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Online updating is an important statistical method for the analysis of big data arriving in streams due to
its ability to break the storage barrier and the computational barrier under certain circumstances. The
quantile regression, as a widely used regression model in many fields, faces challenges in model fitting
and variable selection with big data arriving in streams. Chen et al. (2019, Annals of Statistics) has pro-
posed a quantile regression method for streaming data, but a strong additional condition is required. In
this paper, renewable optimized objective functions for regression parameter estimation and variable
selection in a quantile regression are proposed. The proposed methods are illustrated using current data
and the summary statistics of historical data. Theoretically, the proposed statistics are shown to have the
same asymptotic distributions as the standard version computed on an entire data stream with the data
batches pooled into one data set, without additional condition. Both simulations and data analysis are
conducted to illustrate the finite sample performance of the proposed methods.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The concept of ‘‘big data” may have different meanings to peo-
ple from different fields and has since become a dominant topic in
nearly all academic disciplines and in applied fields. In a broad
sense, big data are data on a massive scale in terms of volume, vari-
ety, velocity, variability and veracity [14]. Applying statistical mod-
els and methods to such big data can cause excessive
computational burden not only in terms of strains on computer
memory due to the large volume but also strains in terms of com-
putational efficiency since even seemingly very simple tasks can
take an inordinate amount of time to compute. In a recent review,
[31] grouped the statistical and computational methodologies into
three categories: subsampling-based approaches (e.g., [35,40; 34]),
divide and conquer approaches (e.g., [23]; [18]; [1]; [16]; [17]), and
online updating approaches (e.g., [27]; [24]; [28]; [26]). Online
updating approaches are distinct from the other two because they
target problem where data arrive in streams or large chunks and
address statistical problems in an updating framework without
storage requirements for previous data. Because the demand for
stream processing is increasing ([4; 6] and among others), which
makes online updating particularly appealing due to its ability
which processes huge volume of data at speed so that organisa-
tions or businesses can react to changing conditions in real-time.

Our focus in this paper is a streaming data set that arrives in
streams. Assume we have the streaming data set D1; . . . ;Dbf g up
to the b-th batch, where Dj is the j-th batch data set with a sample

size of nj. Then, the total sample size is Nb ¼
Pb

j¼1nj. In the era of
big data, streaming data sets from various areas, such as bioinfor-
matics, medical imaging and computer vision, are rapidly increas-
ing in volume and velocity. This presents challenges to learning
efficient statistical models and inferences. How to make statistical
inferences without storage requirements for previous raw data is
the key in the streaming data environment. When large amounts
of data arrive in streams, online updating is an important method
to alleviate both computational and data storage issues. In this
framework for regression-type analyses, [27] developed online-
updating algorithms for linear models and estimating equations.
The estimation consistency of these methods has been established
based on a strong regularity condition: the total number of stream-

ing data sets b, needs to satisfy the order of b ¼ O nc
j

� �
, with
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Table 1
The differences between our proposed methods and the previous methods in the
references.

Reference Method Additional conditions

[27] Estimating equations b ¼ O nc
j

� �
, c < 1=3

[24] Estimating equations None
[2] Quantile regression nj is approximately n2

j�2
[36] Quantile regression b=

ffiffiffiffiffiffi
Nb

p ! 0
This paper Quantile regression None
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c < 1=3 for all js, where nj is the size of the j-th data batch. This is a
very strong restriction. For example, the estimation consistency
may not be guaranteed in the situation where streaming data sets
arrive perpetually with b!1. [24] proposed a renewable estima-
tion for the generalized linear model, which overcame the above
unnatural restriction. [22] introduced a general framework of
renewable weighted sums for various online updating estimations.
Regarding other references, [32] expanded the scope of the online
updating method by accommodating the arrival of new predictor
variables mid-way along the data stream. [37] developed an online
updating method for survival analysis under Cox proportional haz-
ards models, and [39] proposed an online updating-based test to
evaluate the proportional hazards assumption. [21] developed an
update estimator for a linear errors-in-variables model.

The quantile regression (QR) [19], which analyzes the condi-
tional distribution of outcomes given a set of covariates and has
been widely used in many fields, faces challenges in model fitting
and variable selection with big data arriving in streams. However,
the above methods for streaming data based on least squares and
estimating equations will no longer be applicable. In this paper,
we consider the following quantile regression:

qs YjX ¼ xð Þ ¼ x>b0; ð1:1Þ
where qs YjX ¼ xð Þ ¼ inf y : P Y 6 yjX ¼ xð ÞP sf g, X is a random
vector of p-dimensional covariates, and b0 is a vector of unknown
parameters of interest. Note that b0 should truly be b0 sð Þ, and we
omit the subscript s for notational convenience.

If the data up to the b-th batch of streaming data can be pooled
into one data set, we denote n ¼ Nb, and let Xi;Yif gni¼1 be the inde-
pendent and identically distributed (i.i.d.) samples from
Y;Xð Þ 2 R� Rp. The standard quantile regression estimator [20]
solves the following minimization problem:

min
b

1
n

Xn
i¼1

qs Yi � X>i b
� �

; ð1:2Þ

where qs rð Þ ¼ sr � rI r < 0ð Þ is the check loss function, and I �ð Þ is the
indicator function. Note that by using (1.2), we find that the above
methods for streaming data based on the least squares and estimat-
ing equations are not suitable for the QR because the quantile
regression estimator has no display expression like the least
squares estimator and the loss function of the quantile regression
is not differentiable, even though loss function needs to be
second-order differentiable in the estimation equation.

To circumvent the nondifferentiability of the QR loss function,
[15] proposed smoothing the indicator part of the check function
via a kernel smoothing survival function. Recently, [2] applied
Horowitz’s smoothing quantile regression for streaming data. This
is interesting; however, their method requires that the sample size
of the j-th batch nj !1 and nj be approximately n2

j�2. This implies

a very strong restriction. For example, n1 ¼ 100;n3 ¼ 104;n5 ¼ 108;

n7 ¼ 1016;n9 ¼ 1032; � � �. [36] also considered QR for streaming
data. However, their method requires that b=

ffiffiffiffiffiffi
Nb
p ! 0, which

means the number of batches b can not very large, and for achiev-
ing the same asymptotic covariance matrix as that of the estimator
with full data, the covariates of each batch are homogeneous. The
smoothing method proposed by [15] is smoother at the cost of con-
vexity, which inevitably raises optimization issues. Generally,
computing a global minimum of a nonconvex function is intract-
able, but convolution-type smoothing can be obtained [11], which
yields a convex and twice differentiable loss function, a lower
mean squared error than that of the estimator in [15] and a more
accurate Bahadur-Kiefer representation than the standard QR esti-
mator. In this paper, in contrast to [2], we propose a renewable
method for quantile regression via a smoothing objective function.
209
The proposed method does not require any specific condition as
that in [11] as long as each batch sample size is sufficiently large
(nj !1; j ¼ 1; . . . ; b).

Variable selection plays an important role in the model building
process. In practice, it is common to have a large number of candi-
date predictor variables available. A major challenge in regression
analysis is to decide which predictors, among many potential pre-
dictors, are to be included in the model. Several methods, including
the least absolute shrinkage and selection operator (LASSO) [30],
smoothly clipped absolute deviation (SCAD) [8], adaptive LASSO
[42], and minimax convex penalty (MCP) [41], have been proposed
to select variables and estimate their regression coefficients simul-
taneously. Several algorithms were developed for variable selec-
tion in models with streaming data sets. [7] applied the
truncated stochastic gradient descent (SGD) to a linear model.
[29] introduced a novel framework, which combines updated
statistics and truncation techniques, for variable selection in a lin-
ear model. These SGD algorithms and truncation techniques, how-
ever, are sensitive to the learning rate or step size and tend to
select the set with larger cardinality to include all important vari-
ables. [5] considered a class of online estimators in a high-
dimensional autoregressive model. [28] proposed an inference pro-
cedure for high-dimensional linear models via recursive online-
score estimation. In both works, it is assumed that the entire data
set is available at the initial stage for computing an initial estima-
tor and that the information in the streaming data is used to reduce
the bias of the initial estimator. However, the assumption that the
full data set is available at the initial stage is not realistic for ana-
lyzing streaming data sets. [12] proposed an online debiased LASSO
method for high-dimensional linear models with streaming data
sets based on the least squares method. [25] studied a general
framework for online updating variable selection in a generalized
linear model with streaming data sets. In this paper, we also study
a renewable variable selection method for quantile regression.

To summarize, we make the following important contributions
to the existing literature. (1) We develop a renewable estimation
and algorithm for the quantile regression that only requires the
availability of the current data batch in the data stream and suffi-
cient statistics of the historical data at each stage of the analysis.
Theoretically, the proposed estimator achieves optimal efficiency
and its asymptotic covariance matrix is the same as that of the esti-
mator with full data without additional condition. (2) We study a
renewable optimized objective function for variable selection in a
quantile regression. The proposed method only requires the avail-
ability of the current data batch in the data stream and sufficient
statistics of the historical data at each stage of the analysis. In order
to realize a numerical solution, we introduce an efficient algorithm
for this optimization problem. Moreover, the proposed method can
choose tuning parameters via a data-driven and online updating
BIC criterion. Theoretically, the proposed estimator achieves the
same consistency and oracle properties as the estimator based on
the entire data set under some general conditions. (3) The pro-
posed renewable methods are all free of the constraint on the num-
ber of batches, which means that the new methods are adaptive to
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the situation where streaming data sets arrive fast and perpetually.
Finally, Table 1 shows the differences between our proposed meth-
ods and the previous methods in the references for linear model.

The remainder of this paper is organized as follows. In Section 2,
the renewable smoothing QR estimator is proposed. The renewable
variable selection method is developed in Section 3. Both simula-
tion examples and the application on real data are given in Sec-
tion 4 to illustrate the proposed procedures. We conclude this
paper with a brief discussion in Section 5. All technical proofs are
provided in the Appendix.

2. Renewable parameter estimation

2.1. Standard smoothing quantile regression

Suppose that the batches up to the b-th batch of streaming data
can be pooled into one data set. Note that for a quantile regression,
the loss function qs rð Þ ¼ sr � rI r < 0ð Þ is nondifferentiable. There-
fore, the QR estimator has no display expression, so it is impossible
to construct a renewable estimator for streaming data. To circum-
vent the nondifferentiability of the QR loss function, the QR estima-
tor of b0 in the model (1.1) can be solved by minimizing the
following smoothing quantile regression (SQR) objective function
[11]: b̂� ¼ argminbSh bð Þ with

Sh bð Þ ¼ 1
n

Xn
i¼1

Z þ1

�1
qs tð ÞKh t � Yi þ X>i b

� �
dt; ð2:1Þ

where Kh �ð Þ ¼ K �=hð Þ=h;K �ð Þ is a smooth kernel function and h is a
bandwidth. Now, Sh bð Þ is twice continuously differentiable with
the gradient and Hessian matrix

S 1ð Þ
h bð Þ � @Sh bð Þ

@b
¼ n�1

Xn
i¼1

Xi
eK X>i b� Yi
� �

=h
� �� sn o

;

S 2ð Þ
h bð Þ � @2Sh bð Þ

@b2
¼ n�1

Xn
i¼1

XiX
>
i Kh X>i b� Yi

� �
;

ð2:2Þ

respectively, where eK tð Þ ¼ R t
�1 K uð Þdu.

2.2. Smoothing quantile regression for streaming data sets

For model (1.1), Dj ¼ Xj;Yj
� �

is the j-th batch data set, where

Yj ¼ Y1;j; . . . ;Ynj ;j

� �>
and Xj ¼ X1;j; . . . ;Xnj ;j

� �>
. We suppose that

the Xi;j;Yi;j
� �

for all is and js are i.i.d. samples from Y;Xð Þ. We begin
with a simple scenario of two batches of data D1 and D2, where D2

arrives after D1. We want to update the initial SQR b̂1 (or b̂�1) by
minimizing (2.1) to a renewed SQR b̂�2 without using any subject-
level data but only some summary statistics from D1. By (2.1)
and (2.2), the SQR b̂1 satisfies,

1
N1

U D1; b̂1;h1

� �
¼ 0; ð2:3Þ

where U Dj;b;h
� � ¼Pi2Dj

Xi
eK X>i b� Yi
� �

=h
� �� sn o

and N1 ¼ n1 is

the sample size of D1. Then, b̂�2 satisfies the following aggregated
score equation:

1
N2

U D1; b̂
�
2;h2

� �
þ 1
N2

U D2; b̂
�
2;h2

� �
¼ 0: ð2:4Þ

Solving Eq. (2.4) for b̂�2 actually involves the use of subject-level
data in both D1 and D2, where D1 may no longer to accessible. Our
renewable estimation is able to handle this issue. To derive a
renewable estimate, by the (A.10) in the Appendix, we can obtain
210
U D1; b̂
�
2;h2

� �
¼ U D1; b̂

�
2; h1

� �
þ Op n1h

2
1 þ n1h

2
2

� �
; ð2:5Þ

where Op �ð Þ means bounded with probability. We take the first-

order Taylor series expansion of the U D1; b̂
�
2;h1

� �
around b̂1,

U D1; b̂
�
2;h1

� �
¼ U D1; b̂1; h1

� �
þ J D1; b̂1;h1

� �
b̂�2 � b̂1

� �
þ Op n1kb̂�2 � b̂1k22

� �
;

ð2:6Þ

where J Dj;b;h
� � ¼ @U Dj;b;h

� �
=@b ¼Pi2Dj

XiX
>
i Kh X>i b� Yi

� �
. By

(2.3), (2.5) and (2.6), we have

U D1; b̂
�
2;h2

� �
¼ J D1; b̂1; h1

� �
b̂�2 � b̂1

� �
þ Op n1kb̂�2 � b̂1k22 þ n1h

2
1 þ n1h

2
2

� �
: ð2:7Þ

By placing (2.7) into (2.4), we obtain

1
N2
J D1; b̂1;h1

� �
b̂�2 � b̂1

� �
þ 1

N2
U D2; b̂

�
2; h2

� �
þOp

n1
N2
kb̂�2 � b̂1k22 þ h2

1 þ h2
2

n o� �
¼ 0:

ð2:8Þ

When n1 is sufficiently large, under some mild regularity condi-
tions, both b̂1 and b̂�2 are consistent estimators of b0. Moreover, tak-
ing sufficiently small bandwidths h1 and h2, the error term

Op
n1
N2
kb̂�2 � b̂1k22 þ h2

1 þ h2
2

n o� �
may be asymptotically ignored.

Removing such a term, we propose a new estimator b̂2 as a solution
to the equation of the form

1
N2

J D1; b̂1;h1

� �
b̂2 � b̂1

� �
þ 1
N2

U D2; b̂2;h2

� �
¼ 0: ð2:9Þ

Through Eq. (2.9), the initial b̂1 is renewed by b̂2 only using the
historical summary statistics, including sample variance matrix

J D1; b̂1;h1

� �
and estimate b̂1, instead of the subject-level raw data

D1.
Generalizing the Eq. (2.9) to streaming data sets D1; . . . ;Dbf g, a

renewable estimator b̂b of b0 is defined as a solution to the follow-
ing incremental estimation equation:

1
Nb

Xb�1
j¼1

J Dj; b̂j;hj

� �
b̂b � b̂b�1
� �

þ 1
Nb

U Db; b̂b;hb

� �
¼ 0: ð2:10Þ
2.3. Large sample properties

To establish the asymptotic properties of the proposed estima-
tor, the following technical conditions are imposed.

C1. The kernel function K �ð Þ is even, integrable, and twice differ-
entiable with bounded first and second derivatives such thatR
K uð Þdu ¼ 1 and 0 <

R1
0 K uð Þ 1� K uð Þf gdu <1. In addition,R ju2K uð Þjdu <1,

R
uK uð Þdu ¼ 0 and

R
u2K uð Þdu– 0.

C2. The conditional density function of Y given X ¼ x; f yjxð Þ is
bounded, continuous, strictly positive and limy!�1f yjxð Þ ¼ 0. The
derivative f 0 �j�ð Þ is uniformly continuous in the sense that
limd!0sup x;yð Þ2Rpþ1 supt:jtj6d f 0 yþ tjxð Þ � f 0 yjxð Þ		 		 ¼ 0,and such that

sup x;yð Þ2Rpþ1 jf 0 yjxð Þj <1 and limy!�1f
0 yjxð Þ ¼ 0.

C3. The components of X are positive, bounded random vari-
ables, and R ¼ E XX>

� �
is a positive definite matrix.

Remark 2.1. Condition C1 is a mild condition on K �ð Þ for smoothing
approximation. For example, for the Gaussian kernel

K uð Þ ¼ 2pð Þ�1=2 exp �u2=2
� �

, it satisfies condition C1. Condition C2
is a regular condition on the smoothness of the conditional density
function f yjxð Þ. The conditions C2 and C3 ensure that X in Theorem
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2.1 is positive definite, which means that X�1 exists. Conditions C1-C3
are standard conditions, which are commonly used in smoothing
quantile regression, as shown in [11].
Theorem 2.1. Assume that conditions C1-C3 are satisfied. If

hj ¼ o N�1=4j

� �
, hj Nj= lnNj

� �1=3 !1 with Nj ¼
Pj

i¼1ni and

ni !1; i ¼ 1; . . . ; b, we haveffiffiffiffiffiffi
Nb

p
b̂b � b0

� �
!L N 0; s 1� sð ÞX�1RX�1

� �
;

where !L represents the convergence in the distribution and
X ¼ E f X>b0jX

� �
XX>

� �
.

Through the result of Theorem 2.1, it is interesting to notice that
the renewable estimator b̂b achieves optimal efficiency and its
asymptotic covariance matrix is the same as that of the SQR esti-
mator b̂�b which is computed directly on all the samples, as shown
in Theorem 5 in [11]. This implies that the proposed renewable
estimator achieves the same asymptotic distribution as the SQR
estimator.

2.4. Algorithm

Numerically, it is quite straightforward to find b̂b from (2.10)
using the Newton–Raphson method at the r þ 1ð Þ-th iteration:

b̂
rþ1ð Þ
b ¼ b̂

rð Þ
b � bJb�1 þ J Db; b̂

rð Þ
b ;hb

� �n o�1 bU rð Þ
b ; ð2:11Þ

where bJb�1 ¼Pb�1
j¼1 J Dj; b̂j;hj

� �
and bU rð Þ

b ¼ bJb�1 b̂
rð Þ
b � b̂b�1

� �
þ

U Db; b̂
rð Þ
b ;hb

� �
. When p is large, to speed up the calculation of

(2.11), we may avoid updating J Db; b̂
rð Þ
b ;hb

� �
at each iteration.

Replacing b̂
rð Þ
b with b̂b�1 leads to the following updating algorithm:

b̂
rþ1ð Þ
b ¼ b̂

rð Þ
b � bJb�1 þ J Db; b̂b�1;hb

� �n o�1 bU rð Þ
b : ð2:12Þ

In algorithm (2.12), clearly we only use the subject-level data of

current data Db and summary statistics bJb�1 and b̂b�1 from histori-
cal data batches up to b� 1 rather than subject-level raw data of
D1; . . . ;Db�1f g. Thus, our proposed renewable method is indeed
an online estimation procedure. We summarize the general algo-
rithm for the proposed renewable SQRmethod by (2.12) as follows.

Algorithm1 Renewable SQR estimation for streaming data
sets.

1: Input: streaming data sets D1; . . . ;Db; . . ., the quantile level
s, kernel function K �ð Þ and bandwidths hb with b ¼ 1;2 . . .

2: Initialize: calculate b̂1 by minimizing (2.1) with D1, and

compute J D1; b̂1;h1
� �

;

3: for: b ¼ 2;3; . . . do

4: read in data set Db and compute bJb�1 þ J Db; b̂b�1;hb

� �
;

5: select the initial estimator b̂ 0ð Þ
b ¼ b̂b�1 and run the

following iterations until convergence:

b̂
rþ1ð Þ
b ¼ b̂

rð Þ
b � bJb�1 þ J Db; b̂b�1;hb

� �n o�1 bU rð Þ
b ; 6: updatebJb ¼ bJb�1 þ J Db; b̂b;hb

� �
;

7: save b̂b and bJb and release data set Db from the memory;
8: end
9: Output: b̂b for b ¼ 2;3; . . .
211
Note that in step 7 in Algorithm 1, we only need to save b̂b andbJb, which are p� 1 and p� p, respectively. The scale of the data to
be stored is pþ 1ð Þp instead of Nbp, which is the sample size of the
streaming data sets up to b batches. Because p is assumed to be a
fixed number in this paper, our method greatly reduces the
amount of data storage.

3. Renewable variable selection

3.1. Variable selection based on all data

To avoid overfitting and improve the generalization ability, we
first consider the penalized SQR (PSQR) based on all data (the
batches up to the b-th batch of streaming data can be pooled into
one data set):

~b� ¼ argmin
b

Sh bð Þ þ pk jbjð Þf g; ð3:1Þ

where pk �ð Þ is a penalty function with regularization parameter k.
Among the various penalty functions, we consider the SCAD
because of its properties of unbiasedness, sparsity and continuity.
The SCAD penalty function is defined through its first-order deriva-
tive and symmetry around the origin. For any h > 0,

p0k hð Þ ¼ k I h 6 kð Þ þ ak� hð Þþ
a� 1ð Þk I h > kð Þ


 �
;

where a > 2. a ¼ 3:7 was suggested by [8] from a Bayesian perspec-
tive and is commonly used in the variable selection literature.

3.2. Variable selection based on streaming data sets

We begin with two batches of data D1 and D2. We want to
update the initial PSQR ~b1 (or ~b�1) to a renewed PSQR ~b�2 without
using any subject-level data and using only some summary statis-
tics from D1.

~b1 ¼ argmin
b

Sh1 D1;bð Þ þ pk1
jbjð Þ

n o
;

where Sh D1;bð Þ is the check function Sh bð Þ in (2.1) with data D1.
Here, the PSQR ~b1 also satisfies

1
N1

U D1; ~b1;h1
� �þ p0k1 j~b1j

� �
sign ~b1

� � ¼ 0; ð3:2Þ

where sign �ð Þ is the sign function. Then, ~b�2 satisfies the following
aggregated score equation:

1
N2
U D1; ~b

�
2;h2

� �þ 1
N2
U D2; ~b

�
2;h2

� �þ p0k2 j~b�2j
� �

sign ~b�2
� � ¼ 0: ð3:3Þ

By similar analysis in Section 2.2 and (3.2), we can obtain

1
N2
U D1; ~b

�
2; h2

� � ¼ 1
N2
U D1; ~b1; h1
� �þ 1

N2
J D1; ~b1;h1
� �

~b�2 � ~b1
� �þR

¼ � N1
N2

p0k1 j~b1j
� �

sign ~b1
� �þ 1

N2
J D1; ~b1; h1
� �

~b�2 � ~b1
� �þR;

ð3:4Þ
where R is an asymptotically ignored error term. By substituting
(3.4) into (3.3), we have

1
N2
J D1; ~b1;h1
� �

~b�2 � ~b1
� �þ 1

N2
U D2; ~b

�
2;h2

� �
þp0k2 j~b�2j

� �
sign ~b�2

� �� N1
N2
p0k1 j~b1j
� �

sign ~b1
� �þR3 ¼ 0:

Removing the asymptotically ignored term R, we propose a
new estimator ~b2 as a solution to the equation of the form

1
N2
J D1; ~b1;h1
� �

~b2 � ~b1
� �þ 1

N2
U D2; ~b2;h2
� �

þp0k2 j~b2j
� �

sign ~b2
� �� N1

N2
p0k1 j~b1j
� �

sign ~b1
� � ¼ 0:

ð3:5Þ
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Through Eq. (3.5), the initial ~b1 is renewed by ~b2 using statistics
J D1; ~b1; h1
� �

; ~b1 and k1 instead of D1.
Generalizing the above procedure to streaming data sets

D1; . . . ;Dbf g, a renewable penalized estimator ~bb of b0 is defined
as a solution to the following incremental estimating equation:

1
Nb

Xb�1
j¼1

J Dj; ~bj; hj
� �

~bb � ~bb�1
� �þ 1

Nb
U Db; ~bb; hb
� �

þp0kb j~bbj
� �

sign ~bb

� �� Nb�1
Nb

p0kb�1 j~bb�1j
� �

sign ~bb�1
� � ¼ 0:

ð3:6Þ

Note that (3.6) is equal to

~bb¼ argmin
b

1
2Nb

b� ~bb�1
� �>eJb�1 b� ~bb�1

� �þ 1
Nb
Shb Db;bð Þ

n
�Nb�1

Nb
p0kb�1 j~bb�1j

� �
sign ~bb�1

� �
b� ~bb�1
� �þpkb

jbjð Þ
o
;

ð3:7Þ

where eJb�1 ¼Pb�1
j¼1 J Dj; ~bj;hj

� �
and Sh Db;bð Þ is the check function

Sh bð Þ in (2.1) with data Db.
The following theorems show the consistency and oracle prop-

erties of the estimator ~bb in (3.6) or (3.7).

Theorem 3.1. (Consistency). Suppose that conditions in Theorem 2.1
hold and kj ! 0 with j ¼ 1; . . . ; b. Then,

k~bb � b0k2 ¼ Op N�1=2b

� �
:

Theorem 3.1 demonstrates that our estimator ~bb is root-Nb con-
sistent. The following theorem shows that ~bb has the oracle prop-
erty proposed in [8]. Without any loss of generality, we assume
that the first s elements of b0 are nonzero and the last p� s ele-

ments are zero. That is, b0 can be written as b0 ¼ b>01; b
>
02

� �>
, where

b01 is an s-dimensional vector of nonzero elements and b02 ¼ 0 is a
p� sð Þ-dimensional vector of zeros.
Theorem 3.2. (Oracle property). Suppose that all conditions in

Theorem 3.1 hold. If
ffiffiffiffiffiffi
Nb

p
kb !1, then with a probability tending to

one, the root-Nb consistent local minimizer ~bb ¼ ~b>b1ð Þ; ~b
>
b2ð Þ

� �>
in

Theorem 3.1 satisfies the following:

(i) Sparsity: ~b b2ð Þ ¼ 0, and
(ii) Asymptotic normality:ffiffiffiffiffiffi
Nb
p

~b b1ð Þ � b01

� �!L N 0; s 1� sð ÞX�111ð ÞR 11ð ÞX
�1
11ð Þ

� �
,

where ~b b1ð Þ and ~b b2ð Þ are the first s and the last p� s elements of ~bb,
respectively. X 11ð Þ and R 11ð Þ are the top-left s-by-s submatrix of X
and R, respectively.

Theorems 3.1 and 3.2 show that the renewable estimator ~bb in
(3.7) achieves the same consistency and oracle property as the esti-
mator ~b� in (3.1), which is directly computed using all the samples
(n ¼ Nb), as shown in Lemmas 1 and 2 in the Appendix.

Remark 3.1. The proposed renewable variable selection in (3.6) is
different from the method in [25] for generalized linear models.
Specifically, the theoretical derivations of the two methods are
different, and there is no the term Nb�1=Nbp0kb�1 j~bb�1j

� �
sign ~bb�1

� �
in

[25], which cannot be ignored.
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3.3. Selection of regularization parameter

It is well known that the regularization parameter plays an
important role in the penalized method. [33] verified that the SCAD
penalized method with the regularization parameter selected by
the Bayesian information criterion (BIC) can consistently identify
the true model. Following [33], we use the BIC to choose the opti-
mal value of the regularization parameters k in (3.1) and kb in (3.7).
Specifically, the BIC statistics are defined as

BIC kð Þ ¼ ln Sh ~b�k
� �þ dfk ln nð Þ=n;

BIC kbð Þ ¼ ln 1
2Nb

~bb;kb � ~bb�1
� �>eJb�1 ~bb;kb � ~bb�1

� �þ 1
Nb
Shb Db; ~bb;kb

� �n
� Nb�1

Nb
p0kb�1 j~bb�1j

� �
sign ~bb�1

� �
~bb;kb � ~bb�1
� �oþ dfkb ln Nbð Þ=Nb;

ð3:8Þ

where ~b�k and ~bb;kb are the penalized estimators of b0 by (3.1) and
(3.7) given k and kb, respectively; and dfk and dfkb are the number

of nonzero coefficients in ~b�k and ~bb;kb , respectively.

3.4. Algorithm

This section is devoted to computational algorithm and numer-
ical implementation. We focus on the algorithm for (3.7), and the
algorithm for (3.1) is similar to that of (3.7). We describe a fast
and easily implementable method using the local adaptive
majorization-minimization (LAMM) principle [9].

As discussed in [8], the penalized function of SCAD is folded
concavely with respect to b, making it difficult to maximize. We
propose applying the adaptive local linear approximation to the
penalty function of SCAD [10] and approximately solve

min
b

Hb bð Þ þ p0kb j~b
rð Þ
b j

� �
jbj

n o
; ð3:9Þ

where

Hb bð Þ ¼ 1
2Nb

b� ~bb�1
� �>eJb�1 b� ~bb�1

� �þ 1
Nb
Shb Db;bð Þ

n
� Nb�1

Nb
p0kb�1 j~bb�1j

� �
sign ~bb�1

� �
b� ~bb�1
� �o

;

and ~b
0ð Þ
b is the initial estimator. We can take ~bb�1 as an initial estima-

tor. As stated by [9], the majorization requirement only needs to

hold locally at ~b
rþ1ð Þ
b when starting from ~b

rð Þ
b . We therefore locally

majorize Hb bð Þ in (3.9) at ~b rð Þ
b using an isotropic quadratic function

gb bj~b rð Þ
b

� �
¼ Hb

~b
rð Þ
b

� �
þ b� ~b

rð Þ
b

� �>
H 1ð Þ

b
~b

rð Þ
b

� �
þ /

2 kb� ~b
rð Þ
b k22;

where

H 1ð Þ
b bð Þ ¼ 1

Nb

eJb�1 b� ~bb�1
� �þ 1

Nb
U Db; b;hbð Þ � Nb�1

Nb
p0kb�1 j~bb�1j

� �
sign ~bb�1

� �
;

and / is a quadratic parameter such that

gb
~b

rþ1ð Þ
b j~b rð Þ

b

� �
P Hb

~b
rþ1ð Þ
b

� �
. To find the smallest / such that

gb
~b

rþ1ð Þ
b j~b rð Þ

b

� �
P Hb

~b
rþ1ð Þ
b

� �
, the basic idea of LAMM is to start from

a relatively small isotropic parameter / ¼ /0 ¼ 10�6 [9], and then
successfully inflate / by a factor x > 1. We set x ¼ 10 in the
numerical studies. The isotropic form also allows a simple analytic
solution to the subsequent majorized optimization problem:

min
b

b� ~b
rð Þ
b

� �>
H 1ð Þ

b
~b

rð Þ
b

� �
þ /

2
kb� ~b

rð Þ
b k22 þ p0kb j~b

rð Þ
b j

� �
jbj


 �
: ð3:10Þ

It can be shown that (3.10) is minimized at
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~b
rþ1ð Þ
b ¼ Soft ~b

rð Þ
b � /�1H 1ð Þ

b
~b

rð Þ
b

� �
;/�1p0kb j~b

rð Þ
b j

� �� �
; ð3:11Þ
where Soft l; mð Þ is the soft-thresholding operator, defined by
Soft l; mð Þ ¼ sign lð Þmax jlj � m; 0ð Þ. The simplicity of this updating
rule is because (3.10) is an unconstrained optimization problem.

A simple stopping criterion for (3.11) is k~b rþ1ð Þ
b � ~b

rð Þ
b k2 6 � for a suf-

ficiently small �, say 10�4.
Algorithm2 The PSQR estimation for all data.

1: Input: all data sets Xi;Yif gni¼1, the quantile level s, kernel function K �ð Þ and bandwidth h.
2: Initialize: select the initial estimator ~b� 0ð Þ as the SQR estimator;
3: choose k via (3.8);
4: for: r ¼ 0;1; . . ., until k~b� rþ1ð Þ � ~b� rð Þk2 6 � do
5: Repeat

6: ~b� rþ1ð Þ ¼ Soft ~b� rð Þ � /�1S 1ð Þ
h

~b� rð Þ� �
;/�1p0k j~b� rð Þj� �� �

;

7: If g ~b� rþ1ð Þj~b� rð Þ� �
< S 1ð Þ

h
~b� rþ1ð Þ� �

, where

g ~b� rþ1ð Þj~b� rð Þ� � ¼ Sh ~b� rð Þ� �þ ~b� rþ1ð Þ � ~b
rð Þ
b

� �>
S 1ð Þ
h

~b� rð Þ� �þ /
2 k~b� rþ1ð Þ � ~b

rð Þ
b k22; 8: then / 10/;

9: Until g ~b� rþ1ð Þj~b� rð Þ� �
P S 1ð Þ

h
~b� rþ1ð Þ� �

;

10: Return ~b
rþ1ð Þ
b and / max 10�6;/=10

n o
;

11: end
12: Output: ~b� ¼ ~b� rþ1ð Þ.
Algorithm3 The renewable PSQR estimation for streaming
data sets.

1: Input: streaming data sets D1; . . . ;Db; . . ., the quantile level
s, kernel function K �ð Þ and bandwidths hb with b ¼ 1;2 . . .

2: Initialize: calculate ~b1 and k1 by Algorithm 2 with D1, and
compute J D1; ~b1;h1

� �
;

3: for: b ¼ 2;3; . . . do
4: read in data set Db;

5: select the initial estimator ~b
0ð Þ
b ¼ ~bb�1 and choose kb via

(3.8);

6: for: r ¼ 0;1; . . ., until k~b rþ1ð Þ
b � ~b

rð Þ
b k2 6 � do

7: Repeat

8: ~b
rþ1ð Þ
b ¼ Soft ~b

rð Þ
b � /�1H 1ð Þ

b
~b

rð Þ
b

� �
;/�1p0kb j~b

rð Þ
b j

� �� �
;

9: If gb ~b
rþ1ð Þ
b j~b rð Þ

b

� �
< Hb

~b
rþ1ð Þ
b

� �
then / 10/;

10: Until gb ~b
rþ1ð Þ
b j~b rð Þ

b

� �
P Hb

~b
rþ1ð Þ
b

� �
;

11: Return ~b
rþ1ð Þ
b and / max 10�6;/=10

n o
;

12: end

13: update eJb ¼ eJb�1 þ J Db; ~bb;hb
� �

, where ~bb ¼ ~b
rþ1ð Þ
b ;

14: save ~bb;eJb and kb, release data set Db from the memory;
15: end
16: Output: ~bb for b ¼ 2;3; . . .
Note that in step 14 in Algorithm 3, we only need to save ~bb;eJb
and kb. The scale of data to be stored is p2 þ pþ 1 instead of Nbp
(the sample size of streaming data sets up to b batches).
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4. Numerical studies

In this section, we first use Monte Carlo simulation studies to
assess the finite sample performance of the proposed procedures
and then demonstrate the application of the proposed methods
with two real data analyses. All programs are written in R code.
As mentioned in [13], the SQR method is insensitive to the choice

of bandwidth h. In view of Theorem 2.1, we take hj ¼ Nj lnNj
� ��1=4
for simplicity, j ¼ 1; . . . ; b, and the Gaussian kernel

K uð Þ ¼
ffiffiffiffiffiffiffi
2p
p� ��1

exp �u2=2
� �

in all of the numerical experiments.

Some settings in the simulation are described below: s is the
quantile level, p is the dimension of covariance, b is the number
of batches, Nb is the sample size of all data, Cases 1 and 2 are the
two different errors settings, RLS, SQR, OLEQR and RSQR are the
estimation methods, PLS, PQR, PSQR and RPSQR are the variable
selection methods, MSE is the mean squared error of coefficient
estimation, t is the computation time of estimation method, C is
the average proportion of nonzero coefficients correctly estimated
to be nonzero, IC is the average proportion of zero coefficients
incorrectly estimated to be nonzero, MAFE is the mean absolute fit-
ting error and MAPE is the mean absolute prediction error.

4.1. Simulation Example1: renewable parameter estimation

In this section, we study the performance of the renewable SQR
(RSQR) estimator proposed in Section 2. Furthermore, we include
the following three competitors in our comparison: (1) the SQR
estimator with full data, which can be obtained by the conquer
algorithm in [13]; (2) the renewable least squares estimator
(RLS) for the streaming data set, as given in [24]; and (3) the online
linear estimator for the QR (OLEQR) for the streaming data set, as
given in [2].

We generate data from the following linear model:

Y ¼ X>b0 þ r Xð Þ e� F�1e sð Þ
n o

ð4:1Þ

where X ¼ 1;X1; . . . ;Xp
� �> is a pþ 1ð Þ-dimensional covariate vector

and X1; . . . ;Xp
� �

is drawn from a multivariate normal distribution

N 0; �Rð Þ. The covariance matrix �R is constructed by �Rij ¼ 0:5i�j for
1 6 i; j 6 p with p ¼ 10 and 100. The true value of the parameter
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is b0 ¼ 1 pþ1ð Þ�1, where 1 pþ1ð Þ�1 is the pþ 1ð Þ-dimensional vector with

all elements being one. F�1e sð Þ is the s-quantile of e, which is used to
eliminate the influence of quantiles. Two error distributions of e are
considered: a standard normal distribution (N 0;1ð Þ) and a t distri-
bution with 3 degrees of freedom (t 3ð Þ). In this section, we consider
that the sample size of each batch is �n. Then, the full data are
Nb ¼ �nb, and we consider the following two cases:

Case1 (Normal errors): r Xð Þ ¼ 1Nb�1 and e � N 0;1ð Þ, and.
Case2 (Heteroscedastic errors): r Xð Þ ¼ 1Nb�1 þ 0:5 cos X>b0

� �
and e � t 3ð Þ.

To evaluate the performance of the four methods, we calculate
the mean squared error (MSE): kb̂� b0k2 and computation time (in
seconds). Simulation results are based on 100 simulation
replications.

4.1.1. Fixed �n with varying b
In this section, we fix the sample size of each batch as �n ¼ 200

and vary the number of batches b ¼ 100; . . . ;1000 for s ¼ 0:3;0:5
and 0:7. From Figs. 1–3, the following conclusions can be drawn:

(1) In terms of the MSEs in Figs. 1 and 2, we note that (i) all the
estimators are close to the true value because the MSEs are very
small; and (ii) for any given number of batches b; p, errors and
quantiles s, the figures show that the MSEs of the proposed esti-
mator (RSQR) are very close to those of the SQR and better than
those of the OLEQR.
(2) We only present the results of s ¼ 0:5 for the QR because
the computation times of different quantiles are similar. In
terms of the computation time in Fig. 3, we note that (i) the
computation time of all estimation methods is very small
because the results of the computation times are very small;
and (ii) the computation times of the three methods are close
at p ¼ 10, and the computation time of the SQR is less than
those of the RSQR and OLEQR.
Fig. 1. The mean MSEs under different batches b, quantiles s, method

214
4.1.2. Fixed Nb with varying b

In this section, we fix the sample size of the full data Nb ¼ 106

and vary the number of batches b ¼ 10;50;100;200;500;1000;
2000 for s ¼ 0:1;0:5 and 0:9. The simulation results are pre-
sented in Tables 2–5, and the following conclusions can be
drawn:

(1) In terms of the MSEs in Tables 2–4, we note that (i) all the
estimators are close to the true value because the MSEs are
very small; and (ii) for any given number of batches b; p and
quantiles s, the tables show that the MSEs of the RSQR are
very close to those of the SQR and better than those of the
OLEQR.
(2) In terms of the computation times in Table 5, we note that
(i) all estimation methods are very fast. (ii) When the data vol-
ume is not particularly large, there is little difference in the cal-
culation/estimation time. Because OLEQR, as a one-round
smoothing quantile regression method, is faster than our pro-
posed method RSQR which is a multi-round smoothing quantile
regression method. However, the computation times of RSQR
are very close to those of OLEQR because our method RSQR
needs fewer iterations to achieve convergence. (iii) Once the
data size is large, RSQR obviously saves time.

4.2. Simulation Example2: renewable variable selection

In this section, we study the performances of the PSQR estima-
tor method and the renewable penalized SQR estimator (RPSQR)
method proposed in Section 3. Furthermore, we include the follow-
ing two competitors in our comparison:

(1) the penalized least squares estimator (PLS) estimator with
full data, which can be obtained by the ‘‘ncvreg” function with
the ‘‘SCAD” method in the R package ‘‘ncvreg”; and
s and errors for simulation Example1 with a fixed �n and p = 10.



Fig. 2. The mean MSEs under different batches b, quantiles s, methods and errors for simulation Example1 with a fixed �n and p = 100.

Fig. 3. The computation times (in seconds) under different batches b; p, methods and errors for simulation Example1 with a fixed �n and s ¼ 0:5.
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Table 2
The means and standard deviations (in parentheses) of the MSEs (�100) under different batches b, methods and errors for simulation Example1 with a fixed Nb and s ¼ 0:5.

Errors p b RLS SQR OLEQR RSQR

Casse 1 10 10 0.383 (0.096) 0.445 (0.124) 0.487 (0.138) 0.485 (0.131)
50 0.383 (0.096) 0.445 (0.124) 0.488 (0.138) 0.485 (0.131)
100 0.383 (0.096) 0.445 (0.124) 0.489 (0.136) 0.485 (0.131)
200 0.383 (0.096) 0.445 (0.124) 0.490 (0.136) 0.485 (0.131)
500 0.383 (0.096) 0.445 (0.124) 0.490 (0.137) 0.485 (0.131)
1000 0.383 (0.096) 0.445 (0.124) 0.491 (0.137) 0.485 (0.131)
2000 0.383 (0.096) 0.445 (0.124) 0.489 (0.138) 0.485 (0.131)

100 10 1.287 (0.104) 1.529 (0.126) 1.628 (0.138) 1.583 (0.131)
50 1.287 (0.104) 1.529 (0.126) 1.633 (0.137) 1.585 (0.131)
100 1.287 (0.104) 1.529 (0.126) 1.632 (0.139) 1.585 (0.132)
200 1.287 (0.104) 1.529 (0.126) 1.634 (0.139) 1.585 (0.131)
500 1.287 (0.104) 1.529 (0.126) 1.633 (0.135) 1.585 (0.131)
1000 1.287 (0.104) 1.529 (0.126) 1.635 (0.137) 1.586 (0.130)
2000 1.287 (0.104) 1.529 (0.126) 1.631 (0.135) 1.587 (0.130)

Casse 2 10 10 0.695 (0.179) 0.433 (0.110) 0.450 (0.110) 0.447 (0.110)
50 0.695 (0.179) 0.433 (0.110) 0.450 (0.111) 0.448 (0.109)
100 0.695 (0.179) 0.433 (0.110) 0.450 (0.111) 0.449 (0.110)
200 0.695 (0.179) 0.433 (0.110) 0.450 (0.109) 0.448 (0.109)
500 0.695 (0.179) 0.433 (0.110) 0.448 (0.109) 0.448 (0.111)
1000 0.695 (0.179) 0.433 (0.110) 0.449 (0.110) 0.447 (0.110)
2000 0.695 (0.179) 0.433 (0.110) 0.450 (0.110) 0.449 (0.111)

100 10 2.368 (0.202) 1.453 (0.127) 1.517 (0.131) 1.473 (0.128)
50 2.368 (0.202) 1.453 (0.127) 1.515 (0.128) 1.473 (0.128)
100 2.368 (0.202) 1.453 (0.127) 1.517 (0.128) 1.473 (0.128)
200 2.368 (0.202) 1.453 (0.127) 1.519 (0.127) 1.473 (0.128)
500 2.368 (0.202) 1.453 (0.127) 1.515 (0.125) 1.473 (0.128)
1000 2.368 (0.202) 1.453 (0.127) 1.517 (0.125) 1.474 (0.128)
2000 2.368 (0.202) 1.453 (0.127) 1.517 (0.127) 1.474 (0.127)

Table 3
The means and standard deviations (in parentheses) of the MSEs (�100) under different batches b, methods and errors for simulation Example1 with a fixed Nb and s ¼ 0:1.

Errors p b SQR OLEQR RSQR

Casse 1 10 10 0.569 (0.138) 0.654 (0.164) 0.645 (0.158)
50 0.569 (0.138) 0.652 (0.164) 0.649 (0.160)
100 0.569 (0.138) 0.651 (0.164) 0.650 (0.156)
200 0.569 (0.138) 0.656 (0.157) 0.653 (0.158)
500 0.569 (0.138) 0.657 (0.162) 0.654 (0.160)
1000 0.569 (0.138) 0.658 (0.161) 0.656 (0.161)
2000 0.569 (0.138) 0.658 (0.161) 0.657 (0.164)

100 10 1.949 (0.164) 2.240 (0.186) 2.141 (0.176)
50 1.949 (0.164) 2.255 (0.192) 2.145 (0.175)
100 1.949 (0.164) 2.267 (0.186) 2.146 (0.175)
200 1.949 (0.164) 2.269 (0.192) 2.146 (0.174)
500 1.949 (0.164) 2.265 (0.195) 2.150 (0.176)
1000 1.949 (0.164) 2.268 (0.188) 2.161 (0.174)
2000 1.949 (0.164) 2.271 (0.188) 2.191 (0.175)

Casse 2 10 10 0.844 (0.214) 1.011 (0.255) 0.998 (0.246)
50 0.844 (0.214) 1.001 (0.254) 1.003 (0.251)
100 0.844 (0.214) 1.019 (0.254) 1.003 (0.252)
200 0.844 (0.214) 1.016 (0.255) 1.004 (0.250)
500 0.844 (0.214) 1.020 (0.247) 1.005 (0.249)
1000 0.844 (0.214) 1.010 (0.244) 1.005 (0.250)
2000 0.844 (0.214) 1.007 (0.256) 1.003 (0.248)

100 10 2.878 (0.253) 3.351 (0.263) 3.178 (0.251)
50 2.878 (0.253) 3.418 (0.274) 3.195 (0.251)
100 2.878 (0.253) 3.429 (0.275) 3.202 (0.253)
200 2.878 (0.253) 3.420 (0.266) 3.202 (0.254)
500 2.878 (0.253) 3.418 (0.282) 3.243 (0.253)
1000 2.878 (0.253) 3.432 (0.274) 3.273 (0.246)
2000 2.878 (0.253) 3.471 (0.282) 3.361 (0.245)
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Table 4
The means and standard deviations (in parentheses) of the MSEs (�100) under different batches b, methods and errors for simulation Example1 with a fixed Nb and s ¼ 0:9.

Errors p b SQR OLEQR RSQR

Casse 1 10 10 0.559 (0.149) 0.701 (0.185) 0.642 (0.178)
50 0.559 (0.149) 0.700 (0.181) 0.644 (0.181)
100 0.559 (0.149) 0.703 (0.181) 0.644 (0.180)
200 0.559 (0.149) 0.703 (0.182) 0.644 (0.180)
500 0.559 (0.149) 0.706 (0.178) 0.644 (0.180)
1000 0.559 (0.149) 0.705 (0.181) 0.644 (0.180)
2000 0.559 (0.149) 0.707 (0.179) 0.643 (0.181)

100 10 1.968 (0.172) 2.278 (0.181) 2.177 (0.176)
50 1.968 (0.172) 2.289 (0.185) 2.181 (0.175)
100 1.968 (0.172) 2.307 (0.182) 2.181 (0.176)
200 1.968 (0.172) 2.307 (0.186) 2.181 (0.177)
500 1.968 (0.172) 2.300 (0.182) 2.183 (0.176)
1000 1.968 (0.172) 2.300 (0.182) 2.192 (0.183)
2000 1.968 (0.172) 2.303 (0.177) 2.226 (0.181)

Casse 2 10 10 0.791 (0.213) 0.950 (0.238) 0.943 (0.232)
50 0.791 (0.213) 0.946 (0.246) 0.945 (0.235)
100 0.791 (0.213) 0.951 (0.242) 0.945 (0.236)
200 0.791 (0.213) 0.956 (0.243) 0.945 (0.236)
500 0.791 (0.213) 0.967 (0.247) 0.946 (0.238)
1000 0.791 (0.213) 0.975 (0.248) 0.947 (0.236)
2000 0.791 (0.213) 0.960 (0.253) 0.947 (0.236)

100 10 2.863 (0.219) 3.352 (0.248) 3.182 (0.227)
50 2.863 (0.219) 3.419 (0.255) 3.196 (0.230)
100 2.863 (0.219) 3.434 (0.258) 3.197 (0.229)
200 2.863 (0.219) 3.422 (0.249) 3.201 (0.233)
500 2.863 (0.219) 3.409 (0.260) 3.243 (0.235)
1000 2.863 (0.219) 3.431 (0.276) 3.292 (0.237)
2000 2.863 (0.219) 3.469 (0.268) 3.441 (0.254)

Table 5
The mean computation times (in seconds) under different full data sample sizes Nb , batches b, methods and errors for simulation Example1 with a fixed p ¼ 10 and s ¼ 0:5.

Case1 Case2

Nb b RLS SQR OLEQR RSQR RLS SQR OLEQR RSQR

106 10 0.20 1.33 0.54 0.78 0.18 1.22 0.50 0.70

50 0.18 1.33 0.45 0.71 0.17 1.22 0.46 0.66
100 0.17 1.33 0.43 0.66 0.17 1.22 0.45 0.68
200 0.16 1.33 0.44 0.66 0.17 1.22 0.42 0.60
500 0.17 1.33 0.46 0.70 0.17 1.22 0.45 0.65
1000 0.17 1.33 0.61 0.75 0.18 1.22 0.50 0.69
2000 0.19 1.33 0.64 0.86 0.19 1.22 0.60 0.82

107 10 2.53 12.00 6.97 8.75 2.93 11.45 7.00 9.19

50 2.55 12.00 6.40 7.45 2.73 11.45 5.84 7.24
100 2.48 12.00 6.04 7.32 2.39 11.45 5.51 6.88
200 2.68 12.00 5.89 7.17 2.39 11.45 5.62 6.75
500 2.31 12.00 4.92 6.46 2.68 11.45 4.77 6.04
1000 1.78 12.00 4.36 5.61 2.05 11.45 4.50 5.36
2000 1.81 12.00 4.24 5.16 1.87 11.45 4.41 5.02

2� 107 10 50.16 49.54 21.38 24.93 90.10 66.60 20.87 30.57

50 5.17 49.54 12.30 14.71 7.28 66.60 9.37 14.62
100 5.39 49.54 12.11 14.35 4.10 66.60 8.78 11.34
200 5.07 49.54 11.92 13.78 4.31 66.60 8.65 12.47
500 5.23 49.54 11.53 12.67 4.52 66.60 8.47 9.98
1000 5.10 49.54 9.80 11.39 4.34 66.60 8.28 9.55
2000 3.84 49.54 8.60 9.94 4.04 66.60 8.19 9.28
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(2) the penalized QR (PQR) estimator with full data, which can
be obtained by the ‘‘rq” function with the ‘‘SCAD” method in the
R package ‘‘quantreg”.

The data are generated from model (4.1) with b0 ¼ 1;1;2;3;ð
4;5;0; . . . ;0Þ and p ¼ 100. We fix the sample size of each batch as
�n ¼ 400 and vary the number of batches b ¼ 100; . . . ;1000. The
other settings are the same as in simulation Example1.

To evaluate the performance of the four methods, we calculate
theMSE in simulation Example1, the average proportion of nonzero
coefficients correctly estimated to be nonzero (denoted as C), and
217
the average proportion of zero coefficients incorrectly estimated
to be nonzero (denoted as IC). Note that C ¼ 1 and IC ¼ 0 imply per-
fect recovery. We further study the computational efficiency of our
proposed estimator using the computation time (in seconds). The
simulation results for s ¼ 0:2;0:5 and 0:8 are presented in Tables
6–10, respectively, based on 100 simulation replications. From
Tables 6–10, the following conclusions can be drawn:

(1) In terms of the MSEs in Tables 6–8, we note that (i) all the
estimators are close to the true value because the MSEs are very
small; and (ii) for any given number of batches b; p, errors and



Table 6
The means and standard deviations (in parentheses) of the MSEs (�100) under different batches b, methods and errors for simulation Example2 with a fixed �n ¼ 400 and s ¼ 0:5.

Errors b PLS PQR PSQR RPSQR

Casse 1 100 1.346 (0.467) 7.943 (0.722) 1.633 (0.508) 1.701 (0.578)
200 0.941 (0.285) 5.682 (0.437) 1.112 (0.391) 1.176 (0.436)
300 0.772 (0.241) 4.601 (0.399) 0.895 (0.322) 0.931 (0.311)
400 0.660 (0.225) 4.033 (0.350) 0.742 (0.299) 0.777 (0.315)
500 0.641 (0.200) 3.566 (0.331) 0.730 (0.250) 0.775 (0.281)
600 0.563 (0.192) 3.318 (0.267) 0.698 (0.249) 0.726 (0.269)
700 0.521 (0.187) 3.036 (0.238) 0.602 (0.213) 0.642 (0.247)
800 0.484 (0.170) 2.870 (0.236) 0.557 (0.211) 0.582 (0.230)
900 0.443 (0.136) 2.665 (0.205) 0.510 (0.177) 0.525 (0.187)
1000 0.431 (0.157) 2.506 (0.228) 0.510 (0.181) 0.525 (0.204)

Casse 2 100 2.541 (0.775) 7.544 (0.555) 1.509 (0.622) 1.644 (0.639)
200 1.668 (0.599) 5.317 (0.408) 1.076 (0.385) 1.180 (0.407)
300 1.491 (0.502) 4.387 (0.355) 0.856 (0.329) 0.902 (0.338)
400 1.257 (0.356) 3.743 (0.298) 0.772 (0.263) 0.829 (0.272)
500 1.170 (0.348) 3.372 (0.271) 0.688 (0.262) 0.718 (0.265)
600 0.983 (0.327) 3.080 (0.242) 0.601 (0.192) 0.622 (0.202)
700 0.962 (0.323) 2.868 (0.240) 0.592 (0.191) 0.615 (0.199)
800 0.893 (0.313) 2.701 (0.238) 0.542 (0.184) 0.562 (0.189)
900 0.815 (0.282) 2.430 (0.216) 0.501 (0.175) 0.520 (0.168)
1000 0.802 (0.256) 2.378 (0.202) 0.481 (0.165) 0.491 (0.164)

Table 7
The means and standard deviations (in parentheses) of the MSEs (�100) under different batches b, methods and errors for simulation Example2 with a fixed �n ¼ 400 and s ¼ 0:2.

Errors b PQR PSQR RPSQR

Casse 1 100 8.823 (0.928) 1.785 (0.681) 1.839 (0.758)
200 6.109 (0.335) 1.244 (0.450) 1.272 (0.497)
300 5.227 (0.176) 1.054 (0.334) 1.070 (0.352)
400 4.680 (0.154) 0.943 (0.289) 0.958 (0.297)
500 4.077 (0.412) 0.823 (0.283) 0.852 (0.288)
600 3.839 (0.170) 0.718 (0.255) 0.734 (0.268)
700 3.299 (0.176) 0.685 (0.238) 0.701 (0.240)
800 3.272 (0.321) 0.652 (0.219) 0.675 (0.234)
900 3.102 (0.214) 0.634 (0.195) 0.652 (0.200)
1000 2.977 (0.167) 0.549 (0.179) 0.557 (0.189)

Casse 2 100 9.918 (1.010) 2.160 (0.698) 2.541 (0.931)
200 7.628 (0.371) 1.523 (0.526) 1.774 (0.578)
300 5.975 (0.637) 1.202 (0.451) 1.393 (0.538)
400 5.335 (0.543) 1.054 (0.368) 1.167 (0.422)
500 4.640 (0.533) 0.885 (0.277) 1.073 (0.388)
600 4.498 (0.172) 0.812 (0.295) 0.889 (0.345)
700 4.241 (0.395) 0.825 (0.269) 0.860 (0.263)
800 3.930 (0.428) 0.701 (0.258) 0.799 (0.271)
900 3.389 (0.140) 0.763 (0.242) 0.819 (0.254)
1000 3.319 (0.183) 0.676 (0.226) 0.711 (0.249)
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quantiles s, the tables show that the MSEs of RPSQR are very
close to those of the PSQR and better than those of the PQR.
(2) In terms of the ICs in Table 9, the performance of the pro-
posed PSQR and RPSQR methods are very good with ICs close
to 0 under different batches, quantiles and errors. The ICs of
the PLS and PQR are all zero and one, respectively, under differ-
ent batches, quantiles and errors. The performance of the PQR is
bad, which may be because the PQR by ‘‘rq” with the ‘‘scad”
method should probably be regarded as experimental, as men-
tioned in the report of the ‘‘quantreg” R package. Therefore, our
proposed variable selection method PSQR is a good method for
quantile regression, because it runs fast and can accurately
select important variables.
(3) The four methods can select all true predictors in all settings
and thus we do not report C in the tables.
(4) In terms of computation time in Table 10, we note that (i)
for any given number of machines K, quantiles s and error
terms, the computation time of the PQR is the longest, as
expected. Moreover, the proposed PSQR and RPSQR methods
are much faster to compute than the PQR. (ii) The computation
218
time of PSQR and RPSQR is very close. Therefore, the renewable
method does not add much computational complexity.

4.3. Real data Example1: Beijing multisite air-quality data set

We apply the proposed RSQR method in Section 2 to the analy-
sis of the Beijing multisite air-quality dataset. The dataset includes
420768 hourly air pollutant data points from 12 nationally-
controlled air-quality monitoring sites. The air-quality data are
from the Beijing Municipal Environmental Monitoring Center.
The meteorological data at each air-quality site were matched with
the nearest weather station from the China Meteorological Admin-
istration. The time period is fromMarch 1st, 2013 to February 28th,
2017. The dataset was obtained from the following online website:
https://archive.ics.uci.edu/ml/datasets/Beijing + Multi-Site + Air-Q
uality + Data.

In this study, we use model (1.1) to explore the relationship
between the PM2.5 concentration (ug/m3) and seven variables in
Table 11. Because the data are from 12 nationally-controlled air-
quality monitoring sites, we set the number of batches b ¼ 12.



Table 8
The means and standard deviations (in parentheses) of the MSEs (�100) under different batches b, methods and errors for simulation Example2 with a fixed �n ¼ 400 and s ¼ 0:8.

Errors b PQR PSQR RPSQR

Casse 1 100 9.696 (0.458) 1.861 (0.632) 1.894 (0.640)
200 6.274 (0.436) 1.270 (0.450) 1.294 (0.439)
300 5.687 (0.464) 1.064 (0.342) 1.100 (0.370)
400 4.456 (0.443) 0.868 (0.300) 0.899 (0.308)
500 4.238 (0.280) 0.850 (0.300) 0.863 (0.310)
600 3.598 (0.147) 0.778 (0.264) 0.799 (0.273)
700 3.477 (0.249) 0.707 (0.221) 0.723 (0.241)
800 3.198 (0.210) 0.600 (0.191) 0.610 (0.198)
900 2.882 (0.233) 0.595 (0.189) 0.605 (0.191)
1000 2.671 (0.215) 0.568 (0.177) 0.581 (0.185)

Casse 2 100 10.602 (0.564) 2.220 (0.753) 2.567 (0.752)
200 7.486 (0.475) 1.500 (0.512) 1.758 (0.550)
300 5.984 (0.612) 1.199 (0.433) 1.417 (0.535)
400 5.404 (0.374) 1.017 (0.396) 1.127 (0.446)
500 4.854 (0.333) 0.880 (0.296) 1.007 (0.363)
600 4.087 (0.350) 0.871 (0.295) 0.993 (0.350)
700 3.929 (0.322) 0.798 (0.278) 0.851 (0.298)
800 3.538 (0.308) 0.773 (0.253) 0.831 (0.265)
900 3.479 (0.279) 0.695 (0.230) 0.772 (0.241)
1000 3.433 (0.236) 0.694 (0.225) 0.750 (0.240)

Table 9
The mean C (�100) of the PSQR, and RPSQR estimators under different s, b and errors for simulation Example2.

Errors s Methods b = 100 200 300 400 500 600 700 800 900 1000

Case1 0.2 PSQR 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0
RPSQR 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.0

0.5 PSQR 0.2 0.3 0.5 0.3 0.1 0.4 0.1 0.2 0.2 0.3
RPSQR 0.5 0.5 0.2 0.3 0.4 0.2 0.5 0.3 0.2 0.3

0.8 PSQR 0.1 0.3 0.2 0.1 0.0 0.1 0.0 0.1 0.0 0.0
RPSQR 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.2 0.1

Case2 0.2 PSQR 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1
RPSQR 1.4 1.3 1.1 0.8 0.6 0.7 0.6 0.8 0.5 0.5

0.5 PSQR 0.9 0.3 0.2 0.3 0.5 0.2 0.2 0.4 0.2 0.4
RPSQR 1.1 1.1 0.6 0.7 0.5 0.4 0.6 0.4 0.3 0.4

0.8 PSQR 0.4 0.2 0.3 0.1 0.1 0.1 0.1 0.0 0.1 0.1
RPSQR 1.8 1.5 1.5 1.0 1.1 1.0 0.8 0.9 0.9 0.7

Table 10
The mean computation times (in seconds) of the PQR, PSQR, and RPSQR estimators with s ¼ 0:5 under different b and errors for simulation Example2.

Errors Methods b = 100 200 300 400 500 600 700 800 900 1000

Case1 PQR 19.88 42.68 66.24 88.74 119.88 142.98 180.12 217.88 219.72 247.01
PSQR 1.79 3.46 4.88 7.16 8.58 9.75 11.73 12.76 13.85 16.05
RPSQR 2.02 3.79 5.62 7.51 9.27 11.09 12.71 14.43 16.21 17.97

Case2 PQR 19.21 40.02 71.58 100.38 123.42 148.32 172.98 189.72 234.36 282.72
PSQR 1.79 3.43 5.01 6.58 8.00 9.66 11.19 12.36 13.73 14.34
RPSQR 2.04 3.69 5.28 6.94 8.64 10.27 11.95 13.63 15.25 16.99
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Fig. 4 depicts the changes in the estimated coefficients for the Bei-
jing multisite air-quality data using our proposed RSQR method
with quantiles s ¼ 0:1 to 0:9. From Fig. 4, it is easy to see that
the estimated coefficients of TEMP and PRES decrease as quantile
s increases, and the other estimated coefficients increase as quan-
tile s increases. Furthermore, we evaluate the performance of the
proposed RSQR estimator compared with the SQR, RLS and OLEQR,
based on the mean absolute fitting error (MAFE):

MAFE ¼ 1
n

Xn
i¼1
jYi � bY ij;

where n is the total sample size of 388817 (the number of data

points after deleting missing data), Yi is the value of PM2.5, and bY i

is the fitted value of Yi at quantile s ¼ 0:5. The results are present
in Table 12. In terms of the MAFE, we find that the performance
of the SQR is the best and that the performance of the RSQR is very
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close to that of the SQR. The computation time of the RSQR is less
than that of the SQR.

4.4. Real data Example2: Year Prediction MSD data set

As an illustration, we now apply the proposed PSQR and RPSQR
methodologies in Section 3 to the Year Prediction MSD dataset. The
dataset is collected from the public database of the UCI Machine
Learning Repository ( https://archive.ics.uci.edu/ml/datasets/
YearPredictionMSD). The dataset is a freely-available collection of
audio features for contemporary popular music tracks ranging
from 1922 to 2011. Approximately 515345 observations were
recorded with 91 variables: the year of the song and 12 average
timbre and 78 timbre covariance variables. The research problem
is to predict the release year of songs from the audio features.

In this study, model (1.1), where the year of a song is the depen-
dent variable (Y) and the 12 average timbre and 78 timbre covari-

https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD


Table 13
The MAPEs and standard deviations (in parentheses) of the PLS, PQR, PSQR, and
RPSQR estimators with s ¼ 0:5 under different bs for real data Example2.

Method MAPE

PLS 6.906 (0.004)
PQR 6.694 (0.002)
PSQR 6.694 (0.002)
RPSQR (b = 100) 6.707 (0.003)
RPSQR (b = 200) 6.718 (0.004)
RPSQR (b = 300) 6.767 (0.004)
RPSQR (b = 400) 6.796 (0.006)
RPSQR (b = 500) 6.821 (0.007)

Fig. 4. The estimated coefficients of RSQR under different quantiles s for real data Example1.

Table 11
Covariates and their descriptions for real data Example1.

Name Description

SO2 SO2 concentration (ug/m3)
NO2 NO2 concentration (ug/m3)
CO CO concentration (ug/m3)

TEMP temperature (degrees Celsius)
PRES pressure (hPa)
DEWP dew point temperature (degrees Celsius)
WSPM wind speed (m/s)

Table 12
The MAFEs and computation times (in seconds) with s ¼ 0:5 for the RLS, SQR, OLEQR
and RSQR estimators for real data Example1.

RLS SQR OLEQR RSQR

MAFE 30.39 29.23 29.26 29.23
t 0.06 1.37 0.28 0.31
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ance variables are the covariate variables, is used to fit the data. To
evaluate the performances of our proposed methods (PSQR and
RPSQR) in Section 3, we first calculate the mean absolute predic-
tion error (MAPE) of the predictions under quantile s ¼ 0:5. The
first 500000 data points are used for the estimation, and the
remaining 15345 data points are used for the prediction. Therefore,

MAPE ¼ 1
~n

X~n
i¼1

Yi � bY i

			 			;
where bY i is the fitted value of Yi and ~n ¼ 15345. The results of
MAPEs and their standard deviations by bootstrap method [3], are
presented in Table 13. The Table 13 clearly shows that the penalized
QR estimators (PQR, PSQR and RPSQR) are better than the penalized
LS estimator because of the smaller MAPEs. The performances of
PQR, PSQR and RPSQ are very close, because their asymptotic prop-
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erties are the same, see Theorems 1 and 2 in [38] (PQR), Lemmas 1
and 2 (PSQR) and Theorems 3.1 and 3.2 (RPSQR). Methods PQR and
PSQR are a little better than RPSQR because they directly use full
data. Moreover, from Theorems 1 and 2, our proposed method
RPSQR is not influenced by the number of batches b, so the results
(MAPE) of RPSQR for different b are very close.

Furthermore, to illustrate the computational advantage of the
proposed methods (PSQR and RPSQR), we also list the running time
of our method under different b and quantiles s in Table 14. The
results show that PSQR costs much less time than the PQR, and
its computation time is close to that of the RPSQR. In addition,
we study the number of variables selected by our proposed meth-
ods (PSQR and RPSQR). The results are presented in Table 14, which
shows that the SCAD produces a small model because the numbers
of selected variables under different bs and quantiles levels s are
all smaller than the case with p ¼ 90 variables. Moreover, for any
given b, the number of selected variables decreases as the quantile
level s increases. The performances (MAPE, t and NSV) of the
RPSQR under different bs are close to those of the PSQR.

5. Discussion

In this article, we considered renewable parameter estimation
and variable selection for a quantile regression with streaming
data sets. The method requires only the availability of the current



Table 14
The computation times (t) and number of selected variables (NSV) of the PLS, PQR,
PSQR, and RPSQR estimators with s ¼ 0:2, 0:5 and 0:8 under different bs for real data
Example2.

t NSV
Method s ¼ 0:2 s ¼ 0:5 s ¼ 0:8 s ¼ 0:2 s ¼ 0:5 s ¼ 0:8

PQR 270.97 276.39 313.85 65 51 33
PSQR 22.53 21.93 28.75 65 50 33
RPSQR (b = 100) 15.72 14.08 14.43 60 52 33
RPSQR (b = 200) 14.16 14.28 14.24 65 52 32
RPSQR (b = 300) 14.97 14.52 14.82 64 53 30
RPSQR (b = 400) 15.09 14.99 15.18 65 50 31
RPSQR (b = 500) 15.97 15.29 15.57 75 49 30
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data batch in the data stream and sufficient statistics on the histor-
ical data (the latest estimator, the cumulative Hessian matrix and
the latest regularization parameter for variable selection) in each
stage of the analysis. The scale of the data to be stored is pþ 1ð Þp
(or p2 þ pþ 1 for variable selection) instead of Nbp, which is the
sample size of streaming data sets up to b batches. Because p is
assumed to be a fixed number in this paper, our method greatly
reduces the amount of data storage. Theoretically, the proposed
estimators achieve optimal efficiency, and their asymptotic covari-
ance matrixes are the same as those of the estimators with full
data. Moreover, the proposed renewable methods are all free of
the constraint on the number of batches, which means that the
new methods are adaptive to the situation where streaming data
sets arrive fast and perpetually. As the proposed methods are all
based on a convolution-type smoothing approach of the objective
function, algorithms 1–3 are all fast and scalable.

From the numerical studies in Section 4, we can see that our
proposed methods are very close to the estimators directly using
all data, and better than other methods in existing reference by
smaller MSE. The variable selection method can effectively select
important variables. The proposed methods run fast and are faster
than the full data estimators for large sample size and large
dimension.
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Appendix A. Proof of main results

Proof of Theorem 2.1. Define a function

Gb bð Þ ¼ 1
Nb

Xb�1
j¼1

J Dj; b̂j; hj

� �
b� b̂b�1
� �

þ 1
Nb

U Db; b;hbð Þ: ðA:1Þ

According to Eq. (2.10), the renewable estimator b̂b satisfies

Gb b̂b

� �
¼ 0.Under condition n1 !1; b̂1 is

ffiffiffiffiffiffi
N1
p

-consistent (see

the Eq. (2.11) in [11]). If b̂j

n ob�1

j¼1
are

ffiffiffiffiffi
Nj

p
-consistent, we have

Gb b0ð Þ ¼ op 1ð Þ.Thus, by the Lemma 4 in [11], we have
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Gb b̂b

� �
� Gb b0ð Þ ¼ 1

Nb

Xb�1
j¼1

J Dj; b̂j; hj

� �
b̂b � b0

� �
þ 1

Nb
U Db; b̂b; hb

� �
� U Db;b0;hbð Þ

n o
¼ 1

Nb

Xb�1
j¼1

J Dj; b̂j; hj

� �
þ J Db;b0;hbð Þ

( )
b̂b � b0

� �
þ Op

nb
Nb
kb̂b � b0k22

� �
¼ op 1ð Þ:

ðA:2Þ

From equations (A.1), (A.2) and Gb b̂b

� �
¼ 0, we know that

Gb b0ð Þ ¼ 1
Nb

Xb�1
j¼1

J Dj; b̂j;hj

� �
þ J Db; b0;hbð Þ

( )
b0 � b̂b

� �
þ Op

nb
Nb
kb̂b � b0k22

� �
:

It follows that

� 1
Nb

Xb�1
j¼1

J Dj; b̂j;hj

� �
þ J Db; b0; hbð Þ

( )
b0 � b̂b

� �
þ 1

Nb

Xb�1
j¼1

J Dj; b̂j; hj

� �
b0 � b̂b�1
� �

þ 1
Nb
U Db; b0; hbð Þ þ Op

nb
Nb
kb̂b � b0k22

� �
¼ 0:

ðA:3Þ

By U D1; b̂1;h1

� �
¼ 0, we have

U D1;b0;h1ð Þ ¼ U D1; b̂1;h1

� �
þ J D1; b̂1; h1

� �
b0 � b̂1

� �
þOp n1kb̂1 � b0k22

� �
;

¼ J D1; b̂1; h1

� �
b0 � b̂1

� �
þ Op n1kb̂1 � b0k22

� �
:

ðA:4Þ
By (2.9), we can obtain

U D2;b0;h2ð Þ ¼ U D2; b̂2;h2

� �
þ J D2; b̂2; h2

� �
b0 � b̂2

� �
þOp n2kb̂2 � b0k22

� �
¼ �J D1; b̂1;h1

� �
b̂2 � b̂1

� �
þ J D2; b̂2;h2

� �
b0 � b̂2

� �
þOp n2kb̂2 � b0k22

� �
ðA:5Þ

Thus, combining (A.4) and (A.5),

U D1;b0; h1ð Þ þ U D2;b0; h2ð Þ ¼ J D1; b̂1;h1

� �
þ J D2; b̂2; h2

� �n o
b0 � b̂2

� �
þOp n1kb̂1 � b0k22 þ n2kb̂2 � b0k22

� �
:

ðA:6Þ
Similarly to equation (A.6), at the b� 1ð Þ-th data batch, it is easy

to shown thatXb�1
j¼1

U Dj;b0;hj
� � ¼Xb�1

j¼1
J Dj; b̂j; hj

� �
b0 � b̂b�1
� �

þ Op

Xb�1
j¼1

njkb̂j � b0k22
 !

: ðA:7Þ

Plugging equation (A.7) into equation (A.3), we get
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� 1
Nb

Xb�1
j¼1

J Dj; b̂j;hj

� �
þ J Db;b0;hbð Þ

( )
b0� b̂b

� �
þ 1

Nb

Xb
j¼1

U Dj;b0;hj
� �

þOp

Xb
j¼1

nj
Nb
kb̂j�b0k22

 !
¼0:

ðA:8Þ
By the Lemmas 1 and 4 in [11], under condition

nj !1; j ¼ 1; . . . ; b, we can obtain

kJ Dj; b̂;hj

� �
� J Dj; b0; hj
� �k ¼ Op njkb̂j � b0k2

� �
;

kJ Dj;b0;hj
� �� E J Dj;b0;hj

� �� �k ¼ op
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
njh

�1
j lnnj

q� 
;

E J Dj; b0; hj
� �� � ¼X

i2Dj

E f X>i b0jXi
� �

XiX
>
i

� �þ op njhj
� �

:

Since b̂j

n ob�1

j¼1
are consistent, and conditions hj Nj= lnNj

� �1=3 !1
and nj !1; j ¼ 1; . . . ; b, we have

1
Nb

Xb�1
j¼1

J Dj; b̂j;hj

� �
þ J Db; b0;hbð Þ

( )
¼ Xþ op 1ð Þ: ðA:9Þ

By the Lemma 1 and Theorem 5 in [11], we have

U Dj;b0;hj
� � ¼ U Dj;b0;hb

� �þ Op njh
2
j þ njh

2
b

� �
: ðA:10Þ

Plugging (A.9) and (A.10) into equation (A.8), we can obtain

Xþ op 1ð Þ� �
b̂b � b0

� �
þ 1

Nb

Xb
j¼1

U Dj; b0; hb

� �þ nb
Nb
Op kb̂b � b0k22
� �

þ 1
Nb

Xb�1
j¼1

Op njh
2
j þ njh

2
b þ njkb̂j � b0k22

� �
¼ 0:

By Lemma 3 in [12], we haveXb
j¼1

nj

Nj
6 1þ log Nb=N1ð Þ; and

Xb
j¼1

njffiffiffiffiffi
Nj

p 6 2
ffiffiffiffiffiffi
Nb

p
:

Thus, by condition hj ¼ o N�1=4j

� �
the central limit theorem, we

can proof the theorem.

Lemma 1. Suppose that conditions C1-C3 hold and

h n= lnnð Þ1=3 !1;h 6 O n�1=4
� �

and k! 0 as the sample size
n!1. Then

k~b� � b0k2 ¼ Op n�1=2
� �

:

Proof of Lemma 1. Denote Q bð Þ ¼ nSh bð Þ þ npk jbjð Þ. To prove
Lemma 1, it is sufficient to show that for any given d > 0, there
exists a large enough constant C such that

P inf
khk2¼C

Q b0 þ h=
ffiffiffi
n
p� �

> Q b0ð Þ

 �

P 1� d; ðA:11Þ

which implies that with probability at least 1� d there exists a local
minimum in the ball b0 þ h=

ffiffiffi
n
p

: khk2 6 C
� �

. This in turn implies
that there exists a local minimizer such that
k~b� � b0k2 ¼ Op n�1=2

� �
.Note that

Q b0 þ h=
ffiffiffi
n
p� �� Q b0ð ÞP nSh b0 þ h=

ffiffiffi
n
p� �� nSh b0ð Þ

þ n
Xs
j¼1

pk jb0;j þ hj=
ffiffiffi
n
p j� �� pk jb0;jj

� �� �
; ðA:12Þ
222
where b0;j and hj denote the j-th component of b0 and h, respec-
tively. Given any fixed h, by the Lemma 1 in [11] and condition
h! 0, then

nSh b0 þ h=
ffiffiffi
n
p� �� nSh b0ð Þ ¼

ffiffiffi
n
p

S 1ð Þ
h b0ð Þ

n o>
hþ 1

2
h>Xhþ op 1ð Þ: ðA:13Þ

Note that
ffiffiffi
n
p

S 1ð Þ
h b0ð Þ ¼ Op 1ð Þ. By choosing a sufficiently large C,

the second term of (A.13) dominates nSh b0 þ h=
ffiffiffi
n
p� �� nSh b0ð Þ uni-

formly in khk ¼ C. Note that SCAD penalty is flat for coefficient of
magnitude larger than ak. Thus, by condition k! 0, we can obtain
that

n
Xs
j¼1

pk jb0;j þ hj=
ffiffiffi
n
p j� �� pk jb0;jj

� �� � ¼ 0 ðA:14Þ

uniformly in any compact subset of Rp.
Based on (A.12)-(A.14), Q b0 þ h=

ffiffiffi
n
p� �� Q b0ð Þ is dominated by

the quadratic term h>Xh=2 for khk2 equal to sufficiently large C.
Hence equation (A.11) is satisfied.

Lemma 2. Suppose that all conditions in Lemma 1 hold. If
ffiffiffi
n
p

k!1,
then with probability tending to one, the root-n consistent local

minimizer ~b� ¼ ~b�>1ð Þ; ~b
�>
2ð Þ

� �>
satisfies:

(i) Sparsity: ~b�2ð Þ ¼ 0, and
(ii) Asymptotic normality:

ffiffiffi
n
p

~b�1ð Þ � b01

� �
!L N 0; s 1� sð ÞX�111ð ÞR 11ð ÞX

�1
11ð Þ

� �
:

Proof of Lemma 2. (i) The sparsity result comes from this
claim: if k! 0 and

ffiffiffi
n
p

k!1 as n!1, then with probability
tending to one, any given b 1ð Þ satisfying kb 1ð Þ � b01k2 ¼ Op n�1=2

� �
and any constant C1,

Q b>1ð Þ;0
>

� �>� 
¼ min
kb 2ð Þk26C1n�1=2

Q b>1ð Þ;b
>
2ð Þ

� �>� 
;

that is to say for any given d1 > 0,

P inf
kb 2ð Þk26C1n�1=2

Q b>1ð Þ;b
>
2ð Þ

� �>� 
> Q b>1ð Þ;0

>
� �>�  !

P 1� d1:

In fact, based on (A.13), for any kb 1ð Þ � b01k2 ¼ Op n�1=2
� �

and

kb 2ð Þk2 6 C1n�1=2, we have

Q b>1ð Þ;0
>

� �>� 
� Q b>1ð Þ; b

>
2ð Þ

� �>� 

¼ Q b>1ð Þ;0
>

� �>� 
� Q b>01;0

>� �>� �
 �

� Q b>1ð Þ;b
>
2ð Þ

� �>� 
� Q b>01;0

>� �>� �
 �

¼ n Sh b>1ð Þ;0
>

� �>� 
� Sh b>01;0

>� �>� �
 �

�n Sh b>1ð Þ; b
>
2ð Þ

� �>� 
� Sh b>01;0

>� �>� �
 �
� n

Xp
j¼sþ1

pk jbjj
� �

¼ �n
Xp
j¼sþ1

pk jbjj
� �þ Op 1ð Þ:

Note that
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n
Xp
j¼sþ1

pk jbjj
� �

P n
Xp
j¼sþ1

kliminf
k!0

liminf
l!0þ

p0
k
lð Þ
k bjsign bj

� �þo jbjj
� �
 �

¼nk liminf
k!0

liminf
l!0þ

p0
k
lð Þ
k


 �Xp
j¼sþ1
jbjj 1þo 1ð Þf g

¼nk
Xp
j¼sþ1
jbjj 1þo 1ð Þf g;

ðA:15Þ

where the last step follows based on the fact
lim infk!0 lim infl!0þp0k lð Þ=k ¼ 1. Since,

ffiffiffi
n
p

k!1 and

kb 2ð Þk2 6 C1n�1=2;Q b
>

1ð Þ
;0
>

 !> !
� Q b

>

1ð Þ
; b
>

2ð Þ

 !> !
is dominated by

�nPp
j¼sþ1pk jbjj

� �
, as a result, Q b

>

1ð Þ
;0
>

 !> !
� Q b

>

1ð Þ
; b
>

2ð Þ

 !> !
< 0

for large n. This completes the proof of part (i) of the theorem.
(ii) From Lemma 1 and part (i), we know that ~b�1ð Þ is a root-n

consistent local minimizer of Q b
>

1ð Þ
;0>

 !> !
, which is regarded

as a function of b 1ð Þ, and that satisfies

@Q bð Þ=@bjj
b¼ ~b�>

1ð Þ ;0
>

� �> ¼ 0; j ¼ 1; . . . ; s: ðA:16Þ

Note that ~b�1ð Þ is also the minimizer of

Q b>1ð Þ;0
>

� �>� 
� Q b>01;0

>� �>� �
¼ nSh b>1ð Þ;0

>
� �>� 

� nSh b>01;0
>� �>� �

þn
Xs
j¼1

pk jbjj
� �� pk jb0;jj

� �� �
¼ n b 1ð Þ � b01

� �>
;0>

� 
S 1ð Þ
h b0ð Þ

þ n
2 b 1ð Þ � b01

� �>
;0>

� 
X b 1ð Þ � b01

� �>
;0>

� >
þ op 1ð Þ

þn
Xs
j¼1

p0k jb0;jj
� �

sign b0;j

� �
bj � b0;j

� �þ 1
2p
00
k jb0;jj
� �

bj � b0;j

� �2 1þ op 1ð Þ� �n o

¼ n b 1ð Þ � b01

� �>
;0>

� 
S 1ð Þ
h b0ð Þ

þ n
2 b 1ð Þ � b01

� �>
;0>

� 
X b 1ð Þ � b01

� �>
;0>

� >
þop 1ð Þ þ op nkb 1ð Þ � b01k22

� �
;

ðA:17Þ

where the last equation is because p0k jb0;jj
� �

sign b0;j

� � ¼ 0 and
p00k jb0;jj
� �! 0, j ¼ 1; . . . ; s, by condition k! 0. Thus, based on

(A.16) and (A.17), by Slutsky’s theorem and the central limit theo-
rem, we can prove the part (ii).

Proof of Theorem 3.1. The renewable penalized estimator ~bb

also satisfies

~bb ¼ argmin
b

eQb bð Þ;

where eQb bð Þ ¼ 1
2 b� ~bb�1
� �>eJb�1 b� ~bb�1

� �þ Shb Db;bð Þ � Nb�1p0kb�1
j~bb�1j
� �

sign ~bb�1
� �

b� ~bb�1
� �þ Nbpkb

jbjð Þ.Similar to the proof of

Lemma 1, it is sufficient to show that for any given ~d > 0, there

exists a large enough constat eC such that
223
P inf
k~hk2¼eC eQb b0 þ ~hb=

ffiffiffiffiffiffi
Nb

p� �
> eQb b0ð Þ

( )
P 1� ~d: ðA:18Þ

It implies that with probability at least 1� ~d there exists a local

minimizer satisfying k~bb � b0k2 ¼ Op N�1=2b

� �
.By the Lemma 1,

k~b1 � b0k2 ¼ Op n�1=21

� �
, if k~bj � b0k2 ¼ Op N�1=2j

� �
with

j ¼ 1; . . . ; b� 1, and by k~hk2 ¼ eC , we have

eQ b b0 þ ~h=
ffiffiffiffiffiffi
Nb
p� �

� eQb b0ð Þ
¼ b0 � ~bb�1

� �>eJb�1~h= ffiffiffiffiffiffi
Nb
p þ 1

2
~h>eJb�1~h=Nb þ Shb Db;b0 þ ~h=

ffiffiffiffiffiffi
Nb
p� �

�Shb Db;b0ð Þ
þNb pkb

jb0 þ ~h=
ffiffiffiffiffiffi
Nb
p j

� �
� pkb

jb0jð Þ
n o

�Nb�1p0kb�1 j~bb�1j
� �

sign ~bb�1
� �

~h=
ffiffiffiffiffiffi
Nb
p

¼ 1
2
~h>X~hþ Op 1ð Þ þ Nb pkb

jb0 þ ~h=
ffiffiffiffiffiffi
Nb
p j

� �
� pkb

jb0jð Þ
n o

�Nb�1p0kb�1 j~bb�1j
� �

sign ~bb�1
� �

~h=
ffiffiffiffiffiffi
Nb
p

P 1
2
~h>X~hþ Op 1ð Þ:

ðA:19Þ

Thus eQb b0 þ ~h=
ffiffiffiffiffiffi
Nb
p� �

� eQb b0ð Þ is dominated by the quadratic

term ~h>X~h=2 for k~hk equal to sufficiently large eC . Hence equation
(A.18) is satisfied.

Proof of Theorem 3.2. (i) For any kb 1ð Þ � b01k2 ¼ Op N�1=2b

� �
and

kb 2ð Þk2 6 eC1N
�1=2
b , by (A.19), we have

eQb b>1ð Þ;0
>

� �>� 
� eQb b>1ð Þ;b

>
2ð Þ

� �>� 
¼ eQb b>1ð Þ;0

>
� �>� 

� eQb b>01;0
>� �>� �
 �

� eQb b>1ð Þ;b
>
2ð Þ

� �>� 
� eQb b>01;0

>� �>� �
 �
¼ �Nb

Xp
k¼sþ1

pkb
jbkjð Þ þ Nb�1

Xp
k¼sþ1

p0kb�1 j~bb�1;kj
� �

sign ~bb�1;k
� �

bk þ Op 1ð Þ:

By condition kb 2ð Þk2 6 eC1N
�1=2
b , we have

Nb�1
Pp

k¼sþ1p
0
kb�1
j~bb�1;kj
� �

sign ~bb�1;k
� �

bk ¼ op

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nb�1=Nb

p� �
. And similar

to (A.15), we can obtain
Nb
Pp

k¼sþ1pkb
jbkjð ÞP Nbkb

Pp
k¼qþ1jbkj 1þ o 1ð Þf g. Since,

ffiffiffiffiffiffi
Nb
p

kb !1

and kb 2ð Þk2 6 eC1N
�1=2
b , eQb b>1ð Þ;0

>
� �>� 

� eQb b>1ð Þ; b
>
2ð Þ

� �>� 
is dom-

inated by �Nb
Pp

k¼sþ1pkb
jbkjð Þ, as a result,eQb b>1ð Þ;0

>
� �>� 

� eQb b>1ð Þ; b
>
2ð Þ

� �>� 
< 0 for large Nb. This com-

pletes the proof of part (i) of the theorem.
(ii) From Theorem 3.1 and part (i), we know that ~b b1ð Þ is a

root-Nb consistent local minimizer of eQb b>1ð Þ;0
>

� �>� 
, which is

regarded as a function of b 1ð Þ, and that satisfies

@ eQb bð Þ=@bkj
b¼ ~b>

b1ð Þ ;0
>

� �> ¼ 0; k ¼ 1; . . . ; s: ðA:20Þ

Note that ~b b1ð Þ is also the minimizer ofeQb b>1ð Þ;0
>

� �>� 
� eQb b>01;0

>� �>� �
. By the Theorem 3.1,

k~bj � b0k2 ¼ Op N�1=2j

� �
and conditions hj ¼ o N�1=4j

� �
; j ¼ 1; . . . ; b.

Then, by (A.7) and (A.10), we have
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eQb b>1ð Þ;0
>

� �>� 
� eQb b>01;0

>� �>� �
¼ 1

2 b 1ð Þ � b01

� �>
;0>

�  eJb�1 þ J Db; b>01;0
>� �>

;hb

� �n o
b 1ð Þ � b01

� �>
;0>

� >
þ

Xb
j¼1

U Db; b>01;0
>� �>

; hb

� �
þ op

ffiffiffiffiffiffi
Nb
p� �( )

b 1ð Þ � b01

� �>
;0>

� 

�Nb�1
Xs
k¼1

p0kb�1 j~bb�1;kj
� �

sign ~bb�1;k
� �

bk � b0;k

� �
þop Nbkb 1ð Þ � b01k22

� �
þ Op nbkb 1ð Þ � b01k22

� �
þ C2

¼ 1
2

ffiffiffiffiffiffi
Nb
p

b 1ð Þ � b01

� �>
;0>

� 
X

ffiffiffiffiffiffi
Nb
p

b 1ð Þ � b01

� �>
;0>

� >
þ 1ffiffiffiffi

Nb

p Xb
j¼1

U Db; b>01;0
>� �>

;hb

� � ffiffiffiffiffiffi
Nb
p

b 1ð Þ � b01

� �>
;0>

� 
þ ffiffiffiffiffiffi

Nb
p

b 1ð Þ � b01

� �>
;0>

� 
op 1ð Þ þ op Nbkb 1ð Þ � b01k22

� �
þ C2

ðA:21Þ
Thus, based on (A.20) and (A.21), by Slutsky’s theorem and the

central limit theorem, we can prove the part (ii).
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