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Notation 

a Slab panel aspect ratio (L/l) 

ax Height of concrete compression zone 

A Compression area 

Asx(y) Reinforcement area per length in x (or y) direction 

b Membrane force parameter 

C1 , C2 The concrete compressive force at yield line 

d Average effective depth of reinforcement (mm) 

d1 , d2 Effective height of steel bar in both directions 

e Overall enhancement of theoretical yield-line load due to membrane action 

e1  ,e2 Enhancement coefficient 

e1b , e2b Bearing capacity coefficient of yield line 

e1m , e2m Increase coefficient of slab panel’s load carrying capacity due to membrane force 

Ec/Es Ratio of Young’s modulus of concrete and reinforcement 

EG (xc) Compressive membrane area 

fc Cylinder compressive strength of concrete 

fcu Cubic strength of concrete 

fy Yield strength of steel reinforcement 

g0 Ratio of compressive stress area of concrete 

g1 Parameter defining the compressive stress block in flexural action (short span) 

g2 Parameter defining the compressive stress block in flexural action (long span) 

h Slab thickness 

Icr Moment of inertia of cracked cross section 

Ieff Effective moment of inertia of cross section 

k Membrane force parameter 

K 
Ratio of yield force per unit width of reinforcement bar in y direction to yield force per 

unit width of reinforcement bar in x direction 

L(l) Longer (shorter) span of rectangular slab 

M01 , M02 Bending resistance moment without the effect of the membrane action 

M1m , M2m Moment resulted from vertical displacement 



n Factor defining the yield-line pattern 

Ny' Force at distance y 

P Uniformly distributed theoretical yield-line load  

Plimit Predicted ultimate load of slab panel 

Plimit/Ptest The ratio between the calculated value of ultimate bearing capacity and the test value 

Ptest Tested ultimate load of slab panel 

S Shear force 

T0 Yield force of reinforcement per unit width 

T1 , T2 Resultant in-plane tension forces along the yield line  

x, y, z Coordinate axis of slab panel 

Ø   Diameter of reinforcing bar 

α Angle defining the yield line pattern of slab panel 

σc,max Membrane force at point E 

δlimit Predicted vertical mid-span displacement of slab panel 

δtest Tested vertical mid-span displacement of slab panel 

ε1  Maximum compressive strain at the corners of slab panel (top surface) 

ε2 Compressive strain of concrete in the middle of slab panel 

εcu or εsu Ultimate compressive concrete strain or steel strain 

μ Orthogonal parameter 

φ Major axis length 

w Deflection of the central region of slab panel 

wtotal Total mid-span deflection of slab panel 

wyield Mid-span displacement at initial yield (0.4 d1) 

  

  

  

  

  

  

  

 

  



1. Introduction 

Tensile membrane action of reinforced concrete slabs subjected to large displacement 

has been investigated by many researchers [1-18]. For the tensile membrane action, 

there is no practical use under normal working conditions. However, under accidental 

loads, such as explosions and fire, the tensile membrane action can be mobilised, if 

designed correctly, allowing structural stability of buildings to be maintained. Thus, the 

topic has again acquired an important relevance as the reserve of bearing capacity that 

the tensile membrane action provides can become significant in the response of 

structures in extreme load conditions [4-18]. Unlike finite element models, the 

analytical methods can be easily applied in engineering design practice. So far, several 

analytical models were developed to consider the influence of tensile membrane action 

on the ultimate loading capacity of a two-way supported concrete slab panel. It is 

evident that each model has its own advantages and shortcomings, due to different 

assumptions and support conditions. For instance, Cameron and Usmani [10] assume 

that the slab panels have full boundary restraint. Li et. al. [11] propose that the edges of 

the slab panel are vertically supported, but horizontally restrained, such as the slab panel 

located in the interior of a building. However, for the slab panels located at the edge of 

the building, the simply supported boundary condition should be used to assess the 

loading capacities of the panels. Thus, to be conservative for design, several researchers 

[12-18] assume that the slab panels are simply supported at their four edges.  

In terms of the failure mechanism of slab panels, several yield line failure patterns were 

proposed to determine the ultimate loading capacity of the slab panel, in which the 



panel was divided into four [12], five [11, 13], six or eight [15-16] slab facets. Sawczuk 

and Winnicki [19] and Hayes [20] proposed two failure modes of a slab panel: 1) a large 

crack was formed across the shorter span of the slab panel at its center point; 2) two 

large cracks were formed across the shorter span of the panel at the two intersections 

of the yield lines. However, both models give over-predicted ultimate loading capacity 

of the slab panel [14-15]. Based on the test results of small-scale slab panels, Bailey 

and Toh [14] proposed a method which is a slightly modified version of Hayes’ model. 

However, Bailey’s method significantly underestimates the ultimate loading capacity 

of the slab panel [14, 21]. Omer et al. [15] assume the failure mode of the slab panel in 

which the additional full depth cracks are formed across the short span of the panel at 

different locations. In this model, the in-plane tensile forces are assumed to be 

distributed across the full width of the slab panel with the compressive forces being 

concentrated over a very small area near the edge of the slab panel. Clearly, this 

assumption does not agree with the experimental observations (concrete crushing near 

to the corners of slab panel) [1-4] and the results of numerical analyses [6-9].  

In the model proposed by Li et al. [11], a slab panel is divided into five slab facets, 

including a slab facet with elliptic paraboloid shape. In this model, it is assumed that 

the yielding shape of bottom reinforcing steel is in elliptic shape. In fact, according to 

Ref. [22], at a limit state, the yielding shape of bottom reinforcing steel is in rectangular 

(square) shape. Wang et al. [13] proposed a model based on the steel strain difference 

approach. In the model a slab panel is also divided into five parts, including four rigid 

plates and a rectangular (square) region. The model assumes that the yield shape of 



bottom reinforcing steel is in rectangular (or square) shape and the tensile membrane 

action region of slab panel is simply considered to be a rectangular (or square) shape. 

This assumption is not reasonable. Note that, different from the above methods (several 

rigid facets), Matteo et al. [26] proposed the slab strip model to assess the ultimate 

bearing capacity of reinforced concrete two-way slabs at large deflection, and two 

failure criteria were established, including the maximum ultimate slab strip elongation 

and the maximum ultimate rotation of the structure at the supports. 

Based on the experimental observations [1-4], two failure criteria are often used to 

determine the ultimate loading capacity of a concrete slab panel, which are the tensile 

failure of reinforcing steel at center of the slab panel and the concrete crushing at the 

corners of the slab panel. A number of previously developed models [13-17, 21] 

adopted these two failure criteria with different interpretations and limitations. Recently, 

Burgess [18] proposed a method to determine the load-deflection curve (ascending and 

descending stages) of a lightly reinforced concrete slab panel. The method makes the 

conventional assumption of an unchanged yield-line mechanism (x-aligned or y-aligned 

mechanisms), and subsequently ensures equilibrium of the flat facets of the mechanism 

using the correct kinematics as the deflection increases. The fracture ductility of 

reinforcing mesh crossing yield lines is used to monitor the progressive fracture of the 

mesh across the yield-line cracks. This method was further developed to consider the 

effect of boundary restraint on the large-deflection behavior of lightly reinforced 

concrete slabs, and horizontal equilibrium of all of the flat facets of the slab is 

determined by the combination of forces across the yield lines within the slab and across 



the slab edges [24, 25]. However, this method is assumed to apply to thin lightly 

reinforced slabs with a single layer of isotropic reinforcing mesh, and a steel area in 

either direction which is considerably less than 1% of the gross cross-section area, and 

thus the concrete compressive crushing at the corners cannot be predicted as well as the 

tensile or compressive membrane action region.  

As discussed above, all these existing methods have different drawbacks, making them 

inaccurate and less suitable for practical purposes. For this reason, a new method for 

the assessment of a two-way simply supported slab panel is developed in this paper. 

Based on the experimental evidences and numerical results, in the current method, the 

tensile membrane action region is determined based on the proposed ellipse equations. 

Hence, the in-plane stress distribution can be reasonably estimated. In addition, two 

failure criteria are introduced to determine the failure modes of the slab panel which 

are related to concrete and steel. Also the effect of the in-plane shear force on the 

concrete compressive failure mode is also studied. Finally, the theoretical predictions 

are compared with the experimental results conducted by different researchers, and 

further verifications are conducted through the comparison with the numerical results. 

2. Proposed method 

2.1 Assumptions 

The assumptions adopted in this method are summarized as follows:  

(1) The slab is square or rectangular in plan, and the ratio between the length and width 

is not greater than three. 

(2) The proposed failure mode in the rectangular concrete slab is shown as in Figs. 1(a)-



(b).  

(3) For a rectangular slab panel, the central region of tensile membrane tractions is 

elliptical, as shown in Fig. 1(a). The intersecting points (Points B and C) of the yield 

line in the middle region are assumed to be the two foci of the elliptic equation, and (x0, 

y0) is the intersecting point of the yield line and the ellipse, as shown in Fig. 1(a). 

(4) The force distribution of the slab at the ultimate limited state is shown in Figs. 2(a)-

(c), and C1 and C2 are the concrete compressive forces between plates, respectively; T1 

and T2 are the tensile forces of the steel bar, respectively; S is the in-plane shear force, 

and T0 is the yield force of the steel. 

Note that, the diagonal yield line can contain up to three distinct zones: a zone adjacent 

to the slab corner where only bending moments contribute internal work; a zone in 

which both moment and membrane force do work; a zone adjacent to the yield-line 

intersection where only tensile membrane force does work. The latter corresponds to 

the length of yield line in which there is no concrete stress block, which is particularly 

relevant at high deflections (w≥0.6d) [27].  

(4) Two failure criteria, based on the deflection failure criterion and concrete crushing 

strain, are established to determine the ultimate loads and deflections of concrete slabs.  

2.2 Ellipse equation 

According to the yield line theory, the angle in Fig. 2(a) is defined as:  
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where n is the factor defining the yield-line pattern; L (l) is the length (width) of the 

slab; a is the aspect ratio of the slab (L/l) ; 𝜇 is the ratio of the yield moment capacity 



of the slab in the orthogonal direction (M01/M02), and it is less than or equal to unity.  

According to the numerical results [6-7], it is found that the distribution of membrane 

actions comprises tensile membrane traction in the central plan area of the slab 

surrounded by a balancing ring of compressive membrane stress. In the previous models, 

the in-plane force distribution along the yield line was often assumed by many 

researchers [14-18], and the in-plane shear force S was considered [13, 17, 24] or not 

[12].  

Note that, in Bailey’s model it was assumed that a full-depth crack along the short span 

of the slab panel occurs, and the compressive force C2 (Fig. 2(c)) was acted at point E. 

However, the numerical analysis conducted by many researchers shows that a certain 

proportion across the short span of the slab is in compression, and this assumption may 

be not reasonable [14]. Hence, as shown in Fig. 2(c), a reasonable force distribution 

within the slab panel at the ultimate limit state is assumed. As shown in Fig. 1(a), the 

boundary between the regions of tensile and compressive membrane stress is defined 

by Points I1、I2、I3 and I4, and the coordinate of Point I1 is (x0，y0). As shown in Figs. 

2(a)-2(c), according to the in-plane (translational direction) force equilibrium (Eqs. 

2(a)-2(b)), the following equations can be obtained as:  
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where k is the parameter defining magnitude of membrane force, which can be obtained 

from the in-plane force equilibrium of Plate ① (direction: perpendicular to yield line 

BC); T0 is the yield force in reinforcing steel per unit width (kN/m) in the long span 

direction; C1 is the concrete compressive force at the yield line; T1 (T2) is the resultant 

in-plane tension forces along the yield line BC (BI1) ; b is the parameter defining 

magnitude of membrane force; n is the parameter defining the yield line; L is the longer 

span of rectangular slab; l is the shorter span of rectangular slab; K is the ratio of yield 

force in the reinforcing steel of the short span to the yield force in the reinforcing steel 

of the long span; a is the aspect ratio (L/l); 𝜶 is the angle defining the yield line pattern; 

S is the in-plane shear force along a diagonal yield line.  

According to the geometric equation, the coordinates of Point I1 (x0 ， y0) can be 

calculated as: 
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As indicated in Fig. 1(a), the shape of the region of tensile membrane traction at the 

ultimate limited state is elliptic. Therefore, four points I1 to I4 can be used to establish 

the elliptic equation. Clearly, based on this four points, the elliptic equation cannot be 

determined, and another key point should be chosen. Thus, based on the general yield-

line theory, two intersection points (Points B and C) are assumed to be two foci of the 

elliptic equation. Hence, the elliptic equation can be determined as: 
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Using two foci (Points B and C) and Point I1 (x0，y0), Equation (5) can be represented 

as:   
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where is the length of the major axis.  

In this method, the width of the compressive membrane force at slab edges (LEG) is 

defined as xc (≥0), as shown in Fig. 2(c).  

2.3 Force equilibrium 

As shown in Fig. 2(c), for Plate ③, the distribution of compressive membrane stress is 

triangular, and its maximum value at the edge (Point E) is assumed to be σc,max, and thus 

the equilibrium equation (x direction) is defined as:  
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where C2 is the resultant in-plane compression force; σc,max is the maximum 

compressive membrane stress at the edge of the slab or Point E; xc is the width (LEG) of 

the compressive membrane stress. Note that, according to the numerical results, the 

triangular distribution of compressive traction towards the slab edge is assumed in this 

paper, as discussed later.  

As shown in Fig. 2(c), for Plate ③, taking moments about E, and it is:  
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(9) 

Substituting for T1 (Eq. 3(a)), T2 (Eq. 3(c)), C1 (Eq. 3(b)), C2 (Eq. 7) and S (Eq. 2(b)) 

into Eq. (9), b can be obtained as: 

           

 c cc
c

2

2 4 2 6

+ +

x l - xxl l
x +

b =
A B C D E

  
   

  

   

(10) 

where 

 
   

2 2
c c

2 2

(1 2 )
=

12 1 12( ( / 2) )

x k l l x nlL n
A

k nL l

 


 
, 

2
1

2 2

L
B nL

 
  

 
 

 
  

 

 

2 22
2 2

( / 2)1 2
= ( / 2)

2 1 8 2 3 1

nL ll L nL
C nL l

k n nL k

 
   

   

 

 

 

 

2 22 2 ( ( / 2) )
=

2 1 2 3 1

k nL lk nL
D

k k

 
 

   

, 
 

2 2

2 2

(1 2 )
=

16 ( / 2)

l L n
E

nL l



 
 

 

As shown in Figs. 3(a)-(b), the moment without the effect of the membrane action (M01 

and M02) are defined as:  
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where M01 and M02 are the moment of resistance (no axial force) in the short and long 

spans, respectively, as shown in Appendix A; d1 and d2 are the effective depth of 

reinforcement in the short and long spans, respectively; fcu is the compressive cube 

strength of concrete; g1 and g2 are parameters defining the compressive stress block in 

flexural action in the short and long spans, respectively.  

As shown in Figs. 4(a)-(b) and Appendix A, for a given maximum vertical displacement 



w, the moments (M1m and M2m) about the supports due to the membrane forces are given 

by: 
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The above expressions (Eqs. (12) and (13)) are divided by M01L and M02l, respectively, 

the enhancement factors e1m (Plate ①) and e2m (Plate ②) are defined as: 
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where e1m and e2m are the enhancement factors of Plates ① and ② due to membrane 

action, respectively.  

For Plates ① and ②, if the axial compressive force N is present, the moment capacity 

is given by: 
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where g0 is the parameter fixing depth of compressive stress block when no membrane 

force is present.  

As shown in Fig. 5(a), for Plate ①, for the yield line AB, the distance between B and 

the projection (x axis) is x , and the membrane force Nx' is: 
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Thus, the moment contribution for AB and CD (Fig. 2(a)) is: 
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where Z is the contribution due to the enhanced bending capacity, in the areas where 

in-plane compressive stress occurs; M0 is the moment of resistance when no axial force 

is present. If M is divided by M0L, an enhancement factor due to the effect of the 

membrane forces is obtained. Note that, the effect of membrane forces on the bending 

resistance will be considered separately for each yield line.  

Similarly, for the yield line BC in Fig. 2(a), the membrane force is constant, N=-

bKT0, and we have 
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For the yield line GF in Fig. 2(c), the membrane force is constant, N=-KT0, and we 

have 
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Thus, according to three terms, i.e., Eqs. (18), (19) and (20), the enhancement factor e1b 

is defined as: 
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(21) 

For Plate ②, across the yield line AB in Fig. 5(b), at a distance of y' from A, the 

membrane force Ny’ is: 

y' 0
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Similarly, for Plate ②, the moment contribution for A'B and AB is: 
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Thus, the enhancement factor e2b is: 
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In all, the increases in strength in unrestrained slab arise partly from the tensile 

membrane action produced in the central region of the slab and partly from the 

increased yield moment in the outer regions where compressive membrane action is 

caused. On one hand, by taking the moments about the slab edges, the load capacities 

of each of the plates, due only to the membrane forces and their lever arms about the 

edges, are established, i.e., e1m and e2m. On the other hand, the load capacities of the 

plates due to the plastic bending moments distributed along the yield lines, amended by 

the presence of the coincident membrane forces, are not included in e1m and e2m but are 

aggregated as separate two factors, i.e., e1b and e2b. 

2.4 Ultimate loads 

According to the yield line theory, the ultimate load P of the slab is defined as:  
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 (25)    

As indicated in Eqs. (14), (15), (21) and (24), the dimension (non-dimensional form) of 

four enhancement factors (e1b, e2b, e1m and e2m) was the same. In addition, four 

enhancement factors were essentially related to the bending moment or moment 

equilibrium [27], including the moment about the support and the moment considering 

the effect of in-plane forces. Thus, considering the contribution of both membrane and 

bending effects, the enhancement factors for Plates ① and ② are given by: 

1 1m 1b= +e e e
, 2 2m 2b= +e e e

 

(26) 

where e1 and e2 represent the enhancement resulted from tensile membrane action on 

the load capacity for the trapezoidal and the triangular plates, respectively. Note that, 



considering the shear force interaction between the plates, Hay [20] proposed one 

enhancement factor e (e1-(e1-e2)/(1+2𝜇a2)), but the derivation of the equation was not 

given.  

Here, according to the force equivalence principle, the simply enhancement factor 

equation is proposed as: 

 1 1 2 2 limit2 2 ( )P e A e A P L l    (27) 

where A1 and A2 are the areas of Plates ① and ②, respectively.  

Thus, we have 

limit =P e P  (28) 

1 2(1 )e n e ne    (29) 

2.5 Failure criteria 

As discussed in Refs. [13-14], two kinds of failure modes were observed in the small-

scale slab tests, including the fracture of reinforcement at the centre of the slab and the 

compressive failure of concrete at the corners of the slabs. In some cases, the concrete 

crushing failure occurred at the area around E position (Fig. 2 (c)) subjected to pure 

axial compressive forces. Note that, such failures occur in heavily reinforced slabs [17]. 

Thus, this paper considers the following failure modes to determine the ultimate loading 

capacities of the concrete slabs.  

(1) Compressive failure due to concrete crushing 

Compressive failure along the compression ring is assumed at the slab corners and area 

around E position, and two concrete strains (𝜺corner and 𝜺edge) are proposed at the limit 

states, as shown in Fig. 2(c). Failure is identified if 𝜺corner or 𝜺edge > εcu (maximum 



concrete compressive strain).  

As shown in Appendix A, εcorner is estimated assuming elastic behaviour of the concrete 

under the combined action of bending moments and axial forces, and it is defined as: 
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where kcorner is one modification factor (= 4.0); Ieff is the effective moment of inertia of 

the cross section; Icr is the moment of inertia of the cracked cross section; Ec is the 

Young’s modulus of concrete; Es is the Young’s modulus of steel; fcu is the cubic 

strength of concrete; wyield is the deflection corresponding to the yield load; wtotal is 

assumed to be l/20; ax is the depth of the compression zone.  

As shown in Appendix A, εedge is defined as: 
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where kedge is one modification factor (2.0).  

As discussed in Ref. [13], the ultimate compressive strain εcu ranged from 0.0033 to 

0.0038. Thus, one predefined value (such as 0.0035 or 0.0038) was often used to judge 

the compressive failure mode of the concrete slabs. However, this method is relatively 

random, since the concrete with different compressive strengths has different ultimate 

strains. Thus, according to Ref. [23], the concrete compressive ultimate strain 𝜺cu is 

defined as: 
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where εcu is the ultimate compressive strain; 𝜺c,r is the peak strain of the concrete; 𝜶c is 

the parameter; fc is the compressive cylinder strength of concrete.  

 (2) Reinforcement failure 

To define the steel failure mode of slab, the ultimate steel strain εsu at mid-span must be 

considered, such as 0.01 [23]. In fact, to define the reinforcing steel failure mode, the 

limiting mid-span deflection of the slab (l/20) is used in this paper [13]. In other words, 

the original length of the reinforcement (shorter span) is l, and the curved length lc is l 

[1+(8w2/3l2)] and its strain (𝜺s) is 8w2/3l2. According to Ref. [23], 𝜺s approaches the 

ultimate strain 0.01, it is assumed that the fracture of the reinforcement occurs in the 

central region of the slab, and the corresponding mid-span deflection is about l/20. 

In all, the maximum mid-span deflection (w) of the slab is assumed to be l/20, if the 

concrete compressive strain at the corners is larger than εcu, then the concrete crushing 

occurs, otherwise it is considered to be the reinforcement failure mode. In addition, the 

flow chart for predicting the ultimate loads and vertical displacements of concrete slabs 

is shown in Fig. 6.  

3. Validation and discussion 

Results from full-scale and small-scale concrete slab tests conducted by different 

authors are used for this validation. In addition, the finite element software (Vulcan [6-

7]) was used to model the concrete slabs. The details of the nonlinear FE model can be 

found in the Refs [6-7].  



3.1 Comparison of proposed method with experimental and theoretical results 

As shown in Table 1, 32 concrete slabs [1, 2, 4, 5] are used in this paper because they 

are widely accepted to validate new methods. Fig. 7 presents the ultimate loads of 

several concrete slabs   predicted by the current method together with the results 

generated by different methods. As shown in Table 2, the predictions of Plimit and δlimit 

by different theories are compared against the experimental results (Ptest and δtest). The 

results are summarized as follows:  

(1) As shown in Table 2, all the slabs sustained a load above the yield line, and the 

ultimate loads obtained from Bailey’s method are significantly underestimated. For the 

present method (Present) in which the in-plane shear force is considered the predicted 

limit loads are basically agreed well with the experimental values, and the 

corresponding ratio (Plimit/Ptest) ranged from 0.59 to 1.58, with the average value 

(Coefficient of Variation) of 0.98 (0.21). This comparison indicates that the predictions 

of proposed method is reasonable. On the other hand, as the in-plane shear force is not 

considered (Present *), the predicted loads are slightly lower, with the average value 

(Coefficient of Variation) of 0.92 (0.29).  

(2) As shown in Fig. 7, the ultimate displacements obtained from Bailey’s method 

are significantly underestimated. For instance, for the M-series (S-series) slabs, the 

ultimate displacements at the maximum loads ranged from 19.6 (46.5) to 85.4 (186.5) 

mm, with the average value of 52.1 (116.7) mm. In fact, for most of the slabs, their 

ultimate displacements were larger than 55 mm. However, the ultimate displacements 

of M-series (S-series) slabs predicted by Bailey methods ranged from 21.2 (17.1) to 44 



(41.1) mm, with the average value of 28.9 mm (about span/40). In fact, the maximum 

mid-span deflection of most tested slabs at failure was often larger than span/20 [1-4], 

since the membrane action of the two-way slabs sufficiently developed at larger 

deflection.  

3.2 Comparison with numerical results 

Figs. 7(a)-7(h) show the comparison between the test results, the present method, 

Bailey’s method and the numerical results. In the figure, the ‘Proposed method’ 

represents the in-plane shear force is considered and the ‘Proposed method*’ represents 

the in-plane shear force is ignored. Clearly, the numerical method reasonably predicted 

the load-displacement response of each slab. Bailey’s method leads to conservative 

predictions due to the unreasonable failure mode and failure criteria adopted. As 

discussed above, for Bailey’s method, the in-plane forces are tensile across the full 

width of the slab with the compressive force being concentrated over a very small area 

near the edge of the slab, as shown in Figs. 8(a) and 8(b). However, the numerical 

results show that a greater proportion at the supported edges of slab panel is in 

compression, as shown in Figs. 9(a)-9(i). In addition, it can be seen that the compressive 

membrane traction towards the slab edge gradually increases, and thus the triangular 

distribution of compressive traction (C2) is assumed, as indicated in Fig. 2(c).  

As discussed above, for the proposed method, x0 and y0 are two key parameters in 

determining the tensile membrane action region of concrete slabs. Therefore, the results 

from the numerical model were used to verify the rationality of these two parameters 

as predicted by the proposed method. The blue (red) arrow indicates the compressive 



(tensile) membrane tractions of the concrete slab. In these plots, the lengths of the 

vectors are proportional to their magnitudes.  

In addition, x0 (or y0) and the corresponding area predicted by the proposed method and 

numerical model are shown in Table 3. The value of A1/A2 ranges from 0.71 to 1.48, 

with an average ratio (Coefficient of Variation) of 0.94 (0.15), indicating that the values 

of x0 and y0 for the concrete slabs obtained using the proposed method are basically 

agreed well with those predicted by Vulcan.  

3.3 Failure modes 

The failure modes predicted by different methods are shown in Table 4 in which R 

represents the tensile failure of reinforcing steel and C represents the compressive 

failure of concrete. Clearly, Bailey’s method cannot predict failure mode accurately. 

For instance, for Bailey’s method, Slabs S3 to S10 were governed by reinforcement 

failure. In fact, only concrete crushing modes were observed from the S-series slabs due 

to the higher reinforcement ductility and reinforcement ratio. In contrast, the estimated 

failure modes of the proposed models are agreed well with experimental results for the 

most of the slabs. In addition, the effect of the in-plane shear force on the failure mode 

was studied, as shown in Table 4 and Figs. 7(a)-7(h), it is evident that it has a little 

influence on the failure mode.  

Apart from 𝜺corner, the present method can reasonably predict the strain 𝜺edge, and 𝜺edge 

of all slabs were smaller than 𝜺corner, and the crushing failure at Point E did not appear. 

In general, this conclusion is consistent with the experimental observation, no crushing 

failure appeared at the middle region of the edge, as shown in Figs. 10(a) and 10(b). In 



all, compared to the concrete strength failure criterion [14, 16], using concrete 

compressive strain is more reasonable and effective, since the concrete crushing is 

governed by the ultimate compressive strain. 

4. Conclusions 

Based on the results of this study, the following conclusions can be drawn: 

(1) The new analytical method, based on the proposed ellipse equation and failure 

criteria, is capable to predict the ultimate loads and deflection of the two-way 

supported concrete slabs. 

(2) The developed method can be used for predicting the ultimate loads and failure 

modes of the two-way simply supported RC slabs at large deflections. 

(3) The method can reasonably predict the tensile membrane action region and failure 

modes of the two-way concrete slabs. The prediction is agreed well with the 

numerical results. 

(4) The in-plane shear force has little effect on the failure mode of concrete slabs. 

However, neglecting the shear force leads to higher ultimate loads and larger 

concrete corner strains.  
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Appendix A 

M01 and M02 are equal to: 
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where M01 (M02) is the moment of resistance when no membrane force is present; KT0 

is the force in steel per unit width; g1 (g2) is the parameter defining the compressive 

stress block in flexural action in the short (long) span; d1 (d2) is the effective depth of 

reinforcement in the short (long) span; fcu is the compressive cube strength of concrete; 

K is the ratio of yield force in the reinforcing steel in the short span to the yield force in 

the reinforcing steel in the long span. 

M1m is equal to:  
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where M1m is the moment about support due to membrane forces for Plate ①; L (l) is 

the longer (shorter) span of the rectangular slab; w is the central vertical deflection; h1 

(h2) is the lever arm about the edge (Figs. 4(a) and 4(b)).  
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where M2m is the moment about support due to membrane forces for Plate ②.  

𝜺corner is equal to:  
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where 𝜺corner is the maximum compressive strain at the corners of the slab; Ieff is the 

effective moment of inertia of the cross section; Icr,x is the moment of inertia of the 

cracked cross-section (x-direction) during the cracking stage; kcorner is the modification 

factor (4.0); wtotal is the total mid-span deflection of the slab; wyield is the mid-span 

deflection corresponding to the initial yield load.  

𝜺edge is equal to:  
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where εedge is the compressive concrete strain at the middle region of the edge; 𝜶ES is 

the ratio (Es/Ec).  
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Captions 

Fig. 1 Schematic diagram of membrane action and plate division. 

Fig. 2 Failure modes, plates and internal forces distribution in the concrete slab (a) Plate 

①; (b) Plate ②; and (c) Plate ③. 

Fig. 3 Internal forces on the cross section along the thickness of the concrete slab (a) 

Plate ① and (b) Plate ②.  

Fig. 4 Internal forces on the plates of the concrete slab (a) Plate ① and (b) Plate ②.  

Fig. 5 Two distances proposed in the model. (a) Horizontal distance x (from Point B); 

(b) Vertical distance y' (from Point A).  

Fig. 6 Flow chart for calculating the ultimate loads of the concrete slab. 

Fig. 7 Comparison of measured and analytical results of concrete slabs predicted by 

different methods.  

Fig. 8 Two failure modes of the concrete slab [4-5, 19-20].  

Fig. 9 Comparison of tensile membrane action region predicted by the present and 

numerical methods (membrane traction: red = tension, blue = compression; red circles: 

predicted by present method).  

Fig. 10 Cracks on the bottom surface of two slabs [20]. 
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Fig. 1 

 

(a) The central ellipse region of tensile membrane tractions in the slab at ultimate 

limited state 

 

(b) Plate division diagram 

Fig. 1 Schematic diagram of membrane action and plate division 
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(a) Plate ① 

 

(b) Plate ② 

 

 

 

(c) Plate ③ 

 Fig. 2 Failure modes, plates and internal forces distribution in the concrete slab 
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Fig. 3 

 

(a) Plate ① 

 

(b) Plate ② 

 

Fig. 3 Internal forces on the cross section along the thickness of the concrete 

slab 
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Fig. 4 

 
(a) Plate ① 

 
(b) Plate ② 

 

Fig. 4 Internal forces on the plates of the concrete slab 

 

  



Fig. 5 

 

(a) Horizontal distance x (from Point B) 

 

(b) Vertical distance y' (from Point A) 

 

Fig. 5 Two distances proposed in the model 
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Fig. 6 Flow chart for calculating the ultimate loads of the concrete slab 
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(a) Slab M5 
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(b) Slab M6 
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(c) Slab M7 
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(d) Slab S7 
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(e) Slab B1-G 
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(f) Slab C1-G 
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(g) Slab S1-T 
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(h) Slab S3-C 

 

Fig. 7 Comparison of measured and analytical results of concrete slabs 

predicted by different methods 

  



Fig. 8 

 
(a) Mode 1 

 

(b) Mode 2 

 

Fig. 8 Two failure modes of the concrete slab [4-5, 19-20] 

  



Fig. 9 

 
(a) Slab S1-T (at 42.14 kPa) 

 
(b) Slab S6-T (at 39.20 kPa) 

 
(c) Slab A1-G (at 29.08 kPa) 

 
(d) Slab B1-G (at 42.69 kPa) 

 

(e) Slab M1 (at 16.97 kPa) 

 
(f) Slab M2 (at 28.54 kPa) 

 
(g) Slab S1 (at 24.25 kPa) 



 

(h) Slab R1-C (at 25.80 kPa) 

 

(i) Slab S3-C (at 40.10 kPa) 

Fig. 9 Comparison of tensile membrane action region predicted by the present 

and numerical methods (membrane traction: red = tension, blue = 

compression; red circles: predicted by present method) 
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Fig. 10 

 
(a) Square slab  

(b) Rectangular slab 

 

Fig. 10 Cracks on the bottom surface of two slabs [20] 
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Tables  

 

Table 1 Material properties of reinforced concrete slabs 

Referenc

e 
Slab L×l×h (mm) 

Material properties 
fcu 

(MPa

)  

d1 

(mm

)  

d2 

(mm

)  
Es(GPa

) 

fy,x(MPa

) 

fy,y 

(MPa

) 

Asx(mm2/m

) 

Asy 

(mm2/m

) 

Diamete

r 

(mm) 

Taylor 

[1] 

S1-

T 

1829×1829×50.

8 
206.0 375.9 375.9 233.50 280.20 4.76 35.0 

43.6

6 

38.9

0 

S6-

T 

1829×1829×50.

8 
206.0 420.8 420.8 200.00 233.50 4.76 35.6 

43.6

6 

38.9

0 

S7-

T 

1829×1829×44.

5 
206.0 375.9 375.9 280.20 320.00 4.76 38.2 

37.3

6 

32.6

0 

S9-

T 

1829×1829×76.

2 
206.0 375.9 375.9 142.00 160.00 4.76 33.2 

69.0

6 

64.3

0 

Ghoneim 

[2] 

A1-

G 

4627×1829×67.

3 
181.5 450.0 450.0 260.00 260.00 6.35 27.8 

54.5

0 

48.1

5 

B1-

G 

2745×1829×68.

2 
181.5 450.0 450.0 260.00 260.00 6.35 23.4 

55.0

0 

48.6

5 

C1-

G 

1829×1829×67.

8 
181.5 450.0 450.0 260.00 260.00 6.35 31.5 

56.8

0 

50.4

5 

D1-

G 

1829×1829×92.

8 
181.5 450.0 450.0 364.00 364.00 6.35 32.6 

82.7

0 

76.3

5 

Bailey 

[4] 

M1 
1700×1100×18.

2 
205.0 732.0 757.0 90.50 90.50 2.42 41.3 

12.0

0 
9.57 

M2 
1100×1100×19.

1 
205.0 732.0 757.0 90.50 90.50 2.42 38.0 

12.9

0 

10.4

0 

M3 
1700×1100×22.

0 
205.0 451.0 454.0 68.60 72.40 1.53 35.3 

16.2

0 

14.7

0 

M4 
1100×1100×20.

1 
205.0 451.0 454.0 68.60 72.40 1.53 35.3 

14.3

0 

12.8

0 

M5 
1700×1100×18.

9 
205.0 406.0 435.0 135.50 133.60 1.47 37.9 

13.2

0 

11.7

0 

M6 
1100×1100×21.

6 
205.0 406.0 435.0 135.50 133.60 1.47 38.6 

15.9

0 

14.4

0 

M7 
1700×1100×20.

4 
205.0 599.0 604.0 44.70 43.60 0.84 41.6 

15.0

0 

14.1

0 

M8 
1100×1100×19.

0 
205.0 599.0 604.0 44.70 43.60 0.84 42.9 

13.6

0 

12.7

0 

M9 
1700×1100×22.

0 
205.0 450.0 402.0 57.20 53.90 0.66 37.6 

16.7

0 

16.0

0 

M1

0 

1100×1100×19.

4 
205.0 450.0 402.0 57.20 53.90 0.66 37.3 

14.1

0 

13.4

0 

S1 
1700×1100×19.

0 
205.0 639.0 614.0 139.10 138.20 2.99 40.6 

12.5

0 
9.51 

S2 
1100×1100×20.

4 
205.0 639.0 614.0 139.10 138.20 2.99 41.2 

13.9

0 

10.9

0 

S3 
1700×1100×21.

0 
205.0 569.0 555.0 97.40 97.40 2.51 50.0 

14.7

0 

12.2

0 

S4 
1100×1100×19.

0 
205.0 569.0 555.0 97.40 97.40 2.51 50.7 

12.7

0 

10.2

0 

S5 
1700×1100×17.

6 
205.0 344.0 447.0 72.40 74.30 1.55 49.8 

11.8

0 

10.3

0 

S6 
1100×1100×20.

6 
205.0 344.0 447.0 74.30 72.40 1.53 49.8 

14.8

0 

13.3

0 

S7 
1700×1100×20.

5 
205.0 265.0 271.0 154.40 154.40 1.58 41.9 

14.7

0 

13.1

0 

S8 
1100×1100×19.

3 
205.0 265.0 271.0 154.40 154.40 1.58 43.0 

13.5

0 

11.9

0 

S9 
1700×1100×19.

7 
205.0 280.0 301.0 94.30 94.30 0.98 37.1 

14.2

0 

13.2

0 

S10 
1100×1100×18.

8 
205.0 280.0 301.0 94.30 94.30 0.98 37.2 

13.3

0 

12.3

0 

Cashell 

[5] 

R1-

C 
2250×1500×60 205.0 552.0 552.0 141.40 141.37 6.00 44.4 

30.0

0 

24.0

0 

S3-

C 
1500×1500×60 205.0 552.0 552.0 141.37 141.37 6.00 44.4 

30.0

0 

24.0

0 
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R6-

C 
2250×1500×60 205.0 553.0 553.0 141.37 282.74 6.00 32.0 

30.0

0 

24.0

0 

S7-

C 
1500×1500×60 205.0 553.0 553.0 141.37 141.37 6.00 33.0 

30.0

0 

24.0

0 
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Table 2 Measured and calculated ultimate loads of concrete slabs 
* The in-plane shear force is not considered.  

  

Referenc

e 
Slab 

Ptest/kP

a 

δtest 

/mm 

δlimit /mm Plimit /kPa Plimit/ Ptest 

Bailey 

metho

d 

Presen

t 

metho

d 

Yiel

d 

line 

Baile

y  

Vulca

n 

Prese

nt * 

Presen

t  

Yiel

d 

line  

Baile

y  

Vulca

n 

Prese

nt * 

Prese

nt 

Taylor 

[1] 

S1-

T 
42.90 81.3 33.8 91.45 

26.7

6 
32.61 42.14 45.39 44.70 0.62 0.76  0.98  0.94  1.04  

S6-

T 
39.60 81.3 35.7 91.45 

25.4

0 
31.29 39.20 42.61 42.13 0.64 0.79  0.99  0.92  1.06  

S7-

T 
39.00 97.9 33.8 91.45 

26.0

0 
33.23 43.85 45.83 46.09 0.67 0.85  1.12  0.97  1.18  

S9-

T 
38.10 83.8 33.8 91.45 

26.4

9 
30.00 34.30 40.25 38.51 0.70 0.79  0.90  1.04  1.01  

Ghoneim 

[2] 

A1-

G 
39.69 132.4 99.8 91.45 

23.6

2 
24.94 29.08 34.47 36.27 0.60 0.63  0.73  0.87  0.91  

B1-

G 
45.90 101.2 59.2 91.45 

27.5

4 
35.93 42.69 46.10 44.40 0.60 0.78  0.93  0.95  0.97  

C1-

G 
73.90 91.2 39.4 91.45 

41.8

7 
51.52 75.36 68.08 66.15 0.57 0.70  1.02  0.94  0.90  

D1-

G 
109.40 101.7 39.4 91.45 

87.5

3 

100.8

5 

123.1

0 

132.9

6 

127.1

4 
0.80 0.92  1.13  0.98  1.16  

Bailey 

[4] 

M1 20.74 72.5 44 55 8.52 15.50 16.97 20.68 18.88 0.41 0.75  0.82  1.00  0.91  

M2 26.99 60.4 28.5 55 
13.8

0 
20.30 28.54 29.88 31.72 0.51 0.75  1.06  1.11  1.18  

M3 12.28 85.4 34.5 55 6.35 9.13 9.72 12.88 11.80 0.52 0.74  0.79  1.05  0.96  

M4 18.29 65.2 22.3 55 8.17 11.90 17.75 15.78 16.66 0.45 0.65  0.97  0.86  0.91  

M5 17.92 68.1 32.8 55 8.69 12.70 16.29 20.26 17.90 0.48 0.71  0.91  1.13  1.00  

M6 27.03 48 21.2 55 
15.7

2 
21.20 28.62 28.88 30.97 0.58 0.78  1.06  1.07  1.15  

M7 8.65 49.7 39.8 55 5.11 7.68 8.09 10.88 9.61 0.59 0.89  0.94  1.26  1.11  

M8 10.70 29.8 25.8 55 6.68 10.10 13.54 12.62 13.62 0.62 0.94  1.27  1.18  1.27  

M9 7.35 22 34.5 55 5.07 7.16 9.89 10.13 9.20 0.69 0.97  1.35  1.38  1.25  

M10 9.89 19.6 22.3 55 6.36 9.13 12.54 11.64  12.40 0.64 0.92  1.27  1.18  1.25  

S1 17.14 61 41.1 55 
10.6

2 
16.50 24.25 25.24 23.82 0.62 0.96  1.41  1.48  1.39  

S2 26.81 46.5 26.6 55 
18.6

6 
25.50 32.00 41.00 42.39 0.70 0.95  1.19  1.53  1.58  

S3 17.31 89.5 38.8 55 9.20 15.70 17.16 19.59 18.07 0.53 0.91  0.99  1.13  1.04  

S4 22.78 70.9 25.1 55 
11.5

9 
20.70 31.00 25.07 26.17 0.51 0.91  1.36  1.10  1.15  

S5 13.35 186.5 30.2 55 4.23 7.20 9.01 10.77 8.86 0.32 0.54  0.67  0.80  0.66  

S6 26.78 138.2 22.2 55 7.76 12.70 19.35 14.92 15.78 0.29 0.47  0.72  0.56  0.59  

S7 19.48 176.6 26.5 55 7.37 11.30 13.80 15.87 14.25 0.38 0.58  0.71  0.81  0.73  

S8 35.98 166.5 17.1 55 9.84 15.70 23.75 19.36 20.72 0.27 0.44  0.66  0.54  0.58  

S9 14.26 168.9 27.2 55 4.94 7.84 8.98 10.13 9.52 0.35 0.55  0.63  0.76  0.67  

S10 20.18 62.7 17.6 55 6.66 10.80 15.50 12.72 13.82 0.33 0.54  0.77  0.63  0.68  

Cashell 

[5] 

R1-

C 
25.61 — 50.6 75 

16.5

4 
21.13 25.80 26.29 27.79 0.65 0.83  1.01  1.03  1.08  

S3-
C 

40.76 64 33.7 75 
24.1

0 
29.52 40.10 35.37 38.31 0.59 0.72  0.98  0.87  0.94  

R6-

C 
29.31 — 50.6 75 

16.3

4 
23.14 25.60 32.01 31.47 0.56 0.79  0.87  1.09  1.07  

S7-

C 
40.72 84 33.7 75 

23.8

5 
29.10 40.80 35.03 38.02 0.59 0.71  1.00  0.86  0.93  

Average - - - - - - - - - - 0.54 0.76 0.96 0.92 0.98 

COV - - - - - - - - - - 0.25 0.20 0.22 0.29 0.21 
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Table 3 Membrane action region of the slabs based on the proposed methods and Vulcan 

Reference Slab 
Present method Vulcan 

AP/AF- 

x0 (m) y0 (m) AP (m2) x0 (m) y0 (m) AF (m2) 

Taylor [1] 

S1-T 0.453 0.461 1.314 0.483 0.476 1.446 0.91  

S6-T 0.464 0.451 1.315 0.473 0.459 1.365 0.96  

S7-T 0.458 0.457 1.314 0.462 0.461 1.340 0.98  

S9-T 0.458 0.457 1.314 0.438 0.437 1.204 1.09  

Ghoneim [2] 

A1-G 1.491 0.288 5.231 1.519 0.309 3.543 1.48  

B1-G 0.772 0.388 2.245 0.815 0.425 2.188 1.03  

C1-G 0.465 0.450 1.315 0.499 0.485 1.521 0.86  

D1-G 0.462 0.453 1.314 0.468 0.458 1.360 0.97  

Bailey [4] 

M1 0.457 0.244 0.826 0.534 0.260 0.896 0.92  

M2 0.282 0.268 0.477 0.308 0.290 0.567 0.84  

M3 0.461 0.241 0.830 0.503 0.245 0.824 1.01  

M4 0.281 0.270 0.476 0.308 0.297 0.576 0.83  

M5 0.468 0.237 0.836 0.508 0.248 0.857 0.98  

M6 0.276 0.274 0.475 0.310 0.300 0.587 0.81  

M7 0.470 0.236 0.838 0.467 0.227 0.701 1.20  

M8 0.276 0.274 0.475 0.301 0.297 0.564 0.84  

M9 0.465 0.239 0.833 0.495 0.266 0.856 0.97  

M10 0.279 0.272 0.476 0.297 0.290 0.540 0.88  

S1 0.449 0.250 0.819 0.502 0.229 0.759 1.08  

S2 0.286 0.265 0.478 0.289 0.271 0.492 0.97  

S3 0.457 0.244 0.825 0.529 0.266 0.936 0.88  

S4 0.285 0.266 0.478 0.328 0.315 0.652 0.73  

S5 0.478 0.232 0.846 0.519 0.232 0.841 1.01  

S6 0.279 0.271 0.476 0.288 0.264 0.479 0.99  

S7 0.465 0.239 0.833 0.520 0.262 0.862 0.97  

S8 0.279 0.271 0.476 0.267 0.255 0.429 1.11  

S9 0.471 0.235 0.840 0.529 0.270 0.899 0.93  

S10 0.275 0.275 0.475 0.316 0.307 0.612 0.78  

Cashell [5] 

R1-C 0.643 0.313 1.524 0.748 0.408 1.934 0.79  

S3-C 0.387 0.365 0.887 0.454 0.436 1.245 0.71  

R6-C 0.644 0.313 1.524 0.764 0.373 1.871 0.81  

S7-C 0.387 0.364 0.887 0.453 0.435 1.239 0.72  
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Table 4 Concrete strains and failure mode of the slabs predicted by the present and Bailey method 

Reference Slab 
εcu (10-

3) 

Present *(10-3) Present (10-3) Failure mode 

ε1 ε2 ε1 ε2 Bailey Present * Present  Test 

Taylor [1] 

S1-

T 
3.841 3.257 2.235 3.401 1.564 － R C － 

S6-

T 
3.834 3.268 2.246 3.403 1.572 － R C － 

S7-

T 
3.759 3.479 2.378 3.644 1.664 － C C － 

S9-

T 
3.899 3.058 2.158 3.093 1.510 － R R － 

Ghoneim 

[2] 

A1-

G 
4.179 2.967 1.918 2.715 1.343 － R R － 

B1-

G 
4.627 2.632 1.723 2.538 1.206 － R R － 

C1-

G 
3.970 3.052 2.081 3.138 1.457 － R R － 

D1-

G 
3.923 3.091 2.130  3.164 1.491 － R R － 

Bailey [4] 

M1 3.704 4.254 2.521 3.968 1.758 C C C R 

M2 3.765 3.970 2.367 4.408 1.657 C C C C 

M3 3.832 3.278 2.248 3.215 1.574 R R R R 

M4 3.832 3.274 2.248 3.336 1.574 R R R C 

M5 3.767 3.688 2.362 3.516 1.654 R C C C 

M6 3.752 3.532 2.393 3.733 1.675 R C C C 

M7 3.699 3.700 2.525 3.616 1.768 R C C R 

M8 3.681 3.729 2.582 3.823 1.808 R C C R 

M9 3.773 3.374 2.349 3.326 1.644 R R R C 

M10 3.780 3.348 2.336 3.377 1.635 R R R R 

S1 3.715 4.185 2.481 3.898 1.737 C C C C 

S2 3.705 4.185 2.508 4.374 1.755 C C C C 

S3 3.615 4.294 2.895 4.187 2.026 R C C C 

S4 3.611 4.384 2.926 4.486 2.048 R C C C 

S5 3.616 4.237 2.886 4.170 2.020 R C C C 

S6 3.616 4.126 2.886 4.271 2.020 R C C C 

S7 3.695 3.669 2.538 3.615 1.777 R C C C 

S8 3.679 3.713 2.587 3.780 1.811 R C C C 

S9 3.785 3.365 2.327 3.314 1.629 R R R C 

S10 3.783 3.333 2.332 3.408 1.632 R R C C 

Cashell [5] 

R1-

C 
3.662 4.045 2.648 3.824 1.854 － C C － 

S3-

C 
3.662 3.889 2.648 3.971 1.854 － C C － 

R6-

C 
3.948 3.927 2.103 4.804 1.472 － C C － 

S7-

C 
3.908 3.257 2.147 3.373 1.503 － R R － 

* The in-plane shear force is not considered.  

 

 


