
Citation: Song, W.; Liu, Z.; Guo, Y.;

Sun, S.; Zu, G.; Li, M. DGPolarNet:

Dynamic Graph Convolution

Network for LiDAR Point Cloud

Semantic Segmentation on Polar BEV.

Remote Sens. 2022, 14, 3825. https://

doi.org/10.3390/rs14153825

Academic Editor: Henrique Lorenzo

Received: 20 June 2022

Accepted: 4 August 2022

Published: 8 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

DGPolarNet: Dynamic Graph Convolution Network for LiDAR
Point Cloud Semantic Segmentation on Polar BEV
Wei Song 1 , Zhen Liu 1, Ying Guo 1,*, Su Sun 2, Guidong Zu 3 and Maozhen Li 4

1 School of Information Science and Technology, North China University of Technology, Beijing 100144, China
2 Department of Computer and Information Technology, Purdue University, West Lafayette, IN 47907, USA
3 COFCO Trading Agriculture & Big Data Solutions Co., Ltd., Dalian 116601, China
4 Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge UB8 3PH, UK
* Correspondence: guoying@ncut.edu.cn; Tel.: +86-132-6260-1918

Abstract: Semantic segmentation in LiDAR point clouds has become an important research topic for
autonomous driving systems. This paper proposes a dynamic graph convolution neural network for
LiDAR point cloud semantic segmentation using a polar bird’s-eye view, referred to as DGPolarNet.
LiDAR point clouds are converted to polar coordinates, which are rasterized into regular grids. The
points mapped onto each grid distribute evenly to solve the problem of the sparse distribution and
uneven density of LiDAR point clouds. In DGPolarNet, a dynamic feature extraction module is
designed to generate edge features of perceptual points of interest sampled by the farthest point
sampling and K-nearest neighbor methods. By embedding edge features with the original point
cloud, local features are obtained and input into PointNet to quantize the points and predict semantic
segmentation results. The system was tested on the Semantic KITTI dataset, and the segmentation
accuracy reached 56.5%

Keywords: semantic segmentation; polar BEV; LiDAR point cloud; dynamic graph convolution network

1. Introduction

LiDAR sensors are essential devices for environmental perception tasks in smart
vehicles, as they can scan millions of 3D points for each frame [1–3]. In recent years, LiDAR-
based semantic segmentation technology has achieved rapid development. However,
LiDAR point clouds have the characteristics of irregular structure, uneven density, and
sparse distribution, which are challenging problems for deep learning approaches.

Three-dimensional (3D) segmentation methods [4,5] based on machine learning, such
as support vector machine (SVM), random forest, naïve Bayesian supervised learning, etc.,
usually utilize the geometrical or distribution features of point clouds to train models.
The feature extraction [6,7] process of large-scale LiDAR point clouds is computationally
intensive, which limits machine learning approaches for outdoor environment perception
tasks. Meanwhile, because LiDAR point cloud density is high in the near field and loose
in the far field, such methods have poor adaptability and expansion capabilities [8]. From
the traditional machine learning method to various deep neural networks, the seman-
tic segmentation approaches of projected views, points, voxels, and graphs have been
widely researched. The multiview projection and voxel mapping methods lead to feature
information loss. Meanwhile, due to the uneven point distribution density in far and
near fields, the sampled unstable features cause low performance of the trained network
model. PolarNet [9] has been proposed to rasterize the polar coordinates of LiDAR points
into regular grids as input into a convolution neural network (CNN) model for semantic
segmentation. Figure 1 compares the density distribution of a LiDAR point cloud frame in
the Cartesian and polar BEV coordinate systems. The density distribution is more uniform
under the polar BEV coordinate system. Although PolarNet solves the problem of the

Remote Sens. 2022, 14, 3825. https://doi.org/10.3390/rs14153825 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14153825
https://doi.org/10.3390/rs14153825
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5909-9661
https://doi.org/10.3390/rs14153825
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14153825?type=check_update&version=2

Remote Sens. 2022, 14, 3825 2 of 18

uneven density of LiDAR point clouds, the applied feature extraction method by using
max-pooling operations causes the information loss of detailed geometrical features.

Remote Sens. 2022, 14, x FOR PEER REVIEW 2 of 17

semantic segmentation. Figure 1 compares the density distribution of a LiDAR point
cloud frame in the Cartesian and polar BEV coordinate systems. The density distribution
is more uniform under the polar BEV coordinate system. Although PolarNet solves the
problem of the uneven density of LiDAR point clouds, the applied feature extraction
method by using max-pooling operations causes the information loss of detailed geomet-
rical features.

(a)

(b)

Figure 1. Density distributions of LiDAR point clouds in the Cartesian and polar BEV coordinate
systems, where the x- and y-axes indicate distance and point count, respectively: (a) Cartesian coor-
dinate system; (b) polar BEV coordinate system.

This paper proposes a dynamic graph convolution network for LiDAR point cloud
semantic segmentation using a polar bird’s-eye view, referred to as DGPolarNet, as shown
in Figure 2. The proposed DGPolarNet input is the original point clouds, and the output
is the semantic segmentation results. Firstly, the LiDAR point clouds are converted to po-
lar coordinates, which are registered into regular grids to balance the input data to
DGPolarNet. Then, a dynamic feature extraction module generates edge features based
on perceptual points of interest sampled by the farthest point sampling (FPS) and K-near-
est neighbor (KNN) methods. Finally, the extracted edge features are combined with the

Figure 1. Density distributions of LiDAR point clouds in the Cartesian and polar BEV coordinate
systems, where the x- and y-axes indicate distance and point count, respectively: (a) Cartesian
coordinate system; (b) polar BEV coordinate system.

This paper proposes a dynamic graph convolution network for LiDAR point cloud
semantic segmentation using a polar bird’s-eye view, referred to as DGPolarNet, as shown
in Figure 2. The proposed DGPolarNet input is the original point clouds, and the output is
the semantic segmentation results. Firstly, the LiDAR point clouds are converted to polar
coordinates, which are registered into regular grids to balance the input data to DGPolarNet.
Then, a dynamic feature extraction module generates edge features based on perceptual

Remote Sens. 2022, 14, 3825 3 of 18

points of interest sampled by the farthest point sampling (FPS) and K-nearest neighbor
(KNN) methods. Finally, the extracted edge features are combined with the original point
cloud through skip connections to recover spatial information lost and enhance local
features with describable semantic information. The extracted dynamical edge features are
input into a convolutional neural network to provide discriminant features for the semantic
segmentation network.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 17

original point cloud through skip connections to recover spatial information lost and en-
hance local features with describable semantic information. The extracted dynamical edge
features are input into a convolutional neural network to provide discriminant features
for the semantic segmentation network.

Figure 2. DGPolarNet framework for semantic segmentation from LiDAR point clouds.

The main contributions of this paper are as follows: (1) The semantic segmentation
based on a polar bird’s-eye view (BEV) solves the problems of the sparse distribution and
uneven density of LiDAR point clouds. (2) The edge features generated from the points of
interest sampled by FPS and KNN are more discriminants than the local features com-
puted by KNN.

2. Related Works
In this section, we briefly survey the related works of 3D semantic segmentation, in-

cluding neural network models to process converted multiviews, voxels, points, and
graphs.

2.1. Multiview Projection Methods
To reuse deep neural network models for semantic segmentation in 2D images, 3D

point clouds are projected onto 2D images or spherical images for pixel-wise semantic
labeling. Lawin et al. [10], Boulch et al. [11], and Tatarchenko et al. [12] mapped 3D point
clouds onto multiple 2D images from different viewports, which were input into deep
learning networks, such as convolutional neural network (CNN), full convolutional net-
work (FCN), and fully convolutional U-shaped network with skip connections, for pixel-
wise semantic labeling. Using an inverse mapping procedure, semantic segmentation was
implemented in 3D point clouds. Su et al. [13] proposed a sparse lattice network (SPLAT-
Net) with a bilateral convolution layer. Original point clouds were mapped to a sparse
lattice, in which valid grids were input into bilateral convolution layers for hierarchical
and spatial features extraction. SPLATNet was a joint 2D–3D network with a series of 1 ×
1 CONV layers for the fusion of the extracted features of 3D point clouds and multiview
images. Wu et al. [14] proposed a semantic segmentation framework, SqueezeSeg. It uti-
lized spherical projection to transform sparse and irregular 3D point clouds into dense 2D
grids, which were input into a convolutional network, SqueezeNet, for feature extraction.
The segmentation results were further optimized based on conditional random fields.
Similarly, Milioto et al. [15] proposed RangeNet++ operating on the range views of spher-
ical projection from LiDAR point clouds. To improve computation speed performance,
they utilized a GPU parallel programming technique to speed up the postprocessing of
KNN operations. However, such 3D semantic segmentation methods based on 2D projec-
tion were sensitive to viewport selection and had low accuracy performance when pro-
cessing point clouds of sparse distribution.

Su et al. [16] proposed a multiview convolutional neural network (MVCNN) that
captured 2D images from different viewports and aggregated them into 3D shape de-
scriptors by convolutional and pooling operations. These descriptive features were fed
into a semantic segmentation network. However, this method only allowed selecting fixed
viewports and ignored a large amount of geometric space information, which was not
suitable for large-scale complex scenes. To generate discriminative information, Feng et
al. [17] proposed a group-view convolutional neural network (GVCNN) based on

Figure 2. DGPolarNet framework for semantic segmentation from LiDAR point clouds.

The main contributions of this paper are as follows: (1) The semantic segmentation
based on a polar bird’s-eye view (BEV) solves the problems of the sparse distribution and
uneven density of LiDAR point clouds. (2) The edge features generated from the points of
interest sampled by FPS and KNN are more discriminants than the local features computed
by KNN.

2. Related Works

In this section, we briefly survey the related works of 3D semantic segmentation, in-
cluding neural network models to process converted multiviews, voxels, points, and graphs.

2.1. Multiview Projection Methods

To reuse deep neural network models for semantic segmentation in 2D images, 3D
point clouds are projected onto 2D images or spherical images for pixel-wise semantic
labeling. Lawin et al. [10], Boulch et al. [11], and Tatarchenko et al. [12] mapped 3D
point clouds onto multiple 2D images from different viewports, which were input into
deep learning networks, such as convolutional neural network (CNN), full convolutional
network (FCN), and fully convolutional U-shaped network with skip connections, for pixel-
wise semantic labeling. Using an inverse mapping procedure, semantic segmentation was
implemented in 3D point clouds. Su et al. [13] proposed a sparse lattice network (SPLATNet)
with a bilateral convolution layer. Original point clouds were mapped to a sparse lattice, in
which valid grids were input into bilateral convolution layers for hierarchical and spatial
features extraction. SPLATNet was a joint 2D–3D network with a series of 1 × 1 CONV
layers for the fusion of the extracted features of 3D point clouds and multiview images.
Wu et al. [14] proposed a semantic segmentation framework, SqueezeSeg. It utilized
spherical projection to transform sparse and irregular 3D point clouds into dense 2D
grids, which were input into a convolutional network, SqueezeNet, for feature extraction.
The segmentation results were further optimized based on conditional random fields.
Similarly, Milioto et al. [15] proposed RangeNet++ operating on the range views of spherical
projection from LiDAR point clouds. To improve computation speed performance, they
utilized a GPU parallel programming technique to speed up the postprocessing of KNN
operations. However, such 3D semantic segmentation methods based on 2D projection
were sensitive to viewport selection and had low accuracy performance when processing
point clouds of sparse distribution.

Su et al. [16] proposed a multiview convolutional neural network (MVCNN) that
captured 2D images from different viewports and aggregated them into 3D shape descrip-
tors by convolutional and pooling operations. These descriptive features were fed into a
semantic segmentation network. However, this method only allowed selecting fixed view-
ports and ignored a large amount of geometric space information, which was not suitable
for large-scale complex scenes. To generate discriminative information, Feng et al. [17]
proposed a group-view convolutional neural network (GVCNN) based on MVCNN. The

Remote Sens. 2022, 14, 3825 4 of 18

GVCNN used a fully convolutional network to extract view-level descriptors. In addition,
grouping modules were used to learn association information and distinguish information
between different viewports. Based on content-based discrimination, group-level descrip-
tors were generated by dividing multiviews into several groups. The network applied
a fully connected layer to complete the identification task. Classification performance
was significantly improved by emphasizing discriminative information in the 3D shape
descriptor, which was discovered at the group level. However, the GVCNN used max-
imum pooling for multiview clustering operations, which lost some useful information.
Wang et al. [18] proposed a recurrent clustering and pooling convolutional neural network
(RCPCNN). The RCP module was designed to generate dominant sets based on the simi-
larity of multiple views. The RCPCNN grouped clusters of the dominant set, which were
used for network updating by the pooling method. To improve the adaptability of the
semantic segmentation network, the RCP module used the cyclic clustering and pooling
module to generate feature vectors automatically. To fully exploit the correlation between
multiple views, Ma et al. [19] combined the long short-term memory (LSTM) network with
a CNN for 3D shape recognition. The 2D CNN network was used to extract the low-level
features for each image of the view subsequences. The extracted features were input into
the LSTM network as a time series. Through a sequence voting layer, the extracted features
were aggregated into shape descriptors. This model fully utilized the advantages of CNN
and LSTM, which effectively improved the discriminative ability of multiview descriptors.

2.2. Voxelization Methods

Maturana et al. [20] proposed VoxNet to convert unstructured point cloud data into
grid data as the input of a 3D CNN. Point clouds were mapped to multiple 3D grids using
an occupancy grid algorithm. The value of each grid cell was normalized and fed into
the convolutional layers of the network to generate feature maps. A max-pooling method
was performed on nonoverlapping blocks of voxels. Rethage et al. [21] proposed a fully
convolutional point network (FCPN) for semantic voxel labeling. In low-level feature
abstraction layers, the FCPN employed PointNet with a uniform sampling strategy to en-
sure the permutation invariance of local geometric feature extraction. The high-dimension
feature extraction network formed an octree-like nonoverlapping feature space to reduce
memory costs. To enhance the performance of convolutional networks on sparse 3D
voxelized data, Graham et al. [22] designed submanifold sparse convolutional networks
(SSCNs), which fixed the active sites of sparse convolutions to keep sparsity stable over
multiple layers. To solve the submanifold dilation problem, the SSCNs only process ac-
tive voxels. Moreover, strided operations incorporating pooling or strided convolution
were introduced for data fusion in the hidden layers between disconnected components.
Wu et al. [23] proposed 3DShapeNet, which represented 3D geometry features as a probabil-
ity distribution of binary variables on 3D voxels. Binary tensors were fed into three layers
of convolutional filters to extract features. Although these methods solved the problem of
processing unstructured point clouds, the memory usage may increase cubically with the
increase in resolution.

Riegler et al. [24] proposed OctNet with adaptive spatial partitioning capability that
replaced fixed-resolution voxels with a flexible octree structure, effectively solving the
problem of the high memory consumption of voxels. It divided the 3D space hierarchically
into a set of unbalanced octree structures. In the octree structures, each leaf node stored
a pooled feature representation. The 3D space was partitioned based on data density.
Computational storage resources were dynamically pooled based on the input 3D struc-
ture, which greatly reduced memory consumption and improved computational speed.
Wang et al. [25] proposed an O-CNN that implemented convolution operations only on
sparse octants occupied by 3D surface boundaries. The O-CNN used the sparsity of the
octree representation and the local orientation of the shape to reasonably allocate memory
and improve computational efficiency. Xu et al. [26] proposed a learning-free 3D point
cloud segmentation strategy based on the octree structure. The graph structure was gener-

Remote Sens. 2022, 14, 3825 5 of 18

ated based on local contextual information for point cloud voxelization and clustering of
voxels. Perceptual grouping was utilized to segment 3D point clouds in a purely geometric
way. This method had better classification results for complex scenes and objects with
nonplanar surfaces. However, the traversing process of the octree structure caused high
time complexity for generating a high-resolution octree.

To solve the problems of the high memory consumption and long training time of
voxelized networks, Li et al. [27] proposed a field-probing neural network for 3D data
(FPNN). The 3D space was represented by a 3D vector field as the input to the network.
Instead of a convolutional layer in the CNN, a field-probing filter was used to extract
features from the 3D vector field efficiently. This way, the computational complexity only
depended on the number of field-probing filters and sampling points, and it was not
affected by the resolution of the voxel map. Le et al. [28] proposed a point-grid hybrid
model, PointGrid, which sampled a certain number of points in each grid cell with a simple
point quantization strategy. From these sampled points, local ensemble features were
extracted. Tchapmi et al. [29] proposed SEGCloud, which voxelized 3D point clouds and
generated coarse downsampled voxel labels by using 3D-FCNN. The voxel labels were
interpolated back to the 3D points by trilinear interpolation layers. The original 3D point
features were combined with the resulting class labels after interpolation. By using fully
connected conditional random fields, the final class labels were inferred to obtain a fine-
grained semantic segmentation level. In SEGCloud, the shared computation using fully
convolutional networks reduced a certain amount of computation consumption. Although
the voxel-based semantic segmentation methods utilized lossy compression on sparse point
clouds as preprocessing to reduce computational memory consumption, loss of geometric
and topological information of point clouds was caused.

2.3. Point Methods

To avoid loss of original information by projection or voxelization, Qi et al. [30]
proposed a point-wise semantic segmentation network, PointNet, that directly operated
on unordered point clouds without sampling preprocessing. PointNet learned geometric
features through shared multilayer perceptrons (MLPs), which were input into symmetrical
max-pooling functions for global features extraction. However, PointNet based on point-
wise MLP focused on the perception of global geometric information and ignored the
topological structure of local features of points. To extend the PointNet applicability
to complex scenes, Qi et al. [31] proposed a deep hierarchical feature learning network,
PointNet++. PointNet++ exploited an individual PointNet to generate local features in
multiscale set abstractions and utilized hierarchical concepts to extract global features.

Considering both orientation awareness and scale awareness, Jiang [32] proposed
a PointSIFT module that supported various PointNet-based architectures. The module
used orientation-encoding convolution to generate multiscale representation from eight
orientations. A set abstraction module in the downsampling stage and a feature propagation
module in the upsampling stage were combined to obtain the features. Li et al. [33]
proposed SO-Net, which constructed a self-organizing map (SOM) to model the spatial
distribution of point clouds. The SOM node features were aggregated into a global feature
vector using average pooling. A parallel branching network with fully connected branches
and convolutional branches was used to recover a single feature vector from the global
features to represent the input point cloud.

Because LiDAR point clouds have an imbalanced distribution, several invalid grids
have been registered in far fields for traditional grid rasterization methods [34,35]. BEV
maps represent point cloud data from a top-down perspective without losing any scale
and range information [36,37]. By projecting raw point clouds into a fixed-size polar BEV
map, Zhang et al. [9] proposed a PolarNet that extracted the local features in polar grids
and integrated them into a 2D CNN for semantic segmentation.

Remote Sens. 2022, 14, 3825 6 of 18

2.4. Graph Methods

Currently, the graph neural network (GNN) research proposed by Scarselli et al. [38]
has been widely studied for 2D and 3D semantic analysis tasks. Bruna et al. [39] applied
convolutional neural networks in non-Euclidean domains modeled with graphs to perform
local filtering in both the spatial and spectral domains. Simonovsky et al. [40] proposed
an edge conditional convolution network on a local graph neighborhood. By integrat-
ing edge labels and an asymmetric edge function, the relationship between local points
was established. Landrieu et al. [41] introduced an attribute-directed graph hyper point
graph with edge features. Gated graph neural networks and edge conditional convolution
were utilized to obtain contextual information for large-scale point cloud segmentation.
Landrieu et al. [42] proposed a 3D point cloud oversegmentation strategy to improve
segmentation accuracy. Jiang et al. [43] aggregated point features into edge branches in a
hierarchical manner to enhance the description of local features. Kipf et al. [44] proposed a
semi-supervised classification network, the graph convolutional neural networks (GCN).
To extend the applicability of the GCN, Te et al. [45] proposed a regularized graph convo-
lutional neural network (RGCNN), which mainly consisted of graph construction, graph
convolution, and feature filtering layers. In each convolution layer, the graph Laplacian
matrix was updated to improve the flexibility to adapt to dynamic graphs. The Chebyshev
polynomial was also used to reduce computational complexity. Experiments indicated that
the RGCNN had good performances in both point cloud classification and segmentation
tasks of different densities. Wang et al. [46] developed a dynamic graph convolutional
neural network (DGCNN). To obtain the local features of point clouds, the DGCNN used
the EdgeConv operation to extract the features of centroids in a local neighborhood map.
EdgeConv only considered the point coordinates and the distances of the neighboring
points. Because the vector directions between neighboring points were ignored, some local
geometric information was eventually lost in this method.

To enhance local feature representation, this paper proposes DGPolarNet, an inher-
itance derived from DGCNN, PolarNet, and PointNet++. The local discriminate edge
features generated from the points of interest sampled by FPS and KNN discriminate more
than the local features computed by KNN. The extracted local features and the original
point cloud data are aggregated for semantic segmentation to prevent feature loss during
the convolution and pooling operations.

3. DGPolarNet for LiDAR Point Cloud Semantic Segmentation

Through a comprehensive analysis of global and local features, this paper proposes
DGPolarNet, a dynamic graph convolution network with FPS and KNN for LiDAR point
cloud semantic segmentation based on a polar BEV, as shown in Figure 3. DGPolarNet
mainly consists of an FPS-KNN dynamic network and shared MLP postprocessing.

The FPS-KNN dynamic network is developed to convert unstructured raw LiDAR
point clouds into high-dimensional features for semantic segmentation. The input of
the network is the original LiDAR point clouds, and the output is the semantic labels
of all points. The original point cloud is converted to polar representation by a polar
BEV converter unit. The FPS-KNN dynamic network module implements edge feature
extraction and feature fusion to obtain the aggregated features. The postprocessing module
integrates all the aggregation features of the whole polar BEV map for semantic analysis.

Remote Sens. 2022, 14, 3825 7 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 17

(a)

(b)

Figure 3. Cont.

Remote Sens. 2022, 14, 3825 8 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 17

(c)

Figure 3. Proposed semantic segmentation method: (a) DGPolarNet framework; (b) FPS-KNN dy-
namic network for edge feature extraction of polar BEV blocks; (c) downsampling process for high-
dimensional edge feature generation.

3.1. BEV Polar Converter
To solve the invalid grid waste problem of processing the uneven distribution of Li-

DAR scanning, the polar BEV coordinate system is utilized to register 3D point clouds
into regular grids. Using Equation (1), the 3D point (x, y, z, t) is converted into the polar
coordinate (r, θ, t), where (r, θ) is the polar coordinate defined by Equations (1) and (2),
and t is the intensity value of the laser reflection. 𝑟 = ඥ𝑥ଶ + 𝑦ଶ + 𝑧ଶ (1)

𝜃 = arcsin yඥ𝑥ଶ + 𝑦ଶ + 𝑧ଶ (2)

The points in the polar BEV grid defined as 𝑝௜(𝑟௜, 𝜃௜, 𝑡௜) ∈ 𝑃 are rasterized into a 3D
array 𝑉(ଵ) of size (𝑛ଵଵ × 𝑛ଶଵ × 𝑛ଷଵ), which is then input into the FPS-KNN dynamic network
as the first layer of the backbone network. For the first layer 𝑉(ଵ), 𝑛ଵଵ is the batch size, and 𝑛ଷଵ is the number of points in each batch. Each point has three attributes {𝑟, 𝜃, 𝑡}; thus, 𝑛ଶଵ
= 3.

3.2. FPS-KNN Dynamic Network
The FK-EdgeConv (FPS-KNN EdgeConv) method is developed by integrating FPS

and KNN algorithms to extract the comprehensive edge features of the nearest and far-
thest vertices, as shown in Figure 4.

Figure 3. Proposed semantic segmentation method: (a) DGPolarNet framework; (b) FPS-KNN
dynamic network for edge feature extraction of polar BEV blocks; (c) downsampling process for
high-dimensional edge feature generation.

3.1. BEV Polar Converter

To solve the invalid grid waste problem of processing the uneven distribution of
LiDAR scanning, the polar BEV coordinate system is utilized to register 3D point clouds
into regular grids. Using Equation (1), the 3D point (x, y, z, t) is converted into the polar
coordinate (r, θ, t), where (r, θ) is the polar coordinate defined by Equations (1) and (2), and
t is the intensity value of the laser reflection.

r =
√

x2 + y2 + z2 (1)

θ = arcsin
y√

x2 + y2 + z2
(2)

The points in the polar BEV grid defined as pi(ri, θi, ti) ∈ P are rasterized into a 3D
array V(1) of size

(
n1

1 × n1
2 × n1

3
)
, which is then input into the FPS-KNN dynamic network as

the first layer of the backbone network. For the first layer V(1), n1
1 is the batch size, and n1

3 is
the number of points in each batch. Each point has three attributes {r, θ, t}; thus, n1

2 = 3.

3.2. FPS-KNN Dynamic Network

The FK-EdgeConv (FPS-KNN EdgeConv) method is developed by integrating FPS
and KNN algorithms to extract the comprehensive edge features of the nearest and farthest
vertices, as shown in Figure 4.

Remote Sens. 2022, 14, 3825 9 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 17

Figure 4. Example of edge feature generation by computing the vectors between the vertex 𝑝௜(௟)
from its corresponding nearest and farthest neighbors sampled by FPS and KNN.

The FPS-KNN dynamic network constructs a directed graph for each layer using the
FK-EdgeConv method. For the l-th network layer, the dynamic graph 𝐺(௟) is defined as
Equation (3), where the datasets 𝑉(௟) and 𝐸(௟) with a dimension of (𝑛ଵ(௟) × 𝑛ଶ(௟) × 𝑛ଷ(௟)) rep-
resent the set of vertices and edges, respectively. 𝐺(௟) = (𝑉(௟), 𝐸(௟)) (3)𝑉(௟) = {𝑝௜(௟)|𝑖 = 1,2, … , 𝑛(௟)} (4)𝐸(௟) = {𝜀௜(௟) = (𝜀௜భ(௟), 𝜀௜మ(௟), … , 𝜀௜మೖ(೗)(௟)) |𝑖 = 1,2, … , 𝑛(௟)} (5)

𝜀௜ೕ(௟) = 𝑝௜ೕ(௟) − 𝑝௜(௟) (6)

To obtain more effective semantic features, FPS and KNN are utilized to generate
directed graphs from the LiDAR point clouds instead of the fully connected edges, which
suffer from high memory consumption. The FPS and KNN operations sample the 𝑘(௟)
farthest and 𝑘(௟) nearest neighbors, respectively, from the vertices set 𝑉(௟). Thus, the edge
set 𝐸(௟) has 2 × 𝑘(௟) directed edge elements, which are calculated based on the target
point 𝑝௜(௟) and the neighbor points using Equation (6).

Then, the vertices in 𝑉(௟) and the edges in 𝐸(௟) are input into the Conv2D and pool-
ing operations to generate the output dataset 𝑉(௟ା1) with a dimension of (𝑛1

(௟ା1) × 𝑛2
(௟ା1) ×𝑛3

(௟ା1)), in which 𝑛1
(௟ା1) = 𝑛1

(௟), 𝑛2
(௟ା1) = 𝑛2

(௟), and 𝑛3
(௟ା1) = 𝑛3

(௟). The edge feature computa-
tion as the Conv2D is defined as ℎ ቀ𝑝௜, 𝜀௜ೕቁ. We utilize max-pooling and min-pooling op-
erations to extract local features from the sampled farthest and nearest vertices, respec-
tively. Accordingly, the output 𝑝௜(௟ାଵ) ∈ 𝑉(௟ାଵ) of the FK-EdgeConv operation is denoted
as Equation (7). The dataset 𝑉(௟ାଵ) is also the input of the (l+1)-th layer processed by the
following FK-EdgeConv operation. In particular, only the directed graph of the first layer
of the FPS-KNN dynamic network is built based on the points in the polar BEV coordinate
system. The following layers are constructed using the features extracted from the previ-
ous layer.

𝑝௜(௟ାଵ) = ቐ max {ℎ൫𝑝௜(௟), 𝜀௜భ(௟)൯, ℎ൫𝑝௜(௟), 𝜀௜మ(௟)൯, … … , ℎ ቀ𝑝௜(௟), 𝜀௜ೖ(௟)ቁ |𝑖 = 1,2, … , 𝑘}min {ℎ൫𝑝௜(௟), 𝜀௜భ(௟)൯, ℎ൫𝑝௜(௟), 𝜀௜మ(௟)൯, … … , ቀ𝑝௜(௟), 𝜀௜ೖ(௟)ቁ |𝑖 = 𝑘 + 1, 𝑘 + 2, … ,2𝑘} (7)

Figure 4. Example of edge feature generation by computing the vectors between the vertex p(l)i from
its corresponding nearest and farthest neighbors sampled by FPS and KNN.

The FPS-KNN dynamic network constructs a directed graph for each layer using
the FK-EdgeConv method. For the l-th network layer, the dynamic graph G(l) is defined
as Equation (3), where the datasets V(l) and E(l) with a dimension of (n(l)

1 × n(l)
2 × n(l)

3)
represent the set of vertices and edges, respectively.

G(l) =
(

V(l), E(l)
)

(3)

V(l) =
{

p(l)i

∣∣∣i = 1, 2, . . . , n(l)
}

(4)

E(l) =

{
ε
(l)
i = (ε

(l)
i1

, ε
(l)
i2

, . . . , ε
(l)
i
2k(l)

)

∣∣∣∣i = 1, 2, . . . , n(l)
}

(5)

ε
(l)
ij

= p(l)ij
− p(l)i (6)

To obtain more effective semantic features, FPS and KNN are utilized to generate
directed graphs from the LiDAR point clouds instead of the fully connected edges, which
suffer from high memory consumption. The FPS and KNN operations sample the k(l)

farthest and k(l) nearest neighbors, respectively, from the vertices set V(l). Thus, the edge
set E(l) has 2× k(l) directed edge elements, which are calculated based on the target point
p(l)i and the neighbor points using Equation (6).

Then, the vertices in V(l) and the edges in E(l) are input into the Conv2D and pooling op-
erations to generate the output dataset V(l+1) with a dimension of (n(l+1)

1 × n(l+1)
2 × n(l+1)

3),

in which n(l+1)
1 = n(l)

1 , n(l+1)
2 = n(l)

2 , and n(l+1)
3 = n(l)

3 . The edge feature computation as

the Conv2D is defined as h
(

pi, εij

)
. We utilize max-pooling and min-pooling operations to

extract local features from the sampled farthest and nearest vertices, respectively. Accordingly,
the output p(l+1)

i ∈ V(l+1) of the FK-EdgeConv operation is denoted as Equation (7). The
dataset V(l+1) is also the input of the (l+1)-th layer processed by the following FK-EdgeConv
operation. In particular, only the directed graph of the first layer of the FPS-KNN dynamic

Remote Sens. 2022, 14, 3825 10 of 18

network is built based on the points in the polar BEV coordinate system. The following layers
are constructed using the features extracted from the previous layer.

p(l+1)
i =


max{h

(
p(l)i , ε

(l)
i1

)
, h
(

p(l)i , ε
(l)
i2

)
, , h

(
p(l)i , ε

(l)
ik

)
|i = 1, 2, . . . , k}

min{h
(

p(l)i , ε
(l)
i1

)
, h
(

p(l)i , ε
(l)
i2

)
, ,

(
p(l)i , ε

(l)
ik

)
|i = k + 1, k + 2, . . . , 2k}

(7)

The FK-EdgeConv unit, as shown in Figure 3b, is developed to compute local features of
the array V(l) = {v(l)1 , v(l)2 , v(l)3 } of size (n(l)

1 × n(l)
2 × n(l)

3) for the l-th layer. The FPS and KNN

algorithms are implemented on V(l) and output the feature array V′(l) = {v(l)1 , v(l)2 , v(l)3 , v(l)4 }
of size (n(l)

1 × (2× n(l)
2)× n(l)

3 × 2k), which contains both the point and edge features of the
k nearest points and the k farthest points. By using Conv+Relu and pooling operations on
each batch of V′(l), the local feature array V(l+1) of size

(
nl+1

1 × nl+1
2 × nl+1

3

)
is generated

as the input of the following layer. In each layer, FK-EdgeConv is utilized to calculate the
dynamic feature graph model as local semantic features, which are further aggregated for
semantic feature enhancement. In our practice, we implement five FK-EdgeConv operations
and four down operations accordingly.

After extracting the graph features of multiple layers, the down unit, as described
in Figure 3c, is implemented to fuse the extract features of the layers l and l’. The
inputs of the down unit consist of two feature sets of different sizes. The feature ar-
rays V(l) and V(l′) are reshaped and concatenated into the aggregated feature array

V′(l′) = {v(l
′)

1 , v(l
′)

2 + v(l)2 , v(l
′)

3 } of size (n(l′)
1 × (n(l′)

2 + n(l)
2)× n(l′)

3). Using the Conv+Relu
operation on each batch of V′(l′), the higher-dimensional feature array V(l′+1) is generated
as the input of the following layer.

By using a skip architecture, the local features of FK-EdgeConv operations and down
processes are joined as aggregated features, which are input into the postprocessing for
global semantic segmentation. Similar to the skip architecture, the features generated by the
FPS-KNN EdgeConv and down processes are reshaped by cropping and scaling operations
to merge into the aggregated features in the concatenating procedure.

3.3. Postprocessing

The aggregation features generated by the FPS-KNN dynamic network are mapped
back to their corresponding polar BEV grid as the input of postprocessing. The shared MLP
is utilized to convolute the semantic segmentation prediction. In the l-th layer, the feature
set vl is computed via Equation (8), where wlm

pqt is the learnable parameter for the element
(p, q, t) in layer m of the MLP.

vl
ijk = relu

(
bl + ∑m ∑pl−1

p=0 ∑ql−1
q=0 ∑Rl−1

t=0 wlm
pqtv

(l−1)m
(r+i)(θ+j)(t+c)

)
(8)

4. Experiments and Analysis

The proposed model was tested on the SemanticKITTI [47] datasets. Compared with
other typical semantic segmentation networks, the accuracy performances of the DGPolar-
Net model with several critical parameters are analyzed and discussed in this section.

4.1. Datasets

SemanticKITTI is a dataset of LiDAR point clouds collected by Velodyne Lidar HDL-
64E and annotated with point-level semantic labels. It consists of a total of 43,551 frames
from 22 sequences collected from inner-city traffic, including 23,201 for training and the
rest for testing. Each frame has around 104,452 points on average. There are a total number
of 19 typical types of objects, including ground-related, structures, vehicles, nature, human,
object, and outlier classes. The dataset is unbalanced in point counts for different objects.
For example, there is a small number of motorcyclist objects in most scenes, and only a few

Remote Sens. 2022, 14, 3825 11 of 18

points are labeled for the motorcyclist class. In our experiment, we used one sequence for
validation and nine sequences for training.

4.2. Semantic Segmentation Performance

Experiments in this section were conducted using an Intel(R) Xeon(R) Silver 4110
CPU @ 2.10 GHz 2.10 GHz dual processor, an NVIDIA Quadro RTX 6000 graphics card,
and 64 GB RAM. In our experiments, the points in the range of −50 m < x < 50 m,
−50 m < y < 50 m, and −3 m < z < 1.5 m were mapped to the polar BEV coordi-
nate system, which were then rasterized into the polar BEV grids with a resolution of
(480× 360× 32). After analyzing the point distribution of the SemanticKITTI dataset, we
specified the k value of each layer as equal to 20. In our experiment, we specified v1

1 = 1,
v1

2 = 3, and v1
3 = 1,843,200. Our DGPolarNet model had 14 layers, among which the 1st

layer was the converted polar BEV grid data, the 2nd to 11th layers were FPS-KNN dy-
namic networks, and the 12th to 14th layers were for postprocessing. V(11) represented
the aggregated features of the 11th layer, and V(14) represented the final semantic score of
the 14th layer. The softmax function was utilized as the loss function. Table 1 illustrates
the data dimension for each layer. In the 14th layer, there were 19 segmentation scores for
19 classes in SemanticKITTI accordingly.

Table 1. Data dimensions for each layer.

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n(l)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

n(l)
2 3 3 3 3 3 3 3 3 3 3 3 18 1024 19

n(l)
3 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m

Figure 5 shows some samples of the semantic segmentation results using the proposed
DGPolarNet method. To evaluate the semantic segmentation performance, the mean
intersection-over-union (mIoU) is applied (Equation (9)), where the variables TPc, FPc, and
FNc are the number of true-positive, false-positive, and false-negative predictions for class
c, respectively, and C is the number of classes.

mIoU =
1
C ∑C

c=1
TPc

TPc + FPc + FNc
(9)

Table 2 shows the segmentation mIoU performances on all the object classes of the
SemanticKITTI compared with the state-of-the-art methods. Our mIoU achieved 56.5% on
average. Using the proposed DGPolarNet, the average segmentation IoUs of ground-related
regions, buildings, vehicles, nature regions, humans, and other objects were 86.4%, 90.1%,
45.20%, 81.35%, 43.83%, and 52.40%, respectively. Our method had good performance for
motorcycles, trucks, bicyclists, roads, sidewalks, buildings, vegetation, and pole objects.
However, its IoU was low for other-ground, motorcyclist, and bicycle objects, because the
extracted features of these objects were not discriminative.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 17

and 64 GB RAM. In our experiments, the points in the range of −50 m < 𝑥 < 50 m, −50 m < 𝑦 < 50 m, and −3 m < 𝑧 < 1.5 m were mapped to the polar BEV coordinate sys-
tem, which were then rasterized into the polar BEV grids with a resolution of (480 × 360 × 32). After analyzing the point distribution of the SemanticKITTI dataset, we
specified the k value of each layer as equal to 20. In our experiment, we specified 𝑣ଵଵ = 1, 𝑣ଶଵ = 3, and 𝑣ଷଵ = 1,843,200. Our DGPolarNet model had 14 layers, among which the 1st
layer was the converted polar BEV grid data, the 2nd to 11th layers were FPS-KNN dy-
namic networks, and the 12th to 14th layers were for postprocessing. 𝑉(ଵଵ) represented
the aggregated features of the 11th layer, and 𝑉(ଵସ) represented the final semantic score
of the 14th layer. The softmax function was utilized as the loss function. Table 1 illustrates
the data dimension for each layer. In the 14th layer, there were 19 segmentation scores for
19 classes in SemanticKITTI accordingly.

Table 1. Data dimensions for each layer.

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 𝒏𝟏(𝒍) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 𝒏𝟐(𝒍) 3 3 3 3 3 3 3 3 3 3 3 18 1024 19 𝒏𝟑(𝒍) 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m 1.84 m

Figure 5 shows some samples of the semantic segmentation results using the pro-
posed DGPolarNet method. To evaluate the semantic segmentation performance, the
mean intersection-over-union (mIoU) is applied (Equation (9)), where the variables TPc,
FPc, and FNc are the number of true-positive, false-positive, and false-negative predictions
for class c, respectively, and C is the number of classes. mIoU = ଵ஼ ∑ ୘୔೎୘୔೎ା୊୔೎ା୊୒೎஼௖ୀଵ (9)

Table 2 shows the segmentation mIoU performances on all the object classes of the
SemanticKITTI compared with the state-of-the-art methods. Our mIoU achieved 56.5% on
average. Using the proposed DGPolarNet, the average segmentation IoUs of ground-re-
lated regions, buildings, vehicles, nature regions, humans, and other objects were 86.4%,
90.1%, 45.20%, 81.35%, 43.83%, and 52.40%, respectively. Our method had good perfor-
mance for motorcycles, trucks, bicyclists, roads, sidewalks, buildings, vegetation, and pole
objects. However, its IoU was low for other-ground, motorcyclist, and bicycle objects, be-
cause the extracted features of these objects were not discriminative.

(a) (b)

Figure 5. Cont.

Remote Sens. 2022, 14, 3825 12 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 17

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5. Cont.

Remote Sens. 2022, 14, 3825 13 of 18
Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17

(k) (l)

Figure 5. Semantic segmentation results by using the proposed DGPolarNet method on the Seman-
ticKITTI: (a) Trunk; (b) Bicyclelist; (c) Fence; (d) Bus; (e) Truck; (f) Bicycle; (g) Person; (h) Pole; (i)
Traffic-sign; (j) Building; (k) Car; (l) Vegetation.

Table 2. The IoU performances on SemanticKITTI compared with the typical semantic segmentation
methods.

Model MIoU

Per Class IoU
Ground-Related Structures Vehicle

Road Sidewalk Parking Other-
Ground Building Car Truck Bicycle Motorcycle

PointNet [30] 14.60% 61.6% 35.7% 15.8% 1.4% 41.4% 46.3% 0.1% 1.3% 0.3%
PointNet++ [31] 20.10% 72.0% 41.8% 18.7% 5.6% 62.3% 53.7% 0.9% 1.9% 0.2%

SPG [41] 17.40% 45.0% 28.5% 0.6% 0.6% 64.3% 49.3% 0.1% 0.2% 0.2%
Squeezeseg [14] 29.50% 85.4% 54.3% 26.9% 4.5% 57.4% 68.8% 3.3% 16.0% 4.1%

TangentConv [12] 35.90% 82.9% 61.7% 15.2% 9.0% 82.8% 86.8% 11.6% 1.3% 12.7%
Squeezesegv2 [48] 39.70% 88.6% 67.6% 45.8% 17.7% 73.7% 81.8% 13.4% 18.5% 17.9%

DarkNet53 [47] 49.90% 91.8% 74.6% 64.8% 27.9% 84.1% 86.4% 25.5% 24.5% 32.7%
RangeNet++ [15] 52.20% 91.8% 75.2% 65.0% 27.8% 87.4% 91.4% 25.7% 25.7% 34.4%

RandLA [49] 53.90% 90.7% 73.7% 60.3% 20.4% 86.9% 94.2% 40.1% 26.0% 25.8%
PolarNet [9] 54.30% 90.8% 74.4% 61.7% 21.7% 90.0% 93.8% 22.9% 40.3% 30.1%
DGPolarNet 56.50% 93.4% 79.4% 58.4% 20.0% 90.1% 92.6% 51.5% 18.5% 38.9%

Model

Per Class IoU
Vehicle Nature Human Object
Other-

Vehicle Vegetation Trunk Terrain Person Bicyclist Motorcyclist Fence Pole Traffic-Sign

PointNet [30] 0.8% 31.0% 4.6% 17.6% 0.2% 0.2% 0.0% 12.9% 2.4% 3.7%
PointNet++ [31] 0.2% 46.5% 13.8% 30.0% 0.9% 1.0% 0.0% 16.9% 6.0% 8.9%

SPG [41] 0.8% 0.8% 27.2% 24.6% 0.3% 2.7% 0.1% 20.8% 15.9% 0.8%
Squeezeseg [14] 3.6% 60.0% 24.3% 53.7% 12.9% 13.1% 0.9% 29.0% 24.5% 24.5%

TangentConv [12] 10.2% 75.5% 42.5% 55.5% 17.1% 20.2% 0.5% 44.2% 22.2% 22.2%
Squeezesegv2 [48] 14.0% 71.8% 35.8% 60.2% 20.1% 25.1% 3.9% 41.1% 36.3% 36.3%

DarkNet53 [47] 22.6% 78.3% 50.1% 64.0% 36.2% 33.6% 4.7% 55.0% 52.2% 52.2%
RangeNet++ [15] 23.0% 80.5% 55.1% 64.6% 38.3% 38.8% 4.8% 58.6% 55.9% 55.9%

RandLA [49] 39.9% 81.4% 66.8% 49.2% 49.2% 48.2% 7.2% 56.3% 38.1% 38.1%
PolarNet [9] 28.5% 84.0% 65.5% 67.8% 43.2% 40.2% 5.6% 61.3% 51.8% 57.5%
DGPolarNet 21.0% 86.8% 57.7% 75.9% 55.1% 66.8% 9.6% 55.2% 62.6% 39.4%

PointNet [30] extracted the global features from all the points directly and lacked the
correlation among the local features. Meanwhile, PointNet implemented the semantic seg-
mentation only using the 3D point coordinates without the intensity information. The la-

Figure 5. Semantic segmentation results by using the proposed DGPolarNet method on the Se-
manticKITTI: (a) Trunk; (b) Bicyclelist; (c) Fence; (d) Bus; (e) Truck; (f) Bicycle; (g) Person; (h) Pole;
(i) Traffic-sign; (j) Building; (k) Car; (l) Vegetation.

Table 2. The IoU performances on SemanticKITTI compared with the typical semantic segmentation methods.

Model MIoU

Per Class IoU

Ground-Related Structures Vehicle

Road Sidewalk Parking Other-Ground Building Car Truck Bicycle Motorcycle

PointNet [30] 14.60% 61.6% 35.7% 15.8% 1.4% 41.4% 46.3% 0.1% 1.3% 0.3%
PointNet++ [31] 20.10% 72.0% 41.8% 18.7% 5.6% 62.3% 53.7% 0.9% 1.9% 0.2%

SPG [41] 17.40% 45.0% 28.5% 0.6% 0.6% 64.3% 49.3% 0.1% 0.2% 0.2%
Squeezeseg [14] 29.50% 85.4% 54.3% 26.9% 4.5% 57.4% 68.8% 3.3% 16.0% 4.1%

TangentConv [12] 35.90% 82.9% 61.7% 15.2% 9.0% 82.8% 86.8% 11.6% 1.3% 12.7%
Squeezesegv2 [48] 39.70% 88.6% 67.6% 45.8% 17.7% 73.7% 81.8% 13.4% 18.5% 17.9%

DarkNet53 [47] 49.90% 91.8% 74.6% 64.8% 27.9% 84.1% 86.4% 25.5% 24.5% 32.7%
RangeNet++ [15] 52.20% 91.8% 75.2% 65.0% 27.8% 87.4% 91.4% 25.7% 25.7% 34.4%

RandLA [49] 53.90% 90.7% 73.7% 60.3% 20.4% 86.9% 94.2% 40.1% 26.0% 25.8%
PolarNet [9] 54.30% 90.8% 74.4% 61.7% 21.7% 90.0% 93.8% 22.9% 40.3% 30.1%
DGPolarNet 56.50% 93.4% 79.4% 58.4% 20.0% 90.1% 92.6% 51.5% 18.5% 38.9%

Model

Per Class IoU

Vehicle Nature Human Object

Other-
Vehicle Vegetation Trunk Terrain Person Bicyclist Motorcyclist Fence Pole Traffic-Sign

PointNet [30] 0.8% 31.0% 4.6% 17.6% 0.2% 0.2% 0.0% 12.9% 2.4% 3.7%
PointNet++ [31] 0.2% 46.5% 13.8% 30.0% 0.9% 1.0% 0.0% 16.9% 6.0% 8.9%

SPG [41] 0.8% 0.8% 27.2% 24.6% 0.3% 2.7% 0.1% 20.8% 15.9% 0.8%
Squeezeseg [14] 3.6% 60.0% 24.3% 53.7% 12.9% 13.1% 0.9% 29.0% 24.5% 24.5%

TangentConv [12] 10.2% 75.5% 42.5% 55.5% 17.1% 20.2% 0.5% 44.2% 22.2% 22.2%
Squeezesegv2 [48] 14.0% 71.8% 35.8% 60.2% 20.1% 25.1% 3.9% 41.1% 36.3% 36.3%

DarkNet53 [47] 22.6% 78.3% 50.1% 64.0% 36.2% 33.6% 4.7% 55.0% 52.2% 52.2%
RangeNet++ [15] 23.0% 80.5% 55.1% 64.6% 38.3% 38.8% 4.8% 58.6% 55.9% 55.9%

RandLA [49] 39.9% 81.4% 66.8% 49.2% 49.2% 48.2% 7.2% 56.3% 38.1% 38.1%
PolarNet [9] 28.5% 84.0% 65.5% 67.8% 43.2% 40.2% 5.6% 61.3% 51.8% 57.5%
DGPolarNet 21.0% 86.8% 57.7% 75.9% 55.1% 66.8% 9.6% 55.2% 62.6% 39.4%

PointNet [30] extracted the global features from all the points directly and lacked
the correlation among the local features. Meanwhile, PointNet implemented the semantic
segmentation only using the 3D point coordinates without the intensity information. The
laser reflection intensities of different materials were distinguished from each other. Without
the intensity information, the connected objects of different types were easily detected
as one object. Thus, we introduced the intensity data as one input of the DGPolarNet to
enhance the discriminative local features of the dynamic graph. Compared with PointNet,
the mIoU performance of our model was improved by 41.9%. For the ground-related, road,

Remote Sens. 2022, 14, 3825 14 of 18

sidewalk, parking, and other-ground regions, our method increased by 31.8%, 43.7%, 42.6%,
and 18.6%, respectively.

RangeNet++ [15] projected the original point clouds onto the 2D range view, which
caused spatial structure information loss and rasterization errors. In particular. when
processing vehicle and human objects, the mIoU was only 27.3% and 14.2%, respectively.
We used the polar BEV converter to solve the problem of uneven distribution of point
clouds and applied both FPS and KNN to preserve the local geometrical features. Thus, the
mIoU of our model was improved by around 4.3% compared with RangeNet++ and much
improved for the vehicle and human objects.

Although PolarNet [9] utilized the polar BEV system to balance the input distribution,
the extracted feature for each grid cell was insufficient by a learnable simplified PointNet
with a max-pooling operation. To retain geometrical features, we constructed the dynamic
graph for each BEV grid. Meanwhile, the extracted high-level semantic features were
enhanced by the skip architecture of all the intermediate layers. Compared with the
PolarNet network, the mIoU of our model is improved by 2.2%. For objects of complex
shapes, such as vehicles and humans, our method improved by 14.5% on average.

Instead of only using KNN, we sampled both farthest and nearest neighbors by
integrating FPS and KNN algorithms, which reduced the discriminative feature loss in the
local feature encoding process. We conducted the comparison experiments using the KNN
method and FPS-KNN method under different k values in dynamic graph construction,
as shown in Table 3. When the k value was specified as 20, the models achieved the best
performance. When it increased higher, the performance of the two models degraded on
the contrary. Because the FPS-KNN method constructed feature maps obtaining both the
internal geometrical structures and external contours of objects, the encoded features of the
dynamic graphs were more describable than only using KNN.

Table 3. Performances for the feature encoding models with different k values.

k Value mIoU with FPS + KNN MIoU with KNN

3 52.4 45.6
5 54.7 49.7
10 55.5 53.3
20 56.5 54.5
25 54.3 52.2

Table 4 analyzes the DGPolarNet performances through true-positive (TP), false-
negative (FN), and true-negative (TN) samples of the semantic segmentation results. Ac-
cordingly, the precision (P), recall (R), and F1 scores were calculated by using Equation (10)
to evaluate the semantic segmentation performances.

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

F1 = 2× P× R
P + R

(12)

Remote Sens. 2022, 14, 3825 15 of 18

Table 4. Semantic segmentation performance of DGPolarNet.

Object Class P R F1

Road 0.96 0.97 0.96
Sidewalk 0.82 0.93 0.88
Parking 0.69 0.59 0.64

Other-ground 0.23 0.20 0.22
Building 0.90 0.90 0.90

Car 0.97 0.96 0.96
Truck 0.57 0.67 0.62

Bicycle 0.21 0.25 0.23
Motorcycle 0.43 0.51 0.47

Other vehicle 0.23 0.27 0.25
Vegetation 0.70 0.86 0.78

Trunk 0.63 0.64 0.64
Terrain 0.61 0.75 0.67
Person 0.44 0.54 0.48

Bicyclist 0.67 0.86 0.75
Motorcyclist 0.11 0.13 0.12

Fence 0.68 0.60 0.64
Pole 0.72 0.83 0.78

Traffic-sign 0.79 0.46 0.57

The values of P, R, and F1 values in Table 4 indicated that the proposed DGPolarNet
has lower segmentation accuracies for other-ground, bicycle, and motorcyclist objects than
the other objects. Because the point distribution of other-ground was similar to that of
road and sidewalk objects, and motorcyclist objects were also similar to person objects, the
segmentation for such objects did not perform well. For bicycle objects, there were a small
number of points scanned on the sample surface, which caused insufficient training of the
network model.

5. Conclusions

This paper proposes DGPolarNet, an efficient approach for semantic segmentation
in LiDAR point clouds. The polar BEV converter is utilized to rasterize the LiDAR points
into regular polar grids of even point distribution. An FPS-KNN dynamic network is
developed to construct dynamic directed graphs and extract the local features of each BEV
grid. Employing skip connection, the graph features of each layer are aggregated into
high-dimensional features. All the aggregated features of each BEV grid are then integrated
into a shared MLP for semantic segmentation. We validate the proposed DGPolarNet on
the SemanticKITTI dataset, which is more efficient than previous methods.

Author Contributions: W.S. and Y.G. contributed to the conception of the study, Z.L. performed the
data analyses and wrote the manuscript, S.S. and G.Z. contributed significantly to the experiment
and analysis, and M.L. helped perform the analysis with constructive discussions. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the Education and Teaching Reform Project of North China
University of Technology, Beijing Urban Governance Research Base, the Ministry of Science (MSIT,
ICT), Korea, under the High-Potential Individuals Global Training Program (2020-0-01576) supervised
by the Institute for Information and Communications Technology Planning and Evaluation (IITP),
the Great Wall Scholar Program (CIT&TCD20190304), and the National Natural Science Foundation
of China (No. 61503005). (Corresponding authors: Ying Guo).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2022, 14, 3825 16 of 18

References
1. Ballouch, Z.; Hajji, R.; Poux, F.; Kharroubi, A.; Billen, R. A Prior Level Fusion Approach for the Semantic Segmentation of 3D

Point Clouds Using Deep Learning. Remote Sens. 2022, 14, 3415. [CrossRef]
2. Wei, M.; Zhu, M.; Zhang, Y.; Sun, J.; Wang, J. Cyclic Global Guiding Network for Point Cloud Completion. Remote Sens. 2022, 14,

3316. [CrossRef]
3. Song, W.; Li, D.; Sun, S.; Zhang, L.; Xin, Y.; Sung, Y.; Choi, R. 2D&3DHNet for 3D Object Classification in LiDAR Point Cloud.

Remote Sens. 2022, 14, 3146. [CrossRef]
4. Decker, K.T.; Borghetti, B.J. Composite Style Pixel and Point Convolution-Based Deep Fusion Neural Network Architecture for

the Semantic Segmentation of Hyperspectral and Lidar Data. Remote Sens. 2022, 14, 2113. [CrossRef]
5. Liu, R.; Tao, F.; Liu, X.; Na, J.; Leng, H.; Wu, J.; Zhou, T. RAANet: A Residual ASPP with Attention Framework for Semantic

Segmentation of High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 3109. [CrossRef]
6. Xu, T.; Gao, X.; Yang, Y.; Xu, L.; Xu, J.; Wang, Y. Construction of a Semantic Segmentation Network for the Overhead Catenary

System Point Cloud Based on Multi-Scale Feature Fusion. Remote Sens. 2022, 14, 2768. [CrossRef]
7. Shuang, F.; Li, P.; Li, Y.; Zhang, Z.; Li, X. MSIDA-Net: Point Cloud Semantic Segmentation via Multi-Spatial Information and

Dual Adaptive Blocks. Remote Sens. 2022, 14, 2187. [CrossRef]
8. Eeinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic point cloud interpretation based on optimal neighborhoods, relevant

features and efficient classifiers. ISPRS J. Photogramm. Remote Sens. 2015, 105, 286–304. [CrossRef]
9. Zhang, Y.; Zhou, Z.; David, P.; Yue, X.; Xi, Z.; Gong, B.; Foroosh, H. PolarNet: An Improved Grid Representation for Online

LiDAR Point Clouds Semantic Segmentation. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 9598–9607.

10. Lawin, F.J.; Danelljan, M.; Tosteberg, P.; Bhat, G.; Khan, F.S.; Felsberg, M. Deep Projective 3D Semantic Segmentation. In
Proceedings of the Computer Analysis of Images and Patterns, Ystad, Sweden, 22–24 August 2017; pp. 55–107.

11. Boulch, A.; Saux, B.L.; Audebert, N. Unstructured point cloud semantic labeling using deep segmentation networks. In
Proceedings of the Workshop on 3D Object Retrieval (3Dor ‘17). Eurographics Association, Goslar, Germany, 23 April 2017;
pp. 17–24.

12. Tatarchenko, M.; Park, J.; Koltun, V.; Zhou, Q.-Y. Tangent Convolutions for Dense Prediction in 3D. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3887–3896.

13. Su, H.; Jampani, V.; Sun, D.; Maji, S.; Kalogerakis, E.; Yang, M.H.; Kautz, J. SPLATNet: Sparse Lattice Networks for Point Cloud
Processing. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–23 June 2018; pp. 2530–2539.

14. Wu, B.; Wan, A.; Yue, X.; Keutzer, K. SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object
Segmentation from 3D LiDAR Point Cloud. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1887–1893.

15. Milioto, A.; Stachniss, C. RangeNet ++: Fast and Accurate LiDAR Semantic Segmentation. In Proceedings of the 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4213–4220.

16. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view Convolutional Neural Networks for 3D Shape Recognition.
In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 945–953.

17. Feng, Y.; Zhang, Z.; Zhao, X.; Ji, R.; Gao, Y. GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–23 June 2018; pp. 264–272.

18. Wang, C.; Pelillo, M.; Siddiqi, K. Dominant set clustering and pooling for multi-view 3D object recognition. In Proceedings of the
British Machine Vision Conference 2017, London, UK, 4–7 September 2017; pp. 1–12.

19. Ma, C.; Guo, Y.; Yang, J.; An, W. Learning Multi-View Representation with LSTM for 3-D Shape Recognition and Retrieval. IEEE
Trans. Multimed. 2019, 21, 1169–1182. [CrossRef]

20. Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for real-time object recognition. In Proceedings of the
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October
2015; pp. 922–928.

21. Rethage, D.; Wald, J.; Sturm, J.; Navab, N.; Tombari, F. Fully-Convolutional Point Networks for Large-Scale Point Clouds. In
Proceedings of the European Conference on Computer Vision ECCV 2018, Munich, Germany, 8–14 September 2018; pp. 596–611.

22. Graham, B.; Engelcke, M.; Maaten, L. 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks. In Proceed-
ings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 9224–9232.

23. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A deep representation for volumetric shapes. In
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015;
pp. 1912–1920.

24. Riegler, G.; Ulusoy, A.O.; Geiger, A. OctNet: Learning Deep 3D Representations at High Resolutions. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6620–6629.

http://doi.org/10.3390/rs14143415
http://doi.org/10.3390/rs14143316
http://doi.org/10.3390/rs14133146
http://doi.org/10.3390/rs14092113
http://doi.org/10.3390/rs14133109
http://doi.org/10.3390/rs14122768
http://doi.org/10.3390/rs14092187
http://doi.org/10.1016/j.isprsjprs.2015.01.016
http://doi.org/10.1109/TMM.2018.2875512

Remote Sens. 2022, 14, 3825 17 of 18

25. Wang, P.S.; Liu, Y.X.; Guo, Y.X.; Sun, C.Y.; Tong, X. O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis.
ACM Trans. Graph. 2017, 36, 1–11. [CrossRef]

26. Xu, Y.; Hoegner, L.; Tuttas, S.; Stilla, U. Voxel- and Graph-based Point Cloud Segmentation of 3D Scenes Using Perceptual
Grouping Laws. In Proceedings of the ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,
Boston, MA, USA, 7–12 June 2017; pp. 43–50.

27. Li, Y.Y.; Pirk, S.; Su, H.; Qi, C.R.; Guibas, L.J. FPNN: Field Probing Neural Networks for 3D Data. In Proceedings of the
NIPS’16: Proceedings of the 30th International Conference on Nrural Information Processing Systems, Barcelona, Spain,
5–10 December 2016; pp. 207–315.

28. Le, T.; Duan, Y. PointGrid: A Deep Network for 3D Shape Understanding. In Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9204–9214.

29. Tchapmi, L.; Choy, C.; Armeni, I.; Gwak, J.; Savarese, S. SEGCloud: Semantic Segmentation of 3D Point Clouds. In Proceedings of
the 2017 International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017; pp. 537–547.

30. Qi, C.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 77–85.

31. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA,
USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 5105–5114.

32. Jiang, M.; Wu, Y.; Zhao, T.; Zhao, Z.; Lu, C. PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation.
arXiv 2018, arXiv:1807.00652.

33. Li, J.; Chen, B.M.; Lee, G.H. SO-Net: Self-Organizing Network for Point Cloud Analysis. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9397–9406.

34. Wang, Y.; Chao, W.; Garg, D.; Hariharan, B.; Campbell, M.; Weinberger, K. Pseudo-LiDAR From Visual Depth Estimation: Bridging
the Gap in 3D Object Detection for Autonomous Driving. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 8437–8445.

35. Yang, B.; Luo, W.; Urtasun, R. PIXOR: Real-time 3D Object Detection from Point Clouds. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7652–7660.

36. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. PointPillars: Fast Encoders for Object Detection From Point Clouds.
In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019; pp. 8437–8445.

37. Ku, J.; Mozififian, M.; Lee, J.; Harakeh, A.; Waslander, S.L. Joint 3D Proposal Generation and Object Detection from View
Aggregation. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, 1–5 October 2018; pp. 1–8.

38. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw.
2009, 20, 61–80. [CrossRef] [PubMed]

39. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral Networks and Locally Connected Networks on Graphs. arXiv 2013,
arXiv:1312.6203.

40. Simonovsky, M.; Komodakis, N. Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 29–38.

41. Landrieu, L.; Simonovsky, M. Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs. In Proceedings of
the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4558–4567.

42. Landrieu, L.; Boussaha, M. Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 7432–7441.

43. Jiang, L.; Zhao, H.; Liu, S.; Shen, X.; Fu, C.-W.; Jia, J. Hierarchical Point-Edge Interaction Network for Point Cloud Semantic
Segmentation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea,
27 October–2 November 2019; pp. 10432–10440.

44. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.
45. Te, G.S.; Hu, W.; Zheng, A.M.; Guo, Z. RGCNN: Regularized Graph CNN for Point Cloud Segmentation. In Proceedings of the

26th ACM International Conference on Multimedia (MM ‘18), Seoul, Korea, 22–26 October 2018; Association for Computing
Machinery: New York, NY, USA, 2018; pp. 746–754.

46. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.; Bronstein, M.; Solomon, J. Dynamic Graph CNN for Learning on Point Clouds. arXiv 2018,
arXiv:1801.07829. [CrossRef]

47. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, Korea, 27 October–2 November 2019; pp. 9296–9306.

http://doi.org/10.1145/3072959.3073608
http://doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426
http://doi.org/10.1145/3326362

Remote Sens. 2022, 14, 3825 18 of 18

48. Wu, B.; Zhou, X.; Zhao, S.; Yue, X.; Keutzer, K. SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation
for Road-Object Segmentation from a LiDAR Point Cloud. In Proceedings of the 2019 International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4376–4382.

49. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation
of Large-Scale Point Clouds. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11105–11114.

	Introduction
	Related Works
	Multiview Projection Methods
	Voxelization Methods
	Point Methods
	Graph Methods

	DGPolarNet for LiDAR Point Cloud Semantic Segmentation
	BEV Polar Converter
	FPS-KNN Dynamic Network
	Postprocessing

	Experiments and Analysis
	Datasets
	Semantic Segmentation Performance

	Conclusions
	References

