articles, of which 59 met the
inclusion criteria and were included in the final analysis
(Fig. 1). Of the included articles, 13 evaluated MI [16,

Page 3 of 22

31-42], 18 evaluated CHD [11-13, 43-57], 12 evalu-
ated stroke [14, 58-68], four examined composite CVD
[15, 69-71], and 12 evaluated at least two of the follow-
ing outcomes: CHD, MI, CVD or stroke [6, 17, 72-81].
The definition of all outcomes can be found in Additional
file 2: Table S2.

Characteristics of all included studies and articles
reporting significant gene-diet interactions

The general characteristics are described in terms of
number of articles. Forty-five articles came from 29
unique studies; six articles involved multiple studies,
and seven did not report details of their source popula-
tion. Of the 59 articles, 24 (40.7%) were conducted in
Europe, 21 (35.6%) in China, six (10.2%) in the USA, five
(8.5%) in Costa Rica, one (1.7%) in Taiwan, one (1.7%) in
Thailand and one (1.7%) was multicentre. The ethnicity
most frequently reported was Chinese-Han in 18 (30.5%)
articles, followed by Caucasian in eight (13.6%) articles,
Hispanic/Latin American in five (8.5%) articles, and
Mediterranean in four (6.8%) articles. The epidemiologi-
cal designs of the included articles comprised 27 (45.8%)
case—control studies, 19 (32.2%) prospective cohort stud-
ies, seven (11.9%) nested case—control studies, one (1.7%)
case-cohort study, two (3.3%) randomised control trial
studies, two (3.3%) family-based studies, and one (1.7%)
cross-sectional study. The median sample size in the arti-
cles was 2562, ranging from 200 to 347,077 participants.
Men and women were analysed in 53 (89.8%) articles; five
(8.5%) articles analysed only men, and one (1.7%) article
only women. The main interaction results among female
study participants were presented in ten (17.0%) arti-
cles. The median age of participants among studies was
61 years, ranging from 57 to 72.4 (Table 1).

There were 52 genetic factors (GRS, genes, SNPs) and
50 different dietary exposures studied. A description
of the dietary scores, indexes, or patterns reported can
be found in Additional file 2: Table S2. The most inves-
tigated dietary component was alcohol, studied in 30
(50.8%) articles, and ADHI1C studied in 7 (11.9%) articles.
Regarding genetic information, 29 (49.2%) articles did
not present MAF (Additional file 2: Table S2). Regard-
ing outcome measurement, 28 (47.5%) articles included
prevalent CVD cases, and 31 (52.5%) articles included the
incidence of CVD cases. Overall, the median CVD events
was 759, ranging from 72 to 10,372. Four (6.8%) articles
replicated their findings in different samples (Table 1).

Characteristics of included articles reporting significant
gene-diet interactions

In total, 31 articles reported significant gene-diet
interactions. Among the articles reporting significant
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Fig. 1 Flow chart of study selection

interactions, the most frequent place of publication
was China with 13 (41.9%) articles, followed by Europe
with ten (32.3%) and Latin America with five (16.1%).
The case—control design was reported in 22 (71%) arti-
cles; the median sample size was 3311, ranging from
200 to 77,004. Four (13%) articles evaluated the interac-
tion between alcohol and the cholesterol ester transfer

protein (CETP) rs708272 variant, being this interaction
the most frequently evaluated.

Gene-diet interactions and coronary heart disease.

Thirty three articles from 21 unique studies evaluated
whether specific nutrients, foods or diets modified the
association between genetic factors and CHD (Figs. 2
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and 3, Table 1) [11-13, 16, 31-57, 80, 81]. The most fre-
quently evaluated dietary exposure and genetic variants
were alcohol (n=17) and ADHIC (n=6), respectively.
CETP TaqlB was the second most evaluated genetic
variant; estimations for alcohol-ADHIC and -CETP
interactions on CHD risk can be found in Table 2. The
main findings regarding non-significant interactions in
the macronutrients category were that PUFA intake did
not interact with PLA2G4C, FADSI or FTO variants on
CHD risk. Micronutrients such as folate and vitamin B
did not interact with the MTHFR 677CT variant. Other
non-significant interactions were milk-LCT-13910,
fried food-ALDH?2, (dietary) cholesterol-APOE, alco-
hol-ADHIC, -CETP, -PON1, -PLAG2G7, -TFPI-2. Sim-
ilarly, dietary scores did not significantly interact with
GRS of HDL, LDL, triglycerides, or MI [6, 11-13, 17,
36, 40, 44—48, 52-57, 72, 76,79, 81]. An overview of the
non-significant interactions can be found in Figs. 2 and
3, and more details are provided in Additional file 2:
Table S3. In the following paragraphs, we will discuss
the findings of the articles that reported significant
interactions.

Regarding macronutrients, in a Costa Rican case—con-
trol study including approximately 3800 patients, Allayee
et al. [31] reported a significant (p=0.015) interaction
between arachidonic acid (AA) and 5-lipoxygenase (5-
LO) promoter variants [31]. Consumers of > 0.25 g/day of
AA who carried one or two copies of the shorter three
and four repeats of 5-LO had a higher MI odds ratio (OR)
1.31 (95% CI 1.07, 1.61) than consumers of<0.25 g/day
of AA who are 55 homozygote carriers. In comparison,
among consumers of<0.25 g/day of AA who were car-
riers of one or two copies of the shorter three and four
repeats, lower odds was observed [OR 0.77 (95% CI 0.63,
0.94)] [31]. In the same study, Hartiala et al. found a sig-
nificant (p =0.005) interaction between PUFA and a vari-
ant of PLA2G4C (rs12746200) [36]. Subjects with high
dietary n-6 PUFA intake (>6.93 g/day) who were carri-
ers of AG/GG genotype had lower odds for MI [OR 0.71
(95% CI 0.59, 0.87)] than AA homozygote subjects [36].

In a case—control study using Wuhan (China) data, Liu
F et al. [49] found a significant (p=0.028) interaction
between PUFA and a variant of FADS1 (rs174547). Sub-
jects in the lowest tertile of EPA and DHA intake who are
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Fig. 3 Findings for interaction between genetic variants and diet in relation to coronary heart diseases. W =women, M=men, B=Both (Men and

carriers of T alleles had higher odds of developing CHD
[OR 3.04 (95% CI 1.94, 4.76)] and [OR 2.56 (95% CI 1.64,
3.98)], respectively, compared to subjects in the highest
tertile of EPA intake and DHA consumption, who are
also carriers of rs174547 C/C genotype. No association
was observed in the middle tertile of EPA or DHA intake
[49].

Regarding micronutrients, the Western Norway B-vita-
min intervention randomised trial (WENBIT) prospec-
tively evaluated interactions between folic acid, vitamins
B12/B6 and an MTHFDI variant (rs1076991) in 2381
participants [16]. In this trial, carriers of the rs1076991
T allele who received folic acid/vitamin B12 and vitamin
B6 combined treatment had a hazard ratio (HR) for MI
of 2.35 (95% CI 1.55, 3.57) (p=0.047) when compared
to the placebo group. On the other hand, no association
with MI was observed in the groups who had vitamin B6
or folic acid/B12 separately [16].

In the food and food items categories, a case—control
study using data from 52 countries (the INTERHEART
study) [17], and a case—control study analysing data
from a Hispanic population [33], reported interactions

between high vegetable intake and four variants
(rs10757274, rs2383206, rs10757278, rs1333049) of the
chromosome 9p21 [17] and the Glutathione S-trans-
ferase theta 1 (GST'T1) gene variants [33]. Subjects whose
vegetable intake was classified in the highest tertile who
were carriers of the functional GSTT1*1 allele had lower
odds for MI [OR 0.70 (95% CI 0.58, 0.84)] compared to
those whose intake was classified in the lowest tertile
(p=0.006) [33]. In contrast, carriers of risk alleles of 9p21
variants had a lower incidence of MI among participants
who consumed vegetables daily (p <0.008) [17]. However,
the interaction with 9p21 variants was not significant
when restricted to cooked vegetables [17].

In a case—control study using data from the same
Hispanic population mentioned above, Cornelis et al.
reported a significant (p =0.04) interaction between cof-
fee consumption and CYPIA2 variants on MI risk [34].
The consumers of>4 cups/day of coffee carrying the
rs762551 variant had higher odds of MI [OR 1.64 (95%
CI 1.1, 2.34)] [34] compared to those consumed <1 cup/
day. Conversely, a study from Taiwan Biobank (TWB)
found a significant (p=0.03) interaction between coffee
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Table 2 Estimates of the interaction between alcohol intake and ADH1C variants on CHD risk

Author Categorization of No. of Events  Association Gene, variant, and genotypes Estimate (Cl 95%) Interaction
Alcohol (Drinks/ measure P-value
week) CETP (rs708272 (CETP/TaqB))

B1B1 B1B2 B2B2

CHD

*Fumeron et al. [35] Non-drinkers 92 OR 1 1.04 (0.68-1.59) <0.02
<2 234 1 0.97 (0.58-1.61)
>21t03 134 1 0.96 (0.51-1.81)
>4105 66 1 0.56 (0.22-1.47)
>6 125 1 0.34(0.14-0.83)

Jensenetal. [12] Non-drinkers? 118 OR 1 1 04
<2.5° 77 1.1(0.5-2.3) 0.8 (0.5-14)
>25t06° 31 14(0.6-3.7) 0.3 (0.2-0.6)
>71014% 20 1.3(0.5-3.8) 0.4 (0.2-0.9)

Non-drinkers® 63 1 1 0.2
<25° 63 1.7 (0.7-4.1) 0.9 (0.5-1.6)

>25t06° 66 1.9 (0.8-4.5) 09 (0.5-1.6)

>7t014° 80 1.6 (0.6-4.4) 0.8 (0.4-1.5)

Non-drinkers® 181 1 No data

>25t06° 87 1.6 (1.1-2.3) 0.7 (0.6-1.0) 0.02

Corella et al. [45] Non-drinkers 139 OR 1 0.74(042-132) 057 (0.24-1.34) 0.031
Drinkers 418 1 1.17 (0.90-1.55)  1.55(1.05-2.29)

Mehlig et al. [51] Abstainers 1.12(0.77-1.62) 0.76 (0.36-1.64)  0.008
Low 1 1
Intermediate 0.80 (0.59-1.06) 0.21(0.10-0.44)

High 1.03 (0.77-1.36) 0.48 (0.26-0.88)

Author Categorization of No. of Events Association Gene, variant, and genotypes Estimate (Cl 95%) Interaction
Alcohol (Drinks/ measure P-value
week) ADH1C

11 1/2 2/2

*Tolstrup etal. [39] <1 175 HR 1 (0 97-1 96) 1.60 (1.04-2.47) 0.49
1to13 307 0.99 (0.70-1.40) 0.98 (0.71-1.37) 0.83 (0.55-1.25)
>14 146 0.80(0.53-1.23) 0.82 (0.56-1.19) 0.88 (0.55-1.42)

*Heidrich et al. [47] <1 24 HR 1 0.69 (0.31-1.55) 0.07
1to6 13 0.56 (0.19-1.61) 0.83(0.34-2.07)
>7 35 1.06 (0.50-2.25) 0.36 (0.16-0.80)

*Younis et al. [55] <1 44 HR 1 0.82 (0.47-1.45) 0.64 (O 24-1.68) 0.49
1t06 64 0.70 (0.40-1.22) 0.56 (0.32-0.99) 0.66 (0.31-1.38)
>7 102 0.57(0.33-0.98) 0.77 (0.47-1.26) 0.68 (0.36-1.27)

*Hines et al. [37] <1 117 RR 1 1.01 (0.58-1.75) 0.59 (0.28-1.23) 0.01
1t06 191 1.11(0.67-1.84) 0.66 (0.40-1.08) 1.02 (0.55-1.88)
>7 87 0.62(034-1.13) 0.68 (0.40-1.15) 0.14 (0.04-0.45)

Tolstrupetal.[13] <1 68 HR 0.96 (0.47-1.93) 1.86 (0.94-3.65) 145 (0.47-447) 0.95
1-6 230 1 38(0.87-2.19) 0(0.59-2. 08)

7-20 266 0.88 (0.56-1.39) 0.97 (0.62-1.51) 0.91(0.52-1.58)
>21 206 0.97 (0.59-1.59) 0.73 (045-1.19) 0.84 (0.46-1.54)

*Ebrahim S. et al. No data 0.26

[11]

VD

Djoussé etal. [69] 0 56 OR 1 0.85(0.43-1.68) 1.10 (0.47-2.54) 048
>0 76 0.90 (0.49-1.67) 0.72(0.39-1.31) 0.63 (0.28-1.44)
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Table 2 (continued)
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1 =Reference category. *Articles reporting grams/day were transformed into drink/week taking as reference "standard" drink (or one alcoholic drink equivalent)

contains roughly 14 g of pure alcohol [30]

2 Women estimates (Nursing Health Study data), ® Men estimates (Health Professional Study HPFS), € estimates from a pooled dataset (NHS -+ HPFS)

HR Hazar ratio; RR Relative risk; OR Odds ratio

consumption and a tribbles pseudokinase 1 (TRIB1I) vari-
ant rs17321515 on CHD. Those who drank coffee and
were carriers of the GG genotype had reduced odds of
CHD [OR 0.62 (95% CI 0.45, 0.85)] compared with non-
coffee drinkers [50].

Concerning other dietary components, in a case—con-
trol study from the Etude Cas-Témoin de Ulnfarctus du
Myocarde (ECTIM) (n=724), alcohol consumption sig-
nificantly (p<0.005) interacted with the CETP TaqlB
variant (rs708272). Subjects who consumed 50 g/day or
more alcohol and were TaqIB B2B2 homozygotes had
a lower odds of MI [OR 0.39 (95% CI 0.20, 0.75)] com-
pared with those who consumed <50 g/day. Additional
analysis comparing different alcohol intake categories
through B2B2 heterozygotes with B1B1 and B1B2 geno-
types found that the protective effect of B2/B2 genotype
was significant (p <0.02) in the category of > 6 drinks per
week, Table 2 [35]. Three more authors reported inter-
action between alcohol and the same variant [12, 45,
51]. Jensen et al. [12] reported a significant interaction
(p=0.02) among drinkers of 5-14.9 g/day of alcohol who
were B2 carriers, who had a lower odds of MI [OR 0.7
(95% CI 0.6, 1.0), compared with non-drinkers, however,
no significance was observed when the analysis was strat-
ified by sex [12]. Similarly, Mehlig et al. [51] reported that
subjects classified in the second [OR 0.21 (95% CI 0.10,
0.44)] and third tertile [OR 0.48 (95% CI 0.26, 0.88)] of
alcohol intake who were B2/B2 homozygotes had lower
MI odds (p=0.008), compared with those in the first
alcohol intake tertile. When the analysis was performed
by sex, significance was only reported in men [51]. Con-
versely, Corella et al. [45], evaluating the effect of alco-
hol consumption and the TaqIB variant, found that B2/
B2 homozygotes had an increased odds of CHD [OR 1.55
(95% CI 1.05, 2.29), p=10.031], compared with B1B1 gen-
otype [45], Table 2.

Similarly, a nested case—control study from the Phy-
sicians’ Health Study (n=1166) reported a significant
(p=0.01) interaction on MI risk between alcohol con-
sumption and ADHIC. The lowest risk was observed
in those who consumed>1 drink per day and carried
ADHIC (" ¥%), compared with those who consumed 1
drinks per week [RR 0.14 (95% CI 0.04, 0.45)] [37]. Other
studies evaluated the interaction between alcohol and
ADHIC but reported no significant interactions (Table 2
and Additional file 2: S3).

Han Chinese population matched case—control stud-
ies found increased risks of MI due to the interaction of
alcohol consumption with the CXCLI12 rs1746048 and
PCSK9 rs11206510 variants [32, 41] (p<0.001). Partici-
pants with the rs1746048 CC genotype and rs11206510
TT genotype consuming 0-250 g/day of alcohol had an
MI OR of 14 (95% CI 3.2, 61.4) and 9.63 (95% CI 3.7,
24.9), respectively [32, 41], compared to non-drinkers.
By contrast, within the same categories of alcohol intake,
carriers of the Cx37 variant rs1764391 with CC genotype
had an OR 0.54 (95% CI10.31, 0.9) [38]. An increased odds
of MI was observed between those consuming> 250 g/
day alcohol who carried the rs1764391 CC genotype,
rs1746048 CC genotype, and rs11206510 TT genotype,
with ORs of 32.7 (95% CI 4.4, 241.6), 24.0 (95% CI 4.9,
116.3), and 14.0 (95% CI 5.1, 42.1), respectively [32, 38,
41]. Additionally, in the same population, carriers of the
SLC22A3 variant rs539298 with AG/GG genotype who
reported alcohol drinking had an OR 0.53 (95% CI 0.37,
0.77), compared with no drinkers [80].

A case—control study by Zheng et al. [42] analysed data
from a Hispanic population and reported a significant
(p=0.03) interaction between SSB consumption and the
GRS of 9p21 variants (rs4977574, rs2383206, rs1333049).
The OR of an MI incident (per allele risk of GRS) was
1.00 (95% CI 0.94, 1.07) in participants with SSB intake
of<1 serving/day, 1.07 (95% CI 0.99, 1.14) in partici-
pants with an intake of 1-2 servings/day, and 1.12 (95%
CI 1.05, 1.20) in participants with an intake of > 2serv-
ings/day [42]. Additionally, a case—control study from the
Nanning province (China) showed that participants who
consumed alcohol and were carriers of the mevalonate
kinase (MVK) variant rs3759387 with AA/AC genotypes
had reduced odds of having CHD [OR 0.66 (95% CI 0.38,
1.03, p<0.001], compared to non-drinkers [78]. On the
contrary, a study performed in Wuhan (China) found
a significant (p=0.001) interaction between alcohol
intake and Interleukin-6 (/L-6) variant rs1800795; cur-
rent drinkers who were carriers of the rs1800795-C allele
had an OR of 3.17 (95% CI 2.20, 4.24) [43], compared to
never-drinkers.

In terms of dietary scores/indices, in a prospective
analysis comprising 77,004 participants from the UK
Biobank, Livingstone et al. [77] reported a marginal
(»p=0.049) interaction between Healthy Diet Indica-
tor (HDI) (Additional file 2: Table S2) and GRS-CVD. In
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Fig.4 Findings for interaction between genetic variants and diet in relation to stroke. W =women, M =men, B=Both (Men and women)

addition, the study found a significant (p=0.026) inter-
action with the MDS and GRS-CVD on the risk of MI
(Additional file 2: Table S2); individuals adhering to the
Mediterranean diet (high MDS) with higher genetic CVD
risk had a stronger risk reduction [HR 0.91 (95% CI 0.85,
0.97)]. In comparison, there was no evidence of an inter-
action of MDS on MI in participants with low GRS-CVD
[HR 1.03 (95% CI 0.94, 1.12)] [77].

Gene-diet interactions and stroke

Twenty two articles from 14 unique studies evaluated
whether specific foods or diets modified the associa-
tion between genetic factors and stroke (Fig. 4, Table 1)
[6, 14, 58-66, 73—79]. Non-significant interactions were
reported for alcohol intake and APOE, IL-8 variant,
PDE4D, DGAT2, CONNEXIN37 genes. Similarly, dif-
ferent dietary scores did not interact with CLOCK gene

variants or GRS-CVD and GRS-stroke [61, 64—66, 68, 73,
76, 78], Additional file 2: Table S3.

In the macronutrients category, the MDC cohort
study evaluated interactions between fatty acids and
the FADS1 rs174546 variant. This study found that only
the interaction between ALA and FADSI rs174546 TT
genotype was significant (p=0.03). Participants in the
higher ALA consumption quintile carriers of TT geno-
type had a decreased risk of stroke [HR 0.50 (95% CI
0.27, 0.94)], compared to carriers of the T'T genotype in
the lowest quintile of ALA intake. At the same time, no
association was observed in CC and CT genotypes in
the other quintiles [6].

Within the food and food items categories, the FIS-
SIC found a significant (p =0.006) interaction between
the egg intake and ABCA1 variant (rs2066715) [63]. In
the same study, a significant interaction between veg-
etable intake and the PONI rs662 variant on the risk of
stroke was found. Each standard deviation increment in
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vegetable intake was associated with a 40% reduction
in the risk of stroke among carriers of the PON1 rs662
AA genotype. On the contrary, each standard deviation
increment in vegetable intake was associated with a
51% increased risk of stroke among rs662 GG carriers;
after adjustment for fruit intake, the interaction was
not significant (p =0.12) [60].

Concerning other dietary components, a case—con-
trol study from Beijing in China found a significant
(»p=0.001) interaction between alcohol and CRP vari-
ant rs3093059. Drinkers with the rs1800947 GC [OR
11.11 (95% CI 1.22, 100.45)] and GG genotypes [OR
2.99 (95% CI 1.73, 5.19)] had an increased odds of hav-
ing a stroke compared with non-drinkers and carriers
of GG genotype. On the other hand, non-drinkers with
the rs1800947 GC genotype had an OR of 2.95 (95% CI
1.05, 8.29) [58]. Similarly, another case—control study in
a Chinese Han population found a significant (p=0.003)
interaction between drinking status and the FgS 148CT
variant. Drinkers who are also carriers of CT/TT geno-
type had increased odds of having a stroke (OR 22.7 (95%
CI 2.95, 173.76) compared to non-drinker carriers of the
CC genotype [59]. Another case—control study from the
Community Hypertension Survey in the Chinese city of
Yixing found a significant (p =0.048) interaction between
drinking status and rs852426 p-actin (ACTB) variant on
stroke risk [HR 0.54 (95% CI 0.29, 0.99)] [14]. Another
Han population case—control study found a signifi-
cant (p=0.001) interaction between alcohol status and
rs4846049. Drinkers with rs4846049 CA/AA genotype
had an OR of having a stroke of 3.12 (95% CI 1.83, 4.45)
compared with never drinkers and rs4846049 CC geno-
type. None of the other MTHFR variants evaluated sig-
nificantly interacted with alcohol [66].

In the category of dietary patterns, the PREDIMED
trial found a significant (p=0.04) interaction between
the Mediterranean diet and the LPL rs13702 variant.
Participants assigned to the intervention group (Medi-
terranean diet plus supplementation with extra-virgin
olive oil and nuts (30 g/day)) who were carriers of the C
allele had a reduced stroke risk [HR 0.58 (95% CI 0.37,
0.91)] in comparison to the TT genotype. At the same
time, no association was reported for the control group
(fat intake reduction) [74]. Finally, Helstrand et al. [76],
analysing data from the MDC cohort, reported a signifi-
cant (p=0.04) interaction between diet quality index and
GRS-LDL-cholesterol on stroke risk (Additional file 2:
Table S2). Participants with low/medium diet quality had
a HR of 1.09 (95% CI 1.03, 1.16) per standard deviation of
increment of GRS-LDL-cholesterol [76].
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Diet-Gene interactions and cardiovascular diseases

as a composite outcome

Eight articles from four unique studies evaluated diet-
gene interactions on cardiovascular diseases as compos-
ite outcome [6, 15, 56, 69, 70, 75, 76, 79] (Fig. 5, Table 1).
Non-significant interactions were reported for drink-
ing status-ADHI1C variant, and diet quality with GRS of
HDL, -LDL and -triglycerides [6, 69-71, 75, 76], Addi-
tional file 2: Table S3.

In the macronutrients category, a borderline (p=0.06)
interaction was reported between ALA/LA intake ratio
and the FADSI variant on CVD incidence. No statisti-
cally significant interaction was observed with any of the
other fatty acids evaluated [6]. Regarding micronutri-
ents, neither folate nor vitamin B intake interacted with
MTHER variants on CVD risk [79].

Regarding food and food items categories, Hindy et al.
[70], analysing data from the MDC cohort, reported a sig-
nificant (p=0.043) interaction between vegetable intake
and chromosome 9p21 variant rs4977574. When the
analysis was restricted to medium or high tertile of veg-
etable intake, carriers of the G allele had an increased risk
of CVD with HR 1.27 (95% CI 1.17, 1.38) and 1.19 (95%
CI 1.08, 1.30), respectively, compared to AA homozygote
genotype. No interaction was reported for fruit intake
[70]. Moreover, Sonestedt et al. [15], in another analysis
of the same MDC cohort, found no interaction between
vegetable intake and GRS of HDL cholesterol, LDL cho-
lesterol or triglycerides on CVD risk [15]. Additionally, in
the UK Biobank, there was no interaction between coffee
intake and CYP1A2 genotype or with a GRS of caffeine
metabolism on CVD risk (p >0.53) [71].

Concerning other dietary components, in the MDC
cohort, a significant (p=0.029) interaction was found
between wine consumption and chromosome 9p21 vari-
ant rs4977574 on CVD risk. However, the effect was
limited to the non/low wine intake tertile in the strati-
fied analysis. In that group, carriers of the G allele had an
increased risk of CVD [HR 1.23 (95% CI 1.14, 1.34)] com-
pared to the AA homozygote genotype. At the same time,
no association was observed when total alcohol intake
was evaluated [70].

Risk of bias of the included studies

Twenty one (35.6%) articles were classified as high qual-
ity, 36 (61.0%) as intermediate quality, and two (3.3%)
as poor quality. Small sample size, lack of correction for
multiple testing (11 (18.6%) articles adjusted for multi-
ple comparisons), lack of generalisation (e.g., no different
ethnicities being represented) often limited the methodo-
logical quality (Additional file 2: Table S4), a report of the
SWiM items can be found in Additional file 2: Table S5.
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Fig. 5 Findings for interaction between genetic variants and diet in relation to cardiovascular diseases as composite outcomes. W =women,

Discussion

Of the 59 included articles, 32 reported a statistically
significant gene-diet interaction. Dietary and genetic
exposure were very heterogeneous, which precluded us
from conducting a meta-analysis of the results. CETP
and alcohol dehydrogenase (ADHIC) variants were the
most frequently assessed and were shown to interact
with alcohol to modify the risk of MI and CHD. Other
studies investigating plausible biological interactions
such as FADS gene and fatty acids interactions, vitamin
B6, vitamin B12 and folic acid did not show consistent
findings. While several studies investigated the interac-
tions between genes and dietary factors on CVD risk, the
current literature is limited and not consistent in show-
ing gene-diet interactions with clinical and public health
impacts, mainly because the reported positive find-
ings were derived from case—control studies and lacked
replication.

Previous systematic reviews on gene-diet interactions
and CVD have primarily focused on specific genes or
diets. In contrast, our study provides a comprehensive
assessment of all genes and dietary exposures interactions

on CVD. Similar to previous findings, we identified a
lack of consistency in the results of interaction studies
[19, 82]. In this review, the lack of reproducibility in the
genetic-dietary variables operationalisation and the dif-
ferent levels of validation and reliability of the used die-
tary questionnaires could have led to an increased risk
of exposure misclassification. This risk could be more
relevant in case—control studies, in which recall bias
could occur differently between cases and controls since
the cases are aware of the condition [83]. Additionally,
misclassification due to genotype errors can be another
source of bias. Genotyping error has been reported to
vary between about 1% and 30%, and its extension is
related to variations in DNA sequence, quality of the
analysed DNA, biochemical artefacts and human factors
[84].

Another methodological concern of studies look-
ing at gene-diet interaction and CVD is the sample size
of the studies. Low statistical power leads to a reduced
capacity to detect interactions. Genotyping errors,
allele frequency and the precision of the dietary expo-
sure and outcome measures are some of the criteria that
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researchers should consider when calculating adequate
sample size to evaluate interactions [85]. Nevertheless,
most of the studies included in this paper were second-
ary analyses, and there was no information on whether
studies had enough power to detect an interaction. It has
been estimated that detecting the interaction between
two binary exposures requires a sample size four times
larger than that required to detect main associations of
the same magnitude [86].

Similarly, studies with 95% of power and a MAF of 20%
looking for interactions of 1.5 of magnitude between
genetic variants and continuous exposures require a
sample size of up to 30,906 subjects [86]. In this paper,
50% of the included studies had a sample size below
2562 individuals. Just four studies exceeded 30,000 par-
ticipants, and two of them did not clearly state the MAF
frequency [75, 77]. The lack of information on the main
factors involved in calculating power in almost half of the
included studies limited the evaluation of their sample
robustness for detecting gene-diet interactions. Nota-
bly, of the four studies that exceeded 30,000 participants,
only one found a significant interaction [77].

Comparing specific foods and gene variants gener-
ates multiple comparison scenarios that could increase
the Family-wise error rate [87], where the probability
of false-positive findings increases with each additional
comparison [88]. Therefore, including a correction for
multiple testing is a suitable approach in studies with
these phenomena, even though in this study, just two
studies stated a correction for multiple comparisons in
their methodology [17, 78].

Alcohol was the most evaluated exposure; its interac-
tion with the CETP polymorphism (rs708272) was not
consistent for CHD. The results did not agree with the
direction of reported interactions, and most of the inter-
actions lost statistical significance in the sex-stratified
analysis. The low prevalence of alcohol intake could
explain this difference and hypertriglyceridemia in the
populations evaluated. [12, 45]. In addition, only two
studies included incident cases. However, the protective
effect of the CETP-alcohol interaction could be related
to the synergy between the B2 allele of CETP, which is
associated with lower plasma CETP activity [89], and the
inhibitory effect of alcohol on CETP activity [12]. Both
may increase HDL concentrations, decrease LDL and
VLDL fractions, and, consequently, reduce CVD risk.

Similarly, concerning lipid metabolism, a matched
case—control study reported an interaction between
the ADHIC variant and alcohol intake that decreases
the incidence of MI in men who drank daily and were
homozygous for the y2 allele. Carriers of the y2 allele are
slow metabolisers of alcohol, which could enhance the
beneficial effect of moderate alcohol consumption on
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lipid metabolism. In addition, the study stated that up to
50% of the observed decrease in MI risk could be attrib-
uted to increased HDL levels [37]. However, findings on
ADHIC polymorphism and alcohol interactions were not
homogeneous, and five studies did not report significant
interactions, even though different alcohol intake cat-
egories were tested among these studies [11, 13, 39, 47,
55]. These findings suggest that the interactions between
alcohol consumption and the ADHIC variant on CVD
might be mediated through mechanisms independent of
HDL cholesterol [69].

The increased risk of MI in the WENBIT trial could
be explained by the association of vitamin B6 and folate
intake with elevated hepatic adenosylmethionine (SAM).
SAM is an inhibitor of betaine-homocysteine methyl-
transferase, an enzyme that regulates hepatic lipids and
induces ApoB expression and VLDL assembly. Further-
more, the MTHFD1 variant (rs1076991) minor T-allele
has been associated with an approximately 62.5% drop-in
transcription rate of the MTHFD1 enzyme, which could
also be associated with intercellular SAM accumulation,
conditions that lead to dyslipidaemia and the consequent
increased CVD risk [16]. However, when MI was evalu-
ated as part of CVD composite outcome or individually
in WHS, the folate or B-vitamin—MTHFD1 interaction
was not found [79]. It is important to note that meta-
analyses of the association of MTHFR and CVD have
found substantial geographical heterogeneity and null
associations for MTHFR and CVD in North American
populations, such as women involved in the Women’s
Health Study [79].

Strengths and limitations

A significant strength of this paper is the comprehen-
sive search strategy implemented to retrieve gene-diet
interaction studies. We included all food and dietary
exposures and epidemiological designs, providing a com-
prehensive overview of the literature. Also, we provided a
critical evaluation of the quality of the current evidence
on the topic. In addition, the included studies point to
several biological mechanisms that could underlie the
differences in the susceptibility to food/diet exposures
and cardiometabolic diseases. However, it is a limitation
for this study that, so far, no gene-diet interaction criti-
cal appraisal tool has been developed. This tool could
standardise the evaluation of the studies’ risk of bias and
methodological quality, identifying the most significant
weaknesses. Other issues were the lack of replication in
the evaluation of interactions, few studies evaluated the
same dietary and genetic exposures (SNP, GRS). Moreo-
ver, authors evaluating the same genetic variants used
different genetics models (e.g. recessive model, co-dom-
inant model or dominant model). This heterogeneity
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limited the synthesis of the findings and are also a great
weakness for the progress in the identification of popu-
lation at higher risk of cardiometabolic diseases due to
their genetic background and food/diet exposures.

Future research and implications

Identifying the mechanisms underlying gene-diet inter-
actions is a priority; therefore, variants identified in
GWAS are required to be investigated in functional
studies, a challenge that could benefit from computa-
tional modelling. In addition, studies assessing interac-
tions should provide more information on the origin of
biases in the genetic exposures assessed (genotype mis-
classification, population stratification). Future studies
should analyse samples with a suitable size for evaluating
interaction hypotheses, for which data sharing through
consortia may play a crucial role. Replication in inde-
pendent samples is also essential, for which the selection
of a single reference group is a critical factor in facilitat-
ing the comparability among studies. Besides, studies
should provide information on the size of interactions
and the effects of gene and dietary exposures separately
and in joint effect. Even though it was out of the focus
of the current study, recent studies have shown that envi-
ronmental factors including dietary compounds may
modulate gene expression, influence DNA methylation
processes, and regulate histone and microRNA assem-
bling, which on the other hand may affect risk of diabetes
and cardiovascular disease [90]. Therefore, multi-omics
approaches investigating how genetics and epigenetics
(and other omics pathways) interact with diet in affecting
risk of cardiometabolic diseases should be considered in
the future. Finally, the use of prospective data that allows
the evaluation of gene-diet interactions effects on inci-
dent outcomes should be prioritised.

Conclusion

Current evidence for gene-diet interaction in CVD is lim-
ited, as most interactions have been evaluated in single
studies, without multiple correction testing, and mainly
in European ethnicities; furthermore, studies have lim-
ited information to assess the robustness of sample size.
Therefore, data-sharing platforms that combine large
studies are needed to address current methodological
problems and facilitate replication. In addition, prior-
ity should be given to the inclusion of diverse ethnicities
and sample size-focused reporting to provide more con-
clusive evidence of gene-diet interaction with CVD
that allows the development of nutritional personalized
interventions.
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