
Bidirectional Incremental Evolution in Extrinsic Evolvable Hardware

Tatiana Kalganova
School of Computing, Napier University

219 Colinton Road, Edinburgh, EH14 1DJ, UK
t.kalganova@dcs.napier.ac.uk

Abstract

Evolvable Hardware (EHW) has been proposed as a new
technique to design complex systems. Often, complex sys-
tems turn out to be very difficult to evolve. The problem
is that a general strategy is too difficult for the evolution
process to discover directly. This paper proposes a new ap-
proach that performs incremental evolution in two direc-
tions: from complex system to sub-systems and from sub-
systems back to complex system. In this approach, incre-
mental evolution gradually decomposes a complex problem
into some sub-tasks. In a second step, we gradually make
the tasks more challenging and general. Our approach au-
tomatically discovers the sub-tasks, their sequence as well
as circuit layout dimensions. Our method is tested in a dig-
ital circuit domain and compared to direct evolution. We
show that our bidirectional incremental approach can han-
dle more complex, harder tasks and evolve them more effec-
tively, then direct evolution.

1. Introduction

Evolvable Hardware (EHW) has been introduced as a
target architecture for complex system design based on evo-
lution. However, evolution of a complex system can be a
very difficult task. The reasons for this include:

� Direct evolution in inefficient at evolving a long chro-
mosome string. This problem has been solved by intro-
ducing the variable length chromosome [1], function-
level evolution [2], [3], automatically defined func-
tions [4], divide-and-conquer approach (as a increased
complexity evolution) [5], [6].

� The number of generations required to perform a task
can increase drastically with the complexity of the
task. This is often called a stalling effect. For example,
a two-bit multiplier (4 inputs, 4 outputs) can be easily
evolved after 5 000 generations [7]. Similarly, evolu-
tion of a fully functional three-bit multiplier (6 inputs,

6 outputs) at gate-level requires between 3 000 000
[7] and 10 000 000 generations [8]. According to this
data we can predict that billions of generations are re-
quired to evolve a fully functional 4-bit multiplier (8
inputs, 8 outputs). A similar trend can be observed in
evolutionary robotics. In order to overcome this prob-
lem several researchers in the field of robotics have
demonstrated that incremental evolution can be suc-
cessfully applied to stochastic dynamic problems when
implemented using neural networks [9], [10], [11]. In
incremental evolution, neural networks learn complex
general behaviour by starting with simple behavior and
incrementally making the task more general.

We observe that while methods like the variable length
chromosome [1], etc. are able too handle long chromosome
strings, they fail to address the stalling effect of evolution.
Although, neural network approaches address stalling effect
issues, the definition of their heuristics have been a deterrent
to its application in EHW.

Our research shows that both of the problems mentioned
above can be solved using bidirectional incremental evo-
lution. Our proposed approach significantly differs from
the incremental evolution approaches proposed in the past.
It incorporates two main approaches: Divide-and-Conquer
and Incremental evolution. The principle of our approach
is to divide a complex task into simpler sub-tasks, to evolve
each of these sub-tasks and then merge incrementally the
evolved sub-systems, reassembling a new evolved complex
system. The evaluation tasks and their circuit layout dimen-
sions can be identified using either standard decomposition
methods or EHW-oriented decomposition. In our method
first the evolution defines the partitioning vectors of any
given complex system. These vectors are used to decom-
pose the system into a number of sub-systems. Each of
sub-systems is then evolved separately. If a sub-systems
is not sufficiently partitioned, new partitioning vectors are
defined and the subsystem is decomposed further. This may
continue until a final evolvable sub-system set is defined.
Once all sub-systems have been evolved, they are merged
incrementally into one cost-optimised system.

0-7695-0762-X/00 $10.00 � 2000 IEEE

2. An Extrinsic EHW

Bidirectional incremental evolution can be performed
using any extrinsic or intrinsic EHW. In this work, the ex-
trinsic EHW approach first proposed by J. Miller [12], is
used to evolve sub-tasks. The EHW technique is based on
evolving the functionality and connectivity of a rectangu-
lar array of logic cells whose dimensions are defined by the
circuit layout. Each logic cell in this array is uncommit-
ted and can be removed from the network if it proves to be
redundant. The inputs to any cell in the combinational net-
work may be logical constants and primary inputs as well
as the outputs of logic cells which are in columns to the left
of the cell in question. Each logic function describing the
behaviour of logic cell is specified in advance. The circuit
layout is evolved together with circuit functionality using
a rudimentary (1 + �) evolutionary strategy with uniform
mutation [13], [14]. Evaluation of the circuit is carried out
using dynamic fitness function that allows us to evolve fully
functional circuits as well as reduce their cost in terms of the
number of logic gates used [13], [3].

3. Decomposition of Logic Function

In order to define the partitioning vectors in system,
some knowledge about its decomposability has to be ap-
plied. In this work we will consider both Shannon’s and
output decompositions. Decomposition means breaking a
large logic block into several relatively smaller ones.

According to the Shannon’s expansion theorem the
logic function can be decomposed as follows. Let
f(x1; x2; :::; xn) be any Boolean expression of n variables.
Then Shannon’s theorem in the SOP (sum-of-products)
form says that

f(x1; x2; :::; xn) = f(1; x2; :::; xn)�x1+f(0; x2; :::; xn)�x1:
(1)

The decomposition by outputs is a technique to break a
logic function with many outputs into several functions with
fewer outputs. The functions with fewer outputs can be de-
signed independently.

4. Bidirectional Incremental Evolution

The essential idea of incremental evolution if to scale
the evaluation function (i.e., the ”fitness function” against
which, say, a complex circuit is evolved) over time, with
the aim of minimizing the overall time spent evolving a cir-
cuit that achieves the prescribed task. Incremental evolution
consists of gradually evolving one complex task in a series
of tasks of increasing complexity [15], [16].

Bidirectional incremental evolution consists in gradually
decomposing a complex task into a series of tasks of de-

creasing complexity and in gradually evolving a complex
task into a series of tasks of increasing complexity. In bidi-
rectional incremental evolution, the scaling of the fitness
function is performed during evolution. Decomposition of
the system can be undertaken using standard decomposi-
tion methods or specially designed EHW-oriented decom-
position. The decomposed sub-functions are evolved sep-
arately if they achieve an adequate level of complexity or
can be partitioned into smaller sub-functions. Once, the first
stage is completed, evolved fully functional sub-systems are
gathered into larger complexity sub-systems and evolution
is carried out on these sub-systems. During this stage, evo-
lution is applied in order to decrease the total cost of the
evolved complex system.

The main advantage of the method is that evolution is
not carried out in one operation on the complete evolvable
hardware unit, but rather is a top-down and a up-bottom
ways. The number of inputs and outputs in an evolved sub-
system can be limited to allow faster evolution. The two
main stages of evolution are discussed in detail in the fol-
lowing sub-sections.

4.1. Stage 1. Evolution toward a modularised sys-
tem

During this stage the evolution is undertaken in order to
decompose problem into smaller problems. It can be per-
formed using (1) standard functional decomposition meth-
ods, or (2) EHW-oriented decomposition.

Standard decomposition methods Any of methods
from the decomposition theory can be applied in order to
divide a complex system into sub-systems. Interactive de-
composition, cascaded decomposition, joint decomposition,
etc. can be applied to the complex system if the problem of
combinational circuit design is considered. There is one
disadvantage of using these methods in current approach:
they are designed for target implementation technology or
architectural configurations and they do not adapt to specific
features of evolution. This disadvantage can be removed if
EHW-oriented decomposition is applied.

EHW-oriented decomposition EHW-oriented decom-
position discovers the evaluation tasks as well as their se-
quence automatically. The main idea of this approach is
to define the easily evolved sub-functions and evolve them
separately. Note that the fully functional or nearly fully
functional design has to be obtained for each decomposed
sub-function.

The truth table of an n-input m-output logic function
given on p input combinations contains an input matrix
I(n � p) and an output matrix O(m � p) and can be de-
scribed by this pair of matrices as (I(n � p); O(m � p)).
The logic function is completely specified if p = 2n, i.e. it
is given on all input combinations. For instance, the com-

2

0-7695-0762-X/00 $10.00 � 2000 IEEE

pletely specified 6-input 7-output logic function can be de-
scribed by truth table (I(6; 64); O(7; 64)), where n = 6,
m = 7 and p = 64.

The following metrics can be used in order to define the
quality of an evolved circuit.

The percentage of correct output bits corresponding to
the j-th output, yj is calculated as follows:

fyj
o =

Pp

i=1 jyj � dj j

p
� 100; (2)

where jyi�dij is the absolute difference between the actual
output yi and the desired output di; yj is the vector of the
j-th circuit output. If fyj

o = 100:0 the circuit implements
the output yj completely.

The percentages of correct output bits in the j-th output
for input combinations with xi = 0 and xi = 1 are com-
puted as follows:

fyj
o jxi=0 =

Ppxi=0
i=1 jyj � dj j

pxi=0
� 100; (3)

fyj
o jxi=1 =

Pp�pxi=0
i=1 jyj � dj j

p� pxi=0
� 100; (4)

where pxi=0 is the number of input combinations in the
truth table with xi = 0. If fyj

o jxi=0 = 100:0, the cir-
cuit completely implements the truth table generated from
the output yj with condition that xi = 0.

The EHW-oriented decomposition is performed to
evolve an n-input m-output logic function given on p input
combinations as follows:

1. Define the termination condition of evolution, for ex-
ample, the number of generations Ngen.

2. Evolve the initial complex system implementing the
truth table T0 = (I(n � p); O(m � p)) during Ngen

(gate- or function-level EHW with randomly generated
initial population and with circuit layout evolution).

3. Keep the result of evolution: the genotype of the best
chromosome.

4. Calculate foyj
, (j = 1; :::;m) and fyj

o jxi=0, fyj
o jxi=1,

(i = 1; :::; n).

5. Choose the output partitioning vector vy defined by
the circuit outputs with higher foyj

;

6. IF p is large, THEN Choose the input partitioning
vector vi defined by the higher value of fyj

o jxi=0 or
fyj

o jxi=1 for the circuit outputs specified in step 5,
generate the product partitioning vector vp determined
by input combinations with xi = 0 or xi = 1, ELSE
Go to step 7.

7. Generate the 3 (if the step 6 has been executed) or 2
(if step 6 has not been executed) truth tables of sub-
functions: (1) The easily evolved function is defined
by the truth table with vo and vp partitioning vectors:
T1 = (I(n � jvpj); O(jvoj � jvpj)); (2) The sec-
ond sub-system contains the remaining output combi-
nations for the best chosen product partitioning vector
vp: T2 = (I(n�p�jvpj); O(jvoj�p�jvpj)); (3) The
third sub-system contains the remaining data from the
truth table T0: T3 = (I(n�jvpj); O(m�jvoj�jvpj)).

8. Evolve separately the sub-systems defined in the previ-
ous step. The initial population of the sub-system de-
scribed by the truth table T1 is the final population of
EHW executed at step 2. The sub-system T2 is evolved
using either the final population obtained at step 2 or
a randomly generated population. The initialisation
process depends on the parameters foyj

, fyj
o jxi=0 and

fyj
o jxi=1 for this part of the truth table in T0. The

sub-system T3 is evolved using the randomly gener-
ated initial population during Ngen generations.

9. IF the complexity level for T2 and T3 is not sufficient,
THEN Consider the sub-system as a complex system
and proceed the steps 3-8 for each sub-system, ELSE
Go to step 10.

10. The evolvable sub-systems are generated.

The sub-system S1(T1) is generated with the best met-
rics. If these metrics are equaled to 100, the fully functional
circuit can be extracted from the system S0(T0). In other
case, the initial population is generated based on chromo-
some genotype specified by S0(T0). The fitness function
of chromosomes in the initial population is relatively high,
since it is defined by chosen metrics. Therefore, the sub-
system S1(T1) is easily evolvable. In this case the genetic
material obtained during previous evolutionary process of
complex task is used in evolution of less complex task.

The diagram of EHW-oriented decomposition described
above is given in Fig. 1. The block ”EVOLVE” contains
two inputs: (1) The truth table, T specifying which func-
tion is evolved during the evolution process, and (2) Ini-
tialisation, defined how the initial population is generated.
The output of this block contains the genotype of the best
evolved chromosome C bc (T). This chromosome will be
used to generate the initial population. This initial popula-
tion will further participate in the evolution of easy evolved
sub-systems. The initial population of sub-system S3 is
generated randomly, because the truth table T3 contains the
worst values of fyj

o and either fyj
o jxi=0 either fyj

o jxi=10
taken from the truth table T0. This also brings some diver-
sity in evolution of the complex system and allows the evo-
lution to find a better ”start” point for the next decomposed
functions.

3

0-7695-0762-X/00 $10.00 � 2000 IEEE

EVOLVE:
an extrinsic EHW

Result: C
b0

(T
0
)

Keep the genotype
of the best

chromosome
Cb0(T0)

Define an output
partitioning vector, vo

and an product
partitioning vector, vp

Generate the truth
table, T1

I(n, | vp|),
O(|vo|, |vp|)

Generate the truth
table, T2

I(n, p-| vp|),
O(|vo|, p-| vp|)

Generate the truth
table, T

3
I(n, |vp|),

O(m-|vo|, |vp|)

EVOLVE:
an extrinsic

EHW
Result: Cb1(T1)

T0

IP(R)

IP(Cb0(T0)) EVOLVE:
an extrinsic

EHW
Result: C

b3
(T

3
)

T1

T3

IP(R)
fo(vo) and f io(vio)

for T
2
 from T

0
 are

high ?

EVOLVE:
an extrinsic

EHW
Result: Cb2 (T2)

Fully functional
solution for T1 is
generated. (S1)

IP(Cb0(T0))

Yes

No

EVOLVE:
an extrinsic

EHW
Result: Cb2 (T2)

IP(R)

Fully functional
solution for T2 is
generated (S2).

T0=T 2

Cb0 (T0)=C b2(T2)

fo(vo) and f io(vio)
for T3 from T0 are

high ?

NoYes

EVOLVE:
an extrinsic

EHW
Result: C

b3
(T

3
)

IP(Cb0(T0))

Fully functional
solution for T

3
 is

generated (S
3
).

EVOLVE:
an extrinsic

EHW
Result: C

b3
(T

3
)

IP(R)

T
0
=T

3
C

b0
(T

0
)=C

b3
(T

3
)

Generate the
truth table T

0
of complex
system, S

0

Figure 1. The diagram of EHW-oriented decomposition. IP is the initial population; IP(R) denotes the randomly
generated initial population; Ti is the i-th truth table; Cbi(Ti) is the best chromosome evolved using an extrinsic EHW for the
function given by the truth table Ti; IP(Cbi(Ti)) is the initial population generated using the best chromosome genotype obtained
after the evolution process for the i-th truth table.

4

0-7695-0762-X/00 $10.00 � 2000 IEEE

In the scheme of EHW-oriented decomposition the evo-
lution is terminated after a fixed number of generations,
Ngen. We choose this termination condition because the
fitness function is usually improved significantly during the
first generations. As an alternative way, the evolution can be
terminated once the fitness value (Fstart+�F) is achieved,
where Fstart is the best fitness generated at the initial pop-
ulation; �F is the value on which the fitness function is
expected to be improved.

Another problem that can arise in EHW-oriented decom-
position is the definition of circuit layout for each sub-task
that can be solved. This can be avoided by allowing to use
circuit layout evolution together with circuit functionality
proposed first in [13].

4.2. Stage 2. Evolution toward an optimised system

The assembling of the system is based on the specific
features of the output and functional decompositions. For
example, the output decomposition guarantees that each
sub-system is synthesized separately and it is completely
independent. In the case of functional decomposition, the
corresponding outputs generated for various input combina-
tions in different sub-systems have to be connected together
using an one-control multiplexer. Analysis of experimen-
tal results shows that it is reasonable to assemble the sub-
systems decomposed by functional decomposition first and
then the sub-systems separated using output decomposition.

5. Experimental Results

In this section we will consider how the bidirectional in-
cremental evolution performs. The 7-input 10-output logic
function (z5xp1 d.pla) has been evolved using both direct
and bidirectional incremental evolutions. Hence, n = 7,
m = 10 and p = 128. This function is taken from stan-
dard benchmark library for combinational logic design. The
search has been performed using a rudimentary (1+�) evo-
lutionary strategy with dynamic fitness function, uniform
mutation and population of 5 individuals.

In bidirectional incremental evolution, the system is first
evolved toward its modularisation. Once the system has
been decomposed into sub-systems with sufficient complex-
ity, the system is evolved toward to its optimisation. These
two processes are considered in detail in the following sub-
sections for two types of experiments.

5.1. Experiment A.

In this experiment the complex system is divided into
sub-systems by means of output decomposition only.

Stage 1. Evolution toward to a modularised system
The evolution of sub-systems is performed during no more
than 15000 generations.

During this stage of bidirectional incremental evolution,
the circuit structure remains the same, but the evaluation
parameters are changed. For instance, the chromosome C

is evaluated by truth table T1. T1 can be decomposed into
smaller truth tables T2 and T3. In this case, the chromosome
C can be estimated by truth tables T2 and T3. Obviously, in
this case the evaluation by one of the tables will show better
results.

The bidirectional incremental evolution begins with at-
tempts to evolve the complex system. The evolved circuits
are evaluated by a given truth table of 7 inputs and 10 out-
puts. The evolution is terminated after 5000 generations and
the best chromosome defines the first generated sub-system
S0 that is evaluated according to the metrics given in Eq. 2–
3. The result of this evaluation is given in Table 2.

Analysing these data we observe that foy7 = foy8 = foy9 =
100:0. This means that the circuit S0 is fully functional if
it is evaluated by the truth table T1 generated from all input
combinations of outputs y7, y8 and y9. Therefore, we can
define the first sub-system that can be evaluated according
to truth table T1. From this two truth tables T1 and T2 can
be generated.

Because the circuit S0 evaluated by the truth table T1 is
fully functional, the evolution of system S1 can start with an
initial population generated from the circuit S0. In this case,
the evolutionary process will tend to reduce the number of
active gates in the circuit.

Since foyj for the outputs y0, y1, y2, y3, y4, y5 and y6 are
not equal to 100.0, the circuit S1 evaluated by the truth table
T2 is not fully functional. Therefore, the next sub-systems
have to be defined.

As a result of EHW-oriented decomposition the follow-
ing sub-systems can be defined:

1. S0: T0 = (I(7; 128); O(10; 128)); Y =
fy0; y1; y2; y3; y4; y5; y6; y7; y8; y9g. Purpose of evo-
lution: evolving a fully functional circuit; Initialisa-
tion: Random. Best chromosome - C 0 . Conclusion:
Decomposition by outputs: S1 - easy evolved; S2.

2. S1: T1 = (I(7; 128); O(3; 128)); Y = fy7; y8; y9g.
Purpose of evolution: reduce the number of active
gates in circuit; Initialisation - C 0 (fully functional cir-
cuit). Best chromosome - C 1 . Conclusion: a fully
functional circuit with reduced number of active gates
is evolved.

3. S2: T2 = (I(7; 128); O(7; 128)); Y =
fy0; y1; y2; y3; y4; y5; y6g. Purpose of evolution:
evolving fully functional circuit; Initialisation:
Random. Best chromosome - C 2 . Conclusion:
Decomposition by outputs: S3 - easy evolved; S4.

5

0-7695-0762-X/00 $10.00 � 2000 IEEE

4. S3: T3 = (I(7; 128); O(3; 128)); Y = fy0; y5; y6g.
Purpose of evolution: reduce the number of active
gates in circuit; Initialisation - C 2 (fully functional cir-
cuit). Best chromosome - C 3 . Conclusion: a fully
functional circuit is evolved.

5. S4: T4 = (I(7; 128); O(4; 128)); Y =
fy1; y2; y3; y4g. Purpose of evolution: evolving
a fully functional circuit; Initialisation: Random. Best
chromosome - C 4 . Conclusion: Decomposition by
outputs: S5 - easy evolved; S6.

6. S5: T5 = (I(7; 128); O(1; 128)); Y = fy1g; Purpose
of evolution: evolving a fully functional circuit; Initial-
isation: C 4 . Best chromosome - C 5 . Conclusion: A
fully functional circuit with reduced number of active
logic gates is evolved.

7. S6: T6 = (I(7; 128); O(3; 128)); Y = fy2; y3; y4g.
Purpose of evolution: evolving a fully functional cir-
cuit; Initialisation: Random. Best chromosome - C 6 .
Conclusion: Decomposition by outputs: S7 - easy
evolved; S8.

8. S7: T7 = (I(7; 128); O(1; 128)); Y = fy2g; Purpose
of evolution: evolving a fully functional circuit; Initial-
isation: C 6 . Best chromosome - C 7 . Conclusion: A
fully functional circuit with reduced number of active
logic gates is evolved.

9. S8: T8 = (I(7; 128); O(1; 128)); Y = fy3g; Purpose
of evolution: evolving a fully functional circuit; Initial-
isation: C 6 . Best chromosome - C 8 . Conclusion: A
fully functional circuit with reduced number of active
logic gates is evolved.

10. S9: T9 = (I(7; 128); O(1; 128)); Y = fy4g; Purpose
of evolution: evolving a fully functional circuit; Initial-
isation: C 6 . Best chromosome - C 9 . Conclusion: A
fully functional circuit with reduced number of active
logic gates is evolved.

Once the EHW-oriented decomposition is complete, the
fully functional circuit can be generated as shown in Fig.
2. This can be done if the synthesis of the optimised circuit
is not required to be performed. Since, only output decom-
position is allowed in this example, each of the sub-circuits
is implemented independently and realizes the set of out-
puts from the complex system. Obviously, that this circuit
structure is not optimal, since the circuit optimisation has
not been performed.

So, the bidirectional incremental evolution schedule can
be defined as decision tree and can be summarised as shown
in Fig. 3. This sequence of tasks forces the evolution first
to develop its partitioning vectors and then to optimise the

x
0

x
1

x
2

x
3
x

4
x

5
 x

6
 S1

Y7

Y9

25

45

46

Y8

21

8

 S3

Y0

Y6

Y5

10

11
12

13

15

17

19

21
22

31

7

 S5

Y1

7

8
9

10

11

13

16

18 21

z5xp1_d.pla:
Result of the EHW-oriented output decomposition

(Evolution toward to system decomposition)

8

9

10

12

13

14

16

18
19

21
22

28
41

49

53

 S7

Y
2

 S8

7

8

11

12

15 16

17

19

24

25

28

29

42 43

44
Y3

7

8

9

12

13

15

16

19

33
Y4

 S9

Figure 2. z5xp1 d.pla: Bidirectional incre-
mental evolution (Stage 1: Evolution toward
to a modularised system).

6

0-7695-0762-X/00 $10.00 � 2000 IEEE

S
i
(n, m, p)
γ(F

1
)

S0(7, 10, 128)
γ(F1)

S1(7, 3, 128)
γ(F2)

S2(7, 7, 128)
γ(F1)

S
3
(7, 3, 128)

γ(F
1
),γ(F

2
)

S
4
(7, 4, 128)
γ(F

1
)

S
8
(7, 1, 128)

γ(F
1
),γ(F

2
)

S
7
(7, 1, 128)

γ(F
1
),γ(F

2
)

S
5
(7, 1, 128)

γ(F
1
),γ(F

2
)

Diagram of evolving logic
function of 7-inputs and 10
outputs (z5xp1_d.pla) using

BIE with EHW-oriented output
decomposition

S
6
(7, 3, 128)
γ(F

1
)

Evolution toward a
modularised system

Evolution toward an
optimised system

S
9
(7, 1, 128)

γ(F
1
),γ(F

2
)

Figure 3. z5xp1 d.pla: Diagram of performing
a bidirectional incremental evolution (Exper-
iment A). The i-th system Si is evaluated according to
the truth table of n inputs, m outputs and p input-output
combinations. This evaluation process can be defined as
S0(n;m; p). Dynamic fitness function [13] contains eval-
uation of: (1) circuit functionality, F1; (2) the number of
logic gates used in the circuit, F2. �(Fj) defines the evalu-
ation process performed using criteria Fj .

Table 1. z5xp1 d.pla: Metrics of sub-systems
obtained during evolution. The systems are decom-
posed according to the metrics shown in bold. For example,
after analysis of the system S2, the easy evolved system S3
is composed from the outputs y0, y5 and y6. The remaining
outputs are evaluated in the following system S4.

Sj foyj
y0 y1 y2 y3 y4 y5 y6

S2 99.22 89.06 88.28 70.31 59.37 84.37 93.75
S4 92.18 85.19 83.59 87.5
S6 88.28 95.31 90.62

structures of assembled sub-tasks. The mapping of the per-
formance of these tasks into the scale of evolution process
is shown in Fig. 4. Note that once stage 1 of the bidirec-
tional incremental evolution is completed, the fully func-
tional circuit can be assembled without optimisation pro-
cess. Fig. 4 depicts the performance of direct and bidi-
rectional incremental evolution. The comparison is made
for the evolution process when the circuit functionality has
been evolved. Therefore, the evolution of sub-system S1 is
not taken into account, since it is fully functional after the
evolution of system S0. The fully functional circuit can be
generated after 75 000 generations. During these genera-
tions the problems with less complexity has been evolved.
The fully functional circuit implemented z5xp1 d.pla has
been evolved using direct evolution after 5 000 000 gen-

erations. The best functionality circuit evolved after 150
000 generations using direct evolution is 91.40625. That is
relatively low. Also, during first stage of bidirectional incre-
mental evolution the size of fully functional circuit evolved
has been reduced from 157 logic gates to 85 (see Table 3).
This shows that even during first stage of bidirectional in-
cremental evolution the size of circuit can be reduced if a
dynamic fitness function is used in the evaluation process.

Stage 2. Evolution toward to an optimised system The
main purpose of this evolution stage is to optimise the size
of the evolved circuit. During this stage of bidirectional in-
cremental evolution, the sub-circuit of larger complexity is
assembled from various sub-circuits of lower complexity,
and the truth table of this circuit is also assembled from the
two truth tables describing the behaviour of sub-systems.
Evolution is performed under the new chromosome geno-
type with new evaluation criteria.

For example, the sub-circuits C (T2) and C (T3) and eval-
uated by truth tables T2 and T3 are evolved separately. More
complex task can be define by the truth table T that is as-
sembled from the truth tables T2 and T3: T 2 T2 [T3.
This task is described by chromosome C (T2 ; T3). The fully
functional circuit implemented the truth table T is generated
based on the sub-circuits C (T2) and C (T3). In this case, the
chromosome genotype C (T2 ; T3) is synthesized based on
chromosome genotypes C (T2) and C (T3).

The truth tables of these two sub-circuits are assembled
into a larger one. The generated new genotype creates the
initial population for the optimisation process. The evolu-
tion process is first undertaken on the new generated circuit.
Then a circuit of larger complexity is generated and evolu-
tion repeats again. The process will continue until the com-
plex circuit is assembled and optimised using evolutionary
process.

This process can also reduce the size of the evolved cir-
cuit drastically. For example, the size of circuit synthesised
after the first stage of bidirectional incremental evolution
has been reduced from 85 logic gates to 54.

Thus, the actual size of fully functional z5xp1 circuit has
been reduced from 157 logic gates to 54 (see Table 3). In
other words the optimisation process reduced the number of
logic gates by a factor of about 3.

5.2. Experiment B

In this experiment the complex system is divided into
sub-systems by means of output and Shannon’s decompo-
sitions. In order to compare the differences between the
evolution processes, the evolution of first system S0 is per-
formed for both experiments.

The sub-system S1 is generated according to the same
specification given in experiment A. Some of metrics f ioyj in
system S0 are equal to 100.0.

7

0-7695-0762-X/00 $10.00 � 2000 IEEE

Table 2. Parameters of S0 sub-system obtained during evolution of z5xp1 d.pla. The metrics specified
in Eq. 2 and Eq. 3 are calculated for sub-system S0. foyj

defines that the sub-function described by output yj is fully functional.

Metrics f ioyj jxi=0 and f ioyj jxi=1 correspond to the Shannon’s decomposition by variable xi. Hence, f ioyj jxi=0 = f ioyj jxi=1 = 100 for
all variables xi. If foyj

< 100 and f ioyj jxi=0 = 100 then the sub-circuit described the sub-function with xi = 0 is fully functions.

The same implied for metric f ioyj jxi=1.

yj foyj
f ioyj

x0 x1 x2 x3 x4 x5 x6
0 1 0 1 0 1 0 1 0 1 0 1 0 1

y0 92.9689 100 86 100 86 99 88 86 100 94 93 94 93 94 93
y1 89.0625 80 99 100 79 71 69 54 86 69 71 68 72 71 69
y2 69.5312 61 79 71 69 54 86 69 71 68 72 71 69 69 71
y3 82.8125 77 90 91 75 88 79 88 79 79 88 85 82 82 85
y4 60.9375 60 63 60 63 66 57 63 60 63 60 60 63 66 57
y5 81.25 82 82 82 82 82 82 75 88 88 75 88 75 75 88
y6 62.5 63 63 63 63 63 63 63 63 75 50 75 50 50 75
y7 100.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100
y8 100.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100
y9 100.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100

10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000

60

70

80

90

100
S0 S2 S3 S4 S5 S6 S7 S8 S9

Generations

C
irc

ui
t

 fu
nc

tio
na

lit
y

50
0

Performance of direct and mixed incremental evolution
Stage 1: Synthesis of the fully functional circuit

Incremental
Direct

Figure 4. z5xp1 d.pla: Performance of direct and bidirectional incremental evolution in the circuit
design problem.The maximum fitness per generation is plotted for each of the two approaches. The direct evolution (dotted line)
makes slight progress at the first and stalls after about 10 000 generations. The plot is an average of 100 simulations. Incremental
evolution, however, proceeds through several task transitions (seen as abrupt drop-offs in the plot), and eventually solves the goal-
task. The incremental plot is a result of one simulation.

8

0-7695-0762-X/00 $10.00 � 2000 IEEE

Table 3. z5xp1 d.pla: History of the incremen-
tal evolution with the EHW-oriented output
decomposition.

Sub-system ES performance
Si n m p Y Ngen F2(Nf) F2(N

opt
f)

Direct evolution
S 7 10 128 Y 150 000 - -

F
bf
1

= 91:40625

Stage 1: Evolution toward to a modularised system
S0 7 10 128 Y 5 000 - -
S1 7 3 128 fy7; y8; y9g 5 000 20 9
S2 7 7 128 Y 5 000 - -
S3 7 3 128 fy0; y5; y6g 15 000 25 21
S4 7 4 128 Y 5 000 - -
S5 7 1 128 fy1g 15 000 23 17
S6 7 3 128 Y 15 000 - -
S7 7 1 128 fy2g 15 000 30 25
S8 7 1 128 fy3g 15 000 26 24
S9 7 1 128 fy4g 15 000 23 13

Total:
P

F2(N
opt
f) 110 000 157 85

Stage 2: Evolution toward to an optimised system
Total:

P
F2(N

opt
f) 200 000 85 54

For example, f ioy0 jx1=0 = f ioy1 jx1=0 = 100:0m i.e.
the circuit implements completely the truth table generated
from the outputs y0 and y1 and with condition that x1 = 0.
This truth table contains 6 inputs, 2 outputs and 64 input
combinations. Therefore, if the Shannon’s decomposition
is allowed to be performed, the next fully functional sub-
circuit contains the structure defined by this truth table. The
truth table generated with condition that x1 = 1 has the
same parameters. Obviously, it is easier to evolve a circuit
with fewer input combinations.

Note, that this is not the only possible set of sub-circuits
that can be generated by analysing the metric data of S0.
One can decompose the system in terms of variable x0,
since f ioy0 jx0=0 = 100:0 or in terms of variable x3, since
f ioy0 jx3=1 = 100:0. We choose the partitioning vector men-
tioned above because in this case we divide sub-system not
only in terms of variable x1, but also the two outputs y0 and
y1 can be involved in this partitioning process.

Fig. 5 shows bidirectional incremental evolution allow-
ing both output and Shannon’s decompositions. This dia-
gram is different from one illustrated in Fig. 3. 13 sub-
systems had to be generated in order to perform the first
stage of bidirectional incremental evolution. The gener-
ated tasks are easier then one discussed in Experiment A,
since they evolve functions with fewer number of inputs and
therefore a smaller number of input/output combinations.
Another difference is that this process can be performed in

Evolution towards an
optimised system

Diagram of evolving logic
function of 7-inputs and 10
outputs (z5xp1_d.pla) using
incremental evolution with

EHW-oriented output and input
decompositions

S
3
(7, 2, 64)

γ(F
1
),γ(F

2
)

Evolution towards a
modularised system

S6(7, 1, 64)
γ(F2)

S7(7, 1, 64)
γ(F1),γ(F2)

S5(7, 1, 128)
γ(F2)

S8(7, 3, 128)
γ(F1)

S11(7, 1, 64)
γ(F2)

S10(7, 2, 64)
γ(F1),γ(F2)

S9(7, 2, 64)
γ(F2)

S12(7, 1, 64)
γ(F1),γ(F2)

S
4
(7, 5, 128)

γ(F
1
)

S
0
(7, 10, 128)

γ(F
1
)

S
i
(n, m, p)
γ(F

1
)

S
1
(7, 3, 128)

γ(F
2
)

S
2
(7, 2, 64)
γ(F

2
)

Figure 5. z5xp1 d.pla: Diagram of bidirec-
tional incremental evolution (Experiment B).

parallel since 3 or more sub-systems can be evolved at the
same time. Therefore, the evolution with output and Shan-
non’s decompositions can be implemented using a parallel
system, which will decrease the computation time drasti-
cally.

During first stage of our method the size of circuit has
been reduced from 245 logic gates to 139. This is still very
large circuit in comparison with the one generated in exper-
iment A (85 logic gates). 100 000 generations are required
to complete the first stage.

The circuit optimisation has been carried out during
100 000 generations. A circuit of 60 logic gates has been
synthesised. This circuits larger then one evolved in exper-
iment A by 4 logic gates.

6. Conclusion

This paper shows that even when a task is too difficult
to evolve directly, evolution can be applied incrementally
in two directions to achieve the desired complex behaviour.
In this approach, evolution is performed in two directions:
from complex system to sub-systems and from sub-systems
to complex system. The experimental results show that bidi-
rectional incremental evolution performs significantly bet-
ter then direct evolution. Also, it has been demonstrated
how the evolution process can be different when the various
types of decomposition are allowed. The approach should
be applicable to many real EHW applications, where often
a natural hierarchy of behaviours from simple to complex
exists.

The experiments on evolving digital logic function con-
stitute a starting point for research on methods that evolve
complex general behavior in two directions and on meth-
ods that investigate the functional interconnectivity inside
given complex problem. There are many tasks that have to
be solved in this direction.

9

0-7695-0762-X/00 $10.00 � 2000 IEEE

7. Acknowledgement

The author would like to acknowledge Prof. J.W. Mills,
Indiana University for his fruitful comments made about
this work during ICES’2000 and Dr. M.Rutter and O.Lewis
for proof-reading a draft.

References

[1] Iwata M., Kajitani I., Yamada H., Iba H., and Higuchi
T. A pattern recognition system using evolvable hard-
ware. In Proc. of the Fifth International Conference on
Parallel Problem Solving from Nature (PPSNIV), vol-
ume LNCS 1141 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, Heidelberg, 1996.

[2] Murakawa M., Yoshizawa S., Kajitani I., Furuya T.,
Iwata M., and Higuchi T. Hardware evolution at func-
tion level. In Proc. of the Fifth International Confer-
ence on Parallel Problem Solving from Nature (PP-
SNIV), Lecture Notes in Computer Science. Springer-
Verlag, Heidelberg, 1996.

[3] Kalganova T. An extrinsic function-level evolvable
hardware approach. In Poli R., Banzhaf W., Langdon
W.B., Miller J., Nordin P., and Fogarty T.C., editors,
Proc. of the Third European Conference on Genetic
Programming, EuroGP2000, volume 1802 of Lecture
Notes in Computer Science, pages 60–75, Edinburgh,
UK, 2000. Springer-Verlag.

[4] Koza J. R. Genetic Programming II: Automatic Dis-
covery of Reusable Programs. MIT Press, 1994.

[5] Torresen J. A divide-and-conquer approach to evolv-
able hardware. In Sipper M., Mange D., and Perez-
Uribe A., editors, Proc. Of the 2nd Int. Conf. on Evolv-
able Systems: From Biology to Hardware (ICES’98),
volume 1478 of Lecture Notes in Computer Science,
pages 57–65, Lausanne, Switzerland, 1998. Springer-
Verlag, Heidelberg.

[6] Torresen J. Increased complexity evolution applied
to evovable hardware. In Smart Engineering System
Design, ANNIE’99. St. Louis, USA, 1999.

[7] Miller J.F., Kalganova T., Lipnitskaya N., and Job
D. The genetic algorithm as a discovery engine:
Strange circuits and new principles. In Proc. of the
AISB’99 Symposium on Creative Evolutionary Sys-
tems, CES’99, ISBN 1-902956-03-6, pages 65–74.
Edinburgh, UK, The Society for the Study of Arificial
Intelligence and Simulation of Behaviour, April 1999.

[8] Vassilev V. and Miller J. The advantages of land-
scape neutrality in digital circuit evolution. In Miller
J., Thompson A., Thomson P., and Fogarty T.C., edi-
tors, Proc. Of the 3rd Int. Conf. on Evolvable Systems:
From Biology to Hardware (ICES 2000), volume 1801
of Lecture Notes in Computer Science, pages 252–
263, Edinburgh, UK, 2000. Springer.

[9] Gomez F. and Miikkulainen R. Incremental evolution
of complex general behaviour. Adaptive Behaviour.,
5:317–342, 1997.

[10] Gomez F. and Miikkulainen R. Solving non-
markovian control tasks with neurevolution. In Proc.
of the International Joint Conference on Artificial
Intelligence (IJCAI’99), Stockholm, Sweden, 1999.
Denver: Morgan Kaufmann.

[11] Filliat D., Kodjabachian J., and Meyer J.A. Incremen-
tal evolution of neural controllers for navigation in a 6-
legged robot. In Sugisaka and Tanaka, editors, Proc. of
the Fourth International Symposium on Artificial Life
and Robotics. Oita Univ. Press, 1999.

[12] Miller J. F., Thomson P., and Fogarty T. C. Genetic
algorithms and evolution strategies. In Quagliarella
D., Periaux J., Poloni C., and Winter G., editors, Engi-
neering and Computer Science: Recent Advancements
and Industrial Applications. Wiley, 1997.

[13] Kalganova T. and Miller J. Evolving more effi-
cient digital circuits by allowing circuit layout evo-
lution and multi-objective fitness. In Stoica A.,
Keymeulen D., and Lohn J., editors, Proc. of the First
NASA/DoD Workshop on Evolvable Hardware, pages
54–63. IEEE Computer Society, July 1999.

[14] Miller J. An empirical study of the efficiency of learn-
ing boolean functions using a cartesian genetic pro-
gramming approach. In Proc. of the Genetic and Evo-
lutionary Computation Conference (GECCO’99), vol-
ume 1 of ISBN 1-55860-611-4, pages 1135–1142, Or-
lando, USA, July 1999. Morgan Kaufmann, San Fran-
cisco, CA.

[15] Floreano D. and Mondada F. Hardware solutions for
evolutionary robotics. In Husbands P. and Meyer J-
A., editors, Proc. of the First European Workshop on
Evolutionary Robotics. Berlin: Springer-Verlag, 1998.

[16] Fukunaga A.S. and Kahng A.B. Improving the perfor-
mance of evolutionary optimization by dynamically
scaling the evolution function. In Proc. of the 1995
IEEE Conference on Evolutionary Computation, vol-
ume 1, pages 182–187, Perth, Australia, 29-1 1995.
IEEE Press.

10

0-7695-0762-X/00 $10.00 � 2000 IEEE

