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ABSTRACT Fifth-generation (5G) empowered internet of things (IoT) edge networks suffer from latency
in delay-sensitive applications. To fulfil the low latency requirements of beyond fifth-generation (B5G)-IoT
applications and provide quality of service (QoS) to IoT-edge communication, it is important to minimize
server delay. Furthermore, 5G-IoT systems consume more power than their predecessors, which is a concern
given the growing size of future IoT networks. This research presents a hybrid latency and power-aware
approach for B5G-IoT networks (HLPA B5G-IoT) that minimizes latency with minimum overhead on
battery-constrained IoT nodes while simultaneously providing a power-efficient solution for B5G-IoT-edge
networks. HLPA B5G-IoT has a novel algorithm classifier tool (ACT) for selecting appropriate optimization
algorithms based on the characteristics and requirements of B5G-IoT systems. The ACT matrix not only
parametrically compares HLPA B5G-IoT with existing approaches but also identifies crucial parameters that
enable algorithm selection for load balancing and energy efficiency. In this paper, metaheuristic algorithms,
i.e., biogeography-based optimization (BBO) and grey wolf optimization (GWO), are tailored to meet the
requirements of load balancing and power efficiency in IoT-edge systems. The proposed load-balancing
algorithm reduces latency and improves overall network performance by 33.33%, 27.45%, 23.52%, 21.56%,
13.72%, 11.76%, and 7.84% compared with simulated annealing (SA), genetic algorithm (GA), particle
swarm optimization (PSO), bacteria foraging algorithm (BFA), ant colony optimization (ACO), bat algorithm
(BA), and genetic SA PSO (GSP), respectively. The power-efficiency algorithm consumes 46.6%, 40%,
32.2%, 27.7%, 15.5%, 11.1%, and 6.6% less energy compared with SA, GA, PSO, BFA, ACO, BA, and
GSP, respectively.

INDEX TERMS Beyond fifth-generation, edge computing, Internet of Things, latency, load balancing,
power consumption, workload allocation.

I. INTRODUCTION
With the arrival of beyond fifth-generation (B5G) technol-
ogy, the internet of things (IoT) is expected to generate a
large volume of data through diverse applications, e.g., smart
everything, augmented reality, and self-driving cars. These
applications are complex and time sensitive; they require
real-time data processing to produce optimal results [1],
[2]. B5G networks are expected to have extremely low
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latency, live response, high processing capabilities, and low
power consumption. Currently, there is a need for technolog-
ical advancement toward B5G networks due to a mismatch
between the requirements of large IoT-enabled applications
and fifth-generation (5G) networks [1], [3], [4].

Cloud computing has become increasingly popular in
recent years as a method of improving computing capabili-
ties, but, for time-sensitive IoT applications, it has a number
of problems: high energy consumption and poor quality of
service (QoS) provisioning [5], [6]. Data transmission to
a remote cloud can take a long time, as cloud-computing
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FIGURE 1. An IoT-edge system.

servers are often located in remote data sources. The problem
is exacerbated by the increasing number of mobile devices
and network sizes, which results in a high network load
and thus unacceptable network delays. Furthermore, sending
large amounts of data to the cloud necessitates increased
bandwidth and consumes a significant amount of network
energy. Edge computing is an extension of cloud computing
for QoS provisioning, which, in IoT-edge systems, uses ter-
minal edge devices with storage and computing capabilities
to offload computation requests to nearby edge servers and
thereby reduces network latency [7]. Edge servers have lim-
ited computation resources comparedwith cloud servers, and,
therefore, they cannot handle a large number of computation
requests. Furthermore, the network energy consumption of
edge computing may surpass that of cloud computing for
highly loaded systems andmultiple requests. As a result, min-
imizing latency and power consumption in IoT-edge systems
is critical to ensure QoS for the end user. The architecture of
an IoT-edge system is depicted in Fig. 1, where independent
IoT networks interact with the cloud server through respective
edge nodes (ENs). In this way, an IoT network can fetch
relevant information efficiently and quickly from the cloud
using the corresponding EN.

A. MOTIVATION AND CONTRIBUTION
This subsection explains the motivation and contribution
of the proposed approach in a profound manner. Workload
allocation, load balancing, and energy efficiency are chal-
lenging tasks for B5G-IoT networks due to the heteroge-
neous and dynamic traffic characteristics of IoT-edge servers.
A B5G-IoT network is made up of large number of tiny IoT
nodes and must offload data from nodes and IoT devices
evenly among ENs to optimize network bandwidth, net-
work latency, and network processing time. This is important
because inefficient task-offloading schemes increase latency
and power consumption in the IoT-edge network [8]. Further-
more, existing task-offloading algorithms seldom prioritize
power-consumption reduction in IoT-edge networks, which
results in poor network performance [9], [10], [11], [12]. The
paper contributions are as follows:
• Load balancing and minimizing power require distinct
features and parameter settings, and, therefore, they
cannot be optimized using a single approach. Some evo-
lutionary algorithms are suitable for load management

in B5G-IoT systems, whereas some swarm-based
approaches are suited for minimizing power dissipation.
As a contribution, this research presents a hybrid tech-
nique to fulfil the aforementioned performance param-
eters. An algorithm classifier tool (ACT) is developed
to facilitate the selection of appropriate metaheuristic
algorithms based on their characteristics and the require-
ments of B5G-IoT systems. The coordination of IoT
system requirements and algorithm features is essential
for optimal performance.

• Minimizing latency and power consumption in an
IoT-edge network is a major challenge due to the
power constraints of IoT nodes. Many existing
workload-allocation algorithms use comparison meth-
ods [13], Markov decision processes [14], and greedy
search methods, which are computationally complex
and thus cause battery and memory drainage. This
research presents two novel parameters to optimize
the load distribution and power dissipation of B5G-
IoT systems, i.e., active load index (ALI) and effective
power coefficient (EPC), respectively. ALI not onlymin-
imizes latency but also improves the edge-response time.
To further manage the load distribution, this article mod-
ifies the traditional mutation step of biogeography-based
optimization (BBO). The dynamic mutation of BBO
is a simple and effective approach for large B5G-IoT
networks.

• A majority of existing methods primarily focus on task
offloading, with power consumption being a secondary
consideration [9], [10], [11], [12]. Excessive power
consumption in IoT-edge systems may result in inac-
tivity and disconnection. This research proposes EPC,
which optimizes the data-transmission process between
ENs and end users to minimize power consumption in
an IoT-edge system.

• B5G-IoT networks require light, efficient, and scalable
task-allocation techniques due to their increasing size
and limited resources. This paper presents a hybrid
latency- and power-aware approach for B5G-IoT net-
works (HLPAB5G-IoT) usingmetaheuristic algorithms,
i.e., BBO [15] and grey wolf optimization (GWO) [16].
BBO and GWO have better convergence rate than prior
metaheuristic algorithms, e.g., genetic algorithm (GA),
ant colony optimization (ACO), and particle swarm opti-
mization (PSO). HLPA B5G-IoT is lightweight, and
simple, making it ideal for resource-constrained IoT
nodes. A hybrid metaheuristic framework that uses dif-
ferent algorithms based on diverse system requirements
has not been implemented in the literature to improve
the performance of B5G-IoT-edge systems.

This paper is structured as follows: Sections II and III
explain a literature review and problem formulation, respec-
tively; system, delay, and energy models are discussed in
Section IV; the proposed algorithm is explained in Section V;
results and conclusion are presented in Sections VI and VII,
respectively.
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II. RELATED WORK
Edge computing is a trending research area in IoT. Many
offloading and delay-minimizing algorithms have recently
been proposed for mobile edge computing (MEC) [17]
and fog computing [18]. Reference [19] proposed a mobile
offloading strategy for improving wireless-transmission
access efficiency in MEC systems. Reference [20] used the
Markov model to develop a delay-minimizing method for
MEC systems. To minimize overall service delay, [21] pro-
posed a delay-reduction strategy for fog computing systems.
Reference [22] focused on the trade-off between reliability
and task latency in offloading services to MEC systems.
Reference [23] focused on improving network performance,
which was measured using network utility, network work-
load, and service delay. Reference [24] focused on resource
allocation to improve the performance of real-time fog com-
puting, the goal of which was to identify a balance between
a high task-completion rate and a high throughput. Refer-
ence [25] presented a cache-aware edge-offloading scheme
for IoT-edge cloud systems. Their work added a sharable
cache to the edge server by allowing data to be shared across
multiple computing processes to reduce job delays. Refer-
ence [26] proposed a dynamic microservice mechanism to
reduce edge-server delay and complexity.

Metaheuristic approaches have been employed to
handle other technical optimization problems. Refer-
ences [27], [28], [29], [30], [31] used a combination of
bio-inspired approaches to solve the reactive power-source
planning problem. Reference [32] presented a hybrid meta-
heuristic approach to reduce the cost of microgrid systems.
References [33], [34] proposed a modified version of the
original whale optimization approach and the Harris hawk
optimizer to solve complex optimization problems. Refer-
ence [35] used neural networks for dynamic clustering in IoT.
Reference [36] presented multiagent system clustering for
efficient resource assignment in massive IoT. Reference [35]
and [36] employed backpropagation neural networks and
convolutional neural networks, respectively, for IoT perfor-
mance optimization. Reference [37] used distributed artificial
intelligence for active resource allocation in IoT, the results of
which suggest that high-performance resource management
is achieved by merging cognitive radio with wireless sensor
networks (WSNs). References [38] and [39] used simulated
annealing (SA) to improve the performance of MEC and
photovoltaic systems, respectively. Reference [40] used GA
to present a data replica-placement approach that can be
used for scientific purposes. However, GA has a poor local
search capability, resulting in poor performance at later
stages. Reference [41] presented a cloud-based workflow-
scheduling approach to reduce the application cost using
PSO. Reference [42] proposed a hybrid bacteria foraging
algorithm (BFA) for optimal task scheduling, the objective
of which was to reduce network makespan and energy con-
sumption. ACO was proposed by [43] for task offloading in
fog computing; their research model focused on fog-node
service rate as a performance metric for IoT networks.

Reference [44] proposed a network model that caters for
inadequate computing capabilities and limited battery power
of user equipment; they employed Dinkelbach’s algorithm
and a bat algorithm (BA) for performance optimization.
Reference [45] improved the performance of smart mobile
devices using genetic SA PSO (GSP). The authors focused
on task-execution time and data-transmission time. Refer-
ence [46] provided resource allocation and task offloading
services in an IoT system using a multi-unmanned aerial
vehicle (UAV) approach. They employed UAVs as aerial
base stations for the edge network. Reference [47] presented
a smart packet transmission strategy for reward clipping
that assures high reliability and excellent packet delivery.
To handle intelligent transmission scheduling in cognitive
IoT systems, they employed a combined approach of gener-
ative adversarial network and deep distribution Q network.
Reference [48] presented a policy gradient-based actor-
critic learning approach for minimizing power, resolving the
resource block and providing a solution for ultra-reliable
and low-latency communication scheduling by optimizing
the policy gradient for optimal rate allocation. Mixed-integer
linear programmingwas used by [49] to reduce latency in IoT-
edge applications; the authors also minimized the dimension-
ing cost of fog nodes. Reference [50] presented a service com-
position method using a device–edge–cloud combination.
In their research, task allocation was based on service-request
priority and branch-preference estimation. Reference [51]
proposed a three-layer offloading scheme. Their architecture
minimized the quantity of data transferred to the cloud and
reduced latency by processing data locally on the device
layer.

Many researchers throughout the world have recently
focused on 5G and B5G-IoT communication. A network
slicing strategy for 5G enabled IoT services was presented
in [52]. Their approach used dynamic 5G slice allocation
to allow the execution of concurrent IoT applications. Ref-
erence [53] presented a detailed survey of physical layer
security frameworks in 5G IoT. The authors examined var-
ious security attacks and threats, as well as associated chal-
lenges. Reference [54] covered the new features introduced in
releases 16 and 17 of 5G standard. The authors discussed both
present and upcoming 5G features including fast data rate
and reliability. Reference [55] merged edge computing with
multi-tier integrated blockchain to ensure enhanced security
for B5G-IoT networks. Reference [56] focused on ensuring
QoS for B5G-IoT network and presented an approach to spec-
ify node-specific QoS requirements at each individual node
in B5G-IoT. Reference [57] emphasized on minimizing the
latency in B5G-IoT networks based on the analog-to-digital
compression radio-over-fiber approach. Reference [58] pro-
posed an algorithm tomaximize the number of served devices
in B5G-IoT using nonorthogonal multiple access (NOMA).
Reference [59] combines the features of artificial intelli-
gence and blockchain for improving the performance of B5G-
IoT edge system. They used a collaborative approach to
address computational, storage, intelligence and connectivity
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TABLE 1. Parametric comparison of state-of-the-art algorithms with the proposed approach.

issues in IoT nodes. Reference [60] maximized the usage
of underutilized edge resources to minimize the turnaround
time for applications in 5G IoT. They employed dynamic
resource allocation to minimize service response time. Very
recently, [61] proposed a new multiple access approach for
massive machine-type communications in B5G-IoT. Their
approach was designed to support a large number of IoT
devices with sporadic traffic.

A. RESEARCH GAPS AND PROFOUND CONTRIBUTIONS
A majority of existing algorithms [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61] overlook the varying characteristics
of B5G-IoT-edge systems. Furthermore, [52], [53], [54], [55]
and [57], [58], [59], [60], [61] have ignored the hetero-
geneous nature and ever-increasing size of B5G-IoT net-
works. Load balancing and power minimization need dis-
tinct characteristics and parameter settings, and so cannot
be optimized using a single approach. Power consump-
tion is a critical concern in B5G-IoT networks due to
the large number of battery-constrained IoT nodes, which
demand light, efficient, fast, and scalable task-allocation
strategies. Existing techniques in [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61] do not account for the aforemen-
tioned research gaps.

This paper develops a novel ACT that selects metaheuristic
approaches based on the requirements of a IoT-edge network.
A hybrid metaheuristic framework with the novel parameters
ALI and EPC is proposed to minimize latency and power
consumption in B5G-IoT-edge networks. GWO and BBO are
used for optimization, which are efficient, light, and simple
approaches that suit the needs of B5G-IoT networks. The evo-
lutionary method BBO is selected for load balancing because
its unique habitat structure ensures that user requests can be
allocated to ENs. Unlike swarm-based algorithms such as
PSO and BA, BBO has a mutation step that may be modified
to improve server latency for delay-sensitive IoT applications.
A parametric comparison of state-of-the-art art algorithms
with proposed approach is presented in Table 1 that highlights
the existing research gaps.

III. PROBLEM FORMULATION
End users use edge computing to run a variety of application
programs. Each application program must be uploaded to
an EN for processing, resulting in a large number of user
requests. This process causes long end-user queues and high
EN energy consumption, which necessitates the need for
workload allocation and energy conservation.

As a hypothesis, B5G-IoT network consist of many small
battery-operated nodes with low computational and memory
capabilities. It is essential that the workload allocation and
power-efficiency algorithms are lightweight and do not add
unnecessary overhead to IoT nodes. Letting ηi denote the
edge server response time to ith user request and Un be
the number of incoming end users, the hypothesis can be
expressed as

ηiαUn, 1 < i < Un (1)

Equation (1) shows that the processing time for an incom-
ing user request for the edge server increases as the num-
ber of incoming requests grows, which thereby delays the
edge-server response in real-time applications. According
to [62] and [63], there is a direct link between CPU utiliza-
tion and a server’s overall power consumption: The power
consumed by a server grows linearly as CPU usage increases,
which can be expressed as

PS = Si + (Su − Si)× Ct (2)

where PS denotes the total power consumed by server, Si is
the power dissipated by a server in idle state, Su denotes server
power dissipation when it is fully utilized and Ct denotes the
CPU utilization.

A. COMPUTATIONAL CAPABILITY
Computational capability is the maximum rate at which the
server can process a task, e.g., Pci ∼ fi, where Pci denotes the
computation capacity of the ith EN and fi is the CPU-cycle fre-
quency. In this paper, we assume that Pci ≤ fi. Balancing the
EN computational load during real-time incoming requests
and minimizing EN power consumption can respectively be
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expressed as

Minimize X = IQR(Li) (3)

Minimize Y =
n∑
i=1

Pi (4)

where Li is the load assigned to the ithEN,Pi is the power
consumption in the ith EN, and n is the total number of ENs in
an IoT-edge system. Equation (3) minimizes the interquartile
range (IQR) for the load assigned to each EN. IQR is analo-
gous to standard deviation but provides more accurate data.
Equation (4) minimizes the total power dissipation in an IoT-
edge system.

IV. MODEL DESCRIPTION
A. SYSTEM MODEL AND TRAFFIC MODE
As a hypothesis, the networkmodel in this research comprises
of multiple IoT regions and ENs, as shown in Fig. 1. The
computing requests for an IoT region are sent to the EN
assigned to that region. The EN decides whether to handle
the workload of an incoming request locally, move it to
another EN, or send it to the cloud. Taking M IoT regions,
we can consider unlimited computation resource for a cloud
while the resource assigned to an incoming request by the
edge server is limited. This research uses single carrier fre-
quency division multiple access (SC-FDMA) and orthogonal
frequency-division multiple access (OFDMA) for the uplink
and downlink, respectively. SC-FDMA is a modified form
of orthogonal frequency-division multiplexing and is pre-
ferred for uplink due to its low peak-to-average power ratio.
OFDMA is used for downlink in long-term evaluation (LTE)
and 5G applications due to its large bandwidth, low collision
rate, and improved network performance [64], [65], [66]. The
bandwidth for OFDMA in this paper is 10 MHz [66].

B. TYPES OF USER
IoT nodes are connected to a cellular network as end users
in the proposed research. This paper considers a multiuser
IoT-edge system in which end users utilize edge computing to
execute various application programs. Each application must
be uploaded to an edge node for processing. The proposed
IoT network consists of a large number of battery-powered
IoT nodes with limited computational and memory capacity.

C. DELAY MODEL
In the coming sections, Xi (t) denotes the total number of
computation jobs generated by an IoT region and processed
by an EN, E[Xi (t)] denotes the long term job generation rate,
and Vr denotes the expected size of jobs in the ith region
given by Vr = E[Xwi(t)Xi(t)

], where Xwi (t) is the total aggregated
workload.

There are three transmission paths in this paper: EN–cloud
transmission path, EN–end-user transmission path, and the
transmission path between neighboring ENs. Letting wi,j
denote the transmission-route bandwidth from the ith EN
to the jth EN, then the transmission delay for the incoming

request can be expressed as

T rdelay(i,j) = comm (i, j)+
Vr
wi,j

(5)

where comm (i, j) is the network delay caused by factors such
as congestion [67].

D. ENERGY CONSUMPTION MODEL
We use an energy model similar to that of [67], as discussed
below.

1) COMPUTATION ENERGY CONSUMPTION
IN AN EDGE NODE
Computation energy consumption (CwFi (t)) for the ith EN at
time t is defined as a function of workload allocation.CwFi (t)
can be expressed as

CwFi (t) = uf (Xwi(t))2 + vf (Xwi(t))2 + wf (6)

where uf > 0 and vf ,wf >= 0 are factor parameters and
Xwi (t) denotes the aggregated workload for time t [67].

2) TRANSMISSION ENERGY CONSUMPTION
The transmission energy consumption in path from i to j can
be expressed as

Cwcommi,j (t) = u(i, j)Uw(i, j)(t) (7)

where u (i, j) > 0 denotes the transmission power; Uw(i, j)(t)

denotes the transmission workload for time t [67].

3) TOTAL ENERGY CONSUMPTION
In an IoT-edge system, the total aggregated energy consump-
tion Cw is calculated as the sum of energy consumption in
all computing nodes and all communication paths, which
are calculated in (6) and (7), respectively. Accordingly, the
total aggregated energy consumption in an IoT-edge system
is calculated by summing (6) and (7), i.e.,

Cw = E[
∑
i∈T

CwFi (t)+
∑
i∈T

∑
j∈T∪G

Cwcommi,j (t)] (8)

where T is the EN space as well as the IoT region space and
G is the cloud space, which includes one cloud [67].

V. HYBRID LATENCY- AND POWER-AWARE MODEL
Edge computing enables end users in IoT-edge systems to
access resources faster but at the expense of increased net-
work computation latency and power consumption. Users
must wait in line for lengthy periods of time, which makes it
difficult to handle a large number of incoming requests. This
paper proposes a hybrid approach for minimizing delay and
power dissipation in B5G-IoT-edge systems. The proposed
approach begins with ACT to select an appropriate method-
ology, after which it moves on to frameworks that achieve low
latency and optimal energy dissipation in a B5G-IoT-edge
system.
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FIGURE 2. ACT flowchart.

A. ALGORITHM CLASSIFIER TOOL TO MINIMIZE LATENCY
AND POWER CONSUMPTION
Selecting an appropriate algorithm is crucial for minimizing
latency and power consumption in B5G-IoT-edge systems.
This research investigates the properties and requirements
of the aforementioned performance metrics and proposes
an algorithm selector. Load balancing necessitates the opti-
mal distribution of user requests among edge servers, and
swarm-based algorithms such as PSO and GWO may not
produce good results because they do not have a mutation
step in their optimization process. Alternatively, evolutionary
algorithms such as GA and BBO include a mutation process,
which might be useful in load adjustment.

In traditional evolutionary approaches, the candidate solu-
tion mutates based on a random probability, which is ineffec-
tive for load management because there is no control over

which genes are mutated in a candidate solution. Accord-
ingly, this research presents a modified mutation mechanism
in which each gene (mapped to an edge server in a B5G-
IoT-edge system) may be manually mutated to balance the
load and minimize latency. This approach is implemented in
Section V.B. (6).

Minimizing power requires fast and light metaheuristic
algorithms due to the battery constraints of low-powered sen-
sors in B5G-IoT systems. The ever-increasing size of future
IoT necessitates limiting energy dissipation in nodes with
minimal overhead. Evolutionary algorithms such as GA and
BBO may be inefficient for this purpose, as they are heavy,
complex, and have more parameters to adjust, which results
in significant overhead. Swarm-based algorithms, such as
GWO, have fewer operators and parameters to adjust since
they do not involve crossover, mutation, and elitism, and
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TABLE 2. ACT matrix.

they can be used to optimize power consumption in tiny IoT
nodes. Furthermore, unlike evolutionary algorithms, swarm-
based approaches preserve the best solution obtained from
previous generations. The ACT flowchart is shown in Fig. 2.
Table 2 shows a matrix of B5G-IoT system requirements and
metaheuristic algorithm attributes. The matrix can be used as
a part of the ACT to determine the optimal algorithm based
on system requirements.

From the ACT, it is evident that evolutionary algorithms
and swarm-based approaches are well-suited to balancing
load and minimizing power consumption in a B5G-IoT-edge
system, respectively.

B. MINIMAL-LATENCY SIXTH-GENERATION
INTERNET-OF-THINGS SYSTEM USING ACTIVE LOAD INDEX
A B5G-IoT system receives a large number of requests
from IoT nodes, which are handled by edge servers. This
paper uses a novel parameter, i.e., ALI, to balance the load
among ENs.

1) ACTIVE LOAD INDEX VECTOR
For the ith EN (Eni ), ALI can be expressed as

ALI i =
(Eenergy(i)− (Ediss (i))

(Ediss(i))
(9)

where Eenergy(i) is the initial energy of Eni and Ediss(i) is the
energy dissipated by Eni . In essence, ALI i is the approximate
lifetime of Eni in terms of rounds. The proposed algorithm
computes the ALI for each EN in an IoT-edge system and
stores it in a vector, as shown in Table 3. Equation (9) is
used to calculate the ALI value of Eni . The ALI-vector size
is equal to the total number of ENs (n) in the network. For
implementation purposes, the ALI values are rounded off and
stored as integers in the ALI vector. These ALI values are
important in load balancing and are utilized to calculate the
fitness function in Section V.B. (3).

After formulating the ALI vector, the problem is mapped
to BBO and followed by implementation.

TABLE 3. ALI vector.

FIGURE 3. BBO habitat representing the assignment of end users to ENs.

2) MAPPING OF WORKLOAD-ALLOCATION PROBLEM
A candidate solution is represented by a habitat in BBO.
The habitat suitability index (HSI) represents the fitness of
a candidate solution [15]. The HSI values for each candidate
solution are calculated and ranked accordingly. Letting the
edge server consist of n number of ENs to handle the incom-
ing requests in an IoT-edge system, BBO is initialized by
randomly assigning end users (U1,U2 . . . ..Un) to respective
ENs (En1 ,En2 ,En3 . . . ..Enn ) in a habitat, as shown in Fig. 3.

3) FITNESS FUNCTION
The fitness function (F1) is used to determine the fitness for
each habitat in BBO. It minimizes the IQR for the ALI of
all ENs, which results in an equal EN lifespan, and it can be
expressed as

F1 = Minimize [IQR (ALI )] (10)

By providing an equal lifespan, the workload is evenly
distributed among the ENs in an IoT-edge system.

4) MIGRATION IN BIOGEOGRAPHY-BASED OPTIMIZATION
Migration maintains population diversity; it is performed
according to immigration rate (λ) and emigration rate (µ),
which can be expressed as

λi = I ×
(
1−

ki
Ht

)
(11) (11)

µi = E ×
(
ki
Ht

)
(12)
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FIGURE 4. (a). Identifying overloaded ENs. (b). Selective mutation process
in BBO.

where I and E are the maximum values of λ and µ, respec-
tively, ki is the rank of habitat (hi) and Ht denotes the total
number of habitats [15].

5) MUTATION IN BIOGEOGRAPHY-BASED OPTIMIZATION
Mutation in BBO randomly mutates the habitat according to
mutation probability mi, which can be expressed as

mi = mmax ×
(
1− Pri

/
pmax

)
(13)

where mmax is the maximum probability of mutation, Pr i is
the probability of a solution existing and pmax is themaximum
probability of Pr i [15].

6) MODIFIED MUTATION IN BIOGEOGRAPHY-BASED
OPTIMIZATION
This research presents modified (selective) mutation, which
plays a pivotal role in balancing EN load. From the habitat
representation of end users and ENs in Fig. 4(a), it is evi-
dent that En2 is overloaded, as it is assigned the maximum
number of end users during the workload-allocation process.
As shown in Fig. 4(a)–(b), selective mutation identifies the
least loaded ENs (En1 is least loaded in this case, as it is
assigned two end users), removes the end user assigned to the
overloaded ENs (En2 in this case), and reassigns it to the least
loaded ENs (En1 ). The selectivemutation not only reduces the
load of overloaded ENs but also balances the overall network
load.

The proposed algorithm minimizes latency in a B5G-IoT-
edge system by ensuring equal workload distribution among
all ENs. Algorithm (1) shows the pseudocode for workload
allocation and low latency based on BBO.

C. MINIMIZING POWER CONSUMPTION IN
SIXTH-GENERATION INTERNET-OF-THINGS SYSTEMS
USING EFFECTIVE POWER COEFFICIENT
1) EFFECTIVE POWER COEFFICIENT
In large IoTWSNs, data forwarding via lengthy transmission
routes consume a significant amount of energy. This paper
presents EPC to minimize power consumption in a B5G-IoT
system, which is calculated as a combination of transmission
energy (ρ) and effective residual energy (9), the former of

Algorithm 1Workload-Allocation Approach for Load
Balancing in B5G-IoT-Edge Systems Using BBO

1. Use ACT to select appropriate algorithm for load balance.
2. Begin with population size Psi and maximum iterations

Imax .
3. While iteration < Imax , for each iteration do
4. for each habitat hi do
5. Workload assignment process
6. Clone ENs and end users to hi.
7. Load balancing process
8. To balance the load, compute the fitness of each

habitat using (10).
9. Perform migration using (11) and (12).
10. Perform modified mutation as per Fig. 4 (a–b).
11. Chose the habitat with the best fitness.

end
end

12. Optimum workload allocation and balanced IoT-edge
system is obtained after BBO convergence.

which can be expressed as

ρ =
1
n

∑n

i=1to
(8+ κ) (14)

where κ denotes the energy dissipated in data transmission
between any two consecutive ENs and 8 denotes the energy
consumed in data transmission from an EN to its respective
end user in an IoT-edge system which in turn depends on
the distance between an EN and its respective end user as
expressed below.

8= average of distance between[(
U1,En1

) (
U2,En2

) (
U3,En1

) (
U4,En2

)
. . . . . .

. . .
(
Un,Enn

) ]
(15)

In a B5G-IoTWSN, power is dissipated after each round. It is
important to select a network scenario where total network
residual power is high. 9 is the sum of network residual
energy and node residual energy. Accordingly, EPC can be
expressed as

EPC = ρ +
1
9

(16)

2) MAPPING INTERNET-OF-THINGS EDGE SYSTEMS TO
GREY WOLF OPTIMIZATION
GWO optimization is based on wolf hunting, with top three
fittest wolves denoted by α, β, and δ, and the rest denoted
by ω [16]. GWO converges to the optimum solution by an
exploration–exploitation process. In exploration, the wolves
search for the best solution, and, in exploitation, they con-
verge to the optimum solution [16].

The power-efficiency algorithm involves mapping the
problem to GWO, followed by implementation. Each wolf
(wi) is denoted by a vector of size n, as shown in Table 4.

A wolf (wi) contains many genes (g), which, in the vector,
are represented as 1 for ENs and 0 for end users, and many
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TABLE 4. A WOLF in GWO.

wolves are present in the initial GWO population:

wi (g) =

{
1, if g is an edgenode
0, if g is an enduser

(17)

The fitness function for power efficiency (F2) minimizes
EPC, which can be expressed as

F2 = Minimize (EPC) (18)

3) ENCIRCLING THE PREY (EXPLORATION)
After calculating the fitness, the wolf approaches and encir-
cles its prey (optimum solution) to cease its movement [16].
Mathematically, we represent this as∣∣∣ EC .EXp (t)− EX (t)∣∣∣ (19)

EX (t + 1) = EXp (t)− EA. ED (20)

where t is the current iteration and EXp and EX are the prey’s
position vector and wolf’s position vector, respectively [16].
Vectors EA and EC are calculated as

EA = 2Ea.Er1 − Ea (21)
EC = 2Er2 (22)

Random vectors Er1 and Er2 are enclosed in
interval [0,1] [16].

4) HUNTING (EXPLOITATION)
In GWO, the α, β, and δ wolves are closest to the prey’s
position (optimum solution). Hence, the updated positions of
α, β, and δ are saved as

EDα =
∣∣∣ EC1.EXα − EXwi

∣∣∣ (23)

EEDβ =
∣∣∣ EC2.EXβ − EXwi

∣∣∣ , (24)

EDδ =
∣∣∣ EC3.EXδ − EXwi

∣∣∣ , (25)

where EEXwi is the position of wolf wi, EXα is the position of α
wolf, and EDα denotes the updated position of α. Similarly, EXβ
is the position of β wolf and EDβ denotes the updated position
of β. EXδ is the position of δ wolf, and EDδ is the updated
position of δ. EC1, EC2, and EC3 are calculated as per (22) [16].
For the present iteration, the wolf positions (EX1, EX2, and EX3)
are calculated as

EX1 = EXα − EA1 · EDα (26)
EX2 = EXβ − EA2 · EDβ (27)
EX3 = EXδ − EA3 · EDδ (28)

Algorithm 2 Power Efficiency in B5G-IoT-Edge Sys-
tems Using GWO

1. Use ACT to select appropriate algorithm for power
efficiency.

2. Begin with population size Psi and maximum
iterations Imax .

3. GWO mapping
a) While iteration < Imax for each iteration do

i) For each wolf wi do
ii) Clone ENs and end users to wi.

b) Power-efficiency process
i) To optimize the transmission distance, compute

the fitness of each wolf using (18).
ii) Update leader wolves EXα , EXβ , and EXδ .
iii) Update the wolves’ position using (29).

end
end

c) A power-efficient IoT-edge system is obtained
after GWO convergence.

where EA1, EA2, and EA3 are calculated according to (21) [16].
Finally, the wolf updates its position based on the best solu-
tions for α, β, and δ [16]. Therefore, the optimum solution
can be expressed as

EX (t + 1) =
(
EX1 + EX2 + EX3

)
/3 (29)

In HLPA B5G-IoT, EPC is optimized using GWO, which
minimizes κ and 8, and maximizes 9. As a result,
EPC optimization reduces the energy consumption in
battery-constrained IoT nodes with minimum overhead while
ensuring QoS for end users. Furthermore, the algorithm
classifier tool carefully selects the metaheuristic approach
GWO for optimizing EPC due to its simple structure and
implementation. Since GWO does not involve crossover,
mutation, or elitism, it has fewer operators and parameters
to adjust; hence, it is used to optimize power consumption
in tiny IoT nodes with minimum overhead. Algorithm (2)
shows the pseudocode for the power-efficiency algorithm,
and the detailed architecture of HLPA B5G-IoT is shown
in Fig. 5.

VI. EXPERIMENTAL RESULTS
The performance of HLPAB5G-IoTwas evaluated and tested
for load balancing and power efficiency with seven state-of-
the-art algorithms: SA [39], GA [40], PSO [41], BFA [42],
ACO [43], BA [44], and GSP [45]. The results for load
balancing and power efficiency in an IoT-edge system are
shown in Section VI.A and VI.B, respectively. Algorithm
complexity is explained in section VI.C. Three IoT regions
with ENs were considered, as shown in Table 5. All of the
experimental results are the average of values obtained from
30 independent runs of the proposed algorithm. The initial
computation power of each EN was set to 2.0 GHz in IoT
regions 1-3. The boundary limits of the parameters are given
in Table 6.
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FIGURE 5. HLPA B5G-IoT architecture.

TABLE 5. Parameters.

A. LOAD BALANCING AND MINIMIZING LATENCY IN AN
INTERNET-OF-THINGS EDGE SYSTEM
Fig. 6 compares the service time (measured in milliseconds
(ms)) for multiple incoming IoT operations (measured in
megabytes (MB)) from end users, fromwhich it is evident that
SA and GA have the highest rate of increase in service time.
This is because, when applied to complex optimization, they
are often time consuming and, as a result, cannot converge
to high-quality solutions in a predefined number of itera-
tions. Alternatively, HLPAB5G-IoT uses the BBOworkload-
allocation approach to optimally allocate different types of
application requests to the corresponding ENs and thereby
improve the EN-allocation process and minimizes service
latency. In Fig. 6, the x-axis indicates the number of incom-
ing requests with request sizes ranging from 2 to 100 MB.
In particular, HLPA B5G-IoT minimizes the service delay

FIGURE 6. Service time (milliseconds) for different incoming application
requests.

by 33.33%, 27.45%, 23.52%, 21.56%, 13.72%, 11.76%, and
7.84% compared with SA [39], GA [40], PSO [41], BFA [42],
ACO [43], BA [44], and GSP [45], respectively.

Fig. 7 compares HLPA B5G-IoT with SA [39], GA [40],
PSO [41], BFA [42], ACO [43], BA [44], and GSP [45] in
terms of average latency with varying incoming request size.
In general, as the incoming request size increases, so does the
average latency. This is because more data must be processed
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FIGURE 7. Average latency vs. incoming request size.

TABLE 6. Boundary limits.

when the incoming request size grows. For this paper, the
incoming-request scale is between 0.2 and 1.6 MB/request.
From Fig. 7, it is evident that SA has the maximum average
latency, as it fails to converge to an optimal solution. The pro-
posed algorithm minimizes average latency by distributing
the load across multiple ENs and thereby reduces the queuing
delay for incoming user requests. Indeed, HLPA B5G-IoT
operates with significant low latency compared with existing
approaches.

Fig. 8 compares the proposed algorithm with SA [39],
GA [40], PSO [41], BFA [42], ACO [43], BA [44], and
GSP [45] in terms of convergence, and variation in service
time, from which it is evident that HLPA B5G-IoT has
a shorter service time and converges faster than the other
algorithms. In particular, the proposed algorithm converges
41.27%, 34.04%, 25.95%, 23.40%, 14.89%, 10.63%, and
6.38% faster than SA [39], GA [40], PSO [41], BFA [42],
ACO [43], BA [44], and GSP [45], respectively.

Fig. 9 shows the bar graph for load distribution among
nodes in pure cloud computing (PCC), pure edge computing
(PEC) and HLPA B5G-IoT for low, moderate, and high
incoming-request volumes. PEC is a network scenario that

FIGURE 8. Comparison of HLPA B5G-IoT with existing approaches in
terms of variation in service time and convergence.

TABLE 7. Statistical analysis of HLPA B5G-IoT.

operates without power efficiency and load balancing algo-
rithms, whereas in PCC, all jobs are sent to the cloud server.
As seen in Fig. 9, the load in PCC and PEC is not evenly
distributed, resulting in long queuing delays and latency.
Alternatively, the proposed approach ensures a balanced load
distribution among ENs in the IoT-edge server, resulting in an
even bar graph.

Fig. 10 compares HLPA B5G-IoT with SA [39], GA [40],
PSO [41], BFA [42], ACO [43], BA [44], and GSP [45]
in terms of average latency and incoming requests. In gen-
eral, average latency increases as the rate of incoming end-
user requests grows. This is because an edge server will
require more time to process growing number of requests,
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FIGURE 9. A comparison of load distribution among server odes in pure cloud computing, pure edge computing, and the proposed algorithm.

which, in turn, increases the server latency. As seen in
Fig. 10, SA and GA have the maximum latency due to
their weak convergence, and, therefore, they cannot manage
a burst of incoming user requests, which results in long
queuing delays. The proposed algorithm balances the EN
load and optimizes workload allocation using BBO. This
reduces service latency in an IoT-edge system. For statistical
analysis, the proposed HLPA B5G-IoT algorithm was run
30 times. Table 7 compares the results with state-of-the-art
algorithms.

B. POWER EFFICIENCY IN SIXTH-GENERATION
INTERNET-OF-THINGS EDGE SYSTEM
Power consumption is a serious issue in B5G-IoT networks
due to their ever-increasing size. Both industrial and domes-
tic IoT networks are equipped with battery-operated sensor
nodes that are constrained by limited power. In this section,
HLPA B5G-IoT performance is tested for power efficiency
in the network for a variety of incoming user requests.

The parameters used for implementation are listed in Table 5.
To ensure fair analysis of the impact of request size on
power consumption and end-to-end latency in IoT-edge sys-
tems, incoming user requests were varied in size from 0.2 to
1.6 Mb/request.

Fig. 11 shows the overall power consumption (measured in
Joule (J)) of a B5G-IoT-edge systemwith various edge-server
computation capacities. Edge-server scaling ratios were set to
0.6, 0.8, 1, 1.2, and 1.4. As seen in Fig. 11, overall power con-
sumption reduces with an increase in the processing capacity
of edge servers. For the proposed algorithm, the power con-
sumption is smaller than that of existing approaches for all
types of edge servers. This is because GWO efficiently opti-
mizes the EPC in HLPA B5G-IoT, which minimizes power
dissipation. In particular, HLPA B5G-IoT reduces power
consumption in the system by 46.6%, 40%, 32.2%, 27.7%,
15.5%, 11.1%, and 6.6% compared with SA [39], GA [40],
PSO [41], BFA [42], ACO [43], BA [44], and GSP [45],
respectively.
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FIGURE 10. Average delay vs. number of incoming requests.

FIGURE 11. Power consumption in an IoT-edge system vs. computation
capacity.

Fig. 12 compares HLPA B5G-IoT with SA [39], GA [40],
PSO [41], BFA [42], ACO [43], BA [44], and GSP [45] in
terms of power consumption and request size, from which
it is evident that the power consumption of HLPA B5G-
IoT increases with an increase in the size of user requests.
This is because, with growing user-request size, more servers
are required, which increases the energy consumption. The
power dissipation in SA and GA grows rapidly with a rise
in user-request size. This is because the search scope for SA
and GA is local at each iteration. Alternatively, HLPA B5G-
IoT performs optimally for all incoming request sizes. HLPA

FIGURE 12. Power consumption of the network vs. incoming request size.

FIGURE 13. Power consumption of the network vs. number of incoming
requests.

B5G-IoT can adapt its search capabilities to the current situ-
ation and iteratively evolve globally. It can also dynamically
switch between local ENs and the cloud server according to
the size of incoming requests. Moreover, the switching pro-
cess is optimized during dynamic workload allocation in IoT-
edge systems, which thereby reduces power consumption.

Fig. 13 compares the power consumption of HLPA B5G-
IoT with SA [39], GA [40], PSO [41], BFA [42], ACO [43],
BA [44], and GSP [45], from which it is evident that the
energy-consumption trend is identical to that in Fig. 12.
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FIGURE 14. Power consumption in an IoT-edge system vs. number of
edge servers.

FIGURE 15. Algorithm complexity comparison.

In general, the amount of power consumed increases because,
as the number of user requests grows, so does the number of
required servers. SA is slow and has poor performance, and
ACO fails to produce a high-quality solution. The proposed
approach employs GWO to minimize energy consumption in
transmission channels from the edge to the cloud in IoT-edge
systems, and, therefore, the total network power consumption
decreases.

Fig. 14 presents the system power consumption vs. number
of edge servers. The number of edge servers for this exper-
iment was set to 2, 4, 6, 8 and 10. Generally, the system
power consumption deceases with an increase in the number
of edge servers. On the other hand, when the number of edge
servers is small, offloading techniques deploy more resources
to the cloud to fulfil deadline constrains, resulting in exces-
sive power consumption. HLPA B5G-IoT consumes less
power than its predecessors. In particular, it minimizes power
consumption by 50%, 42.85%, 35.71%, 28.57%, 17.14%,
11.42%, and 7.14% compared with SA [39], GA [40],
PSO [41], BFA [42], ACO [43], BA [44], and GSP [45],
respectively.

C. COMPLEXITY ANALYSIS OF HLPA B5G-IoT
In the initialization phase HLPA B5G-IoT has complexity
O(fp × zp), where fp denotes the total number of agents in
the population and zp is the dimension of the problem. The
fitness function calculation and updating of agents’ positions
also require complexity O(fp × zp). Hence, the complexity
for each generation is O(fp × zp). The overall complexity
for maximum number of iterations is O

(
fp × zp ×MaxIter

)
,

where MaxIter represents the maximum number of itera-
tions. The computation time of GWO is lower than that of
many other metaheuristic approaches such as GA, PSO and
harmony search algorithm [68]. Fig. 15 compares HLPA
B5G-IoT with state-of-the-art algorithms such as SA [39],
GA [40], PSO [41], BFA [42], ACO [43], BA [44], and
GSP [45] for algorithm complexity. It is seen fromFig. 15 that
the proposed approach takes the least time to complete the
operations of an IoT-edge system.

VII. CONCLUSION
Although 5G networks are IoT compliant, B5G networks
ought to be IoT and ‘‘internet of everything’’ compli-
ant. Therefore, this paper proposed a hybrid latency- and
power-aware method for B5G-IoT networks that minimizes
latency with minimum overhead on battery-constrained IoT
nodes and offers a power-efficient solution for IoT-edge
networks. In addition, an ACT was presented to enable the
selection of ideal metaheuristic algorithms based on the char-
acteristics and requirements of B5G-IoT systems. Coordi-
nation of algorithm attributes and system requirements is
necessary for performance improvement. A B5G-IoT server
is expected to handle many delay-sensitive applications that
require latency-free processing. Excessive power consump-
tion in edge servers (both near and far edge) degrades net-
work performance. To address this, HLPA B5G-IoT carefully
modifies BBO and employs GWO to fulfil the requirements
of load balancing and power efficiency in IoT-edge systems.
The load-balancing algorithm reduces the network latency
by 33.33%, 27.45%, 23.52%, 21.56%, 13.72%, 11.76%, and
7.84% compared with SA, GA, PSO, BFA, ACO, BA, and
GSP, respectively. The power-efficiency algorithm reduces
the power consumption by 46.6%, 40%, 32.2%, 27.7%,
15.5%, 11.1%, and 6.6% compared with SA, GA, PSO, BFA,
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ACO, BA, and GSP in IoT-edge systems, respectively. HLPA
B5G-IoT paves the way for future IoT connectivity, as it
reduces power consumption and latency in IoT-edge systems.
5G plays an important role in contemporary IoT, but, for
B5G-IoT networks, the increased usage of automated IoT
systems and data-centric services will require an upgrade
in existing communication standards. HLPA B5G-IoT is a
coherent and creative approach to improve the performance
of IoT-edge systems by optimizing crucial IoT parameters
and variables, and, therefore, it is a major move forward
in B5G-IoT communication.

HLPA B5G-IoT minimizes latency in IoT networks, which
is useful for latency-sensitive applications such as industrial
process monitoring, driverless vehicles, virtual reality, secu-
rity and surveillance. The proposed framework is also use-
ful in applications requiring real-time communication such
as healthcare, telecommunications, and high-speed trains.
The proposed algorithm reduces power consumption in IoT
nodes. Low-power IoT nodes offer a wide range of applica-
tions including home automation, smart warehouses, wear-
able monitoring devices, transportation and logistics. Future
research may include more QoS factors such as data rate,
priority and improved spectral efficiency.
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