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Abstract 

Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they 
need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition. 
In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate 
the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference 
surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to differ-
ent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the 
effects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system 
to make the coefficient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measure-
ment noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained 
from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the effects of the 
measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations 
are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method 
with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear 
slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning 
errors.
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1 Introduction
Precision/ultra-precision products play an increasingly 
important role in many fields, such as daily life, national 
defense, military and aerospace, accordingly, the require-
ment for product accuracy in these fields is also becom-
ing more stringent [1, 2]. For a machine tool/CMM, 
its accuracy is the crucial indicator which determines 
directly the accuracy and quality of machined products 
[3–5]. Therefore, it has been a major concern in the 
industry of how to improve the accuracy of a machine 
tool/CMM. As the essential element of a machine tool, 

the linear slideway suffers from various errors, such as 
kinematic errors and errors induced by force. These 
errors change the geometric structure of the slideway, 
resulting in six geometric errors [6, 7]. These geometric 
errors include one positioning error, two straightness 
errors, two tilt errors and one roll error. The straightness 
and tilt errors not only reflect dynamically the operating 
status of a machine tool, but also are the key parameters 
of the error compensation model [8, 9]. Hence, it is of 
engineering and scientific significance for on-machine 
measuring the straightness and tilt errors of a linear 
slideway, especially for the case that the linear slideway 
works under the complicated condition.

The multi-sensor method is utilized widely to on-
machine separate the surface profile from the sen-
sor outputs [10]. The outputs are constructed by four 
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parameters, namely the surface profile, the straightness 
and tilt errors of the linear slideway, as well as the zero-
adjustment values of the sensors. After the surface pro-
file is obtained, the straightness and tilt errors can be 
further identified. The two-sensor methods, such as the 
sequential two-sensor method [10, 11], the generalized 
two-sensor method [10, 11] and the combined two-sen-
sor method [12], are used to estimate the surface profile 
without the tilt error and the zero-adjustment values. For 
the two-sensor methods, the harmonic suppression in 
the frequency domain results in that the reconstructed 
surface profile loses the harmonic components with 
the spatial period of an integer multiple of the sampling 
interval [11]. The sequential three-sensor method [10, 
11], the generalized three-sensor method [11, 13] and the 
combined three-sensor method [14] are able to identify 
the surface profile, and the straightness and tilt errors. 
However, the zero-adjustment values will lead to large 
reduction in the accuracy of the reconstructed surface 
profile, even though they are tiny [11]. If the tilt error is 
measured in advance or ignored, the surface profile and 
the straightness error could be identified by using the 
three-sensor methods proposed by Yin, et al. [15, 16] and 
Fujimoto, et  al. [17] respectively, considering the zero-
adjustment values. The four-sensor method presented by 
Weingartner et al. [18] can reconstruct the surface profile 
in the presence of the straightness and tilt errors. How-
ever, it is affected significantly by the zero-adjustment 
values, and may not obtain the unique solution in some 
cases, due to the rank deficiency of the design matrix. 
Assuming that the tilt error is known in advance, Wein-
gartner et al. [19] proposed another four-sensor method 
to evaluate the straightness and tilt errors as well as the 
zero-adjustment values. The solutions of the two four-
sensor methods are very sensitive to the measurement 
noise in the sensor outputs, as the number of sampling 
points is large. The five-sensor method (IF5S) developed 
by Fung, et  al. [20, 21] employs Fourier series to deter-
mine the surface profile when there exist the straight-
ness and tilt errors as well as the zero-adjustment values. 
As an extension, an eight-sensor method called F8S is 
reported [22]. The sensor configurations of both IF5S 
and F8S need to be chosen suitably, and the length of the 
test section is determined by the size of the slider. Based 
on the reversal method [23] and the generalized three-
sensor method, Gao et al. [24, 25] developed the reversal 
six-sensor method. By scanning the two opposed surface 
profiles of a cylinder simultaneously, the method can be 
used for estimating the profiles and the straightness and 
tilt errors, with the zero-adjustment values taken into 
account. Because the measurement system either con-
tains an additional cylinder or has the reversal function, 
it is difficult to integrate the measurement system with 

the linear slideway. In addition, the previous researches 
have paid little attention to the influences of the meas-
urement noise in the sensor outputs, the sensor gain 
error and the positioning error of the linear slideway on 
the multi-sensor methods.

In this paper, a new four-sensor method with an 
improved measurement system is proposed to separate 
simultaneously the straightness and tilt errors of a lin-
ear slideway, with the zero-adjustment values taken into 
account. The measurement system allows achieving the 
adjustable sensor spacing and the high lateral resolution, 
and avoids the sensor gain error. The proposed method 
has some advantages, such as suitable for the test sec-
tion of any length, needless to pre-measure the zero-
adjustment values and the surface profile accurately, and 
favorable propagations of the residuals induced by the 
noise and the positioning errors. This paper is organized 
as follows. The new method and the improved system are 
explained in detail in Section 2. To analyze the influences 
of the measurement noise in the senor outputs and the 
positioning errors of the sensors and the slideway on the 
method, a series of computer simulations are conducted 
in Section 3. In Section 4, an experiment is implemented 
to verify the feasibility of the method.

2  New Error Separation Method
The improved measurement system, as shown in Figure 1, 
contains a displacement sensor and a sensor stage with 
accurate movement along X-axis. The system is attached 
to a linear slideway. The relative displacement between the 
reference surface and the slideway is detected by the sen-
sor. Different configurations are formed by adjusting the 
position of the sensor relative to the stage. The combina-
tion of these configurations constructs an improved multi-
sensor measurement system that can realize the function 
of the traditional multi-sensor measurement system. The 
improved system has some advantages, such as adjustable 
sensor spacing and no gain error. A function f(x) is intro-
duced to describe the reference surface profile, and the 
straightness and tilt errors of the slideway are represented 
by the functions S(x) and γ(x) respectively. The sensor 
associated with the ith configuration is named the sensor 
i (i ≥ 1). For the sensor i, the zero-adjustment value relative 
to the sensor 1 is defined as ei and the spacing relative to 
the sensor (i − 1) set to Di = si× Δx. si is an integer and Δx 
(in Figure 1) denotes the lateral resolution. Obviously, both 
e1 and s1 equal 0. ei describes the effect caused by the geo-
metric errors of the sensor stage on the sensor output. If 
N denotes the total sampling number, the position of any 
sampling point can be described as xn = n  ×  Δx, n = 0, 
1,…, (N − 1). Then, the length of the measured reference 
surface is L0 = (N − 1) × Δx and the travel of the slideway 
L = (N − s2 − s3 − s4 − 1) × Δx. Because the sensor stage 
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isn’t calibrated accurately beforehand, ei (i ≠ 1) is unknown. 
Based on the above information, the output mi(xn) of 
the sensor i (i = 1, 2, 3, 4) at the sampling point xn can be 
expressed as Eq. (1), n = 0, 1, …, N − s2 − s3 − s4 − 1. If ei 
or γ(x) is either ignored or known, the improved system is 
able to identify f(x) from mi(xn) according to the four-sen-
sor methods in Refs. [18, 19]. However, in general, ei and 
γ(x) are non-ignorable and unknown, so the methods are 
unavailable. For this problem, a new four-sensor method is 
developed as follows: 

To eliminate the influences of S(xn) and γ(xn), the follow-
ing equation is derived from Eq. (1):

where

A system of linear equations is then built according to 
Eq. (2):
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A0, b0 and X are given in Eqs. (5)‒(7):

where

However, the rank of A0 is deficient, indicating that 
there are innumerable solutions for the linear sys-
tem [26]. In other words, f(xn) cannot be estimated 
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Figure 1 Schematic diagram of the improved measurement system, of which the sensor output contains S(x), γ(x), f(x) and ei
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uniquely. Therefore, it is necessary to incorporate addi-
tional information to obtain a definite solution.

To restrict the reconstruction of the reference surface 
profile, a straight line is defined by applying Eq. (11). The 
shape of f(x) relative to the straight line is then deter-
mined uniquely.

When s2 = s3 = 1, Eq.  (12) is derived by using the out-
puts of the sensors 1, 2 and 3 based on the general-
ized three-sensor method [11, 13]. Then, Δe1 can be 
calculated.

From Eq.  (10), the relationships described in Eq.  (13) 
are deduced:

The constraints given in Eqs.  (11)‒(13) and the origi-
nal linear system in Eq. (4) are then written compactly to 
construct a new system of linear equations as follows:

where A and b are given in Eqs.  (15), (16). The column 
vector b is constructed by all the sensor outputs. The 
coefficient matrix A that owns the full rank is formed 
by Di. The column vector X involves f(xn), n = 0, 1, …, 
(N −  1), and Δei, i = 1, 2, 3, 4. The common technique 
to solve the linear system is the least squares method 
[27]. The condition number of the matrix A determines 
the quality of the least squares solution. However, A 
appears ill-conditioned. Figure  2 illustrates the varia-
tion of the condition number of A with the number of 
sampling points N, when D2 = D3 = 5  mm, D4 = 25  mm 
and Δx = 5  mm. As N equals 30 and 200, the condition 
number is about 6 × 103 and 2.4 × 106, respectively. The 
increase in the condition number of A makes the least 
squares solution more sensitive to the perturbation in b 
[28]. In other words, f̄ (xn) may fluctuate drastically with 
the measurement noise in mi(xn).
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To single out a useful and stable solution, the Tik-
honov regularization method [29, 30] is utilized. The 
regularized solution Xλ is defined as the minimizer of 
the following weighted combination of the residual 
�AX − b�2 and the side constraint ‖X‖2 , as shown in 
Eq. (17):

where I is the unit matrix and λ denotes the regulariza-
tion parameter. As described in Eq.  (17), λ controls the 
weight between the side constraint and the residual as 
well as the sensitivity of Xλ to the perturbations in A and 
b. Therefore, it should be selected carefully. The L-curve 
criterion [29, 30] described by 

(
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)

 
is used to calculate the optimal parameter λp. After λp is 
determined, the estimate of f(xn) can be solved from the 
system of linear equations in Eq. (14), which is marked as 
f̄ (xn) . S(xn) and γ(xn) are then separated directly based 
on Eq. (1), as shown in Eqs. (18), and (19).

Due to the term e4
/

(D2 + D3 + D4) being constant, it 
has no influence on the shape of γ(x). So far, the new 
four-sensor method for identifying the straightness and 
tilt errors has been developed.
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Figure 2 Variation of the condition number of the coefficient matrix 
A with the number of sampling points N 
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3  Simulation Verifications
A simulation platform is constructed by using MAT-
LAB to evaluate the proposed method. To represent 
the measurement noise, a Gaussian distribution with 
the zero mean and the standard deviation σ is added in 
mi(xn). S(x) and γ(x) are predefined as the input values 
to compare with the simulation results. σ is assigned 
with three values, namely 0.1 μm, 0.2 μm and 0.3 μm, 
to analyze the influence of the noise on the simula-
tion results. Other parameters are set as Δx = 5  mm, 
s4 = 5, N = 69. So, L0 = 340  mm, L = 305  mm, 
D2 = D3 = 5 mm, and D4 = 25 mm. During the measur-
ing process, the sensor of the improved system needs 
to be adjusted to different positions. Therefore, it is 
necessary to investigate the effect of the position-
ing error PE1 of the sensor on S(x) and γ(x). PE1 is 
introduced by changing the values of D2, D3 and D4 
to 5.012mm, 4.985mm and 25.02  mm, respectively. 
An analysis is also conducted on the influence caused 
by the positioning error PE2 (unit: μm) of the linear 
slideway expressed by Eq.  (20). In this section, two 
examples are discussed.

Example 1 S(x) (unit: μm) and γ(x) (unit: degree) are 
described by Eqs. (21), (22), of which the curves are given 
with the solid line in Figures  3 and 4. In addition, f(x) 
(unit: μm) is defined as Eq. (23).

When the sensor outputs are free of the noise and the 
positioning errors, the simulation results for S(x) and 
γ(x) are almost same as the input values. As σ = 0.1 μm, 
0.2 μm and 0.3 μm, the platform is executed 20 times for 
each value without the positioning errors. The conse-
quences associated with S(x) are shown in Figure 3(a)‒(c), 
which plot the average, maximum and minimum of the 
simulation results at each sampling point. It can be seen 
that the average curve is in accordance with the input 
curve except a small difference, and that the maximum 
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Figure 3 Simulation results related to S(x): average curve, maximum curve, minimum curve and input curve as a σ = 0.1 μm, b σ = 0.2 μm, c 
σ = 0.3 μm, d least squares curve and input curve as σ = 0.1 μm
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and minimum curves have the similar shape to the input 
curve. The curve in Figure  3(d) is obtained, as Eq.  (14) 
is solved by using the least squares method under the 
condition of σ = 0.1 μm. There is a significant deviation, 
indicating that the least squares method is unsuitable 
to solve the linear system with the ill-conditioned coef-
ficient matrix. The similar conclusions can be drawn for 
γ(x) from the simulation results in Figure 4.
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To represent the discrepancies in Figure 3(a)‒(c) and 
Figure 4(a)‒(c), two types of parameters are introduced: 
�Smax/�γmax signifying the maximum of the residu-
als of the simulation results relative to the input curve, 
and �Samax/�γ a

max denoting the maximum residual 
between the average curve and the input curve. For 
the three cases, �Smax is less than 1.1 μm, 1.6 μm and 
2.3 μm, while �Samax is less than 0.15 μm, 0.26 μm and 
0.3  μm. �γmax is 1.8 × 10−3 degree, 3.2 × 10−3 degree 
and 3.9 × 10−3 degree, while �γ a

max is 2.5 × 10−4 degree, 
6.5 × 10−4 degree and 7.2 × 10−4 degree. In summary, 
Figures 3 and 4 indicate that the proposed method can 
separate S(x) and γ(x) from the sensor outputs with 
good accuracy. Moreover, �Smax , �Samax , �γmax and 
�γ a

max are proportional to the standard deviation σ.
When only PE1 exists and σ = 0 μm, the residuals of 

the simulation results of S(x) and γ(x) relative to their 
input values are displayed as the solid lines in Figure 5. 
The maximum residual for S(x) is 0.1  μm, while that 
for γ(x) is less than 1.0 × 10−4 degree. From the dashed 
lines in Figure 5, the maximum residuals caused by PE2 
for S(x) and γ(x) are 0.15  μm and 1.0 × 10−4 degree, 
respectively. Figure 5 reveals that the positioning errors 

Figure 4 Simulation results connected with γ(x): average curve, maximum curve, minimum curve and input curve as a σ = 0.1 μm, b σ = 0.2 μm, c 
σ = 0.3 μm, d least squares curve and input curve as σ = 0.1 μm
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have slight influences on the estimates of S(x) and γ(x) 
obtained by the proposed method.

Example 2 When f(x) is set to Eq.  (24), the variations 
of the residuals between the simulation results and the 
input values with the harmonic order k are investigated 
as σ = 0.2 μm.

In the simulation, S(x) and γ(x) are represented by 
Eqs. (21), (22). For each k, the maximum and the average 
of the residuals between the simulation results and the 
input value for S(x) at each sampling point are collected 
(described in Figure 6(a)), after the platform is performed 
20 times. It can be seen that �Smax and �Samax are less 
than 2.6  μm and 0.6  μm. The results related to γ(x) are 
given in Figure 6(b), showing that �γmax and �γ a

max are 
about 5 × 10−3 degree and 9 × 10−4 degree, respectively. 
The relationships of the residuals induced by PE1 and 

(24)f (x) = 5 sin

(

k
2π

L0
x

)

+ 5 sin

(

20π

L0
x

)

.

PE2 relative to k are also analyzed in the case of σ = 0 μm, 
as shown in Figure  7. The maximum residuals for S(x) 
are both less than 0.4 μm, while those for γ(x) are smaller 
than 3 × 10−4 degree, implying that the positioning errors 
have very tiny influences on S(x) and γ(x).

In short, the proposed method can guarantee favorable 
propagations of the residuals induced by the noise and 
the positioning errors as the harmonic order k varies.

4  Experimental Results and Discussion
An experiment is designed for further verification. As 
shown in Figure  8, a displacement sensor is developed, 
comprising the probe, the flexure-based amplifier, the 
flexure-based loader and the encoder. The input displace-
ment of the probe is amplified by the amplifier and then 
detected by the encoder. The sensor has a measurement 
range of 0.2  mm with the resolution of 0.035  μm. The 
input stiffness of the sensor is about 0.3  N/μm, so the 
probe wear isn’t considered. The displacement sensor and 
a micro-platform form the measurement system which 
is fixed on the slider of the linear slideway. The sensor 
position can be adjusted manually by the micrometer. A 
pre-displacement is applied to the probe by the loader, to 
press firmly the probe against the side of the linear slide-
way during the measuring process.

The coordinate system OXY is established, and its 
X-axis satisfies the constraint described in Eq.  (11). The 
angles of the probe relative to the guide of the micro-
platform and the reference surface are both limited in 
90 ± 0.1 degree. The sensor output is collected by a clip-
per card and recorded by an industrial computer. The 
configuration parameters for the measurement system 
are as follows: Δx = 5 mm, D2 = D3 = 5 mm, D4 = 25 mm, 
N = 69. The environment temperature is controlled at 
20 ± 0.5 °C.

The experiment is repeated six times. Then, the sensor 
outputs are averaged and filtered to reduce the measure-
ment noise. Based on the new four-sensor method, the 
straightness and tilt errors are calculated and described 
(in OXY) as Sa(x) and γa(x) in Figure  9. In addition, the 
obtained surface profile is shown in Figure  10. The 
straightness and tilt errors are also measured four 
times by a laser interferometer with the linear accuracy 
of ± 0.5  μm and the angular accuracy of ± 1 arcsec. The 
related results (in the coordinate system OmXmYm of 
the laser interferometer) are plotted in Figure  9, named 
Sl(x) and γl(x). It is improper to compare Sa(x) with Sl(x) 
directly, because of the different coordinate systems. Tak-
ing the OmXmYm as the reference, the OXY is rotated so 
that the 2-norm of Sml (x)− Sa(x) is minimum. Where 
Sml (x) is the average of the four values of Sl(x). This situ-
ation indicates that the OXY is the same as the OmXmYm. 

Figure 5 Residuals caused by the positioning errors PE1 and PE2 as 
σ = 0 μm
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Figure 6 Variations of the average and maximum of the residuals caused by the noise (σ = 0.2 μm) at the sampling points with the harmonic order k 

Figure 7 Relationships between the residuals caused by the positioning errors PE1 and PE2 at the sampling points and the harmonic order k 
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After the rotation, Sa(x) given in Figure 11(a) is consistent 
with Sml (x) and the maximum deviation between them is 
less than 2.5 μm. The similar operation is performed on 
γa(x) and γl(x). As shown in Figure 11(b), the final results 
have the similar trend and the maximum deviation is 
about 11 arcsec. Therefore, the proposed four-sensor 
method together with the improved measurement sys-
tem is able to identify the straightness and tilt errors of 
the linear slideway. The discrepancies in Figure 11 might 
be mainly caused by the measurement noise in mi(xn) 
from the repeatability of the straightness and tilt errors, 
the interferometer accuracy and the sensor accuracy. 
Moreover, the positioning errors of the sensor stage and 
the slideway may also produce a difference.

Figure 8 Schematic diagram of the experiment setup with a developed displacement sensor

Figure 9 Experimental results obtained by the new four-sensor 
method and the laser interferometer

Figure 10 Surface profile obtained by the new four-sensor method
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5  Conclusions
With the adoption of an improved measurement sys-
tem, a new four-sensor method is presented to identify 
the straightness and tilt errors of a linear slideway from 
the sensor outputs. The reference surface profile could 
be obtained simultaneously. Its feasibility is evaluated by 
computer simulations and experiment. From the results, 
some conclusions are summarized as follows.

(1) The measurement system allows achieving the 
adjustable sensor spacing and the high lateral res-
olution, and avoids the sensor gain error. The pro-
posed method has some advantages, such as suit-
able for the test section of any length as well as 
needless to pre-measure the zero-adjustment values 
and the reference surface profile accurately.

(2) The method is feasible and can guarantee the 
favorable propagation of the residual caused by 
the measurement noise in the sensor outputs. In 

addition, it is influenced slightly by the positioning 
errors of the sensor and the slideway.

(3) The maximum discrepancy between the experi-
mental results associated with the straightness 
error is less than 2.5 μm. The results corresponding 
to the tilt error have the similar trend.

Authors’ Contributions
KC and HD was in charge of the conceptualization; Lei Zhao proposed and 
analyzed the methodology; Lei Zhao and Liang Zhao built the experiment 
setup and conducted the experiment; Lei Zhao wrote the original draft. All 
authors read and approved the final manuscript.

Author Details
1 School of Mechatronics Engineering, Harbin Institute of Technology, 
Harbin 150001, China. 2 College of Engineering, Design and Physical Sciences, 
Brunel University, London, Uxbridge UB 3PH, UK. 

Authors’ Information
Lei Zhao, born in 1987, is currently a doctoral candidate at School of 
Mechatronics Engineering, Harbin Institute of Technology, China. He received his 
mater degree from Harbin Institute of Technology, China, in 2012. His research 
interests include precision metrology and precision design.

Kai Cheng, born in 1961, is currently a Chair Professor at College of Engi-
neering, Design and Physical Sciences, Brunel University London, United Kingdom. 
He received his PhD in 1994 from Liverpool John Moores University, United 
Kingdom. His current research interests include precision and micro manu-
facturing, design of high precision machine tools, sustainable manufacturing 
systems and e-manufacturing.

Hui Ding, born in 1981, is currently an associate professor at School of 
Mechatronics Engineering, Harbin Institute of Technology in China. He received 
his PhD from Harbin Institute of Technology, China, in 2011. His current research 
interests focus on precision and micro manufacturing, smart cutting tool, and 
micro-featured engineering surfaces.

Liang Zhao, born in 1987, is currently an engineer and also a doctoral 
candidate at School of Mechatronics Engineering, Harbin Institute of Technol-
ogy, China. His research interests include ultraprecision machining and micro 
manufacturing.

Competing Interests
The authors declare no competing financial interests.

Funding
Supported by National Natural Science Foundation of China (Grant No. 
51435006).

Received: 11 December 2017   Accepted: 5 March 2019

References
 [1] S J Zhang, S To, S J Wang, et al. A review of surface roughness generation 

in ultra-precision machining. International Journal of Machine Tools and 
Manufacture, 2015, 1(91): 76–95.

 [2] Chinese Mechanical Engineering Society. Technology roadmaps of Chinese 
mechanical engineering. 2nd ed. Beijing: Popular Science Press, 2016. (in 
Chinese)

 [3] P Yang, T Takamura, S Takahashi, et al. Development of high-precision 
micro-coordinate measuring machine: multi-probe measurement system 
for measuring yaw and straightness motion error of XY linear stage. Preci-
sion Engineering, 2011, 35(3): 424–430.

 [4] K C Fan, F Cheng, H Y Wang, et al. The system and the mechatronics of 
a pagoda type micro-CMM. International Journal of Nanomanufacturing, 
2012, 8: 67–86.

Figure 11 Comparisons of experimental results after the coordinate 
system OXY is rotated



Page 11 of 11Zhao et al. Chin. J. Mech. Eng.           (2019) 32:24 

 [5] Q Huang, G B Zhang. Precision design for machine tool based on error 
prediction. Chinese Journal of Mechanical Engineering, 2013, 26(1): 
151–157.

 [6] H Schwenke, W Knapp, H Haitjema, et al. Geometric error measurement 
and compensation of machines - an update. CIRP Annals - Manufacturing 
Technology, 2008, 57(2): 660–675.

 [7] The International Organization for Standardization. ISO 230-1–2012 Test 
code for machine tools – Part 1: geometric accuracy of machines operat-
ing under no-load or quasi-static conditions. Geneva: ISO Office, 2012.

 [8] J Li, F G Xie, B Mei, et al. Analysis on the research status of volumetric 
positioning accuracy improvement methods for five-axis NC machine 
tools. Journal of Mechanical Engineering, 2017, 53(7): 113–128. (in Chinese)

 [9] S W Zhu, G F Ding, S F Qin, et al. Integrated geometric error modeling, 
identification and compensation of CNC machine tools. International 
Journal of Machine Tools and Manufacture, 2012, 52(1): 24–29.

 [10] D D Zhai, S Y Chen, Z Q Yin, et al. Review of self-referenced measurement 
algorithms: bridging lateral shearing interferometry and multi-probe 
error separation. Frontiers of Mechanical Engineering, 2017, 12: 143–157.

 [11] Z Q Yin. Research on ultra-precision measuring straightness and surface 
microtopography analysis. Changsha: National University of Defense 
Technology, 2003. (in Chinese)

 [12] W Gao, S Kiyono. High accuracy profile measurement of a machined 
surface by the combined method. Measurement, 1996, 19(1): 55–64.

 [13] Z Liu, S Jiang, X Li, et al. Precision measurement of X-axis stage mirror 
profile in scanning beam interference lithography by three-probe system 
based on bidirectional integration model. Optics Express, 2017, 25(9): 
10312–10321.

 [14] W Gao, S Kiyono. On-machine profile measurement of machined surface 
using the combined three-point method. JSME International Journal Series 
C: Mechanical Systems, Machine Elements and Manufacturing, 1997, 40(2): 
253–259.

 [15] Z Q Yin, S Y Li. High accuracy error separation technique for on-machine 
measuring straightness. Precision Engineering, 2006, 30(2): 192–200.

 [16] Z Q Yin, S Y Li, F J Tian. Exact reconstruction method for on-machine 
measurement of profile. Precision Engineering, 2014, 38(4): 969–978.

 [17] I Fujimoto, K Nishimura, T Takatsuji, et al. A technique to measure the flat-
ness of next-generation 450 mm wafers using a three-point method with 

an autonomous calibration function. Precision Engineering, 2012, 36(2): 
270–280.

 [18] I Weingartner, C Elster. System of four distance sensors for high-accuracy 
measurement of topography. Precision Engineering, 2004, 28(2): 164–170.

 [19] A Wiegmann, C Elster, R D Geckeler, et al. Stability analysis for the TMS 
method: influence of high spatial frequencies. Optical Measurement 
Systems for Industrial Inspection V, Munich, Germany, June 17–21, 2007: 
661618-1–661618-9.

 [20] E H K Fung, M Zhu. An improved Fourier five-sensor (IF5S) method for 
separating straightness and yawing errors of a linear slide based on 
multiple sensor parameter sets and least square regression technique. 
Measurement, 2012, 45(5): 1323–1330.

 [21] E H K Fung. An experimental five-sensor system for measuring straight-
ness and yawing motion errors of a linear slide. Measurement Science and 
Technology, 2008, 19(7): 075102.

 [22] E H K Fung, M Zhu, X Z Zhang, et al. A novel Fourier-Eight-Sensor (F8S) 
method for separating straightness, yawing and rolling motion errors of a 
linear slide. Measurement, 2014, 47: 777–788.

 [23] C J Evans, R J Hocken, W T Estler, et al. Self-calibration: reversal, redun-
dancy, error separation, and ‘absolute testing’. CIRP Annals, 1996, 45(2): 
617–634.

 [24] W Gao, J Yokoyama, H Kojima, et al. Precision measurement of cylinder 
straightness using a scanning multi-probe system. Precision Engineering, 
2002, 26(3): 279–288.

 [25] W Gao. Precision nanometrology: sensors and measuring systems for 
nanomanufacturing. London: Springer, 2010.

 [26] D C Lay, S R Lay, J J McDonald. Linear algebra and its applications. 5th ed. 
New York: Pearson, 2015.

 [27] A Uncini. Fundamentals of adaptive signal processing. Cham: Springer 
International Publishing, 2015.

 [28] V K Ivanov, V V Vasin, V P Tanana. Theory of linear ill-posed problems and its 
applications. Berlin: Walter de Gruyter, 2013.

 [29] M Fuhry, L Reichel. A new Tikhonov regularization method. Numerical 
Algorithms, 2012, 59(3): 433–445.

 [30] K Ito, B Jin. Inverse problems: Tikhonov theory and algorithms. Singapore: 
World Scientific, 2014.


	On-Machine Measurement of the Straightness and Tilt Errors of a Linear Slideway Using a New Four-Sensor Method
	Abstract 
	1 Introduction
	2 New Error Separation Method
	3 Simulation Verifications
	4 Experimental Results and Discussion
	5 Conclusions
	Authors’ Contributions
	References




