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Notation

a Slab panel aspect ratio (L/])
ax Height of concrete compression zone
A Compression area
Asx(y) Reinforcement area per length in x (or y) direction
b Membrane force parameter
Ci,C The concrete compressive force at yield line
d Average effective depth of reinforcement (mm)
di, d» Effective height of steel bar in both directions
e Overall enhancement of theoretical yield-line load due to membrane action
e ,e Enhancement coefficient
el , € Bearing capacity coefficient of yield line
€im, €2m Increase coefficient of slab panel’s load carrying capacity due to membrane force
E/E; Ratio of Young’s modulus of concrete and reinforcement
EG (x.) Compressive membrane area
fe Cylinder compressive strength of concrete
feu Cubic strength of concrete
Iy Yield strength of steel reinforcement
20 Ratio of compressive stress area of concrete
g1 Parameter defining the compressive stress block in flexural action (short span)
fes) Parameter defining the compressive stress block in flexural action (long span)
h Slab thickness
Ier Moment of inertia of cracked cross section
Loy Effective moment of inertia of cross section
k Membrane force parameter
% Ratio of yield force per unit width of reinforcement bar in y direction to yield force per
unit width of reinforcement bar in x direction
L) Longer (shorter) span of rectangular slab
Moy, Mo Bending resistance moment without the effect of the membrane action
Mim, Mom Moment resulted from vertical displacement




n Factor defining the yield-line pattern

Ny Force at distance y
P Uniformly distributed theoretical yield-line load
Plimit Predicted ultimate load of slab panel
Plimit/Prest The ratio between the calculated value of ultimate bearing capacity and the test value
Prest Tested ultimate load of slab panel
S Shear force
To Yield force of reinforcement per unit width
T, T» Resultant in-plane tension forces along the yield line
Xz Coordinate axis of slab panel
0] Diameter of reinforcing bar
o Angle defining the yield line pattern of slab panel
Oonmax Membrane force at point £
Olimit Predicted vertical mid-span displacement of slab panel
Otest Tested vertical mid-span displacement of slab panel
€l Maximum compressive strain at the corners of slab panel (top surface)
& Compressive strain of concrete in the middle of slab panel
Ecu OF Esy Ultimate compressive concrete strain or steel strain
u Orthogonal parameter
o Major axis length
w Deflection of the central region of slab panel
Wiotal Total mid-span deflection of slab panel

Wyield Mid-span displacement at initial yield (0.4 d1)




1. Introduction

Tensile membrane action of reinforced concrete slabs subjected to large displacement
has been investigated by many researchers [1-18]. For the tensile membrane action,
there is no practical use under normal working conditions. However, under accidental
loads, such as explosions and fire, the tensile membrane action can be mobilised, if
designed correctly, allowing structural stability of buildings to be maintained. Thus, the
topic has again acquired an important relevance as the reserve of bearing capacity that
the tensile membrane action provides can become significant in the response of
structures in extreme load conditions [4-18]. Unlike finite element models, the
analytical methods can be easily applied in engineering design practice. So far, several
analytical models were developed to consider the influence of tensile membrane action
on the ultimate loading capacity of a two-way supported concrete slab panel. It is
evident that each model has its own advantages and shortcomings, due to different
assumptions and support conditions. For instance, Cameron and Usmani [10] assume
that the slab panels have full boundary restraint. Li et. al. [11] propose that the edges of
the slab panel are vertically supported, but horizontally restrained, such as the slab panel
located in the interior of a building. However, for the slab panels located at the edge of
the building, the simply supported boundary condition should be used to assess the
loading capacities of the panels. Thus, to be conservative for design, several researchers
[12-18] assume that the slab panels are simply supported at their four edges.

In terms of the failure mechanism of slab panels, several yield line failure patterns were

proposed to determine the ultimate loading capacity of the slab panel, in which the



panel was divided into four [12], five [11, 13], six or eight [15-16] slab facets. Sawczuk
and Winnicki [ 19] and Hayes [20] proposed two failure modes of a slab panel: 1) a large
crack was formed across the shorter span of the slab panel at its center point; 2) two
large cracks were formed across the shorter span of the panel at the two intersections
of the yield lines. However, both models give over-predicted ultimate loading capacity
of the slab panel [14-15]. Based on the test results of small-scale slab panels, Bailey
and Toh [14] proposed a method which is a slightly modified version of Hayes’ model.
However, Bailey’s method significantly underestimates the ultimate loading capacity
of the slab panel [14, 21]. Omer et al. [15] assume the failure mode of the slab panel in
which the additional full depth cracks are formed across the short span of the panel at
different locations. In this model, the in-plane tensile forces are assumed to be
distributed across the full width of the slab panel with the compressive forces being
concentrated over a very small area near the edge of the slab panel. Clearly, this
assumption does not agree with the experimental observations (concrete crushing near
to the corners of slab panel) [1-4] and the results of numerical analyses [6-9].

In the model proposed by Li et al. [11], a slab panel is divided into five slab facets,
including a slab facet with elliptic paraboloid shape. In this model, it is assumed that
the yielding shape of bottom reinforcing steel is in elliptic shape. In fact, according to
Ref. [22], at a limit state, the yielding shape of bottom reinforcing steel is in rectangular
(square) shape. Wang et al. [13] proposed a model based on the steel strain difference
approach. In the model a slab panel is also divided into five parts, including four rigid

plates and a rectangular (square) region. The model assumes that the yield shape of



bottom reinforcing steel is in rectangular (or square) shape and the tensile membrane
action region of slab panel is simply considered to be a rectangular (or square) shape.
This assumption is not reasonable. Note that, different from the above methods (several
rigid facets), Matteo et al. [26] proposed the slab strip model to assess the ultimate
bearing capacity of reinforced concrete two-way slabs at large deflection, and two
failure criteria were established, including the maximum ultimate slab strip elongation
and the maximum ultimate rotation of the structure at the supports.

Based on the experimental observations [1-4], two failure criteria are often used to
determine the ultimate loading capacity of a concrete slab panel, which are the tensile
failure of reinforcing steel at center of the slab panel and the concrete crushing at the
corners of the slab panel. A number of previously developed models [13-17, 21]
adopted these two failure criteria with different interpretations and limitations. Recently,
Burgess [18] proposed a method to determine the load-deflection curve (ascending and
descending stages) of a lightly reinforced concrete slab panel. The method makes the
conventional assumption of an unchanged yield-line mechanism (x-aligned or y-aligned
mechanisms), and subsequently ensures equilibrium of the flat facets of the mechanism
using the correct kinematics as the deflection increases. The fracture ductility of
reinforcing mesh crossing yield lines is used to monitor the progressive fracture of the
mesh across the yield-line cracks. This method was further developed to consider the
effect of boundary restraint on the large-deflection behavior of lightly reinforced
concrete slabs, and horizontal equilibrium of all of the flat facets of the slab is

determined by the combination of forces across the yield lines within the slab and across



the slab edges [24, 25]. However, this method is assumed to apply to thin lightly
reinforced slabs with a single layer of isotropic reinforcing mesh, and a steel area in
either direction which is considerably less than 1% of the gross cross-section area, and
thus the concrete compressive crushing at the corners cannot be predicted as well as the
tensile or compressive membrane action region.

As discussed above, all these existing methods have different drawbacks, making them
inaccurate and less suitable for practical purposes. For this reason, a new method for
the assessment of a two-way simply supported slab panel is developed in this paper.
Based on the experimental evidences and numerical results, in the current method, the
tensile membrane action region is determined based on the proposed ellipse equations.
Hence, the in-plane stress distribution can be reasonably estimated. In addition, two
failure criteria are introduced to determine the failure modes of the slab panel which
are related to concrete and steel. Also the effect of the in-plane shear force on the
concrete compressive failure mode is also studied. Finally, the theoretical predictions
are compared with the experimental results conducted by different researchers, and

further verifications are conducted through the comparison with the numerical results.

2. Proposed method

2.1 Assumptions

The assumptions adopted in this method are summarized as follows:

(1) The slab is square or rectangular in plan, and the ratio between the length and width
is not greater than three.

(2) The proposed failure mode in the rectangular concrete slab is shown as in Figs. 1(a)-



(b).

(3) For a rectangular slab panel, the central region of tensile membrane tractions is
elliptical, as shown in Fig. 1(a). The intersecting points (Points B and C) of the yield
line in the middle region are assumed to be the two foci of the elliptic equation, and (xo,
o) s the intersecting point of the yield line and the ellipse, as shown in Fig. 1(a).

(4) The force distribution of the slab at the ultimate limited state is shown in Figs. 2(a)-
(c), and Ci and C; are the concrete compressive forces between plates, respectively; 71
and 7> are the tensile forces of the steel bar, respectively; S is the in-plane shear force,
and 7o is the yield force of the steel.

Note that, the diagonal yield line can contain up to three distinct zones: a zone adjacent
to the slab corner where only bending moments contribute internal work; a zone in
which both moment and membrane force do work; a zone adjacent to the yield-line
intersection where only tensile membrane force does work. The latter corresponds to
the length of yield line in which there is no concrete stress block, which is particularly
relevant at high deflections (w=0.6d) [27].

(4) Two failure criteria, based on the deflection failure criterion and concrete crushing
strain, are established to determine the ultimate loads and deflections of concrete slabs.
2.2 Ellipse equation

According to the yield line theory, the angle @ in Fig. 2(a) is defined as:

sin05=nL/[«’(nL)2 +ZZ] , n= 2,:612 [«}1+3/m2 —1} (D)

where # is the factor defining the yield-line pattern; L (/) is the length (width) of the

slab; a is the aspect ratio of the slab (L//) ; u is the ratio of the yield moment capacity



of the slab in the orthogonal direction (Mo1/Mo2), and it is less than or equal to unity.
According to the numerical results [6-7], it is found that the distribution of membrane
actions comprises tensile membrane traction in the central plan area of the slab
surrounded by a balancing ring of compressive membrane stress. In the previous models,
the in-plane force distribution along the yield line was often assumed by many
researchers [14-18], and the in-plane shear force S was considered [13, 17, 24] or not
[12].

Note that, in Bailey’s model it was assumed that a full-depth crack along the short span
of the slab panel occurs, and the compressive force C> (Fig. 2(c)) was acted at point E.
However, the numerical analysis conducted by many researchers shows that a certain
proportion across the short span of the slab is in compression, and this assumption may
be not reasonable [14]. Hence, as shown in Fig. 2(c), a reasonable force distribution
within the slab panel at the ultimate limit state is assumed. As shown in Fig. 1(a), the
boundary between the regions of tensile and compressive membrane stress is defined
by Points /1. >+ I3 and /4, and the coordinate of Point /; is (xo, o). As shown in Figs.
2(a)-2(c), according to the in-plane (translational direction) force equilibrium (Egs.

2(a)-2(b)), the following equations can be obtained as:

(T, /2)sina =C, -T, (direction: perpendicular to yield line CD) (2a)
(T, /2)cosa = S (direction: parallel to yield line CD) (2b)
T, = bKT,(L—2nL) (33)
kbKT, ( k 2 P
C = of X J(nLy +%
T2 [1+k] (nL) +3 (3b)
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where £ is the parameter defining magnitude of membrane force, which can be obtained
from the in-plane force equilibrium of Plate () (direction: perpendicular to yield line
BQO); Ty is the yield force in reinforcing steel per unit width (kN/m) in the long span
direction; Ci is the concrete compressive force at the yield line; 71 (72) is the resultant
in-plane tension forces along the yield line BC (BI) ; b is the parameter defining
magnitude of membrane force; n is the parameter defining the yield line; L is the longer
span of rectangular slab; / is the shorter span of rectangular slab; K is the ratio of yield
force in the reinforcing steel of the short span to the yield force in the reinforcing steel
of the long span; a is the aspect ratio (L//); & is the angle defining the yield line pattern;
S is the in-plane shear force along a diagonal yield line.

According to the geometric equation, the coordinates of Point /i (xo., y0) can be

calculated as:

L knL )
xOZLAE_LAQ:E_m’ y():LBJ:m “)

As indicated in Fig. 1(a), the shape of the region of tensile membrane traction at the
ultimate limited state is elliptic. Therefore, four points /i to /4 can be used to establish
the elliptic equation. Clearly, based on this four points, the elliptic equation cannot be
determined, and another key point should be chosen. Thus, based on the general yield-
line theory, two intersection points (Points B and C) are assumed to be two foci of the

elliptic equation. Hence, the elliptic equation can be determined as:



s >+ Y =1 Lrc<l/2, Lrr<L/2
L™ Lyg (5)

Using two foci (Points B and C) and Point /1 (xo. o), Equation (5) can be represented

as:

J(xo_[g_nL]j+y;+ J[xo+[g_nLD:yoz=2¢ o

 (L_ Y. I
¢ [z ”Ljﬂ (6b)

where ¢ is the length of the major axis.

In this method, the width of the compressive membrane force at slab edges (Lrg) is
defined as x. (=0), as shown in Fig. 2(c).

2.3 Force equilibrium

As shown in Fig. 2(c), for Plate (3), the distribution of compressive membrane stress is
triangular, and its maximum value at the edge (Point £) is assumed to be o¢,max, and thus

the equilibrium equation (x direction) is defined as:

(o ¢ l .
G, :%=Kﬂ) (E—xc)+Clcosa—Tzcosa—Ssma (7)
Or
2 bl (1-2
CZ:MZQ[ZZ—4xC+ka— bl _n 2( ”)2 ®)
2 4 L+k 1+k (aL) +(/2)

where (> i1s the resultant in-plane compression force; ocmax 1S the maximum
compressive membrane stress at the edge of the slab or Point E; x. is the width (Leg) of
the compressive membrane stress. Note that, according to the numerical results, the
triangular distribution of compressive traction towards the slab edge is assumed in this

paper, as discussed later.

As shown in Fig. 2(c), for Plate (3), taking moments about E, and it is:
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Substituting for 7 (Eq. 3(a)), 72 (Eq. 3(c)), C1 (Eq. 3(b)), C2> (Eq. 7) and S (Eq. 2(b))

[i‘x)(i“;]_xuazx) (10)

A-B+C+D+E

into Eq. (9), b can be obtained as:

b=

where
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As shown in Figs. 3(a)-(b), the moment without the effect of the membrane action (Mo

and M) are defined as:

3+g,

3+
M, ZK];)dl(—gl), M, =Tyd,( ) (11a)
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where Mo and Mo, are the moment of resistance (no axial force) in the short and long
spans, respectively, as shown in Appendix A; di1 and d> are the effective depth of
reinforcement in the short and long spans, respectively; feu is the compressive cube
strength of concrete; g1 and g» are parameters defining the compressive stress block in
flexural action in the short and long spans, respectively.

As shown in Figs. 4(a)-(b) and Appendix A, for a given maximum vertical displacement



w, the moments (M1m and M>n) about the supports due to the membrane forces are given

by:
n(3k+2)  nk’ I*(1-2n)
M, =KT,Lbw[(1-2n)+ 2 - - >
(=2n) 3(14k) 3(1+k) 8[(nL) +(z/2)2J (12)
2+3k K nl*(1-2n)
M., =KT,lb —— _ .
W[6(1+k) 6(1+k) +4[(nL) +(1/2)2] (13)

The above expressions (Egs. (12) and (13)) are divided by Mo1L and Mo/, respectively,

the enhancement factors eim (Plate (D) and exm (Plate ) are defined as:

M, 4 (w][l_szrn(Z—k) >(1-2n)

ML 34, S Sy (/2] (14)
M,, 2Kb(w)2-k nL*(1-2n)
M 3t [dj 3 : 2 (15)
0 &\ 4, 2A(nL) +(1/2)°]

where eim and exm are the enhancement factors of Plates (1) and (2) due to membrane
action, respectively.

For Plates (O and (@), if the axial compressive force N is present, the moment capacity

is given by:
M N N
_:1 vt pyvity2
M, +0!(7:)) 'B(IB) (16a)
,:2><g0 .:l_go
“ 3+g, ’ 3+g, (16b)

where go is the parameter fixing depth of compressive stress block when no membrane
force is present.

As shown in Fig. 5(a), for Plate (D, for the yield line AB, the distance between B and
the projection (x axis) is X', and the membrane force Ny is:

N, = bKTO(x’(kLJr D -1 (17)
n

Thus, the moment contribution for AB and CD (Fig. 2(a)) is:

wM a'b B b
ZZZIO Vodx =21’lL|:1+Tl(k—l)— g (kz_k"‘l) (18a)
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where Z is the contribution due to the enhanced bending capacity, in the areas where
in-plane compressive stress occurs; Mo is the moment of resistance when no axial force
is present. If M is divided by MoL, an enhancement factor due to the effect of the
membrane forces is obtained. Note that, the effect of membrane forces on the bending
resistance will be considered separately for each yield line.

Similarly, for the yield line BC in Fig. 2(a), the membrane force is constant, N=-

bKT)y, and we have

Y:%:(L—2nL)(l—a'1b—ﬂ'lb2) (19)

0

For the yield line GF in Fig. 2(c), the membrane force is constant, N=-KTo, and we

have
M _ka'-p K (20a)
MO
1 2><g2 [ l_gz (20b)
a,= 2T
3+g2 3+g,

Thus, according to three terms, i.e., Egs. (18), (19) and (20), the enhancement factor ey

18 defined as:

M 7
€y = =—+
ML L

Y 2 D
L+Z(l Ka —Kﬁ )(——x) (21)

For Plate (), across the yield line AB in Fig. 5(b), at a distance of y’ from 4, the

membrane force Ny is:

2y'(k+1)

N, = bKT,( -1) (22)

Similarly, for Plate (2), the moment contribution for 4'B and 4B is:

M a' bK BbK
o "=y 1+ k-2 — k41 (23)
"M 2 3

0

Thus, the enhancement factor ey is:




' v 122
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0 (24)

In all, the increases in strength in unrestrained slab arise partly from the tensile
membrane action produced in the central region of the slab and partly from the
increased yield moment in the outer regions where compressive membrane action is
caused. On one hand, by taking the moments about the slab edges, the load capacities
of each of the plates, due only to the membrane forces and their lever arms about the
edges, are established, i.e., eim and exm. On the other hand, the load capacities of the
plates due to the plastic bending moments distributed along the yield lines, amended by
the presence of the coincident membrane forces, are not included in eim and exm but are

aggregated as separate two factors, i.e., e1p and eap.

2.4 Ultimate loads

According to the yield line theory, the ultimate load P of the slab is defined as:

-2
P:24IUMO 34 1 _ 1 (25)
12 2
ua ua

As indicated in Egs. (14), (15), (21) and (24), the dimension (non-dimensional form) of

four enhancement factors (eib, e, eim and exm) was the same. In addition, four
enhancement factors were essentially related to the bending moment or moment
equilibrium [27], including the moment about the support and the moment considering
the effect of in-plane forces. Thus, considering the contribution of both membrane and
bending effects, the enhancement factors for Plates ) and @ are given by:

e =e, . te, , e,=e, te, (26)
where e; and e> represent the enhancement resulted from tensile membrane action on

the load capacity for the trapezoidal and the triangular plates, respectively. Note that,



considering the shear force interaction between the plates, Hay [20] proposed one
enhancement factor e (ei-(e1-e2)/(1+2ua?)), but the derivation of the equation was not
given.
Here, according to the force equivalence principle, the simply enhancement factor
equation is proposed as:
P(2e,4, +2¢,4,) = Py (LxI) 27)
where 41 and A are the areas of Plates () and @), respectively.
Thus, we have
B, .=exP (28)
e=(1—n)e +ne, (29)
2.5 Failure criteria
As discussed in Refs. [13-14], two kinds of failure modes were observed in the small-
scale slab tests, including the fracture of reinforcement at the centre of the slab and the
compressive failure of concrete at the corners of the slabs. In some cases, the concrete
crushing failure occurred at the area around £ position (Fig. 2 (c)) subjected to pure
axial compressive forces. Note that, such failures occur in heavily reinforced slabs [17].
Thus, this paper considers the following failure modes to determine the ultimate loading
capacities of the concrete slabs.
(1) Compressive failure due to concrete crushing
Compressive failure along the compression ring is assumed at the slab corners and area
around E position, and two concrete strains (Ecomer and edge) are proposed at the limit

states, as shown in Fig. 2(c). Failure is identified if &comer OF E€edge > €cu (Maximum



concrete compressive strain).
As shown in Appendix A, gcomer i estimated assuming elastic behaviour of the concrete
under the combined action of bending moments and axial forces, and it is defined as:

10"
C x[h,—(a, /2)] E=——"0F
El, Iy 224.% (30a)

cu

1=kl L +a,
eff Ec

. - i }

total c

G
., =
X1
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where kcomer 18 One modification factor (= 4.0); L is the effective moment of inertia of
the cross section; /.- is the moment of inertia of the cracked cross section; E. is the
Young’s modulus of concrete; Es is the Young’s modulus of steel; fcu is the cubic
strength of concrete; wyiela 1s the deflection corresponding to the yield load; wiotl 1S
assumed to be //20; a, is the depth of the compression zone.

As shown in Appendix A, gedge is defined as:

_ G M. . A Cz(dl 711)(2/2)
Zatge = Kl £ Ieﬁ] = kcdgc[a +ay, T] 31
a,, = _G
- &, feLgg

where kedge 1s one modification factor (2.0).

As discussed in Ref. [13], the ultimate compressive strain ec.u ranged from 0.0033 to
0.0038. Thus, one predefined value (such as 0.0035 or 0.0038) was often used to judge
the compressive failure mode of the concrete slabs. However, this method is relatively
random, since the concrete with different compressive strengths has different ultimate
strains. Thus, according to Ref. [23], the concrete compressive ultimate strain &y is

defined as:



fa _ 1 (1+2a, +,1+4a,) (32a)

cr zac

)

e =(700 +172,/ £.)x10°, a, =0.157 £°7*°~0.905 (32b)
where & is the ultimate compressive strain; & is the peak strain of the concrete; a. is
the parameter; f; is the compressive cylinder strength of concrete.

(2)  Reinforcement failure

To define the steel failure mode of slab, the ultimate steel strain &5, at mid-span must be
considered, such as 0.01 [23]. In fact, to define the reinforcing steel failure mode, the
limiting mid-span deflection of the slab (//20) is used in this paper [13]. In other words,
the original length of the reinforcement (shorter span) is /, and the curved length /. is /
[1+(8w?/3%)] and its strain (&) is 8w?/3/2. According to Ref. [23], & approaches the
ultimate strain 0.01, it is assumed that the fracture of the reinforcement occurs in the
central region of the slab, and the corresponding mid-span deflection is about //20.

In all, the maximum mid-span deflection (w) of the slab is assumed to be //20, if the
concrete compressive strain at the corners is larger than .y, then the concrete crushing
occurs, otherwise it is considered to be the reinforcement failure mode. In addition, the
flow chart for predicting the ultimate loads and vertical displacements of concrete slabs

is shown in Fig. 6.

3. Validation and discussion

Results from full-scale and small-scale concrete slab tests conducted by different
authors are used for this validation. In addition, the finite element software (Vulcan [6-
7]) was used to model the concrete slabs. The details of the nonlinear FE model can be

found in the Refs [6-7].



3.1 Comparison of proposed method with experimental and theoretical results

As shown in Table 1, 32 concrete slabs [1, 2, 4, 5] are used in this paper because they
are widely accepted to validate new methods. Fig. 7 presents the ultimate loads of
several concrete slabs  predicted by the current method together with the results
generated by different methods. As shown in Table 2, the predictions of Piimit and Jiimit
by different theories are compared against the experimental results (Piest and diest). The
results are summarized as follows:

(1) As shown in Table 2, all the slabs sustained a load above the yield line, and the
ultimate loads obtained from Bailey’s method are significantly underestimated. For the
present method (Present) in which the in-plane shear force is considered the predicted
limit loads are basically agreed well with the experimental values, and the
corresponding ratio (Plimit/Prest) ranged from 0.59 to 1.58, with the average value
(Coefficient of Variation) of 0.98 (0.21). This comparison indicates that the predictions
of proposed method is reasonable. On the other hand, as the in-plane shear force is not
considered (Present *), the predicted loads are slightly lower, with the average value
(Coefficient of Variation) of 0.92 (0.29).

(2) As shown in Fig. 7, the ultimate displacements obtained from Bailey’s method
are significantly underestimated. For instance, for the M-series (S-series) slabs, the
ultimate displacements at the maximum loads ranged from 19.6 (46.5) to 85.4 (186.5)
mm, with the average value of 52.1 (116.7) mm. In fact, for most of the slabs, their
ultimate displacements were larger than 55 mm. However, the ultimate displacements

of M-series (S-series) slabs predicted by Bailey methods ranged from 21.2 (17.1) to 44



(41.1) mm, with the average value of 28.9 mm (about span/40). In fact, the maximum
mid-span deflection of most tested slabs at failure was often larger than span/20 [1-4],
since the membrane action of the two-way slabs sufficiently developed at larger
deflection.

3.2 Comparison with numerical results

Figs. 7(a)-7(h) show the comparison between the test results, the present method,
Bailey’s method and the numerical results. In the figure, the ‘Proposed method’
represents the in-plane shear force is considered and the ‘Proposed method*’ represents
the in-plane shear force is ignored. Clearly, the numerical method reasonably predicted
the load-displacement response of each slab. Bailey’s method leads to conservative
predictions due to the unreasonable failure mode and failure criteria adopted. As
discussed above, for Bailey’s method, the in-plane forces are tensile across the full
width of the slab with the compressive force being concentrated over a very small area
near the edge of the slab, as shown in Figs. 8(a) and 8(b). However, the numerical
results show that a greater proportion at the supported edges of slab panel is in
compression, as shown in Figs. 9(a)-9(1). In addition, it can be seen that the compressive
membrane traction towards the slab edge gradually increases, and thus the triangular
distribution of compressive traction (C>) is assumed, as indicated in Fig. 2(c).

As discussed above, for the proposed method, xo and yo are two key parameters in
determining the tensile membrane action region of concrete slabs. Therefore, the results
from the numerical model were used to verify the rationality of these two parameters

as predicted by the proposed method. The blue (red) arrow indicates the compressive



(tensile) membrane tractions of the concrete slab. In these plots, the lengths of the
vectors are proportional to their magnitudes.

In addition, xo (or yo) and the corresponding area predicted by the proposed method and
numerical model are shown in Table 3. The value of 41/4> ranges from 0.71 to 1.48,
with an average ratio (Coefficient of Variation) of 0.94 (0.15), indicating that the values
of xo and yo for the concrete slabs obtained using the proposed method are basically
agreed well with those predicted by Vulcan.

3.3 Failure modes

The failure modes predicted by different methods are shown in Table 4 in which R
represents the tensile failure of reinforcing steel and C represents the compressive
failure of concrete. Clearly, Bailey’s method cannot predict failure mode accurately.
For instance, for Bailey’s method, Slabs S3 to S10 were governed by reinforcement
failure. In fact, only concrete crushing modes were observed from the S-series slabs due
to the higher reinforcement ductility and reinforcement ratio. In contrast, the estimated
failure modes of the proposed models are agreed well with experimental results for the
most of the slabs. In addition, the effect of the in-plane shear force on the failure mode
was studied, as shown in Table 4 and Figs. 7(a)-7(h), it is evident that it has a little
influence on the failure mode.

Apart from Ecomer, the present method can reasonably predict the strain €edge, and Eedge
of all slabs were smaller than &comer, and the crushing failure at Point £ did not appear.
In general, this conclusion is consistent with the experimental observation, no crushing

failure appeared at the middle region of the edge, as shown in Figs. 10(a) and 10(b). In



all, compared to the concrete strength failure criterion [14, 16], using concrete

compressive strain is more reasonable and effective, since the concrete crushing is

governed by the ultimate compressive strain.

4. Conclusions

Based on the results of this study, the following conclusions can be drawn:

(D

2)

€)

(4)

The new analytical method, based on the proposed ellipse equation and failure
criteria, is capable to predict the ultimate loads and deflection of the two-way
supported concrete slabs.

The developed method can be used for predicting the ultimate loads and failure
modes of the two-way simply supported RC slabs at large deflections.

The method can reasonably predict the tensile membrane action region and failure
modes of the two-way concrete slabs. The prediction is agreed well with the
numerical results.

The in-plane shear force has little effect on the failure mode of concrete slabs.
However, neglecting the shear force leads to higher ultimate loads and larger

concrete corner strains.
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Appendix A

Mo1 and Mo are equal to:



KTOZJ(;U(%_% 1}
d, KT,
2 fu
1= d,
2
d_d,
M, =KT,| d, - 22 ' :KT0d1g3+g1)

where Mo1 (Mo2) is the moment of resistance when no membrane force is present; K70
is the force in steel per unit width; g1 (g2) is the parameter defining the compressive
stress block in flexural action in the short (long) span; di (d2) is the effective depth of
reinforcement in the short (long) span; fcu is the compressive cube strength of concrete;
K is the ratio of yield force in the reinforcing steel in the short span to the yield force in
the reinforcing steel in the long span.

Mim is equal to:
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where Mim is the moment about support due to membrane forces for Plate (D; L (/) is
the longer (shorter) span of the rectangular slab; w is the central vertical deflection; /;
(h2) is the lever arm about the edge (Figs. 4(a) and 4(b)).

M>m is equal to:

/
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where Mo is the moment about support due to membrane forces for Plate ).

Eeorner 1s equal to:
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where €comer 18 the maximum compressive strain at the corners of the slab; Ifris the
effective moment of inertia of the cross section; I..x is the moment of inertia of the
cracked cross-section (x-direction) during the cracking stage; kcomer 1S the modification
factor (4.0); wiotal 1s the total mid-span deflection of the slab; wyielg is the mid-span
deflection corresponding to the initial yield load.

&edge is equal to:

— C'2
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where ¢eqge 1S the compressive concrete strain at the middle region of the edge; aks is

the ratio (EVE:).
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Fig. 1 Schematic diagram of membrane action and plate division.

Fig. 2 Failure modes, plates and internal forces distribution in the concrete slab (a) Plate
(D; (b) Plate @); and (c) Plate ®.

Fig. 3 Internal forces on the cross section along the thickness of the concrete slab (a)
Plate O and (b) Plate @.

Fig. 4 Internal forces on the plates of the concrete slab (a) Plate (O and (b) Plate @.
Fig. 5 Two distances proposed in the model. (a) Horizontal distance x’ (from Point B);

(b) Vertical distance y’ (from Point A).

Fig. 6 Flow chart for calculating the ultimate loads of the concrete slab.

Fig. 7 Comparison of measured and analytical results of concrete slabs predicted by
different methods.

Fig. 8 Two failure modes of the concrete slab [ 1201,

Fig. 9 Comparison of tensile membrane action region predicted by the present and
numerical methods (membrane traction: red = tension, blue = compression; red circles:

predicted by present method).

Fig. 10 Cracks on the bottom surface of two slabs 2%,

Table 1 Material properties of reinforced concrete slabs.

Table 2 Measured and calculated ultimate loads of concrete slabs.

Table 3 Membrane action region of the slabs based on the proposed methods and
Vulcan.

Table 4 Concrete strains and failure mode of the slabs predicted by the present and
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Fig. 1 Schematic diagram of membrane action and plate division
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Fig. 9

(a) Slab SI1-T (at 42.14 kPa) (b) Slab S6-T (at 39.20 kPa)

(c) Slab A1-G (at 29.08 kPa)

(d) Slab B1-G (at 42.69 kPa) (e) Slab M1 (at 16.97 kPa)

(f) Slab M2 (at 28.54 kPa) (2) Slab S1 (at 24.25 kPa)




(h) Slab R1-C (at 25.80 kPa) (1) Slab S3-C (at 40.10 kPa)
Fig. 9 Comparison of tensile membrane action region predicted by the present
and numerical methods (membrane traction: red = tension, blue =
compression; red circles: predicted by present method)
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Fig. 10 Cracks on the bottom surface of two slabs 2!
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Tables

Table 1 Material properties of reinforced concrete slabs

Material properties
ﬁ:u d d>

B i ML S s
) ) (mm)
STl' 1829X18829X5°' 2060 3759 3759 23350 28020 476 350 436'6 3%'9
Taylor ST6' 1829X18829X5°' 2060 4208 4208 20000 23350 476 356 436'6 3%'9
(1 ST7' 1829”?29“‘4' 2060 3759 3759 28020 32000 476 382 376'3 3%'6
ST9' 1829”529”6' 2060 3759 3759 14200  160.00 476 332 696'0 6‘(‘)'3
AGl' 4627X1§29X67' 1815 4500 4500  260.00  260.00 635 278 5‘(‘)'5 42.'1
Ghoneim Bé' 2745X1§29X68' 1815 4500 4500  260.00  260.00 635 234 5%'0 42'6
2] Ccl}' 1829X1§29X67' 1815 4500 4500  260.00  260.00 635 315 5%'8 5%4
Dé' 1829X1§29X92' 1815 450.0 4500 36400 36400 635 326 8%)'7 72'3
Ml 1700”2100”8' 2050 7320 7570 9050 90.50 242 413 1%)'0 9.57
M2 “00”1100”9' 2050 7320 7570 9050 90.50 242 380 1%)'9 1%'4
M3 1700X10100X22' 2050 4510 4540  68.60 72.40 153 353 1%2 1‘(‘)'7
M4 1100“1100*20' 2050 4510 4540  68.60 72.40 153 353 1‘(‘)'3 1%)'8
M5 1700“9100”8' 2050 4060 4350 13550  133.60 147 379 1%'2 1})'7
M6 1100X16100X21' 2050 4060 4350 13550  133.60 147 386 1%'9 1‘(‘)'4
M7 1700X1i00X20' 2050 599.0 6040 4470 4360 084 416 1%'0 1‘(‘)'1
M8 “00”500”9‘ 2050 599.0 6040 4470 4360 084 429 1%‘6 1%)'7
M9 1700X1300X22‘ 2050 4500 4020 5720 53.90 0.66  37.6 1%‘7 1%0
Bailey Nél ”00“‘:00”9' 2050 4500  402.0  57.20 53.90 0.66 373 1‘(‘)'1 1%'4
(4] S1 1700“800”9' 2050  639.0 6140  139.10 13820 299  40.6 1%'5 9.51
s2 “00”;00“0‘ 2050 6390 6140  139.10 13820 299 412 1%‘9 1%9
S3 1700”50001‘ 2050  569.0 5550  97.40 9740 251 500 1‘(‘)‘7 1%)'2
s4 ”00“500”9' 2050  569.0 5550  97.40 97.40 251 507 1%)'7 “())'2
g5 1700x1 61 00517 2050 3440 4470 7240 74.30 155 498 ! 1)'8 1%'3
S6 “00”6100”0‘ 2050 3440 4470 7430 72.40 153 498 1‘8‘8 130'3
s7 17OOX15100X20‘ 2050 2650 2710 15440 15440 158 419 1‘(‘)‘7 lf)'l
gg 1100 '31 00519 2050 2650 2710 15440 15440 158 430 1%'5 ! 5'9
S9 1700”7100“9' 2050 2800 3010 9430 9430 098  37.1 1‘(‘)'2 '%’2
S10 “00”8100”8‘ 2050 2800 3010 9430 9430 098 372 130‘3 120'3
Cashell RCI' 2250x1500%60 2050  552.0  552.0 14140 14137 6.00 444 3%‘0 2‘(‘)'0
5] Sé‘ 1500x1500%60  205.0  552.0 5520 14137 14137 600 444 3%'0 2‘(‘)'0
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30.0 240

Rg_ 2250%1500%60 205.0 553.0 553.0 141.37 282.74 6.00 32.0 0 0
SC7- 1500x1500%60 205.0 553.0 553.0 141.37 141.37 6.00 33.0 3%'0 2‘(‘)'0
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Table 2 Measured and calculated ultimate loads of concrete slabs
* The in-plane shear force is not considered.

Siimie/mm Pimi /kPa Pimit Pres
s Bailey  Presen
RefeerenC Slab Ptes;/kp /rrl:; metho t Y(iiel Baile  Vulca Prese  Presen Ycilel Baile  Vulca Prese Prese
d  metho line Y n nt* t line Y n nt* nt
d

STI' 4290 813 338 9145 266‘7 3261 4214 4539 4470 062 076 098 094  1.04

Taglor S?' 3060 813 357 9145 2%‘4 3129 3920 4261 4213 064 079 099 092  1.06
1] S;' 3000 979 338 9145 2%‘0 3323 4385 4583 4609 067 085 112 097  LI8
S?' 3810 838 338 9145 269'4 3000 3430 4025 3851 070 079 090  1.04  1.01

Aé' 3969 1324 998 9145 232"6 2494 2908 3447 3627 060 063 073 087 091
Ghoneim Bé' 4590 1012 592 9145 21'5 3593 4269 4610 4440 060 078 093 095 097
21 Cé' 7390 912 394 9145 417'8 5152 7536 6808 6615 057 070  1.02 094 090
DGl' 10940 1017 394 9145 873‘5 102‘8 123'1 1362'9 121" 080 092 113 098 116

Ml 2074 725 44 55 852 1550 1697 2068 1888 041 075 082 100 091

M2 2699 604 285 55 1%‘8 2030 2854 2988 3172 051 075 106 111 118

M3 1228 854 345 55 635 913 972 1288 1180 052 074 079 105 096

M4 1829 652 223 55 817 1190 1775 1578 1666 045 065 097 086 091

M5 1792 681 328 55 869 1270 1629 2026 1790 048 071 091 113 1.00

M6 2703 48 212 55 152‘7 2120 2862 2888 3097 058 078 106 107 115

M7 865 497 398 55 511 768 809 1088 961 059 089 094 126 LIl

M8 1070 298 258 55 668 1010 1354 1262 1362 062 094 127 11§ 127

M9 735 2 345 55507 716 989 1013 920 069 097 135 138 125

Baly MO 989 196 223 55 636 913 1254 1164 1240 064 092 127  L1§ 125
[4] St 1714 6l 411 55 102'6 1650 2425 2524 2382 062 096 141 148 139
S2 2681 465 266 55 1%6 2550 3200 4100 4239 070 095 1.9  1.53  1.58

S3 1731 895 388 55 920 1570 17.16 1959 1807 053 091 099 113  1.04

4 2278 709 251 55 ¢S 2070 3100 2507 2617 051 091 136 L0 11S

S5 1335 1865 302 55 423 720 901 1077 886 032 054 067 080  0.66

S6 2678 1382 222 55 776 1270 1935 1492 1578 029 047 072 056  0.59

S7 1948 1766 265 55 737 1130 1380 1587 1425 038 058 071 081 073

S§ 3598 1665  17.1 55 984 1570 2375 1936 2072 027 044 066 054  0.58

SO 1426 1689 272 55 494 784 898 1013 952 035 055 063 076  0.67

SI0 2018 627 176 55 666 1080 1550 1272 1382 033 054 077 063 068

RCI' 2561 — 506 75 13‘5 2113 2580 2629 2779 065 083 101 103 108
Cashell Sé' 4076 64 337 75 2‘(')‘1 2052 4010 3537 3831 059 072 098 087 094
[5] Rg' 2931 — 506 75 13‘3 2314 2560 3201 3147 056 079 087 109 107
sg. 4072 84 337 75 235‘8 2010 4080 3503 3802 059 071 100 086 093

Average - I 1 1 | I 1 I I - 054 076 096 092 098
cov I I 1 1 | I 1 I I - 025 020 022 029 021
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Table 3 Membrane action region of the slabs based on the proposed methods and Vulcan

Present method Vulcan
Reference Slab Ap/Ar-
xo (m) yo (m) Ap (m?) xo (m) Yo (m) Ar (m?)
S1-T 0.453 0.461 1.314 0.483 0.476 1.446 0.91
S6-T 0.464 0.451 1.315 0.473 0.459 1.365 0.96
Taylor [1]
S7-T 0.458 0.457 1.314 0.462 0.461 1.340 0.98
S9-T 0.458 0.457 1.314 0.438 0.437 1.204 1.09
Al-G 1.491 0.288 5.231 1.519 0.309 3.543 1.48
BI-G 0.772 0.388 2.245 0.815 0.425 2.188 1.03
Ghoneim [2]
Cl1-G 0.465 0.450 1.315 0.499 0.485 1.521 0.86
D1-G 0.462 0.453 1.314 0.468 0.458 1.360 0.97
M1 0.457 0.244 0.826 0.534 0.260 0.896 0.92
M2 0.282 0.268 0.477 0.308 0.290 0.567 0.84
M3 0.461 0.241 0.830 0.503 0.245 0.824 1.01
M4 0.281 0.270 0.476 0.308 0.297 0.576 0.83
M5 0.468 0.237 0.836 0.508 0.248 0.857 0.98
M6 0.276 0.274 0.475 0.310 0.300 0.587 0.81
M7 0.470 0.236 0.838 0.467 0.227 0.701 1.20
M8 0.276 0.274 0.475 0.301 0.297 0.564 0.834
M9 0.465 0.239 0.833 0.495 0.266 0.856 0.97
Bailey [4] MI10 0.279 0.272 0.476 0.297 0.290 0.540 0.88
S1 0.449 0.250 0.819 0.502 0.229 0.759 1.08
S2 0.286 0.265 0.478 0.289 0.271 0.492 0.97
S3 0.457 0.244 0.825 0.529 0.266 0.936 0.88
S4 0.285 0.266 0.478 0.328 0.315 0.652 0.73
S5 0.478 0.232 0.846 0.519 0.232 0.841 1.01
S6 0.279 0.271 0.476 0.288 0.264 0.479 0.99
S7 0.465 0.239 0.833 0.520 0.262 0.862 0.97
S8 0.279 0.271 0.476 0.267 0.255 0.429 1.11
S9 0.471 0.235 0.840 0.529 0.270 0.899 0.93
S10 0.275 0.275 0.475 0.316 0.307 0.612 0.78
RI-C 0.643 0.313 1.524 0.748 0.408 1.934 0.79
Cashell [5] S3-C 0.387 0.365 0.887 0.454 0.436 1.245 0.71
R6-C 0.644 0.313 1.524 0.764 0.373 1.871 0.81
S7-C 0.387 0.364 0.887 0.453 0.435 1.239 0.72
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Table 4 Concrete strains and failure mode of the slabs predicted by the present and Bailey method

_ Present *(1073) Present (107%) Failure mode
Reference  Slab 8°u3(10
) €1 & €1 &2 Bailey Present * Present Test

S,[l,_ 3.841 3.257 2.235 3.401 1.564 — R C —
816,- 3.834 3.268 2.246 3.403 1.572 — R C —

Taylor [1] S7.
T 3.759 3.479 2.378 3.644 1.664 — C C —
ST9_ 3.899 3.058 2.158 3.093 1.510 — R R —
Aé_ 4.179 2.967 1.918 2.715 1.343 — R R —
Ghoneim BCI}_ 4.627 2.632 1.723 2.538 1.206 — R R —
[2] CCI}_ 3.970 3.052 2.081 3.138 1.457 — R R —
Dé_ 3.923 3.091 2.130 3.164 1.491 — R R —
Ml 3.704 4.254 2.521 3.968 1.758 C C C R
M2 3.765 3.970 2.367 4.408 1.657 C C C C
M3 3.832 3.278 2.248 3.215 1.574 R R R R
M4 3.832 3.274 2.248 3.336 1.574 R R R C
M5 3.767 3.688 2.362 3.516 1.654 R C C C
M6 3.752 3.532 2.393 3.733 1.675 R C C C
M7 3.699 3.700 2.525 3.616 1.768 R C C R
M8 3.681 3.729 2.582 3.823 1.808 R C C R
M9 3.773 3.374 2.349 3.326 1.644 R R R C
M10  3.780 3.348 2.336 3.377 1.635 R R R R
Balleyll g 315 aass 2481 398 1737 c c C C
S2 3.705 4.185 2.508 4.374 1.755 C C C C
S3 3.615 4.294 2.895 4.187 2.026 R C C C
S4 3.611 4.384 2.926 4.486 2.048 R C C C
S5 3.616 4.237 2.886 4.170 2.020 R C C C
S6 3.616 4.126 2.886 4.271 2.020 R C C C
S7 3.695 3.669 2.538 3.615 1.777 R C C C
S8 3.679 3.713 2.587 3.780 1.811 R C C C
S9 3.785 3.365 2.327 3314 1.629 R R R C
S10 3.783 3.333 2.332 3.408 1.632 R R C C
RC]_ 3.662 4.045 2.648 3.824 1.854 — C C —
53 3662 3889 2648 3971 1854 — C C —

Cashell [5] RC6-
C 3.948 3.927 2.103 4.804 1.472 — C C —
SC7_ 3.908 3.257 2.147 3.373 1.503 — R R —

* The in-plane shear force is not considered.
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