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Abstract
Digitalisation is expected to transform end-to-end supply chain operations by leveraging the
technical capabilities of advanced technology applications. Notwithstanding the operations-
wise merits associated with the implementation of digital technologies, individually, their
combined effect has been overlooked owing to limited real-world evidence. In this regard,
this research explores the joint implementation of Artificial Intelligence (AI) and Blockchain
Technology (BCT) in supply chains for extending operations performance boundaries and
fostering sustainable development and data monetisation. Specifically, this study empirically
studied the tuna fish supply chain in Thailand to identify respective end-to-end operations,
observe material and data-handling processes, and envision the implementation of AI and
BCT. Therefore, we first mapped the business processes and the system-level interactions
to understand the governing material, data, and information flows that could be facilitated
through the combined implementationofAI andBCT in the respective supply chain.Themap-
ping results illustrate the central role of AI and BCT in digital supply chains’ management,
while the associated sustainability and data monetisation impact depends on the parameters
and objectives set by the involved system stakeholders. Afterwards, we proposed a unified
framework that captures the key data elements that need to be digitally handled in AI and
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BCT enabled food supply chains for driving value delivery. Overall, the empirically-driven
modelling approach is anticipated to support academics and practitioners’ decision-making
in studying and introducing digital interventions toward sustainability and data monetisation.

Keywords Supply chain digitalisation · Artificial intelligence · Blockchain technology ·
Sustainability · Data monetisation · Fish supply networks

1 Introduction

The digitalisation of business operations is critical for traditional enterprises to compete in the
digital economyera (Weill&Woerner, 2018). In this regard, the adoption of advanced systems
and applications such as the Internet of Things (IoT), Blockchain Technology (BCT), Cloud
Computing, Data Analytics and Artificial Intelligence (AI), in tandem with the development
and maturity of relevant digital skills and capabilities, are fundamental for the digital trans-
formation of businesses (Akter et al., 2022). Individually, each digital application presents
specific technical merits and differently enacts upon data and information. In the data analysis
field, AI is “a system’s ability to interpret external data correctly, to learn from such data,
and to use those learnings to achieve specific goals and tasks through flexible adaptation”
(Haenlein & Kaplan, 2019, p.1). The market value of AI in the food and beverages industry
is expected to reach US$29.94 billion by 2026, at a CAGR of 45.8% (ResearchAndMarkets,
2021). In the hardware domain, BCT is a distributed ledger enabling secure data sharing for
better visibility and transparency in supply chains (Kamble et al., 2019). The global market
size of BCT in agriculture and the food sector is projected to reach US$948 million by 2025,
at a CAGR of 48.1% (MarketsAndMarkets, 2020).

Notwithstanding the advantages of digital systems and applications, their interconnectiv-
ity could help overcome inherent limitations and unleash additional technical capabilities,
harnessing productivity benefits and fostering corporate growth (Akter et al., 2022). Indica-
tively, AI, the most impactful application in manufacturing at the beginning of the 21st
Century, typically leverages centralised computing and data storage infrastructure to explore
(continuous) data flows for (real-time) decision-making (Nasar et al., 2020). However, AI
systems encounter complicated issues such as data security and interoperability, adversar-
ial attacks, morality, and ethics (Awad et al., 2018). To a greater extent, AI is considered
a “black box”, and scepticism pertains to the use of emanating analysis results in critical
decision-making. In a similar vein, BCT, as a standalone application, ensures decentralised
data and decision storage across supply chains but cannot be used to analyse data and generate
intelligence for informing the decision-making process (Salah et al., 2019). However, within
the dynamic global business landscape, interactive decision-making based on analysis and
interpretation of real-time and reliable data and information stemming from multiple diverse
sources is becoming prominent (Toorajipour et al., 2021) for a range of purposes such as
avoiding risks and product recalls. In this regard, the combined implementation of AI and
BCT and other cutting-edge technologies (e.g., sensor-driven automation for gathering shop
floor data) is catalytic to complement technical capabilities, create actual business value and
enable competitiveness (Hughes et al., 2022).

Research evidence recognises that BCT can augment the implementation of AI in both
upstream and downstream supply chain operations (Grover et al., 2022). Specifically, BCT
is considered an adequate digital application to ensure interpretable and trustworthy AI in
real-world settings via ascertaining data security, privacy, reliability, usability, dependability,
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performance, and governance (Nasar et al., 2020). Equivalently, AI-based solutions could
support BCT implementations to redefine industrial operations acrossmultiple fronts, includ-
ing: (i) being more proactive; (ii) enabling autonomous processes; (iii) allowing personalised
services; and (iv) transitioning to production planning based on predictions (Toorajipour
et al., 2021). In addition, leveraging the synergistic technical capabilities of multiple digital
systems and applications such as AI and BCT helps pursue Sustainable Development Goals
(Del Río Castro et al., 2021). Collaborative digital ecosystems promote sustainable supply
chains performance via enabling the improved management of resources, supporting waste
monitoring and management, reducing energy consumption, and informing the development
and diffusion of sustainable financing instruments (Belhadi et al., 2021; Kumar et al., 2022).

The combined implementation of data-driven digital technologies is particularly valuable
in a food supply chain context due to the increasing demand for verifiable transparency and
traceability evidence regarding product safety and quality (Aung & Chang, 2014). Specifi-
cally, integrating AI and BCT could expand the data gathering, interoperability and analysis
capabilities across end-to-end echelons of operations to enable supply network security, cost-
competitive resiliency, and sustainability, thus ultimately leading to enhanced consumers’
trust (Bechtsis et al., 2021). Major retailers have already implemented BCT, namely: (i)
‘Walmart’ for tracing agricultural products in the U.S. and pork in China; (ii) ‘Carrefour’ for
tracking milk supply chains; and (iii) ‘Alibaba’ for addressing food fraud (Kshetri, 2018). At
an institutional level, the U.S. Food and Drug Administration pilots an AI-driven blockchain
implementation to dynamically assess foodborne illness risks from imported food supplies
and enhance end-to-end tracking and tracing of goods (Mearian, 2019).

In terms of international trade, AI and BCT could help unleash benefits for the involved
system stakeholders. For example, theEuropeanUnion (EU) is Thailand’s third-largest export
destination for seafood products after the U.S. and Japan, accounting for 10% of the total
exports. In fact, in 2017, the value of Thailand’s total exports of fishery products was worth
about US$5.93 billion (Kishimoto, 2019). To this effect, the potential exclusion of Thailand
from exporting seafood products to the EU is associated with significant economic and
social ramifications. In April 2015, Thailand was issued a ‘yellow card’ for violating EU
standards concerning fisheries management. The ‘yellow card’ is a formal notice signalling
that the exporting country does not take sufficient measures to tackle illegal fishing. In
case appropriate measures are not subsequently implemented, the country concerned will be
excluded from trade operations with the EU (European Commission, 2015); Thailand was
delisted in 2019 (IUUWatch, 2020). Illegal overfishing and fishing of endangered species are
two major sustainability concerns that the Thai fish industry must tackle to remain delisted
(European Commission, 2015). Illegal fishing is not a phenomenon exclusively concerning
Thailand but instead constitutes a global issue requiring immediate and decisive action. On
the business side, illegal fishing is a severe externality that threatens the entire industry (Ryan
et al., 2014). From a social viewpoint, as a typical example of an economic common good,
fish is ‘rivalrous’ (i.e., the consumption from one person excludes the consumption of another
person) and non-excludable (i.e., people who have not paid for it cannot be prevented from
having access to it). Overfished species have tripled in the last half-century, and one-third
of all fish stocks are no longer at their biologically sustainable levels (FAO, 2020). The
sustainability implications extend beyond the purely maritime ecosystem. Billions of people
depend on fish as a source of protein, and millions live from fishing (WWF, 2020).

A central problem in the legal action against illicit fishing activities is the lack of
transparency across the supply chain. Globally, many fishers do not comply with fisheries
legislation and can sell their catch on the market without proof of compliance (Macfadyen
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et al., 2019). Responding to the transparency challenge, AI and BCT have proven effec-
tive tools to reduce information asymmetry and increase transparency across supply chains
(Bumblauskas et al., 2020; Ebinger&Omondi, 2020). However, multiple and diversified data
archetypes often exist in end-to-end supply chains. Key challenges in implementing these
technologies are often related to limited processing capabilities of unstructured, incomplete,
and sometimes inaccurate data (Choi et al., 2020). Furthermore, a lack of systems think-
ing in supply chain participants can lead to significant challenges in implementing such
technologies in complex industrial contexts (Camaréna, 2020). To a greater extent, AI and
BCT implementations can leverage data to inform decision-making in business processes
and provide data-driven products and services. Therefore, the concept of ‘data monetisation’
emerges, i.e., “… using data from an organization to generate profit” (Faroukhi et al., 2020,
p.1). Data monetisation related to the traceability awareness of consumers and production
costs of suppliers and manufacturers has been investigated (Fan et al., 2022). Research find-
ings indicate that consumers aware of traceability are willing to pay a higher price in the
supply chain, up to a certain threshold where the traceability awareness impact diminishes
(Fan et al., 2022).

A key challenge to digital-driven traceability and sustainability in food refers to the lack of
appropriate information technology-based tools that can inform the design of supply chains
for agility and dynamic change (Klein et al., 2016). Therefore, digital implementations shall
emerge as knowledge-based activities (Yu, 2009), emanating from the empirical understand-
ing of complex enterprise phenomena at a conceptual modelling level (Guizzardi et al.,
2013). Concerning modelling, methodologies are required to rapidly redesign digital supply
chains to respond to the socio-technical and environmental developments whilst ensuring
data analysis, information flows, and operational understanding (Fayoumi & Loucopoulos,
2016).

This research aims to explore the interplay among AI, BCT and supply chain operations
that could promote sustainability and value delivery, with a particular focus on food networks.
We share the view that material flows, data-based transactions and information generation,
enabled through AI and BCT, can allow actors across the supply chain to monetise these data
(i.e., harness value). To this effect, the objective of this research is to devise a systematic anal-
ysis approach for understanding the interplay among digital implementations and the supply
chain ecosystem that allows for exploring the associated sustainability and data monetisation
opportunities. Therefore, we attempt to address the following research question: How can
the interplay of digital technologies in food supply chains be captured for sustainability and
data monetisation?

To respond to the articulated research query, we first employ business process mapping
and a Systems Thinking perspective to capture material, data, and information flows across
dynamic supply chain operations. As the implementation of AI and BCT can facilitate the
fundamental flows across an end-to-end supply chain, themapping process focuses on the role
of digital technologies. By applying such a mapping approach, this research represents the
dynamics and determines the performance of operations in an illustrative tuna manufacturing
supply chain. In particular, the business process mapping allows capturing the significant
key data elements to be visible (e.g., via BCT infrastructure) and interpretable (e.g., via
AI algorithms) to all involved stakeholders. Furthermore, the Systems Thinking perspective
provided the possibility to capture the interplay among the corresponding ‘AI-BCT-supply
chain’ structural elements and explore the underpinning dynamics.

Akter et al. (2022) stressed the need to investigate the combined use of emerging technolo-
gies in digital business transformation for operational excellence and sustainable growth. This
research contributes to the Operations Management field by proposing an empirically-driven
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framework that provides an understanding of the ‘digital technology – supply chain’ system
structure and the interplay between these two domains for proactively assessing the ema-
nating operations-wise benefits, responding to a documented gap in the community (Sodhi
et al., 2022). Specifically, this research’s findings guide the joint implementation of AI and
BCT in supply chains for leveraging these two technologies’ inherent synergic value and
inform supply chain managers’ expectations at the initial stage of these emerging technolo-
gies’ adoption. To the best of our knowledge, this is one of the first studies that highlight
the unique advantages emanating from the combined implementation of AI and BCT and
discuss the resulting sustainability and data monetisation gains in fish supply chains.

The remainder of this research is structured as follows. Section 2 overviews the research
background on AI and BCT in supply chains by highlighting benefits, implementation
challenges and sustainability implications. Section 3 details the underpinning research
methodology for designing supply chains based on AI and BCT. Section 4 outlines fish
supply chains and essential key data elements, while Sect. 5 elaborates on the case study of
the fishery supply chain ecosystem in Thailand. A proposed research framework is inserted
in Sect. 6. Conclusions, implications, limitations, and future research avenues are explored
in the final Sect. 7.

2 Artificial intelligence and blockchain in supply chains

The introduction of AI in supply chain management facilitates the orchestration and opti-
misation of network operations via: (i) revealing complex behavioural patterns through
multifaceted analysis of data (e.g., classification, optimisation, clustering); (ii) perceiving the
surrounding environment to inform autonomous activities and proactively address emerging
performance and quality issues; (iii) informing supply chain design, simulation and planning;
and (iv) enabling negotiation-based collaborative modelling (Toorajipour et al., 2021). More-
over, BCT is an application that enables “transparent, secure, decentralized ledgers, smart
contracts and reliable networks for sustainable supply chain management” (Kouhizadeh
et al., 2021, p.15). Therefore, this research proposes the joined and complementary imple-
mentation of AI and BCT to increase supply chain efficiency and sustainability, focusing on
the food sector.

In order to identify the extant research on the utilisation of emerging technologies, specifi-
callyAI andBCT, in the context of supply chains, we performed a critical literature taxonomy.
For this purpose, we conducted a structured Boolean-type keyword search in the Scopus
database (Aivazidou et al., 2016). Although we acknowledge that both the Scopus and Web
of Science databases cover the vast majority of scientific journals in the fields of business and
management, natural sciences and engineering that are relevant to this study (Mongeon &
Paul-Hus, 2016), we exclusively used the Scopus database for our literature search queries.
We focused on Scopus because it is a widely accepted database for searching and mapping
the extant literature (Fahimnia et al., 2019; Pournader et al., 2020). A systematic litera-
ture review extends the scope of this research. The Boolean keyword search was conducted
using the following combination in the “Article title, Abstract, Keywords” field: {“Artificial
Intelligence” AND “Blockchain” AND “Supply Chain”}. The search was further limited to
journal articles’ publications written in English. The time horizon of publications was left
unrestricted. By the 5th of January 2022, the search returned 36 results. After reading the
abstracts, nine papers were excluded as deemed irrelevant to the scope of this research. The
remaining 27 results are listed in Table 1.
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2.1 Artificial intelligence

As information becomes increasingly available throughout global supply chains, so do the
expectations for AI’s use of this information (Sanders et al., 2019). In fact, a study fromMcK-
insey estimated that AI analytics could add around US$13 trillion (or 16%) to annual global
GDP by 2030, while essential supply chain relevant operations (e.g., logistics, retailing)
could be benefited the most (Bughin et al., 2018). Accordingly, supply chains’ efficiency and
productivity are set to increase significantly due to the use of AI over the next decade. In the
supply chain spectrum, the introduction of AI implementations adds value by: (i) facilitating
supply network design and reconfiguration through vetting and classifying potential stake-
holders (e.g., alternative suppliers), facilities and technologies (Govindan et al., 2017); (ii)
analysing big data for explaining and assessing risks thus promoting supply chain resilience
(Papadopoulos et al., 2017); (iii) supporting near real-time, automated and optimal decision-
making via analysing large amounts of data from diverse sources (e.g., web, social media,
information systems of involved supply chain actors) to address uncertainty and demand
volatility (Baryannis et al., 2019); and (iv) enabling learning, reasoning and self-correction
of supply chain operations whilst promoting validation of information for particular purposes
such as contracting (Shen et al., 2019).

Contemporarily, creating sustainable global supply chains has emerged as one of the most
urgent yet unresolved industrial challenges (Dauvergne, 2020). End-to-end global supply
chain operations profoundly impact sustainability (Carter & Washispack, 2018). Most neg-
ative environmental impacts do not emerge from direct manufacturing operations but from
end-to-end supply chain operations that involve sourcing, distribution, production, and logis-
tics (Sanders et al., 2019). Althoughmany research scholars propagateAI as ground-breaking
for the design of ‘green’ supply chains, others see the implementation of AI in supply chains
as an acceleration of existing negative influences on sustainability.

This research acknowledges that the discussion on the advantages and disadvantages of
AI for sustainability can be conducted on many levels. To this end, Table 2 provides an
overview of frequently identified sustainability benefits and challenges stemming from the
implementation of AI in supply chains.

2.1.1 Sustainability benefits

The implementation of AI is recognised for enabling various operational benefits, such as
increasing productivity and efficiency (Camaréna, 2020; Cubric, 2020; Di Vaio et al., 2020;
Sanders et al., 2019), thus leading to increased economic sustainability. Indicatively, AI is
used to optimise the harvesting and processing of crops, e.g., by using drones with cam-
eras and machine learning algorithms to determine the decomposition rate of vegetables
(Camaréna, 2020). Additionally, AI supported by other constituent technologies facilitates
the sorting of food supplies whilst continuously monitoring the hygiene level across opera-
tions (Di Vaio et al., 2020). Similar benefits could also be achievable for the fishing industry
on multiple fronts, from monitoring fish harvesting and downstream industrial processing to
ensuring transparency and traceability across international trade operations (Tsolakis et al.,
2021). AI can further help reduce operational costs related to human errors, labour, and equip-
ment (Cubric, 2020) or costs related to fuel consumption for production and transportation
(Dauvergne, 2020). Except for the benefits at an (internal) operations level, AI has also been
identified to provide benefits for the end-to-end supply chain management. Such benefits
include improved customer demand management and forecasting (Cubric, 2020), increased
supply chain transparency (Ebinger & Omondi, 2020), decision-support on the pricing of
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products (Min, 2010; Sanders et al., 2019), and information sharing among supply chain
stakeholders (Chidepatil et al., 2020).

From a social sustainability perspective, transparency is one of the key benefits that AI
can deliver, particularly downstream a supply chain. For example, AI can inform customers
about making more conscious purchasing decisions towards responsibly sourced and pro-
duced goods due to the advanced data processing capabilities that allow tracing the upstream
supply chain to the rawmaterials stage (Chidepatil et al., 2020). Furthermore,AI-driven appli-
cations can contribute to social welfare; for example, socially assistive robots can decrease
the workload of caregivers and enhance the well-being of the elderly population by enabling
mobility, social contacts, and cognitive support (Cubric, 2020).

Moreover, the implementation of AI can help promote environmental sustainability. In the
energy domain, AI can contribute to reducing fuel consumption by increasing efficiency in
energy conversion and logistics. Furthermore, AI can provide efficiency and reliability gains
of renewable energies, e.g., by increasing weather forecast accuracy and fine-tuning energy
storage (Dauvergne, 2020).

2.1.2 Implementation challenges

The challenges for AI implementation comprise technical, ethical, legal, managerial, and
socio-economic considerations. A major technical challenge for adopting AI in business
operations relates to the availability and use of data. Data available to firms is often unstruc-
tured and difficult to share between the supply chain members. Structuring this data can be
very costly. Furthermore, the data used for a specific case might not be generalisable (Cubric,
2020). For example, problems can arise by (small) datasets, which do not accurately reflect
reality, or by overfitting the AI algorithm to the training data set. On the other end, a lack
of training data may lead to reduced performance of the elaborated AI algorithms (Cubric,
2020). In addition, a lack of standardisation of information can lead to difficulties in choosing
the right AI solution. There is a trend toward individualising companies’ digital solutions via
internal data architecture (Ebinger & Omondi, 2020).

Another challenge arising with the use of data for AI is the possibility of privacy rights
infringement. For example, using AI-enabled traceability of food products across a supply
chain by governments or competitors can inflict infringement on farmers’ privacy rights
(Leone, 2017). Furthermore, project datasets often contain confidential information, leading
to significant technical barriers to adopting AI-driven solutions in industrial applications.
Additionally, the application of AI may impose social problems with ethnical and racial pro-
filing. Indicatively, facial recognition algorithms in a shopping mall in St. Petersburg already
profile customers by age, ethnicity, and gender (Dauvergne, 2020), thus raising privacy con-
cerns.

In addition to ethical and legal challenges related to data, the implementation ofAI encoun-
ters significant barriers owing to the relative youth and broad spectrum of the discipline (Min,
2010). Due to the early development and application stage, many AI-based solutions are
demonstrated only in pilot/trial demonstrators and offer limited practical solutions (Ebinger
& Omondi, 2020). Accordingly, there is often a lack of managerial awareness about the
implementation benefits of AI in corporations (Cubric, 2020). In this regard, any AI-based
solutions might be complicated for decision-makers to comprehend (Min, 2010).

Lastly, despite the benefits stemming from the implementation of AI in an industrial
context, a range of significant social risks is involved (Di Vaio et al., 2020). As technologies
like autonomous driving are developing fast, unemployment issues for professional truck
drivers might arise in the long term (Sanders et al., 2019). The possibility of AI-driven
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solutions replacing human labour will exacerbate social and technical engineering tensions
(Camaréna, 2020).

2.2 Blockchain technology

Blockchain is a type of database that stores data in blocks distributed across a network of
operations in a decentralised manner. New data and information added by an actor across
a supply chain would be shared with the other actors almost instantly. The data blocks are
interlinked with a hash (i.e., cryptographic ‘fingerprint’) of all previous blocks.

Considering the food sector, blockchain implementation in supply chains is reasonably
nascent but growing since the technology enables digital ‘passports’ to physical products.
For example, Project Provenance Ltd uses the Ethereum blockchain to help producers prove
the authenticity and origin of yellowfin and skipjack tuna in fish supply chains in Indonesia
(Provenance, 2016). Furthermore, Intel piloted blockchain in seafood supply chains via using
Hyperledger Sawtooth (del Castillo, 2017). In addition, the World Wide Fund for Nature
also piloted the use of blockchain to trace fish from its origin, specifically focusing on the
tuna industry of the Pacific Islands (WWF, 2018). Lastly, FishCoin developed a blockchain
traceability platform for fisheries and modelled incentives for participants to share data in
return for tokens (Fishcoin, 2018).

2.2.1 Sustainability benefits

Blockchain creates opportunities for improving national sector-specific supply chains to
drive competitiveness, trade, and the triple-helix of sustainability (Kimani et al., 2020). In
terms of economic sustainability, for example, the World Trade Organisation expects that
the removal of trade barriers owing to the implementation of blockchain could result in new
trade operations of more than US$1 trillion during the next decade (Ganne, 2018). The EU
recognises the enabling role of BCT to supply chains and international trade, particularly in
terms of: (i) customs facilitation; (ii) greater inclusivity of small and medium enterprises;
(iii) sustainable trade realisation; and (iv) accelerated clearance processes at borders and
terminals thus minimising waiting times (Copigneaux et al., 2020).

In the social sustainability domain, BCT enables data security and immutability owing to
its technical characteristics that prevent modifying the shared data blocks without ‘breaking’
the chain (Babich & Hilary, 2020). In this regard, the implementation of BCT in a supply
network allows increased levels of traceability hence enabling importers’ judgement over the
responsible sourcing and processing of products (Copigneaux et al., 2020).

Experts also share the view that BCT fosters environmental sustainability in international
supply chain operations. Particularly, blockchain allows the digitalisation of trade documen-
tation, thus leading to less use of paper (Copigneaux et al., 2020). To a greater extent, BCT
can lead to fewer carbon emissions, e.g., by reducing the fuel consumption of freight vehicles
waiting at the borders (Copigneaux et al., 2020).

2.2.2 Implementation challenges

The practical use of BCT entails several organisational, technical, and operational challenges
and barriers that need to be overcome, including: (i) data storage capacity and scalability;
(ii) security weaknesses and threats; (iii) anonymity and data privacy; (iv) legal issues; and
(v) consensus among blockchain participants (Reyna et al., 2018).

123



Annals of Operations Research

From an organisational perspective, inter-organisational and intra-organisational barriers
to adoption exist, mainly including financial resources, organisational readiness, legal and
regulatory compliance, and standardisation (Dutta et al., 2020). Most importantly, the limited
awareness of professionals about blockchain hinders its adoption in supply chains (Kamble
et al., 2019). To a greater extent, behavioural expectations and limited trust among multiple
stakeholders in a supply network can imperil BCT implementation initiatives (Queiroz &
Fosso Wamba, 2019).

From a technical viewpoint, challenges for implementing BCT in supply chain operations
refer to scalability, interoperability, product governance, and latency (Dutta et al., 2020).
Considering the global operations in modern supply chains and the inclusion of multiple
stakeholders, from tier level suppliers to end consumers, the challenges of blockchain inte-
gration in supply chain operations are pivotal (Dutta et al., 2020). In addition, as BCT ensures
secure data transactions, the size of the data blocks is a key factor impacting the performance
and efficiency of such a digital platform (Li et al., 2019).

At an operational level, technological systems’ compatibility, adaptability, standardis-
ation, and expandability are the main challenges to BCT implementation across supply
networks (Sharma et al., 2018; Wang et al., 2019). Specifically, in the food sector, the modus
operandi typically requires myopic traceability involving only directly linked actors. How-
ever, the increased frequency of disruptions, food scandals, and product recalls have implied
the necessity for establishing chain visibility and traceability, possibly enabled via BCT, to
foster resiliency (Katsaliaki et al., 2021) ultimately. Nevertheless, this need to apply “diligent
and time-consuming bookkeeping and labeling by all members of a facility” is challenging,
particularly in the food sector (Bumblauskas et al., 2020, p.3). An engineering challenge
is also the energy supply and storage capacity of such devices (e.g., sensors’ battery life
longevity, servers’ energy requirements) to enable near real-time data gathering.

2.3 Artificial intelligence and blockchain technology integration

Considering that AI and blockchain are relatively nascent, real-world joint implementations
of these technologies are rare. Nevertheless, few scientific works theoretically discuss the
advantages and disadvantages of respective integrated solutions.

First, the integrated implementation of AI and BCT serves to overcome inherent limita-
tions characterising each of these individual technologies. On the one end, in the application
of AI, trustworthiness, explainability, and lack of sufficient data and privacy issues are often
significant barriers to implementation.On the other end, blockchain demonstratesweaknesses
in terms of scalability and efficiency. Therefore, the integrated implementation of both tech-
nologies can compensate for the individual weaknesses in a complementary manner (Dinh
& Thai, 2018; Rodríguez-Espíndola et al., 2020).

AI can provide efficient data-driven decision support for various business problems. How-
ever, complications in the flow of data and information across a supply chain can negatively
affect the performance of AI algorithms which require accurate, reliable, and timely input
(Rodríguez-Espíndola et al., 2020). Blockchain can ensure such flows by serving as a plat-
form for managing and sharing data and information from multiple sources whilst ensuring
the traceability and accountability of the flows (Dinh & Thai, 2018; Rodríguez-Espíndola
et al., 2020).

Data that is systematically stored on enterprise blockchains can eliminate a vast amount
of time in pre-processing and can inform supply chain decision-making. Dillenberger et al.
(2019) reported multiple real-world use cases around the IBM Blockchain Platform. For
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example, IBM’s data science tool IBM Watson Studio combined AI and BCT to optimise
logistics processes, i.e., to predict potential shipping delays using historical shipping,weather,
and location data. BCT enabled access to relevant structured data from the supply chain, while
AI could predict the delays based on this data. Furthermore, using BCT as a decentralised
platform to share data and information enables a more efficient allocation of resources in
need within the platform, where the prioritisation of stakeholders or destinations can be
supported by AI (Rodríguez-Espíndola et al., 2020). In addition, AI-driven decisions may
lack interpretability, leading to ambiguity and lack of implementation of analysis algorithms
as decisions cannot be trusted or verified by humans. Blockchain can help overcome this
challenge by ensuring the traceability of data processing and decisions throughout a supply
network (Dinh & Thai, 2018).

Vice versa, AI can benefit blockchain (Dinh & Thai, 2018). For example, AI can intelli-
gently maintain BCT, optimise and ensure the quality and robustness of smart contracts, and
automate malicious behaviour detection in the blockchain (Zheng et al., 2019). More pre-
cisely, AI-powered algorithms can detect failures and performance bottlenecks in blockchain
systems, and they can further be employed to detect bugs in smart contracts (Zheng et al.,
2019). Improving the security of the blockchain is significant to maintaining trust in the
technology. Prior cyber-attacks on blockchain-based systems, for example, the Decentralised
AutonomousOrganisation (DAO)or bitcoin gold, led to significant economic and reputational
damage. In the case of the DAO, hackers stole cryptocurrency worth about US$50 million
by exploiting the vulnerabilities of a smart contract that was used on top of a blockchain
platform (De, 2017; Dinh & Thai, 2018). Analytics using blockchain data can be used to
identify fraudulent or malicious behaviour of the respective users (Zheng et al., 2019).

In addition, AI can enable the storage of high quality and reliable information that can be
shared among stakeholders. A real-world example was presented by Chidepatil et al. (2020),
who investigated a case on plastic feedstock in collaboration with the Radical Innovations
Group Finland, a technology provider for Circular Economy solutions. Currently, chemical
feedstocks are preferred over recycled plastic feedstocks by manufacturers, mainly due to a
lack of information about the quality and availability of recycled plastics. The study results
showed that AI could help improve the information about recycled plastics in circular supply
chains. AI can train a system to recognise and segregate waste properly and generate relevant
information about the grade of the recycled material. The information is stored and shared
on a blockchain, thus improving the transparency of information about supply chain rele-
vant indicators, such as quality, suitability and availability of plastic feedstock, incentivising
stakeholders to move from virgin polymers to recycled materials.

The combined implementation of AI and BCT in a supply chain context can help over-
come inherent technical limitations. Thereafter, leveraging the synergistic action of these
digital technologies helps apply a dynamic decision-making process and foster operational
improvements to harness triple-helix sustainability benefits from preventing resources over-
exploitation to tackling fraudulent incidents, eliminating product recalls, and promoting
gender and cultural equality. Ultimately, the operational improvements driven by data-centric
decision-making directly promote data monetisation through cost reductions and profit gen-
eration (Bechtsis et al., 2021). Following the notion pertinent to the healthcare sector, the
gathered (anonymised) data could also be used as a source of income (Kamel Boulos et al.,
2018).
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2.4 Literature remarks

Our literature taxonomy revealed limited evidence on critical decision-making enabled by
the secure management of trustworthy data streams via BCT whilst ensuring real-time data
processing via AI implementations (Bechtsis et al., 2021). In the existing supply chain man-
agement research on AI and BCT, the two technologies are mainly viewed in isolation, and
the benefits of their combined use remain largely unexplored. Furthermore, most studies
focus on technical aspects of these technologies per se, whilst the supply chain implications
are often only superficially discussed.

The majority of extant studies are literature reviews that discuss AI and BCT under the
umbrella of digital technologies; case studies that explore the benefits of jointly implement-
ing the two technologies for different purposes such as supply chain optimisation or waste
prevention are scant. Especially, our literature review showed that only five works discuss the
joint implementation of BCT and AI in the context of supply chain management. It becomes
evident that the nascent area of sustainability, coupled with transparency and traceability
as thematically related sub-areas, is gaining importance to motivate consumers’ trust (Shen
et al., 2022). Nevertheless, the food sector is still under-researched as a safety-critical and
sustainability-relevant area. We recognise this research gap and argue that the joint imple-
mentation of AI and BCT has the potential to address the problem of data and information
accessibility in food supply chains to promote operational efficiency, sustainability, and value
delivery. In this respect, this research proposes a framework for the integrated implementa-
tion of AI and BCT in food supply chains as a pathway to the triple-helix of sustainability
and data monetisation.

3 Methodology

Considering that this research shall develop a practical framework for implementing AI and
blockchain in supply chains, the object of scrutiny has to be a real-world case study (Gibbert
et al., 2008). The theoretical lens and the research approach based on which this study was
conducted are described in the following sub-sections.

3.1 Theoretical lens

In the complex and dynamically changing global business landscape, to assess the digi-
tal transformation of supply chains for sustainability and data monetisation, this research
adopted the lens of Proudlove et al. (2017). The latter described two pertinent stages: (i)
conceptualisation of the business processes along with the material, data, and information
flows; and (ii) coding of the conceptual model for enabling real-time simulations to inform
potential structures of the underpinning flows, assess alternative scenarios and inspire policy
debate.

First, an “activity-based” approach is required to map supply chain operations as building
blocks and ensure consistency in the understanding and interpretation of processes and flows
(e.g., material, data, information) among all stakeholders (Holweg et al., 2018). In this regard,
we adopted the principles of the Business Process Model and Notation (BPMN), which is a
formalised modelling language for conceptually mapping internal business procedures in a
standardised manner (OMG, 2014).
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Second, owing to the dynamic nature of food products’ characteristics and the pillars of
sustainability and the associated performance, managers shall be able to consider supply
chain operations over time (Sterman, 2000). To this effect, we used Systems Thinking to
comprehend the underpinning interactive relations of such a complex system (Forrester,
1961), and we complementarily leveraged System Dynamics to develop a time-dependent
view of its behaviour (Machuca, 1998). System Dynamics is a method that has been proven
successful in policy-making, strategy decision-making and scenario planning (Srai et al.,
2022) and could be employed to model the feedback loops that determine the dynamic
behaviour of digitally enabled supply chain operations. The role of System Dynamics as a
structural theory to explain, analyse and understand operations phenomena is well recognised
(Größler et al., 2008).

The use of System Dynamics as the logic of enquiry in assessing alternative policy sce-
narios over the environmental and economic sustainability dimensions of food supply chains
has been widely applied in the extant literature, such as in the case of water footprint in the
UK poultry sector (Tsolakis et al., 2018). Thereafter, System Dynamics-based causal-loop
diagrams can be interpreted into simulation models based on stock-and-flow diagrams to:
determine and approximate material inventories, identify key data elements and information
sources, analyse model parameters, assess the impact of alternative supply chain structures
and operations (enabled by AI and BCT joint implementations), and articulate a portfolio of
alternative material, data, and information flows.

Ultimately, the integration of these approaches, in terms of conceptual modelling and
simulation structuring, leads to articulating a framework for supply chain ecosystems that
aim toward sustainability and data monetisation enabled by AI and BCT implementations
(Fig. 1).

3.2 Research approach

As this research aims to propose a practical framework emanating from theoretical foun-
dations, a case study research approach was adopted (Yin, 2003). In this regard, the case
of the Thai fishery industry was selected as an appropriate paradigm for the potential joint
implementation of AI and BCT due to the need to tackle challenges pertinent to the Sustain-
able Development Goals of the United Nations and improve the export outlook of this Thai
industry (Tsolakis et al., 2021). Figure 2 illustrates the methodology process flow that was
applied in this research.

3.2.1 Empirical evidence

In order to identify supply chain operations, pertinent key data elements, and material and
information flows necessary for exploring the behaviour of a system combining AI and BCT,
expert interviews and physical walkthroughs were conducted in Thailand, as detailed in
Table 3. In particular, thirteen open-ended interviews with experts in the Thai fish industry
and three physical walkthroughs in related multinational organisations were conducted to
map the respective supply chain processes and identify the potential for joint implementation
of AI and BCT. The selected informants covered the main stakeholders in the Thai fish
industry ecosystem and are classified into seven key categories of actors, including fishermen,
traders, processors, wholesalers, technology providers, certification organisations and the
government. The number of engaged experts is deemed sufficient as it enables to holistically
collect information through different perspectives such as processes, technical, social, and
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Table 3 Empirical research approach and data gathering mechanism

Research approach Data gathering mechanism Description

Expert interviews Thai fish ecosystem
qualitative, open-ended interviews
(recorded and transcribed) – 13 Experts

1 Vessel owner
1 Seafood trader
2 Seafood purchasing managers (a pro-
cessor and a wholesaler)

6 Managing directors of tech providers
1 General manager and auditor of the
Marine Stewardship Council

2 Government officers

Digital technologies & supply chain man-
agement

qualitative, open-ended interviews – 4
Experts

4 Digital technology and supply chain
managers (for validation purposes)

Field observations Physical walkthroughs in multinational
organisations

2 Fishermen in commercial fishing oper-
ations

1 Processor

legal issues. The triangulation of data available from different experts (along with the used
secondary evidence) within the same system helped address bias phenomena stemming from
the interview process, ensuring the quality of the research findings (Yin, 2009). The protocol
used to conduct the semi-structured interviews is inserted in Appendix 1.

For validation and verification purposes regarding the feasibility of the envisioned AI
and BCT implementation framework in supply chains, we consulted four digital technol-
ogy and supply chain experts with long-standing experience in digital transformation and
advancements within network operations.

Empirical evidence was gathered from a single fish industry case study involving experts
fromdifferent business echelons inThailand.Notwithstanding the generalisability limitations
of single case study research (Voss et al., 2002), the related focus provides unusual research
access (Yin, 1993) and the range of involved informants allows the in-depth exploration
of the studied phenomenon (Gobbi & Hsuan, 1995). Furthermore, single case studies are
recommended to examine novel interventions such as AI and BCT.

3.2.2 Supply chain mapping

In order to understand the fish supply chain operations and the respective material, data, and
information flows, we mapped the current state of the Thai fish ecosystem by combining
primary and secondary evidence. We performed interviews and physical walkthroughs to
observe and comprehend supply chain operations in the industry (Srai, 2017).

Understanding the current state of operations is essential to outline a future state
emerging from the joint implementation of AI and BCT. To this effect, supply chain
mapping was selected as an appropriate approach to capture the operations and the mate-
rial/data/information flows in the Thai fish ecosystem of operations (Srai, 2017). The entailed
business processes are the conceptual building blocks in the developed supply chain mapping
diagrams (Holweg et al., 2018).

Considering the research scope on AI and BCT, an inherent need to ensure consistency
with established information technology-based reference frameworks existed. Therefore,
to ensure such consistency, we selected the BPMN as an approach to notate operations
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and the associated material/process/data/information flows. In particular, the OMG BPMN
2.0 was selected, which is typically used to model business processes to inform processes’
implementation. The BPMN is specified in detail by the ISO/IEC 19,510:2013 and the OMG
Specification v2.0.2 (http://www.omg.org/spec/BPMN). Rosing et al. (2014) provided an
operational summary of the formalisations used to develop BPMN diagrams.

3.2.3 System conceptualisation

Following empirical evidence gathering, in tandemwith the literature analysis onAI andBCT
implementations, we adopted the Systems Thinking view (Forrester, 1961).We used the prin-
ciples of System Dynamics to depict, explicate and comprehend the interplay of these digital
technologies and supply chain operations for sustainability and data monetisation (Meadows,
1980). System Dynamics has been proven successful in capturing the sustainability impact
of food supply chains involving commodities such as phosphorus (El Wali et al., 2021), milk
(Mangla et al., 2021) and wine (Taghikhah et al., 2021).

Digital technologies such as AI and blockchain are within the scope of System Dynamics
modelling (Bhattacharyya &Nair, 2019). In addition, such digital interventions are useful for
investigating the dynamics of systems like supply chains (Afanasyev et al., 2022). Therefore,
we captured the structural interdependencies among AI, BCT, and supply chains through a
group model building process grounded in the System Dynamics literature (Vennix, 1996).
The resulting causal loop diagram is a qualitative system map that visualises the ‘AI-BCT-
supply chain’ system constructs, structural elements, and interrelations. We envision that this
view provides an essential, actionable framework in Operations Management.

4 Fish supply chains

Fish products are essential for global food and nutritional security (FAO, 2020). Nevertheless,
a range of factors may have a detrimental impact on the global supply of fish products,
including: (i) growing global demand for seafood; (ii) emerging role of fish in human diets;
(iii) increasing economic considerations of national and global fish trade; (iv) increasing
fraudulent incidents regarding fish safety and quality; and (v) elevated consumers’ awareness
about fish provenance and authenticity (Gopi et al., 2019). Therefore, interventions to improve
tracking and tracing of fish supplies to prevent bad practices are required to help build
consumer trust, reduce fraudulent incidents and product recalls, improve public health, and
generally enhance the triple-helix of sustainability in the industry (Velez-Zuazo et al., 2021).

Technology-enabled traceability and analytics are even more prominent for the Thai fish
industry, considering that the national exports of fish and fishery products are valued at
approximatelyUS$6.3 billion per year (Suwannapoom, 2021). A few years ago, the European
Commission issued a yellow card to Thailand and temporarily stopped any fish imports from
the country due to the magnitude of illegal, unreported, and unregulated fishing activities
(European Commission, 2015). Therefore, implementing an end-to-end supply chain system
for seafood tracking and tracing enabled by AI and BCT could modernise the sector and
foster export opportunities.

Fish supply chains are complex ecosystems involving a plethora of stakeholders (Fig. 3).
At an operational level, the main material flow across the respective supply chain is seafood.
However, secondary material flows also involve various products supplied by tier-level sup-
pliers, including packaging materials and other food ingredients. At a policy-making level,
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Fig. 3 Generic fish supply chain structure and process flow Source: adapted from Zhang (2014)

in a fish supply chain ecosystem, governmental authorities and external certification organ-
isations, such as the Marine Stewardship Council, ISO or HACCP, are involved in the
management and audit of the respective supply chain processes (Aung & Chang, 2014).
The stakeholders engaged in the supply chain would have to comply with the regulations and
standards set by these organisations to be allowed to involve in domestic and/or international
trade activities.

4.1 Digital technology challenges

Key technology-wise challenges in fish supply chains can be divided into three main cat-
egories: (i) inconsistencies in traceability standards; (ii) limited interoperability among the
involved technology systems and databases; and (iii) limited trust among network actors.

First, it is challenging to implement a reliable full-chain traceability system in fishery sup-
ply chain ecosystems because this would require commitment and collaboration from every
actor in the value chain to consistently provide reliable and accurate data and information
(Global Dialogue, 2016). Many firms in seafood supply chains articulate that inconsistent
global technology and traceability standards are significant obstacles to enabling full-chain
traceability (Sterling et al., 2015). Quality standards and systems such as Good Manufactur-
ing Practices, ISO 9001 or HACCP are widely accepted and implemented internationally to
prevent food adulteration, product recalls, or safety hazards that may compromise consumer
safety. However, these standards do not specify requirements for food supply chain traceabil-
ity but rather determine operational practices during food processing; collected data is not
communicated across the supply chain. Instead, regulations regarding product recalls often
represent the only mandatory requirement for food traceability (Thompson et al., 2005). The
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requirements typically vary between countries and often provide minimal clarity on indi-
vidual operators’ roles to ensure traceability or are non-existent (UK FSA, 2017). At the
same time, global supply chains are positively related to product recalls due to information
asymmetry between actors and lack of product traceability (Steven et al., 2014), indicating
that a lack of harmonised requirements for traceability may manifest in compromised con-
sumer safety. For example, the lack of supply chain traceability standards and associated
risks became evident through high profile recall incidents such as the horsemeat scandal,
which led to a tidal wave of media responses and the withdrawal of contaminated processed
food. The recall occurred when food processing companies unwittingly sourced horsemeat
from Eastern European suppliers and incorporated it into their products (Falkheimer et al.,
2015).

Second, interoperability, i.e., “the ability of different information technology systems and
software applications to communicate, exchange data, and use the information that has been
exchanged” (HIMSS, 2013), is a critical issue in fish supply chains considering the nature of
the traded commodity and the high complexity of the network. The complexity of fish supply
chains is characterised by the global dispersion of the respective network and the diversity of
actors involved, including fishers, buyers, processors, wholesalers, transporters, and retailers
(Thompson et al., 2005). Extant research suggests that supply chain complexity exacerbates
its interoperability due to the heterogeneity of interfaces and characteristics that define the
supply chain (Chalyvidis et al., 2013).

Third, both industry actors’ and consumers’ limited trust is another key challenge in the
sector. Data availability and information signals can be disregarded in case the data cannot be
trusted. Industries depend on certification organizations such as ISO,MSC or governments to
verify information related to fish supplies (Global Dialogue, 2016). However, certifications
are costly, while audits are performed periodically (usually on an annual basis). In addition,
investigations regarding certification practices in fish supply chains could lead to further
controversy about the trustworthiness of the elaborated ecolabels (McVeigh, 2021).

4.2 Key data elements

The quality of a traceability system, like blockchain, depends on the ability to collect and
analyse necessary data from diverse sources. Different standards have different requirements,
but generally, most standards, such as the EU Regulation 104/2000 and the EU Regulation
2065/2001,would require companies to record the species of origin, catch area and production
method (European Commission, 2009).

Other standards, such as the TraceFish, document the necessary key data elements in fish
supply chains. TraceFish standards were funded by the European Commission and coordi-
nated by the Norwegian Institute of Fisheries and Aquaculture (Fiskeriforskning) to focus
on developing a ‘Traceability of Fish Products’ (Andre, 2013). At the end of the project
in 2002, CEN, the European Committee for Standardisation, published three standards that
specify key data elements for fish supply chains. Particularly, TraceFish stressed the need for
labelling based on unique identification numbers for all resources and end-products (Andre,
2013).
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5 Thai fish supply network ecosystem

The fish supply network ecosystem in Thailand involves operations at three different ech-
elons: (i) commercial fishing; (ii) trading; and (iii) canning, which were identified as part
of our ongoing research (Tsolakis et al., 2021). We excluded the local fishing operations
from our analysis, despite their significant aggregated scale in terms of business operations
magnitude and volume, since no data recordings are officially required by local fishermen.
We further assumed that the canned fish manufacturing operations rely on the procurement
of fish supplies at scale, which is feasible only via commercial fishing activities.

5.1 Data capture and traceability

First, in terms of data capture at the commercial fishing operations echelon, the data sources
refer to the Vessel Monitoring System (i.e., Global Positioning System tracker) and a vessel’s
logbook. Every commercial vessel is regulated to have an installed and updated Vessel Moni-
toring System. Therefore, the recorded data can be deemed neither sufficient nor reliable due
to: (i) the possibility of intended/unintended malfunctioning equipment; (ii) the absence of
data-recording standards; and (iii) the lack of automated data gathering mechanisms. Indica-
tively, 20% tolerance on the weight of fish catch is allowed to fishermen by governmental
regulations, while manual recordings of endangered fish species caught are not reliable. Fur-
thermore, the fish catch is preserved in buckets that are manually filled with ice, but the cold
storage temperature and fish freshness are not monitored during a vessel’s journey, which can
last several days (i.e., 15–20). A photographic copy of the logbook is mandatory to be shared
with arrival port authorities; however, this format does not allow the automated extraction of
data related to the performed fishing activities.

Second, during trading, the unloading of the fish occurs on a metallic platform exposed
to open-air environmental conditions. In addition, the weighting of the fish is performed via
potentially decalibrated or malfunctioning equipment (i.e., a typical scale), while the sorting
of the fish is manually performed with every sorting container receiving handwritten paper-
based labelling. The pricing of the sorted fish is determined via auctions that might not reflect
the actual value of the traded commodities (e.g., fish freshness, skin damages).

Third, at the manufacturing stage, the inbound tuna is manually sorted by weight and
quality control inspections are based on random sampling. Downstream the processing stage,
data capturing occurs systematically due to the proprietary industrial production equipment
(e.g., batch number). However, the only tracing element refers to the vessel that caught the
tuna, while the place of origin is not recorded.

5.2 Artificial intelligence and blockchain in operations

Considering that this research envisions the future state of supply chain operations in the
Thai fish industry enabled by AI and BCT, it is first essential to capture specific features
of the fish supply network ecosystem based on the investigated businesses and comprehend
unit operations performed at existing sites. Second, it is required to clarify the role of AI and
BCT implementations in data and information according to the intended operational objec-
tives and strategic commitments. Knowledge about the current state of operations helps to
comprehend the underpinning material and information flows and identify key data elements
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that digital technologies could gather, process, share and analyse to ensure transparency, vis-
ibility, tracking and tracing. Third, the supply chain impact needs to be depicted and revised
based on the global operations and business landscape developments.

Therefore, we argue that the future state of fish supply chains, enabled by the joint imple-
mentation of AI and blockchain, has to be considered across three levels: (i) supply network
ecosystem; (ii) AI and BCT implementation; and (iii) supply chain impact. The respective
business process map of the Thai fish supply chain ecosystem enabled by AI and BCT is
illustrated in Fig. 4.

At the first level, ‘Supply Network Ecosystem’, the supply chain operations are captured,
including: (i) commercial fishing operations; (ii) trading; and (iii) canned tunamanufacturing
(Tsolakis et al., 2021). Most importantly, key data elements that are being recorded (basically
manually) are captured to inform the AI and BCT system. Although research on ‘Supply
Network Ecosystems’ appears to be scarce and currently under development (Barbieri et al.,
2021), applying a broader view on the supply chain related to the operations of individual
actors has already shown to be an effective approach to assess sustainability in various
dimensions (Hohn & Durach, 2021).

At the second level, ‘Artificial Intelligence & Blockchain’, identified key data elements
can be gathered in a common database and shared across all partners via BCT. In this regard,
data collected via blockchain primarily concerns inter-organisational data between upstream
and downstream participants, either public or private, that actors are inclined to share and help
synchronise the network operations (Wang et al., 2021). Therefore, AI can complement BCT
by gathering near real-time public domain data to supplement the existing data and informa-
tion flows. Considering that in the current state of operations, integrated data capture, data
consistency and data interoperability archetypes are not being applied, AI algorithms could
facilitate such data-related processes (Dillenberger et al., 2019). Furthermore, AI algorithms
could enable automated data collection, triangulation, and validation (Kudashkina et al.,
2022; Tiwari & Khan, 2019). In addition, AI algorithms may enable analyses of the data
flows to detect possible disruptions (e.g., related social media posts) and inform about the
agile configuration of the supply chain (e.g., identify reliable alternative suppliers) (Bottani
et al., 2019).

At the third level, ‘Supply Chain Impact’, the output of AI and BCT implementations
enables informed decision-making, allows accountability, and enhances collaboration and
coordination across end-to-end supply chains (Rodríguez-Espíndola et al., 2020). Optimal
dynamic decisions about operational aspects such as distribution and inventory management
ensure improved network performance regarding service level, quality control, timeliness,
and inventory position. Therefore, improvements in resources appropriation, lead times,
wastage, and product recalls are achieved, ultimately leading to sustainable performance
(Tsolakis et al., 2021). The improved efficiency further enables the delivery of value, both
upstream and downstream of the supply chain, thus supporting competitiveness and driving
data monetisation (Bechtsis et al., 2021).

5.3 Interplay between digital technologies and supply chain operations

The complexity and non-linear behaviour of the digital-enabled fish supply network system
are captured through a causal loop diagram developed based on the principles of System
Dynamics. Causal loop diagrams have been successfully used as a mapping approach for
capturing the macro-level interactions among essential structural elements of future state
supply chains (Tsolakis & Srai, 2018).
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The underpinning interrelations between the ‘AI-BCT-supply chain’ digital technology
system and the supply chain system are captured through feedback loops. Feedback loops
capture sequences of causes and effects transcending every loop (Georgiadis & Vlachos,
2004). Across each loop, system variables experience either an increase (represented by a
positive polarity, “ + ”) or a decrease (represented by a negative polarity. “ − ”). Therefore,
the entire loop, comprising of a sequence of interrelated system variables, is ultimately
characterised as either reinforcing (denoted as “R”) or balancing (denoted as “B”). Based
on the literature findings and our empirical research, we synthesised the interplay among all
components of the ‘AI-BCT-supply chain’ system in the form of a causal loop diagram.

Overall, the causal loop diagram of the investigated ‘AI-BCT-supply chain’ system, vali-
dated by technology experts and operations managers, comprises 94 feedback loops (Fig. 5).
The overall validation and verification process described earlier provided confidence in the
relevant system considerations and the potential implications of AI and BCT implementa-
tions on the sustainability of supply chains and data monetisation. The conceptual system
model was built using the Academic version of the System Dynamics simulation software
Vensim® PLE (× 64). However, 81 loops consider AI and BCT, of which 18 are reinforcing,
and 14 are balancing. Furthermore, there are 49 pertinent loops where the effect depends
on set objectives and parameters. Indicatively, in the reinforcing loop R1, the larger the
‘Blockchain Data Transactions Volume’, the greater the ‘Artificial Intelligence Data Process-
ing Rate’ to process the available data in a timely manner. The intensity in AI-based analytics
generates greater output in terms of quality that improves ‘Decision-making Effectiveness’.

Fig. 5 Causal loop diagram of the Thai fish supply network system enabled by Artificial Intelligence and
blockchain technology
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Such informed decisions then guide targeted and accurate ‘Interventions for Operational
Improvements’ that help deliver elevated value and promote ‘Data Monetisation’ across all
echelons of operations, such as on the ‘Fish Processing Rate’. Operational improvements in
the respective processes necessitate the more systematic monitoring and gathering of ‘Key
Data Elements Volume—Fish Processing Operations’, thus leading to increased ‘Blockchain
Data Transactions Volume’.

Similarly, in the balancing loop B1, increased ‘Blockchain Data Transactions Volume’
requires increased ‘Artificial Intelligence Data Processing Rate’ for enhancing ‘Decision-
making Effectiveness’ based on the magnitude of the generated data analysis insights.
Informed decision-making then leads to targeted ‘Interventions for Operational Improve-
ments’ that generate value and ‘Data Monetisation’ for the ‘Fish Processing Rate’, thus
increasing the ‘Canned Tuna Fish Units Inventory’. However, the higher the inventory level,
the lower the ‘Canned Tuna Inventory Discrepancy’, leading to increased ‘Fishing Orders’
and greater ‘Commercial Fishing Operations Rate’. Following that, intensified fishing oper-
ations lead to greater ‘Key Data Elements Volume—Fishing Operations’ that increase the
‘Blockchain Data Transactions Volume’. A list of the 81 feedback loops governing the sys-
tem’s behaviour, enabled by AI and BCT, is inserted in Appendix 2.

Notably, the systems map demonstrates that AI and BCT implementations can have a
significant role in the operational performance of food supply network systems, as 81 out of
the total 94 feedback loops are based on the pertinent variables. However, the sustainability
and data monetisation impact stemming from the implementation of AI and BCT depends
on the objectives and parameters set by the supply chain stakeholders, as denoted by the 49
loops with unspecified polarity.

6 Artificial intelligence and blockchain in supply chains: a unified
framework

The design of modern and complex supply chains, specifically in the food sector, primarily
involves existing data structures and technology specifications utilised by every involved
stakeholder. However, data consistency, data capture, systems compatibility, data inter-
operability, and data architecture related issues pose significant technical barriers to the
coordination and synchronisation of network operations (Tsolakis et al., 2021). Considering
the limited visibility of unexpected/emergent situations and risks (e.g., Suez Canal blockage)
and contemporary developments (e.g., raw material price fluctuations), supply chains could
benefit from jointly adopting digital technologies such as AI and BCT.

First, the implementation of BCT, supported by an extended network of sensory infras-
tructure (e.g., radio-frequency identification), and AI shall be used complementarily (Babich
&Hilary, 2020) to enable automated and tamper-proof data gathering and analysis. The com-
bined implementation of digital interventions can help overcome inherent technical barriers
of the supply chains, complement the capabilities of the individual technology applications,
and drive sustainable performance and data monetisation, specifically within the context of
volatility, uncertainty, complexity, and ambiguity in global supply chain operations (Bechtsis
et al., 2021).

Second, the case study analysis results revealed that the combined implementation of AI
and BCT provides multiple unique advantages to fish supply chains that lead to sustainability
performance improvements. Notably, AI and BCT can enable the reduction of data gaps.
This advantage results from integrating supply chain internal data streams through BCT and
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external data streams through AI. While BCT enables immutable data flows across nodes in
end-to-end supply chains, AI supports collecting and evaluating data from external sources.
Considering the improved data availability enabled by these technologies, we support that the
near real-time analysis of supply chain system data and information flows enables security,
operational efficiency, and productivity (Ekramifard et al., 2020), which ultimately foster
sustainable performance (Pimenidis et al., 2021).

Third, our results further showed that AI enables data interoperability by overcoming
sources of data inconsistency caused by supply chain complexity and diverse data recording
and sharing archetypes and protocols. AI can integrate inconsistencies due to misaligned
interfaces in the supply chain. Tackling inconsistencies is critical as the lack of data inter-
operability is still considered one of the significant barriers to BCT adoption for supply
chain-related purposes (Dutta et al., 2020). Lastly, we showcased that streamlining internal
and external data can help overcome an essential barrier to adopting these technologies: a lack
of data monetisation for increasing economic efficiency. Data monetisation primarily stems
from devising realistic market and operations scenarios and informing the decision-making
process, leading to enhanced competitiveness.

Pertaining to this efficiency, transparent and traceable production enables improvements
in fair and ethical procurement, responsible handling, and conservation of resources by
reducing illegal, unreported, and unregulated fishing. Demand and supply data can then be
used to evaluate more efficient trading/wholesaling processes by optimising pricing whilst
enabling sustainability considerations (e.g., fish freshness). In addition, a more transparent
fish supply chain provides the basis for operational efficiency, for example, by improving
material/product handling conditions and thus ensuring downstream health and safety of
consumers. Figure 6 illustrates the method-agnostic unified framework for supply chain sus-
tainability and data monetisation enabled by the joint implementation of AI and BCT.

Fig. 6 Supply chain ecosystem framework, enabled by Artificial Intelligence and blockchain, for sustainability
and data monetisation
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7 Conclusions

The digitalisation of food supply chains can help transparency and traceability while driv-
ing sustainable performance and data monetisation. As the decision-making process in food
supply chains takes place on three levels, i.e., strategic, tactical, and operational (Tsolakis
et al., 2014), data sharing and analysis should be performed at every echelon where the most
pertinent value benefits are applicable. To a greater extent, data integration, data analysis and
data/information sharing can inform the decision-making process about supply chain objec-
tives whilst ensuring data monetisation. Our findings help respond to the enunciated research
query by investigating a real-world fish supply chain and providing a business process map
capturing the pertinent material, data, and information flows, followed by a systems map
visualising the underpinning interrelations enabled through the joint implementation of AI
and BCT in operations. The proposed unified framework summarises the key data elements
that need to be recorded, shared, and analysed across the main echelons of a food supply
chain as a basis for successfully implementing AI and BCT in operations.

7.1 Academic contributions

Our research contributes to the Operations Management field by proposing a framework for
the integrated implementation of AI and BCT to overcome the inherent limitations of these
digital technologies. The framework implies the use of static in nature mapping tools (e.g.,
BPMN), while dynamic phenomena and the complex nature of the supply chain ecosystem
can be captured through systems approaches (e.g., System Dynamics).

Our analysis output suggests that the processing level of data is not being captured on
the blockchain, which has a significant impact on achieving sustainable goals. To this effect,
the importance of data analytics, involving System Dynamics and machine learning, as a
key element of BCT implementation is particularly emphasised to inform real-time decision
making for sustainability and datamonetisation. This particular area of information generated
from diverse data sources has not been comprehensively studied in the extant literature.
Furthermore, our systems map demonstrates that the behaviour of a ‘digital technology-
supply chain operations’ system is mainly dictated by the applied digital technologies and
the operational objectives. This observation about system interactions was revelatory to the
research team and the involved experts.

Although the topic of the individual implementation of AI and BCT has been explored
in the extant body of the Operations Management literature from a theoretical perspective
to the best of our knowledge, this research is the first to provide an understanding of the
‘digital technology-supply chain operations’ system structure and the underpinning interplay.
Moreover, the combination of business process and systems mapping provided confidence
in the relevant considerations while unveiling the approach’s revelatory power.

7.2 Practical implications

Overall, the output of the iterative mapping process led to the realisation of the following
aspects of the Thai fish supply chain:

• An overarching view on key industrial/institutional actors and primary value-adding oper-
ations.

• A product perspective is emphasised through respective material flows.
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• Key data elements (or data triggers) enable the tracking and tracing of fish supplies and
seafood throughout end-to-end operations.

• A business process perspective indicates relevant material, data, and information flows.
• A systems perspective reveals the system interactions that dictate sustainability and data
monetisation.

Specifically, the findings of our case study first highlighted the weaknesses in the fish
supply chain and revealed opportunities for driving sustainability and data monetisation in
fishery ecosystems. As a critical outcome of our empirical engagement with experts, we
observed that neither data-sharing nor visibility mechanisms exist across the three identified
levels of operations, namely: (i) commercial fishing; (ii) trading; and (iii) canning. The
observed manual data capture and recording mechanisms, and communication thereof, are
considered neither sufficient nor reliable for transparency, traceability, sustainability, and
data monetisation purposes.

Second, it is evident that a mere analysis of the data in standardised formats, like the pro-
posed BPMN diagram, is only the first step in introducing digital interventions. Investigating
the underpinning interplay among material, data, and information flows, enabled by AI and
BCT implementations, can help inform operational interventions that foster sustainability
and data monetisation.

Third, the proposed unified framework captures the key data elements that need to be
digitally handled inAI andBCT enabled supply chain operations in the food sector for driving
value delivery. Finally, in line with the observations of Choi (2020) for the banking sector,
we further argue that the combined implementation of AI and BCT can assist certification
bodies in their functional role, thus possibly reducing the respective service fees.

7.3 Limitations

This research is characterised by limitations that could motivate future research. First, the
proposed framework is based on empirical evidence from a single case study of the Thai fish
industry. Therefore, additional case studies in the food sector (fromboth developed and devel-
oping countries) need to be investigated to validate and improve the proposed framework.
Further case studies will allow the generalisability of our framework whilst capturing and
unveiling any additional idiosyncratic elements of the food industry. Second, in the context of
our fieldwork, some fishermen hesitated to provide information on fishing methods and data
records. This hesitancy may be attributed to the fact that fishermen did not implement the
rapid changes in institutional regulations in a timely manner. Third, our research approach
focuses on the operations-wise implications of AI and BCT implementations without delving
into the technical details.

7.4 Future research

Despite the blockchain-related benefits for supply chains, businesses are still sceptical about
adopting digital technologies in operations due to consumers’ limited appreciation of the
merits of AI and blockchain, and the high technical complexity and implementation cost
(Kumar et al., 2019). Future studies will expand our focus from the fish supply chain to the
agricultural sector in terms of system efficiency and sustainability, especially concerning lim-
ited natural and business resources such as water (Aivazidou & Tsolakis, 2021). In addition,
the barriers to the implementation of AI and BCT through data privacy concerns identified in
this study will motivate new research ideas for the implementation of these technologies in
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terms of data ownership, which will further explore the trade-off between information losses
and privacy protection.

Finally, there are research opportunities for implementing AI and blockchain in indus-
tries other than the agri-food sector, such as the automotive, pharmaceutical, and aerospace
industries. The proposed framework for the combined implementation of AI and BCT will
ultimately need to be actively tested in a pragmatic context to investigate the impact of supply
chain design, configuration, and management on the functionality of these technologies in
an industrial context.
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Appendix 1

Interview protocol

In order to conduct the semi-structured interviews, a series of questions were designed,
focusing on the Key Data Elements used by the engaged Thai fish supply chain stakeholders
for traceability purposes. The questions were open-ended and revolved around the issues:

• Is there an established fish traceability system across your operations?
• What is the data recording method used in your operations (e.g., paper-based, barcode,
RFID)?

• What are the Key Data Elements recorded in your operations?
• How are the Key Data Elements recorded (e.g., manually, automatically)?
• Is there a data-sharing system between fish supply chain stakeholders?
• In what ways can blockchain transform the fishery industry?
• What are the key implementation challenges of digital traceability and transparency tech-
nologies in the fishery industry?

Following the interviews, data collectionmethodswere evaluated by participating in phys-
ical walkthroughs, observing the process, and analysing whether it can be verifiable. The data
collected from the case studywas comparedwith the list of KeyData Elements recommended
by TraceFish (i.e., an acceptable standard in the industry and a standard that focuses on fish-
ery) to determine the completeness of every stakeholder’s data set. An indicative tool used
to collect detailed information requirements in a structured manner from the engaged fish
supply chain stakeholders is inserted in Table 4.
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Appendix 2

System dynamics model structure

Table 5 inserts a list of the 81 feedback loops governing the supply chain system’s behaviour,
enabled by AI and BCT.

Table 5 Structure of the feedback loops of the system’s causal loop diagram.

Feedback loop Causal effect sequence

Reinforcing, R1 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Processing Rate → Key Data
Elements Volume—Fish Processing Operations → Blockchain Data
Transactions Volume

Reinforcing, R2 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Commercial Fishing Operations Rate
→ Key Data Elements Volume—Fishing Operations → Blockchain Data
Transactions Volume

Reinforcing, R3 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Trading Operations Rate → Key
Data Elements Volume—Fish Trading Operations → Blockchain Data
Transactions Volume

Reinforcing, R4 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Commercial Fishing Operations Rate
→ Fish Catch Inventory → Fish Trading Operations Rate → Key Data Elements
Volume—Fish Trading Operations → Blockchain Data Transactions Volume

Reinforcing, R5 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Trading Operations Rate →
Traded Fish Supplies Inventory → Fish Processing Rate → Key Data Elements
Volume—Fish Processing Operations → Blockchain Data Transactions Volume

Reinforcing, R6 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Commercial Fishing Operations Rate
→ Fish Catch Inventory → Fish Trading Operations Rate → Traded Fish
Supplies Inventory → Fish Processing Rate → Key Data Elements
Volume—Fish Processing Operations → Blockchain Data Transactions Volume

Reinforcing, R7 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Market Demand for Canned Tuna →
Desired Canned Tuna Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume
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Table 5 (continued)

Feedback loop Causal effect sequence

Reinforcing, R8 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Market Demand for Canned Tuna →
Sales of Canned Tuna → Canned Tuna Fish Units Inventory → Canned Tuna
Inventory Discrepancy → Fishing Orders → Commercial Fishing Operations
Rate → Key Data Elements Volume—Fishing Operations → Blockchain Data
Transactions Volume

Reinforcing, R9 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Desired Canned Tuna
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Key Data Elements Volume—Fishing
Operations → Blockchain Data Transactions Volume

Reinforcing, R10 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Sales of Canned Tuna →
Canned Tuna Fish Units Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume

Reinforcing, R11 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Market Demand for Canned Tuna →
Desired Canned Tuna Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Fish Catch Inventory
→ Fish Trading Operations Rate → Key Data Elements Volume—Fish Trading
Operations → Blockchain Data Transactions Volume

Reinforcing, R12 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Desired Canned Tuna
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Fish Catch Inventory → Fish Trading
Operations Rate → Key Data Elements Volume—Fish Trading Operations →
Blockchain Data Transactions Volume

Reinforcing, R13 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Market Demand for Canned Tuna →
Sales of Canned Tuna → Canned Tuna Fish Units Inventory → Canned Tuna
Inventory Discrepancy → Fishing Orders → Commercial Fishing Operations
Rate → Fish Catch Inventory → Fish Trading Operations Rate → Key Data
Elements Volume—Fish Trading Operations → Blockchain Data Transactions
Volume

Reinforcing, R14 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Sales of Canned Tuna →
Canned Tuna Fish Units Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Fish Catch Inventory
→ Fish Trading Operations Rate → Key Data Elements Volume—Fish Trading
Operations → Blockchain Data Transactions Volume
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Table 5 (continued)

Feedback loop Causal effect sequence

Reinforcing, R15 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Market Demand for Canned Tuna →
Desired Canned Tuna Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Fish Catch Inventory
→ Fish Trading Operations Rate → Traded Fish Supplies Inventory → Fish
Processing Rate → Key Data Elements Volume—Fish Processing Operations →
Blockchain Data Transactions Volume

Reinforcing, R16 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Market Demand for Canned Tuna →
Sales of Canned Tuna → Canned Tuna Fish Units Inventory → Canned Tuna
Inventory Discrepancy → Fishing Orders → Commercial Fishing Operations
Rate → Fish Catch Inventory → Fish Trading Operations Rate → Traded Fish
Supplies Inventory → Fish Processing Rate → Key Data Elements
Volume—Fish Processing Operations → Blockchain Data Transactions Volume

Reinforcing, R17 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Desired Canned Tuna
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Fish Catch Inventory → Fish Trading
Operations Rate → Traded Fish Supplies Inventory → Fish Processing Rate →
Key Data Elements Volume—Fish Processing Operations → Blockchain Data
Transactions Volume

Reinforcing, R18 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Sales of Canned Tuna →
Canned Tuna Fish Units Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Fish Catch Inventory
→ Fish Trading Operations Rate → Traded Fish Supplies Inventory → Fish
Processing Rate → Key Data Elements Volume—Fish Processing Operations →
Blockchain Data Transactions Volume

Balancing, B1 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Processing Rate → Canned Tuna
Fish Units Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders
→ Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume

Balancing, B2 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Trading Operations Rate →
Traded Fish Supplies Inventory → Fish Processing Rate → Canned Tuna Fish
Units Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Key Data Elements Volume—Fishing
Operations → Blockchain Data Transactions Volume
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Table 5 (continued)

Feedback loop Causal effect sequence

Balancing, B3 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Processing Rate → Canned Tuna
Fish Units Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders
→ Commercial Fishing Operations Rate → Fish Catch Inventory → Fish
Trading Operations Rate → Key Data Elements Volume—Fish Trading
Operations → Blockchain Data Transactions Volume

Balancing, B4 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Processing Rate → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Desired Canned Tuna Inventory → Canned Tuna Inventory
Discrepancy → Fishing Orders → Commercial Fishing Operations Rate → Key
Data Elements Volume—Fishing Operations → Blockchain Data Transactions
Volume

Balancing, B5 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Trading Operations Rate →
Sustainable Performance → Sustainable Performance Discrepancy → Market
Demand for Canned Tuna → Desired Canned Tuna Inventory → Canned Tuna
Inventory Discrepancy → Fishing Orders → Commercial Fishing Operations
Rate → Key Data Elements Volume—Fishing Operations → Blockchain Data
Transactions Volume

Balancing, B6 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Processing Rate → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Sales of Canned Tuna → Canned Tuna Fish Units Inventory →
Canned Tuna Inventory Discrepancy → Fishing Orders → Commercial Fishing
Operations Rate → Key Data Elements Volume—Fishing Operations →
Blockchain Data Transactions Volume

Balancing, B7 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Trading Operations Rate →
Sustainable Performance → Sustainable Performance Discrepancy → Market
Demand for Canned Tuna → Sales of Canned Tuna → Canned Tuna Fish Units
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Key Data Elements Volume—Fishing
Operations → Blockchain Data Transactions Volume

Balancing, B8 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Trading Operations Rate → Traded
Fish Supplies Inventory → Fish Processing Rate → Sustainable Performance →
Sustainable Performance Discrepancy → Market Demand for Canned Tuna →
Desired Canned Tuna Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume
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Table 5 (continued)

Feedback loop Causal effect sequence

Balancing, B9 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Processing Rate → Canned Tuna
Fish Units Inventory → Sales of Canned Tuna → Sustainable Performance →
Sustainable Performance Discrepancy → Market Demand for Canned Tuna →
Desired Canned Tuna Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume

Balancing, B10 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Processing Rate → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Desired Canned Tuna Inventory → Canned Tuna Inventory
Discrepancy → Fishing Orders → Commercial Fishing Operations Rate → Fish
Catch Inventory → Fish Trading Operations Rate → Key Data Elements
Volume—Fish Trading Operations → Blockchain Data Transactions Volume

Balancing, B11 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Processing Rate → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Sales of Canned Tuna → Canned Tuna Fish Units Inventory →
Canned Tuna Inventory Discrepancy → Fishing Orders → Commercial Fishing
Operations Rate → Fish Catch Inventory → Fish Trading Operations Rate →
Key Data Elements Volume—Fish Trading Operations → Blockchain Data
Transactions Volume

Balancing, B12 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Trading Operations Rate →
Traded Fish Supplies Inventory → Fish Processing Rate → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Sales of Canned Tuna → Canned Tuna Fish Units Inventory →
Canned Tuna Inventory Discrepancy → Fishing Orders → Commercial Fishing
Operations Rate → Key Data Elements Volume—Fishing Operations →
Blockchain Data Transactions Volume

Balancing, B13 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Trading Operations Rate →
Traded Fish Supplies Inventory → Fish Processing Rate → Canned Tuna Fish
Units Inventory → Sales of Canned Tuna → Sustainable Performance →
Sustainable Performance Discrepancy → Market Demand for Canned Tuna →
Desired Canned Tuna Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume

Balancing, B14 Blockchain Data Transactions Volume → Artificial Intelligence Data Processing
Rate → Decision-making Effectiveness → Interventions for Operational
Improvements → Data Monetisation → Fish Processing Rate → Canned Tuna
Fish Units Inventory → Sales of Canned Tuna → Sustainable Performance →
Sustainable Performance Discrepancy → Market Demand for Canned Tuna →
Desired Canned Tuna Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Fish Catch Inventory
→ Fish Trading Operations Rate → Key Data Elements Volume—Fish Trading
Operations → Blockchain Data Transactions Volume
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Table 5 (continued)

Feedback loop Causal effect sequence

Dependant, D1 Blockchain Data Transactions Volume → Commercial Fishing Operations Rate
→ Key Data Elements Volume—Fishing Operations → Blockchain Data
Transactions Volume

Dependant, D2 Blockchain Data Transactions Volume → Fish Processing Rate → Key Data
Elements Volume—Fish Processing Operations → Blockchain Data
Transactions Volume

Dependant, D3 Blockchain Data Transactions Volume → Fish Trading Operations Rate → Key
Data Elements Volume—Fish Trading Operations → Blockchain Data
Transactions Volume

Dependant, D4 Blockchain Data Transactions Volume → Fish Catch Inventory → Fish Trading
Operations Rate → Key Data Elements Volume—Fish Trading Operations →
Blockchain Data Transactions Volume

Dependant, D5 Blockchain Data Transactions Volume → Traded Fish Supplies Inventory → Fish
Processing Rate → Key Data Elements Volume—Fish Processing Operations →
Blockchain Data Transactions Volume

Dependant, D6 Blockchain Data Transactions Volume → Fish Trading Operations Rate → Traded
Fish Supplies Inventory → Fish Processing Rate → Key Data Elements
Volume—Fish Processing Operations → Blockchain Data Transactions Volume

Dependant, D7 Blockchain Data Transactions Volume → Commercial Fishing Operations Rate
→ Fish Catch Inventory → Fish Trading Operations Rate → Key Data Elements
Volume—Fish Trading Operations → Blockchain Data Transactions Volume

Dependant, D8 Blockchain Data Transactions Volume → Canned Tuna Fish Units Inventory →
Canned Tuna Inventory Discrepancy → Fishing Orders → Commercial Fishing
Operations Rate → Key Data Elements Volume—Fishing Operations →
Blockchain Data Transactions Volume

Dependant, D9 Blockchain Data Transactions Volume → Fish Catch Inventory → Fish Trading
Operations Rate → Traded Fish Supplies Inventory → Fish Processing Rate →
Key Data Elements Volume—Fish Processing Operations → Blockchain Data
Transactions Volume

Dependant, D10 Blockchain Data Transactions Volume → Commercial Fishing Operations Rate
→ Fish Catch Inventory → Fish Trading Operations Rate → Traded Fish
Supplies Inventory → Fish Processing Rate → Key Data Elements
Volume—Fish Processing Operations → Blockchain Data Transactions Volume

Dependant, D11 Blockchain Data Transactions Volume → Fish Processing Rate → Canned Tuna
Fish Units Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders
→ Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume

Dependant, D12 Blockchain Data Transactions Volume → Sales of Canned Tuna → Canned Tuna
Fish Units Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders
→ Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume

Dependant, D13 Blockchain Data Transactions Volume → Traded Fish Supplies Inventory → Fish
Processing Rate → Canned Tuna Fish Units Inventory → Canned Tuna
Inventory Discrepancy → Fishing Orders → Commercial Fishing Operations
Rate → Key Data Elements Volume—Fishing Operations → Blockchain Data
Transactions Volume

Dependant, D14 Blockchain Data Transactions Volume → Canned Tuna Fish Units Inventory →
Canned Tuna Inventory Discrepancy → Fishing Orders → Commercial Fishing
Operations Rate → Fish Catch Inventory → Fish Trading Operations Rate →
Key Data Elements Volume—Fish Trading Operations → Blockchain Data
Transactions Volume
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Table 5 (continued)

Feedback loop Causal effect sequence

Dependant, D15 Blockchain Data Transactions Volume → Fish Processing Rate → Canned Tuna
Fish Units Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders
→ Commercial Fishing Operations Rate → Fish Catch Inventory → Fish
Trading Operations Rate → Key Data Elements Volume—Fish Trading
Operations → Blockchain Data Transactions Volume

Dependant, D16 Blockchain Data Transactions Volume → Fish Trading Operations Rate → Traded
Fish Supplies Inventory → Fish Processing Rate → Canned Tuna Fish Units
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Key Data Elements Volume—Fishing
Operations → Blockchain Data Transactions Volume

Dependant, D17 Blockchain Data Transactions Volume → Sales of Canned Tuna → Canned Tuna
Fish Units Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders
→ Commercial Fishing Operations Rate → Fish Catch Inventory → Fish
Trading Operations Rate → Key Data Elements Volume—Fish Trading
Operations → Blockchain Data Transactions Volume

Dependant, D18 Blockchain Data Transactions Volume → Fish Catch Inventory → Fish Trading
Operations Rate → Traded Fish Supplies Inventory → Fish Processing Rate →
Canned Tuna Fish Units Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume

Dependant, D19 Blockchain Data Transactions Volume → Fish Processing Rate → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Desired Canned Tuna Inventory → Canned Tuna Inventory
Discrepancy → Fishing Orders → Commercial Fishing Operations Rate → Key
Data Elements Volume—Fishing Operations → Blockchain Data Transactions
Volume

Dependant, D20 Blockchain Data Transactions Volume → Traded Fish Supplies Inventory → Fish
Processing Rate → Canned Tuna Fish Units Inventory → Canned Tuna
Inventory Discrepancy → Fishing Orders → Commercial Fishing Operations
Rate → Fish Catch Inventory → Fish Trading Operations Rate → Key Data
Elements Volume—Fish Trading Operations → Blockchain Data Transactions
Volume

Dependant, D21 Blockchain Data Transactions Volume → Fish Trading Operations Rate →
Sustainable Performance → Sustainable Performance Discrepancy → Market
Demand for Canned Tuna → Desired Canned Tuna Inventory → Canned Tuna
Inventory Discrepancy → Fishing Orders → Commercial Fishing Operations
Rate → Key Data Elements Volume—Fishing Operations → Blockchain Data
Transactions Volume

Dependant, D22 Blockchain Data Transactions Volume → Canned Tuna Fish Units Inventory →
Canned Tuna Inventory Discrepancy → Fishing Orders → Commercial Fishing
Operations Rate → Fish Catch Inventory → Fish Trading Operations Rate →
Traded Fish Supplies Inventory → Fish Processing Rate → Key Data Elements
Volume—Fish Processing Operations → Blockchain Data Transactions Volume

Dependant, D23 Blockchain Data Transactions Volume → Sales of Canned Tuna → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Desired Canned Tuna Inventory → Canned Tuna Inventory
Discrepancy → Fishing Orders → Commercial Fishing Operations Rate → Key
Data Elements Volume—Fishing Operations → Blockchain Data Transactions
Volume
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Table 5 (continued)

Feedback loop Causal effect sequence

Dependant, D24 Blockchain Data Transactions Volume → Fish Trading Operations Rate →
Sustainable Performance → Sustainable Performance Discrepancy → Market
Demand for Canned Tuna → Sales of Canned Tuna → Canned Tuna Fish Units
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Key Data Elements Volume—Fishing
Operations → Blockchain Data Transactions Volume

Dependant, D25 Blockchain Data Transactions Volume → Canned Tuna Fish Units Inventory →
Sales of Canned Tuna → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Desired Canned Tuna
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Key Data Elements Volume—Fishing
Operations → Blockchain Data Transactions Volume

Dependant, D26 Blockchain Data Transactions Volume → Traded Fish Supplies Inventory → Fish
Processing Rate → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Desired Canned Tuna
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Key Data Elements Volume—Fishing
Operations → Blockchain Data Transactions Volume

Dependant, D27 Blockchain Data Transactions Volume → Fish Processing Rate → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Sales of Canned Tuna → Canned Tuna Fish Units Inventory →
Canned Tuna Inventory Discrepancy → Fishing Orders → Commercial Fishing
Operations Rate → Key Data Elements Volume—Fishing Operations →
Blockchain Data Transactions Volume

Dependant, D28 Blockchain Data Transactions Volume → Sales of Canned Tuna → Canned Tuna
Fish Units Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders
→ Commercial Fishing Operations Rate → Fish Catch Inventory → Fish
Trading Operations Rate → Traded Fish Supplies Inventory → Fish Processing
Rate → Key Data Elements Volume—Fish Processing Operations →
Blockchain Data Transactions Volume

Dependant, D29 Blockchain Data Transactions Volume → Fish Catch Inventory → Fish Trading
Operations Rate → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Desired Canned Tuna
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Key Data Elements Volume—Fishing
Operations → Blockchain Data Transactions Volume

Dependant, D30 Blockchain Data Transactions Volume → Traded Fish Supplies Inventory → Fish
Processing Rate → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Sales of Canned Tuna →
Canned Tuna Fish Units Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume

Dependant, D31 Blockchain Data Transactions Volume → Sales of Canned Tuna → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Desired Canned Tuna Inventory → Canned Tuna Inventory
Discrepancy → Fishing Orders → Commercial Fishing Operations Rate → Fish
Catch Inventory → Fish Trading Operations Rate → Key Data Elements
Volume—Fish Trading Operations → Blockchain Data Transactions Volume
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Table 5 (continued)

Feedback loop Causal effect sequence

Dependant, D32 Blockchain Data Transactions Volume → Fish Processing Rate → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Desired Canned Tuna Inventory → Canned Tuna Inventory
Discrepancy → Fishing Orders → Commercial Fishing Operations Rate → Fish
Catch Inventory → Fish Trading Operations Rate → Key Data Elements
Volume—Fish Trading Operations → Blockchain Data Transactions Volume

Dependant, D33 Blockchain Data Transactions Volume → Fish Trading Operations Rate → Traded
Fish Supplies Inventory → Fish Processing Rate → Sustainable Performance →
Sustainable Performance Discrepancy → Market Demand for Canned Tuna →
Desired Canned Tuna Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume

Dependant, D34 Blockchain Data Transactions Volume → Fish Catch Inventory → Fish Trading
Operations Rate → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Sales of Canned Tuna →
Canned Tuna Fish Units Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume

Dependant, D35 Blockchain Data Transactions Volume → Fish Processing Rate → Canned Tuna
Fish Units Inventory → Sales of Canned Tuna → Sustainable Performance →
Sustainable Performance Discrepancy → Market Demand for Canned Tuna →
Desired Canned Tuna Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume

Dependant, D36 Blockchain Data Transactions Volume → Traded Fish Supplies Inventory → Fish
Processing Rate → Canned Tuna Fish Units Inventory → Sales of Canned Tuna
→ Sustainable Performance → Sustainable Performance Discrepancy →
Market Demand for Canned Tuna → Desired Canned Tuna Inventory →
Canned Tuna Inventory Discrepancy → Fishing Orders → Commercial Fishing
Operations Rate → Key Data Elements Volume—Fishing Operations →
Blockchain Data Transactions Volume

Dependant, D37 Blockchain Data Transactions Volume → Fish Trading Operations Rate → Traded
Fish Supplies Inventory → Fish Processing Rate → Sustainable Performance →
Sustainable Performance Discrepancy → Market Demand for Canned Tuna →
Sales of Canned Tuna → Canned Tuna Fish Units Inventory → Canned Tuna
Inventory Discrepancy → Fishing Orders → Commercial Fishing Operations
Rate → Key Data Elements Volume—Fishing Operations → Blockchain Data
Transactions Volume

Dependant, D38 Blockchain Data Transactions Volume → Fish Processing Rate → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Sales of Canned Tuna → Canned Tuna Fish Units Inventory →
Canned Tuna Inventory Discrepancy → Fishing Orders → Commercial Fishing
Operations Rate → Fish Catch Inventory → Fish Trading Operations Rate →
Key Data Elements Volume—Fish Trading Operations → Blockchain Data
Transactions Volume

Dependant, D39 Blockchain Data Transactions Volume → Canned Tuna Fish Units Inventory →
Sales of Canned Tuna → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Desired Canned Tuna
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Fish Catch Inventory → Fish Trading
Operations Rate → Key Data Elements Volume—Fish Trading Operations →
Blockchain Data Transactions Volume
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Table 5 (continued)

Feedback loop Causal effect sequence

Dependant, D40 Blockchain Data Transactions Volume → Fish Catch Inventory → Fish Trading
Operations Rate → Traded Fish Supplies Inventory → Fish Processing Rate →
Sustainable Performance → Sustainable Performance Discrepancy → Market
Demand for Canned Tuna → Desired Canned Tuna Inventory → Canned Tuna
Inventory Discrepancy → Fishing Orders → Commercial Fishing Operations
Rate → Key Data Elements Volume—Fishing Operations → Blockchain Data
Transactions Volume

Dependant, D41 Blockchain Data Transactions Volume → Traded Fish Supplies Inventory → Fish
Processing Rate → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Desired Canned Tuna
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Fish Catch Inventory → Fish Trading
Operations Rate → Key Data Elements Volume—Fish Trading Operations →
Blockchain Data Transactions Volume

Dependant, D42 Blockchain Data Transactions Volume → Traded Fish Supplies Inventory → Fish
Processing Rate → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Sales of Canned Tuna →
Canned Tuna Fish Units Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Fish Catch Inventory
→ Fish Trading Operations Rate → Key Data Elements Volume—Fish Trading
Operations → Blockchain Data Transactions Volume

Dependant, D43 Blockchain Data Transactions Volume → Fish Processing Rate → Canned Tuna
Fish Units Inventory → Sales of Canned Tuna → Sustainable Performance →
Sustainable Performance Discrepancy → Market Demand for Canned Tuna →
Desired Canned Tuna Inventory → Canned Tuna Inventory Discrepancy →
Fishing Orders → Commercial Fishing Operations Rate → Fish Catch Inventory
→ Fish Trading Operations Rate → Key Data Elements Volume—Fish Trading
Operations → Blockchain Data Transactions Volume

Dependant, D44 Blockchain Data Transactions Volume → Fish Catch Inventory → Fish Trading
Operations Rate → Traded Fish Supplies Inventory → Fish Processing Rate →
Sustainable Performance → Sustainable Performance Discrepancy → Market
Demand for Canned Tuna → Sales of Canned Tuna → Canned Tuna Fish Units
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Key Data Elements Volume—Fishing
Operations → Blockchain Data Transactions Volume

Dependant, D45 Blockchain Data Transactions Volume → Sales of Canned Tuna → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Desired Canned Tuna Inventory → Canned Tuna Inventory
Discrepancy → Fishing Orders → Commercial Fishing Operations Rate → Fish
Catch Inventory → Fish Trading Operations Rate → Traded Fish Supplies
Inventory → Fish Processing Rate → Key Data Elements Volume—Fish
Processing Operations → Blockchain Data Transactions Volume

Dependant, D46 Blockchain Data Transactions Volume → Fish Trading Operations Rate → Traded
Fish Supplies Inventory → Fish Processing Rate → Canned Tuna Fish Units
Inventory → Sales of Canned Tuna → Sustainable Performance → Sustainable
Performance Discrepancy → Market Demand for Canned Tuna → Desired
Canned Tuna Inventory → Canned Tuna Inventory Discrepancy → Fishing
Orders → Commercial Fishing Operations Rate → Key Data Elements
Volume—Fishing Operations → Blockchain Data Transactions Volume
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Table 5 (continued)

Feedback loop Causal effect sequence

Dependant, D47 Blockchain Data Transactions Volume → Traded Fish Supplies Inventory → Fish
Processing Rate → Canned Tuna Fish Units Inventory → Sales of Canned Tuna
→ Sustainable Performance → Sustainable Performance Discrepancy →
Market Demand for Canned Tuna → Desired Canned Tuna Inventory →
Canned Tuna Inventory Discrepancy → Fishing Orders → Commercial Fishing
Operations Rate → Fish Catch Inventory → Fish Trading Operations Rate →
Key Data Elements Volume—Fish Trading Operations → Blockchain Data
Transactions Volume

Dependant, D48 Blockchain Data Transactions Volume → Canned Tuna Fish Units Inventory →
Sales of Canned Tuna → Sustainable Performance → Sustainable Performance
Discrepancy → Market Demand for Canned Tuna → Desired Canned Tuna
Inventory → Canned Tuna Inventory Discrepancy → Fishing Orders →
Commercial Fishing Operations Rate → Fish Catch Inventory → Fish Trading
Operations Rate → Traded Fish Supplies Inventory → Fish Processing Rate →
Key Data Elements Volume—Fish Processing Operations → Blockchain Data
Transactions Volume

Dependant, D49 Blockchain Data Transactions Volume → Fish Catch Inventory → Fish Trading
Operations Rate → Traded Fish Supplies Inventory → Fish Processing Rate →
Canned Tuna Fish Units Inventory → Sales of Canned Tuna → Sustainable
Performance → Sustainable Performance Discrepancy → Market Demand for
Canned Tuna → Desired Canned Tuna Inventory → Canned Tuna Inventory
Discrepancy → Fishing Orders → Commercial Fishing Operations Rate → Key
Data Elements Volume—Fishing Operations → Blockchain Data Transactions
Volume
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Barczak, A., Dembińska, I., & Marzantowicz, Ł. (2019). Analysis of the risk impact of implementing digital
innovations for logistics management. Processes, 7(11), 815. https://doi.org/10.3390/pr7110815

Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2019). Supply chain risk management and artificial
intelligence: State of the art and future research directions. International Journal of Production Research,
57(7), 2179–2202. https://doi.org/10.1080/00207543.2018.1530476

Baz, M., Khatri, S., Baz, A., Alhakami, H., Agrawal, A., & Ahmad Khan, R. (2022). Blockchain and Artificial
Intelligence applications to defeat COVID-19 pandemic. Computer Systems Science and Engineering,
40(2), 691–702.

Bechtsis, D., Tsolakis, N., Iakovou, E., & Vlachos, D. (2021). Data-driven secure, resilient and sustainable
supply chains: Gaps, opportunities, and a new generalised data sharing and data monetisation framework.
International Journal of Production Research. https://doi.org/10.1080/00207543.2021.1957506

Belhadi, A., Kamble, S., Gunasekaran, A., & Mani, V. (2021). Analyzing the mediating role of organizational
ambidexterity and digital business transformation on industry 4.0 capabilities and sustainable supply
chain performance. Supply Chain Management. https://doi.org/10.1108/SCM-04-2021-0152

Bhattacharyya, S. S., & Nair, S. (2019). Explicating the future of work: Perspectives from India. Journal of
Management Development, 38(3), 175–194. https://doi.org/10.1108/JMD-01-2019-0032

Bottani, E., Murino, T., Schiavo, M., & Akkerman, R. (2019). Resilient food supply chain design: Modelling
framework and metaheuristic solution approach. Computers and Industrial Engineering, 135, 177–198.
https://doi.org/10.1016/j.cie.2019.05.011

Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier: Modeling the
impact of AI on the world economy. McKinsey & Company. Available at: https://www.mckinsey.com/~/
media/McKinsey/Featured%20Insights/Artificial%20Intelligence/Notes%20from%20the%20frontier%
20Modeling%20the%20impact%20of%20AI%20on%20the%20world%20economy/MGI-Notes-from-
the-AI-frontier-Modeling-the-impact-of-AI-on-the-world-economy-September-2018.ashx (accessed 10
September 2020).

Bumblauskas, D., Mann, A., Dugan, B., & Rittmer, J. (2020). A blockchain use case in food distribution: Do
you know where your food has been? International Journal of Information Management, 52, 102008.
https://doi.org/10.1016/j.ijinfomgt.2019.09.004

Cagliano, A., Mangano, G., & Rafele, C. (2021). Determinants of digital technology adoption in supply chain.
An exploratory analysis. Supply Chain Forum: An International Journal, 22(2), 100–114.

Camaréna, S. (2020). Artificial intelligence in the design of the transitions to sustainable food systems. Journal
of Cleaner Production, 271, 122574. https://doi.org/10.1016/j.jclepro.2020.122574

Carter, C. R., & Washispack, S. (2018). Mapping the path forward for sustainable supply chain management:
A review of reviews. Journal of Business Logistics, 39(4), 242–247. https://doi.org/10.1111/jbl.12196

del Castillo, M. (2017). Intel demos seafood tracking on Sawtooth Lake blockchain. Available at: https://www.
coindesk.com/intel-demos-seafood-tracking-sawtooth-lake-blockchain (accessed 25 August 2020).

Chalyvidis, C., Ogden, J., & Johnson, A. (2013). Using supply chain interoperability as a measure of supply
chain performance. Supply Chain Forum: An International Journal, 14(3), 52–73. https://doi.org/10.
1080/16258312.2013.11517321

Chidepatil, A., Bindra, P., Kulkarni, D., Qazi, M., Kshirsagar, M., & Sankaran, K. (2020). From trash to cash:
How blockchain and multi-sensor-driven artificial intelligence can transform circular economy of plastic
waste? Administrative Sciences, 10(2), 23. https://doi.org/10.3390/admsci10020023

Choi, T.-M. (2020). Supply chain financing using blockchain: Impacts on supply chains selling fashionable
products. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03615-7

Choi, T. M., Guo, S., & Luo, S. (2020). When blockchain meets social-media: Will the result benefit social
media analytics for supply chain operations management? Transportation Research Part e: Logistics and
Transportation Review, 135, 101860. https://doi.org/10.1016/j.tre.2020.101860

European Commission (2009). EUR-Lex: Access to European Union law. Available at: https://eur-lex.europa.
eu/legal-content/EN/ALL/?uri=celex%3A32009R1224 (accessed 19 September 2020).

European Commission (2015). EU acts on illegal fishing: Yellow card issued to Thailand while South Korea &
Philippines are cleared. Available at: https://ec.europa.eu/commission/presscorner/detail/en/IP_15_4806
(accessed 11 September 2020).

Copigneaux, B., Vlasov,N., Bani, E., Tcholtchev,N., Lämmel, P., Fuenfzig,M., Snoeijenbos, S., Flickenschild,
M., Piantoni, M., & Frazzani, S. (2020). Blockchain for supply chains and international trade: Report
on key features, impacts and policy options. Brussels: Directorate-General for Parliamentary Research
Services (EPRS), Secretariat of the European Parliament. Available at: https://www.europarl.europa.eu/
RegData/etudes/STUD/2020/641544/EPRS_STU(2020)641544_EN.pdf (accessed 15 September 2020).

123

https://doi.org/10.1108/ijopm-07-2021-903
https://doi.org/10.3390/pr7110815
https://doi.org/10.1080/00207543.2018.1530476
https://doi.org/10.1080/00207543.2021.1957506
https://doi.org/10.1108/SCM-04-2021-0152
https://doi.org/10.1108/JMD-01-2019-0032
https://doi.org/10.1016/j.cie.2019.05.011
https://www.mckinsey.com/~/media/McKinsey/Featured%20Insights/Artificial%20Intelligence/Notes%20from%20the%20frontier%20Modeling%20the%20impact%20of%20AI%20on%20the%20world%20economy/MGI-Notes-from-the-AI-frontier-Modeling-the-impact-of-AI-on-the-world-economy-September-2018.ashx
https://doi.org/10.1016/j.ijinfomgt.2019.09.004
https://doi.org/10.1016/j.jclepro.2020.122574
https://doi.org/10.1111/jbl.12196
https://www.coindesk.com/intel-demos-seafood-tracking-sawtooth-lake-blockchain
https://doi.org/10.1080/16258312.2013.11517321
https://doi.org/10.3390/admsci10020023
https://doi.org/10.1007/s10479-020-03615-7
https://doi.org/10.1016/j.tre.2020.101860
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009R1224
https://ec.europa.eu/commission/presscorner/detail/en/IP_15_4806
https://www.europarl.europa.eu/RegData/etudes/STUD/2020/641544/EPRS_STU(2020)641544_EN.pdf


Annals of Operations Research

Cubric, M. (2020). Drivers, barriers and social considerations for AI adoption in business and management:
A tertiary study. Technology in Society, 62, 101257. https://doi.org/10.1016/j.techsoc.2020.101257

Dauvergne, P. (2020). Is artificial intelligence greening global supply chains? Exposing the political economy
of environmental costs. Review of International Political Economy. https://doi.org/10.1080/09692290.
2020.1814381

De, N. (2017). Hacks, Scams and Attacks: Blockchain’s 2017 Disasters. Available at: https://www.coindesk.
com/hacks-scams-attacks-blockchains-biggest-2017-disasters (accessed 15 September 2020).

Del Río Castro, G., González Fernández, M. C., & Uruburu Colsa, Á. (2021). Unleashing the convergence
amid digitalization and sustainability towards pursuing the Sustainable Development Goals (SDGs):
A holistic review. Journal of Cleaner Production, 280, 122204. https://doi.org/10.1016/j.jclepro.2020.
122204

Di Vaio, A., Boccia, F., Landriani, L., & Palladino, R. (2020). Artificial intelligence in the agri-food system:
Rethinking sustainable business models in the COVID-19 scenario. Sustainability, 12(12), 4851. https://
doi.org/10.3390/SU12124851

Global Dialogue (2016). What is the Global Dialogue? Available at: https://traceability-dialogue.org/what-is-
the-global-dialogue/ (accessed 25 August 2020).

Dillenberger, D. N., Novotny, P., Zhang, Q., Jayachandran, P., Gupta, H., Hans, S., Verma, D., Chakraborty,
S., Thomas, J. J., Walli, M. M., Vaculin, R., & Sarpatwar, K. (2019). Blockchain analytics and artificial
intelligence. IBM Journal of Research and Development, 63(2), 8645631. https://doi.org/10.1147/JRD.
2019.2900638

Dinh, T. N., & Thai, M. T. (2018). AI and blockchain: A disruptive integration. Computer, 51(9), 48–53.
https://doi.org/10.1109/MC.2018.3620971

Dutta, P., Choi, T.-M., Somani, S., & Butala, R. (2020). Blockchain technology in supply chain operations:
Applications, challenges and researchopportunities.Transportation Research Part e: Logistics and Trans-
portation Review, 142, 102067. https://doi.org/10.1016/j.tre.2020.102067

Dwivedi, S., Roy, P., Karda, C., Agrawal, S., & Amin, R. (2021). Blockchain-based Internet of Things and
industrial IoT: A comprehensive survey. Security and Communication Networks, 2021, 7142048. https://
doi.org/10.1155/2021/7142048

Ebinger, F., &Omondi, B. (2020). Leveraging digital approaches for transparency in sustainable supply chains:
A conceptual paper. Sustainability, 12(15), 6129. https://doi.org/10.3390/su12156129

Ekramifard, A., Amintoosi, H., Seno, A. H., Dehghantanha, A., & Parizi, R. M. (2020). A systematic literature
review of integration of blockchain and Artificial Intelligence. In K. K. Choo, A. Dehghantanha, &
R. Parizi (Eds.), Blockchain cybersecurity trust and privacy Advances in Information Security. Cham:
Springer. https://doi.org/10.1007/978-3-030-38181-3_8

El Wali, M., Golroudbary, S. R., & Kraslawski, A. (2021). Circular economy for phosphorus supply chain
and its impact on social sustainable development goals. Science of the Total Environment, 777, 146060.
https://doi.org/10.1016/j.scitotenv.2021.146060

Eluubek kyzy, I., Song, H., Vajdi, A., Wang, Y., & Zhou, J. (2021). Blockchain for consortium: A practical
paradigm in agricultural supply chain system. Expert Systems with Applications, 184, 115425. https://
doi.org/10.1016/j.eswa.2021.115425

Ethirajan, M., Kandasamy, J., & Kumaraguru, S. (2020). Connecting engineering technology with enterprise
systems for sustainable supply chain management. Smart and Sustainable Manufacturing Systems, 4(1),
33–48. https://doi.org/10.1520/SSMS20190037

Fahimnia, B., Pournader, M., Siemsen, E., Bendoly, E., &Wang, C. (2019). Behavioral operations and supply
chain management – A review and literature mapping. Decision Sciences, 50(6), 1127–1183. https://doi.
org/10.1111/deci.12369

Falkheimer, J., & Heide, M. (2015). Trust and brand recovery campaigns in crisis: Findus Nordic and the
horsemeat scandal. International Journal of Strategic Communication, 9(2), 134–147. https://doi.org/
10.1080/1553118x.2015.1008636

Fan, Z., Wu, X., & Cao, B. (2022). Considering the traceability awareness of consumers: Should the supply
chain adopt the blockchain technology? Annals of Operations Research, 309, 837–860. https://doi.org/
10.1007/s10479-020-03729-y

FAO (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. Rome: Italy. Available
at: http://www.fao.org/state-of-fisheries-aquaculture (accessed 15 September 2020).

Faroukhi, A. Z., El Alaoui, I., Gahi, Y., & Amine, A. (2020). Big data monetization throughout Big Data Value
Chain: A comprehensive review. Journal of Big Data, 7, 3. https://doi.org/10.1186/s40537-019-0281-5

Fayoumi, A., & Loucopoulos, P. (2016). Conceptual modeling for the design of intelligent and emergent
information systems. Expert Systems with Applications, 59, 174–194. https://doi.org/10.1016/j.eswa.
2016.04.019

123

https://doi.org/10.1016/j.techsoc.2020.101257
https://doi.org/10.1080/09692290.2020.1814381
https://www.coindesk.com/hacks-scams-attacks-blockchains-biggest-2017-disasters
https://doi.org/10.1016/j.jclepro.2020.122204
https://doi.org/10.3390/SU12124851
https://traceability-dialogue.org/what-is-the-global-dialogue/
https://doi.org/10.1147/JRD.2019.2900638
https://doi.org/10.1109/MC.2018.3620971
https://doi.org/10.1016/j.tre.2020.102067
https://doi.org/10.1155/2021/7142048
https://doi.org/10.3390/su12156129
https://doi.org/10.1007/978-3-030-38181-3_8
https://doi.org/10.1016/j.scitotenv.2021.146060
https://doi.org/10.1016/j.eswa.2021.115425
https://doi.org/10.1520/SSMS20190037
https://doi.org/10.1111/deci.12369
https://doi.org/10.1080/1553118x.2015.1008636
https://doi.org/10.1007/s10479-020-03729-y
http://www.fao.org/state-of-fisheries-aquaculture
https://doi.org/10.1186/s40537-019-0281-5
https://doi.org/10.1016/j.eswa.2016.04.019


Annals of Operations Research

Fishcoin (2018). Fishcoin: A blockchain based data ecosystem for the global seafood industry. White Paper.
Available at: https://fishcoin.co/files/fishcoin.pdf (accessed 25 August 2020).

Forrester, J. (1961). Industrial dynamics (1st Eds.). Cambridge, MA: Massachusetts Institute of Technology
Press.

UK FSA (2017). An International Comparison of Guidance on Food Recall Systems. UK Food Standards
Agency. Available at: https://old.food.gov.uk/sites/default/files/recall-systems-comparison.pdf (accessed
03 February 2022).

Ganne, E. (2018). Can Blockchain revolutionize international trade? Geneva: World Trade Organization.
Available at: https://www.wto.org/english/res_e/booksp_e/blockchainrev18_e.pdf (accessed 15 Septem-
ber 2020).

Georgiadis, P., & Vlachos, D. (2004). The effect of environmental parameters on product recovery. European
Journal of Operational Research, 157(2), 449–464. https://doi.org/10.1016/S0377-2217(03)00203-0

Gibbert, M., Ruigrok, W., & Wicki, B. (2008). What passes as a rigorous case study? Strategic Management
Journal, 29(13), 1465–1474. https://doi.org/10.1002/smj.722

Gobbi, C., & Hsuan, J. (1995). Collaborative purchasing of complex technologies in healthcare: Implica-
tions for alignment strategies. International Journal of Operations and Production Management, 35(3),
430–455. https://doi.org/10.1108/IJOPM-08-2013-0362

Gopi, K., Mazumder, D., Sammut, J., & Saintilan, N. (2019). Determining the provenance and authenticity
of seafood: A review of current methodologies. Trends in Food Science and Technology, 91, 294–304.
https://doi.org/10.1016/j.tifs.2019.07.010

Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty:
A comprehensive review and future research directions. European Journal of Operational Research,
263(1), 108–141. https://doi.org/10.1016/j.ejor.2017.04.009

Größler, A., Thun, J.-H., & Milling, P. M. (2008). System dynamics as a structural theory in operations
management. Production and Operations Management, 17(3), 373–384. https://doi.org/10.3401/poms.
1080.0023

Grover, P., Kar, A. K., & Dwivedi, Y. K. (2022). Understanding artificial intelligence adoption in operations
management: Insights from the review of academic literature and social media discussions. Annals of
Operations Research, 308, 177–213. https://doi.org/10.1007/s10479-020-03683-9

Guizzardi, G., Wagner, G., de Almeida Falbo, R., Guizzardi, R. S. S., & Almeida, J. P. A. (2013). Towards
ontological foundations for the conceptualmodeling of events. In:W.Ng,V. C. Storey, J. C. Trujillo (Eds).
Conceptual Modeling. ER 2013. Lecture Notes in Computer Science, Vol. 8217. Berlin, Heidelberg:
Springer. https://doi.org/10.1007/978-3-642-41924-9_27

Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future
of artificial intelligence. California Management Review, 61(4), 5–14.

Hartley, J. L., & Sawaya, W. J. (2019). Tortoise, not the hare: Digital transformation of supply chain business
processes. Business Horizons, 62(6), 707–715. https://doi.org/10.1016/j.bushor.2019.07.006

HIMSS (2013). Definition of Interoperability. Available at: https://www.himss.org/sites/hde/files/d7/
FileDownloads/HIMSS%20Interoperability%20Definition%20FINAL.pdf (accessed 25 August 2020).

Hohn,M., &Durach, C. (2021). Additive manufacturing in the apparel supply chain— Impact on supply chain
governance and social sustainability. International Journal of Operations and Production Management,
41(7), 1035–1059. https://doi.org/10.1108/ijopm-09-2020-0654

Holweg,M., Davies, J., DeMeyer, A., Lawson, B., & Schmenner, R.W. (2018). Process theory: The principles
of operations management (1st Eds.). Oxford: Oxford University Press.

Hopkins, J. (2021). An investigation into emerging industry 4.0 technologies as drivers of supply chain inno-
vation in Australia. Computers in Industry. https://doi.org/10.1016/j.compind.2020.103323

Hughes, L., Dwivedi, Y. K., Rana, N. P., Williams, M. D., & Raghavan, V. (2022). Perspectives on the future
of manufacturing within the Industry 4.0 era. Production Planning and Control. https://doi.org/10.1080/
09537287.2020.1810762

Kale, R. V., Raipurkar, A. R., & Chandak, M. B. (2020). A ppe kit supply chain management system using
blockchain smart contract. International Journal of Interdisciplinary Global Studies, 14(4), 172–180.

Kamble, S., Gunasekaran, A., &Arha, H. (2019). Understanding the blockchain technology adoption in supply
chains-Indian context. International Journal of Production Research, 50(7), 2009–2033. https://doi.org/
10.1080/00207543.2018.1518610

Kamble, S., Gunasekaran, A., Parekh, H., Mani, V., Belhadi, A., & Sharma, R. (2022). Digital twin for sustain-
ablemanufacturing supply chains: Current trends, future perspectives, and an implementation framework.
Technological Forecasting and Social Change, 176, 121448. https://doi.org/10.1016/j.techfore.2021.
121448

123

https://fishcoin.co/files/fishcoin.pdf
https://old.food.gov.uk/sites/default/files/recall-systems-comparison.pdf
https://www.wto.org/english/res_e/booksp_e/blockchainrev18_e.pdf
https://doi.org/10.1016/S0377-2217(03)00203-0
https://doi.org/10.1002/smj.722
https://doi.org/10.1108/IJOPM-08-2013-0362
https://doi.org/10.1016/j.tifs.2019.07.010
https://doi.org/10.1016/j.ejor.2017.04.009
https://doi.org/10.3401/poms.1080.0023
https://doi.org/10.1007/s10479-020-03683-9
https://doi.org/10.1007/978-3-642-41924-9_27
https://doi.org/10.1016/j.bushor.2019.07.006
https://www.himss.org/sites/hde/files/d7/FileDownloads/HIMSS%20Interoperability%20Definition%20FINAL.pdf
https://doi.org/10.1108/ijopm-09-2020-0654
https://doi.org/10.1016/j.compind.2020.103323
https://doi.org/10.1080/09537287.2020.1810762
https://doi.org/10.1080/00207543.2018.1518610
https://doi.org/10.1016/j.techfore.2021.121448


Annals of Operations Research

Kamel Boulos, M. N., Wilson, J. T., & Clauson, K. A. (2018). Geospatial blockchain: Promises, challenges,
and scenarios in health and healthcare. International Journal of Health Geographics, 17(1), 25. https://
doi.org/10.1186/s12942-018-0144-x

Katsaliaki, K., Galetsi, P., & Kumar, S. (2021). Supply chain disruptions and resilience: A major review and
future research agenda. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03912-1

Kimani, D., Adams, K., Attah-Boakye, R., Ullah, S., Frecknall-Hughes, J., & Kim, J. (2020). Blockchain,
business and the fourth industrial revolution: Whence, whither, wherefore and how? Technological Fore-
casting and Social Change, 161, 120254. https://doi.org/10.1016/j.techfore.2020.120254

Kishimoto, M. (2019). Thai seafood industry buoyed by lifting of EU “yellow card”. Avail-
able at: https://asia.nikkei.com/Business/Business-trends/Thai-seafood-industry-buoyed-by-lifting-of-
EU-yellow-card (accessed 21 September 2020).

Klein, A. Z., Gomes da Costa, E., Vieira, L. M., & Teixeira, R. (2016). The use of mobile technology in
management and risk control in the supply chain: The case of a Brazilian beef chain. International
Business: Concepts, Methodologies, Tools, and Applications, 646–666.

Kouhizadeh, M., Saberi, S., & Sarkis, J. (2021). Blockchain technology and the sustainable supply chain:
Theoretically exploring adoption barriers. International Journal of Production Economics, 231, 107831.
https://doi.org/10.1016/j.ijpe.2020.107831

Kshetri, N. (2018). 1 Blockchain’s roles in meeting key supply chain management objectives. International
Journal of Information Management, 39, 80–89. https://doi.org/10.1016/j.ijinfomgt.2017.12.005

Kudashkina, K., Corradini,M.G., Thirunathan, P., Yada, R. Y., & Fraser, E. D. G. (2022). Artificial Intelligence
technology in food safety: A behavioral approach. Trends in Food Science and Technology, 123, 376–381.
https://doi.org/10.1016/j.tifs.2022.03.021

Kumar, A., Liu, R., & Shan, Z. (2019). Is blockchain a silver bullet for supply chain management? Techni-
cal challenges and research opportunities. Decision Sciences, 51(1), 8–37. https://doi.org/10.1111/deci.
12396

Kumar, S., Sharma, D., Rao, S., Lim, W. M., & Mangla, S. K. (2022). Past, present, and future of sustainable
finance: Insights from big data analytics through machine learning of scholarly research. Annals of
Operations Research. https://doi.org/10.1007/s10479-021-04410-8

Leone, L. (2017). Beyond Connectivity: The Internet of Food Architecture Between Ethics and the EU
Citizenry. Journal of Agricultural and Environmental Ethics, 30(3), 423–438. https://doi.org/10.1007/
s10806-017-9675-6

Li, Y., Chu, X., Feng, J., Tian, D., & Mu, W. (2019). Blockchain-based quality and safety traceability system
for the table grape supply chain. International Agricultural Engineering Journal, 28(4), 373–385. http://
114.255.9.31/iaej/EN/Y2019/V28/I4/41

Liu, Y.,Ma, X., Shu, L., Hancke, G., &Abu-Mahfouz, A. (2021). From Industry 4.0 to Agriculture 4.0: Current
status, enabling technologies, and research challenges. IEEE Transactions on Industrial Informatics,
17(6), 4322–4334.

Luo, S., & Choi, T. (2022). Operational research for technology-driven supply chains in the industry 4.0 era:
Recent development and future studies. Asia-Pacific Journal of Operational Research, 39(1), 2040021.

Macfadyen, G., Hosch, G., Kaysser, N., & Tagziria, L. (2019). The IUU Fishing Index, 2019. Poseidon
AquaticResourceManagementLimited and theGlobal InitiativeAgainst TransnationalOrganizedCrime.
Available at: https://oursharedseas.com/wp-content/uploads/2019/11/IUU-Fishing-Index-Report-web-
version-1.pdf (accessed 15 September 2020).

Machuca, J. A. D. (1998). Improving POM learning: Systems thinking and transparent-box business sim-
ulators. Production and Operations Management, 7(2), 210–227. https://doi.org/10.1111/j.1937-5956.
1998.tb00453.x

Mangla, S. K., Kazancoglu, Y., Ekinci, E., Liu, M., Özbiltekin, M., & Sezer, M. D. (2021). Using system
dynamics to analyze the societal impacts of blockchain technology in milk supply chainsrefer. Trans-
portation Research Part e: Logistics and Transportation Review, 149, 102289. https://doi.org/10.1016/j.
tre.2021.102289

MarketsAndMarkets (2020). Blockchain in agriculture and food supply chain market. Avail-
able at: https://www.marketsandmarkets.com/Market-Reports/blockchain-agriculture-market-and-food-
supply-chain-55264825.html (accessed 23 September 2020).

McVeigh, K. (2021). Blue ticked off: the controversy over the MSC fish ‘ecolabel’. Avail-
able at: https://www.theguardian.com/environment/2021/jul/26/blue-ticked-off-the-controversy-over-
the-msc-fish-ecolabel (accessed 12 January 2022).

Meadows, D. H. (1980). The unavoidable a priori. In: J. Randers (Eds.), Elements of the System Dynamics
method. Cambridge, MA: Massachusetts Institute of Technology Press.

123

https://doi.org/10.1186/s12942-018-0144-x
https://doi.org/10.1007/s10479-020-03912-1
https://doi.org/10.1016/j.techfore.2020.120254
https://asia.nikkei.com/Business/Business-trends/Thai-seafood-industry-buoyed-by-lifting-of-EU-yellow-card
https://doi.org/10.1016/j.ijpe.2020.107831
https://doi.org/10.1016/j.ijinfomgt.2017.12.005
https://doi.org/10.1016/j.tifs.2022.03.021
https://doi.org/10.1111/deci.12396
https://doi.org/10.1007/s10479-021-04410-8
https://doi.org/10.1007/s10806-017-9675-6
http://114.255.9.31/iaej/EN/Y2019/V28/I4/41
https://oursharedseas.com/wp-content/uploads/2019/11/IUU-Fishing-Index-Report-web-version-1.pdf
https://doi.org/10.1111/j.1937-5956.1998.tb00453.x
https://doi.org/10.1016/j.tre.2021.102289
https://www.marketsandmarkets.com/Market-Reports/blockchain-agriculture-market-and-food-supply-chain-55264825.html
https://www.theguardian.com/environment/2021/jul/26/blue-ticked-off-the-controversy-over-the-msc-fish-ecolabel


Annals of Operations Research

Mearian, L. (2019). FDA to pilot A.I., consider blockchain, to track and trace food. Available
at: https://www.computerworld.com/article/3391565/fda-to-pilot-ai-consider-blockchain-to-track-and-
trace-food.html (accessed 29 August 2021).

Mehta, D., Tanwar, S., Bodkhe, U., Shukla, A., & Kumar, N. (2021). Blockchain-based royalty contract trans-
actions scheme for Industry 4.0 supply-chain management. Information Processing and Management,
58(4), 102586.

Min, H. (2010). Artificial intelligence in supply chain management: Theory and applications. Inter-
national Journal of Logistics Research and Applications, 13(1), 13–39. https://doi.org/10.1080/
13675560902736537

Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of science and Scopus: A comparative
analysis. Scientometrics, 106(1), 213–228. https://doi.org/10.1007/s11192-015-1765-5

Mota, B., Gomes, M. I., Carvalho, A., & Barbosa-Povoa, A. P. (2015). Towards supply chain sustainability:
Economic, environmental and social design and planning. Journal of Cleaner Production, 105, 14–27.
https://doi.org/10.1016/j.jclepro.2014.07.052

Nandi, S., Hervani, A., Helms, M., & Sarkis, J. (2021). Conceptualising Circular economy performance
with non-traditional valuation methods: Lessons for a post-Pandemic recovery. International Journal of
Logistics Research and Applications. https://doi.org/10.1080/13675567.2021.1974365

Nassar, M., Salah, K., ur Rehman, M. H., & Svetinovic, D. (2020). Blockchain for explainable and trustworthy
artificial intelligence. Data Mining and Knowledge Discovery, 10(1), 1340.

OMG (2014). Business Process Model and Notation (BPMN). Object Management Group (OMG) Specifica-
tion v.2.0.2. Available at: https://www.omg.org/spec/BPMN (accessed 15 September 2020).

Orji, I. J., & Wei, S. (2015). An innovative integration of fuzzy-logic and systems dynamics in sustainable
supplier selection: A case on manufacturing industry. Computers and Industrial Engineering, 88, 1–12.
https://doi.org/10.1016/j.cie.2015.06.019

Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Fosso-Wamba, S. (2017). The
role of big data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner
Production, 142, 1108–1118. https://doi.org/10.1016/j.jclepro.2016.03.059

Pimenidis, E., Patsavellas, J., & Tonkin, M. (2021). Blockchain and Artificial Intelligence managing a secure
and sustainable supply chain. InH. Jahankhani, A. Jamal, &S. Lawson (Eds.),Cybersecurity, privacy and
freedom protection in the connected world. Advanced Sciences and Technologies for Security Applications
(pp. 367–377). Cham: Springer.

Pournader, M., Shi, Y., Seuring, S., &Koh, S. C. L. (2020). Blockchain applications in supply chains, transport
and logistics: A systematic review of the literature. International Journal of Production Research, 58(7),
2063–2081. https://doi.org/10.1080/00207543.2019.1650976

Probst, W. (2020). How emerging data technologies can increase trust and transparency in fisheries. ICES
Journal of Marine Science, 77(4), 1286–1294. https://doi.org/10.1093/icesjms/fsz036

Proudlove, N. C., Bisogno, S., Onggo, B. S. S., Calabrese, A., & Levialdi Ghiron, N. (2017). Towards fully-
facilitated discrete event simulation modelling: Addressing the model coding stage. European Journal
of Operational Research, 263(2), 583–595. https://doi.org/10.1016/j.ejor.2017.06.002

Provenance (2016). From shore to plate: Tracking tuna on the blockchain. Available at: https://www.
provenance.org/tracking-tuna-on-the-blockchain#conclusions (accessed 25 August 2020).

Queiroz, M. M., & Fosso Wamba, S. (2019). Blockchain adoption challenges in supply chain: An empirical
investigation of themain drivers in India and theUSA. International Journal of Information Management,
46, 70–82. https://doi.org/10.1016/j.ijinfomgt.2018.11.021

ResearchAndMarkets (2021). Artificial Intelligence in the Global Food & Beverages Market - Forecasting
Astronomical Growth at a CAGR of 45.77% from 2021 to 2026. Available at: https://www.businesswire.
com/news/home/20210617005608/en/Artificial-Intelligence-in-the-Global-Food-Beverages-Market---
Forecasting-Astronomical-Growth-at-a-CAGR-of-45.77-from-2021-to-2026---ResearchAndMarkets.
com (accessed 28 June 2021).

Reyes, P. M., Visich, J. K., & Jaska, P. (2020). Managing the dynamics of new technologies in the global
supply chain. IEEE Engineering Management Review, 48(1), 156–162. https://doi.org/10.1109/EMR.
2020.2968889

Reyna, A., Martín, C., Chen, J., Soler, E., & Díaz, M. (2018). On blockchain and its integration with IoT.
Challenges and opportunities. Future Generation Computer Systems, 88, 173–190. https://doi.org/10.
1016/j.future.2018.05.046

Rodríguez-Espíndola, O., Chowdhury, S., Beltagui, A., &Albores, P. (2020). The potential of emergent disrup-
tive technologies for humanitarian supply chains: The integration of blockchain, Artificial Intelligence
and 3D printing. International Journal of Production Research, 58(15), 4610–4630. https://doi.org/10.
1080/00207543.2020.1761565

123

https://www.computerworld.com/article/3391565/fda-to-pilot-ai-consider-blockchain-to-track-and-trace-food.html
https://doi.org/10.1080/13675560902736537
https://doi.org/10.1007/s11192-015-1765-5
https://doi.org/10.1016/j.jclepro.2014.07.052
https://doi.org/10.1080/13675567.2021.1974365
https://www.omg.org/spec/BPMN
https://doi.org/10.1016/j.cie.2015.06.019
https://doi.org/10.1016/j.jclepro.2016.03.059
https://doi.org/10.1080/00207543.2019.1650976
https://doi.org/10.1093/icesjms/fsz036
https://doi.org/10.1016/j.ejor.2017.06.002
https://www.provenance.org/tracking-tuna-on-the-blockchain#conclusions
https://doi.org/10.1016/j.ijinfomgt.2018.11.021
https://www.businesswire.com/news/home/20210617005608/en/Artificial-Intelligence-in-the-Global-Food-Beverages-Market---Forecasting-Astronomical-Growth-at-a-CAGR-of-45.77-from-2021-to-2026---ResearchAndMarkets.com
https://doi.org/10.1109/EMR.2020.2968889
https://doi.org/10.1016/j.future.2018.05.046
https://doi.org/10.1080/00207543.2020.1761565


Annals of Operations Research

Ryan, R. W., Holland, D. S., & Herrera, G. E. (2014). Ecosystem externalities in fisheries. Marine Resource
Economics, 29(1), 39–53. https://doi.org/10.1086/676288

Salah, K., Rehman, M. H. U., Nizamuddin, N., & Al-Fuqaha, A. (2019). Blockchain for AI: Review and open
research challenges. IEEE Access, 7, 10127–10149. https://doi.org/10.1109/ACCESS.2018.2890507

Sanders, N. R., Boone, T., Ganeshan, R., & Wood, J. D. (2019). Sustainable supply chains in the age of AI
and digitization: Research challenges and opportunities. Journal of Business Logistics, 40(3), 229–240.
https://doi.org/10.1111/jbl.12224

Sgantzos, K., & Grigg, I. (2019). Artificial intelligence implementations on the blockchain. Use cases and
future applications. Future Internet. https://doi.org/10.3390/fi11080170

Sharma, P. K., Kumar, N., & Park, J. H. (2018). Blockchain-based distributed framework for automotive
industry in a smart city. IEEE Transactions on Industrial Informatics, 15(7), 4197–4205. https://doi.org/
10.1109/TII.2018.2887101

Shen, B., Choi, T.-M., &Minner, S. (2019). A review on supply chain contracting with information considera-
tions: Information updating and information asymmetry. International Journal of Production Research,
57(15–16), 4898–4936. https://doi.org/10.1080/00207543.2018.1467062

Shen, B., Dong, C., &Ng, C. T. (2022). Preface: Special issue on Technology-driven supply chainmanagement
with OR applications in industrial 4.0 era. Asia-Pacific Journal of Operational Research. https://doi.org/
10.1142/S0217595921020036

Singh, D., & Chaddah, J. (2021). A study on application of blockchain technology to control counterfeit
drugs, enhance data privacy and improve distribution in online pharmacy. Asia Pacific Journal of Health
Management, 16(3), 59–66.

Sobb, T., Turnbull, B., & Moustafa, N. (2020). Supply chain 4.0: A survey of cyber security challenges,
solutions and future directions. Electronics. https://doi.org/10.3390/electronics9111864

Sodhi, M. S., Seyedghorban, Z., Tahernejad, H., & Samson, D. (2022). Why emerging supply chain technolo-
gies initially disappoint: Blockchain, IoT, and AI. Production and Operations Management. https://doi.
org/10.1111/poms.13694

Srai, J. S. (2017). Mapping industrial systems – A supply network perspective on enabling technologies,
processes and actors. International Journal of Manufacturing Technology and Management, 31(1–3),
82–99. https://doi.org/10.1504/IJMTM.2017.082019

Srai, J. S., Joglekar, N., Tsolakis, N., & Kapur, S. (2022). Interplay between competing and coexisting policy
regimens within supply chain configurations. Production and Operations Management, 31(2), 457–477.
https://doi.org/10.1111/poms.13553

Stanisławski, R., & Szymonik, A. (2021). Impact of selected intelligent systems in logistics on the creation
of a sustainable market position of manufacturing companies in Poland in the context of Industry 4.0.
Sustainability. https://doi.org/10.3390/su13073996

Sterling, B., Gooch, M., Dent, B., Marenick, N., Miller, A., & Sylvia, G. (2015). Assessing the value and role
of seafood traceability from an entire value-chain perspective. Comprehensive Reviews in Food Science
and Food Safety, 14(3), 205–268. https://doi.org/10.1111/1541-4337.12130

Sterman, J. (2000). Business dynamics: Systems thinking and modeling for a complex world. Irwin/McGraw-
Hill.

Steven,A.,Dong,Y.,&Corsi, T. (2014).Global sourcing andquality recalls:An empirical studyof outsourcing-
supplier concentration-product recalls linkages. Journal of Operations Management, 32(5), 241–253.
https://doi.org/10.1016/j.jom.2014.04.003

Suwannapoom, S. (2021). Country fisheries trade: Thailand. SEAFDEC: Southeast Asian Fisheries Develop-
ment Center. Available at: http://www.seafdec.org/county-fisheries-trade-thailand/ (accessed 29 August
2021).

Taghikhah, F., Voinov, A., Shukla, N., Filatova, T., & Anufriev, M. (2021). Integrated modeling of extended
agro-food supply chains: A systems approach. European Journal of Operational Research, 288(3),
852–868. https://doi.org/10.1016/j.ejor.2020.06.036

Thompson, M., Sylvia, G., & Morrissey, M. T. (2005). Seafood traceability in the United States: Current
trends, system design, and potential applications. Comprehensive Reviews in Food Science and Food
Safety, 4(1), 1–7. https://doi.org/10.1111/j.1541-4337.2005.tb00067.x

Ting, S. L., Tse, Y. K., Ho, G. T. S., Chung, S. H., & Pang, G. (2014). Mining logistics data to assure the quality
in a sustainable food supply chain: A case in the red wine industry. International Journal of Production
Economics, 152, 200–209. https://doi.org/10.1016/j.ijpe.2013.12.010

Tiwari, K., & Khan, M. S. (2019). An action research approach for measurement of sustainability in a multi-
echelon supply chain: Evidences from Indian sea food supply chains. Journal of Cleaner Production,
235, 225–244. https://doi.org/10.1016/j.jclepro.2019.06.200

123

https://doi.org/10.1086/676288
https://doi.org/10.1109/ACCESS.2018.2890507
https://doi.org/10.1111/jbl.12224
https://doi.org/10.3390/fi11080170
https://doi.org/10.1109/TII.2018.2887101
https://doi.org/10.1080/00207543.2018.1467062
https://doi.org/10.1142/S0217595921020036
https://doi.org/10.3390/electronics9111864
https://doi.org/10.1111/poms.13694
https://doi.org/10.1504/IJMTM.2017.082019
https://doi.org/10.1111/poms.13553
https://doi.org/10.3390/su13073996
https://doi.org/10.1111/1541-4337.12130
https://doi.org/10.1016/j.jom.2014.04.003
http://www.seafdec.org/county-fisheries-trade-thailand/
https://doi.org/10.1016/j.ejor.2020.06.036
https://doi.org/10.1111/j.1541-4337.2005.tb00067.x
https://doi.org/10.1016/j.ijpe.2013.12.010
https://doi.org/10.1016/j.jclepro.2019.06.200


Annals of Operations Research

Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelligence in
supply chain management: A systematic literature review. Journal of Business Research, 122, 502–517.
https://doi.org/10.1016/j.jbusres.2020.09.009

Tsolakis, N., Keramydas, C., Toka, A., Aidonis, D., & Iakovou, E. (2014). Agrifood supply chain manage-
ment: A comprehensive hierarchical decision-making framework and a critical taxonomy. Biosystems
Engineering, 120, 47–64. https://doi.org/10.1016/j.biosystemseng.2013.10.014

Tsolakis, N., Niedenzu, D., Simonetto, M., Dora, M., & Kumar, M. (2021). Supply network design to address
United Nations sustainable development goals: A case study of blockchain implementation in Thai fish
industry. Journal of Business Research, 131, 495–519. https://doi.org/10.1016/j.jbusres.2020.08.003

Tsolakis, N., & Srai, J. S. (2018). Mapping supply dynamics in renewable feedstock enabled industries: A
systems theory perspective on ‘green’ pharmaceuticals. Operations Management Research, 11(3–4),
83–104. https://doi.org/10.1007/s12063-018-0134-y

Tsolakis, N., Srai, J. S., & Aivazidou, E. (2018). Blue water footprint management in a UK poultry supply
chain under environmental regulatory constraints. Sustainability, 10(3), 625. https://doi.org/10.3390/
su10030625

Velez-Zuazo, X., Alfaro-Shigueto, J., Rosas-Puchuri, U., Guidino, C., Pasara-Polack, A., Riveros, J. C., &
Mangel, J. C. (2021). High incidence of mislabeling and a hint of fraud in the ceviche and sushi business.
Food Control, 129, 108224. https://doi.org/10.1016/j.foodcont.2021.108224

Vennix, J. A. M. (1996). Group model building: Facilitating team learning using System Dynamics (1st ed.).
Hoboken, NJ: Wiley.

von Rosing,M.,White, S., Cummins, F., & deMan, H. (2014). Business ProcessModel andNotation – BPMN.
In M. von Rosing, H. von Scheel, & A.-W. Scheer (Eds.), The Complete Business Process Handbook
(pp. 433–457). Morgan Kaufmann.

Voss, C., Tsikriktsis, N., & Frohlich, M. (2002). Case research in operations management. Interna-
tional Journal of Operations and Production Management, 22(2), 195–219. https://doi.org/10.1108/
01443570210414329

Wang, Y., Singgih, M., Wang, J., & Rit, M. (2019). Making sense of blockchain technology: How will it
transform supply chains? International Journal of Production Economics, 211, 221–236. https://doi.org/
10.1016/j.ijpe.2019.02.002

Wang, Z., Zheng, Z., Jiang, W., & Tang, S. (2021). Blockchain-enabled data sharing in supply chains: Model,
operationalization, and tutorial. Production and Operations Management, 30(7), 1965–1985. https://doi.
org/10.1111/poms.13356

IUU Watch (2020). EU Carding Decisions. Available at: http://www.iuuwatch.eu/map-of-eu-carding-
decisions/ (accessed 15 September 2020).

Weill, P., &Woerner, S. L. (2018). Is your company ready for a digital future? MIT Sloan Management Review,
59(2), 21–25.

WWF (2018). New blockchain project has potential to revolutionise seafood industry. Avail-
able at: https://www.wwf.org.nz/media_centre/news/?15541/New-Blockchain-Project-has-Potential-to-
Revolutionise-Seafood-Industry (accessed 25 August 2020).

WWF (2020). Overfishing: Overview. Available at: https://www.worldwildlife.org/threats/overfishing
(accessed 15 September 2020).

Yin, R. K. (2003). Case study research: Design and methods (3rd Edn.). Thousand Oaks, California: SAGE
Publications.

Yin, R. K. (2009). Case study research: Design and methods (4th Edn.). Thousand Oaks, California: SAGE
Publications.

Yin, R. K. (1993). Applications of case study research. Sage.
Yu, E. S. (2009). Social modeling and i*. In: A. T. Borgida, V. K. Chaudhri, P. Giorgini, E. S. Yu (Eds).

Conceptual Modeling: Foundations and Applications. Lecture Notes in Computer Science, Vol. 5600.
Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-02463-4_7

Zhang, J., & Bhatt, T. (2014). A guidance document on the best practices in food traceability. Comprehensive
Reviews in Food Science and Food Safety, 13(5), 1074–1103. https://doi.org/10.1111/1541-4337.12103

Zheng, Z.,Dai,H.-N.,&Wu, J. (2019). Blockchain intelligence:When blockchainmeetsArtificial Intelligence.
Computer Science, 1–5. http://arxiv.org/abs/1912.06485

Zhou, H., Sun, G., Fu, S., Fan, X., Jiang, W., Hu, S., & Li, L. (2020). A distributed approach of big data mining
for financial fraud detection in a supply chain. Computers, Materials and Continua, 64(2), 1091–1105.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.jbusres.2020.09.009
https://doi.org/10.1016/j.biosystemseng.2013.10.014
https://doi.org/10.1016/j.jbusres.2020.08.003
https://doi.org/10.1007/s12063-018-0134-y
https://doi.org/10.3390/su10030625
https://doi.org/10.1016/j.foodcont.2021.108224
https://doi.org/10.1108/01443570210414329
https://doi.org/10.1016/j.ijpe.2019.02.002
https://doi.org/10.1111/poms.13356
http://www.iuuwatch.eu/map-of-eu-carding-decisions/
https://www.wwf.org.nz/media_centre/news/?15541/New-Blockchain-Project-has-Potential-to-Revolutionise-Seafood-Industry
https://www.worldwildlife.org/threats/overfishing
https://doi.org/10.1007/978-3-642-02463-4_7
https://doi.org/10.1111/1541-4337.12103
http://arxiv.org/abs/1912.06485

	Artificial intelligence and blockchain implementation in supply chains: a pathway to sustainability and data monetisation?
	Abstract
	1 Introduction
	2 Artificial intelligence and blockchain in supply chains
	2.1 Artificial intelligence
	2.1.1 Sustainability benefits
	2.1.2 Implementation challenges

	2.2 Blockchain technology
	2.2.1 Sustainability benefits
	2.2.2 Implementation challenges

	2.3 Artificial intelligence and blockchain technology integration
	2.4 Literature remarks

	3 Methodology
	3.1 Theoretical lens
	3.2 Research approach
	3.2.1 Empirical evidence
	3.2.2 Supply chain mapping
	3.2.3 System conceptualisation


	4 Fish supply chains
	4.1 Digital technology challenges
	4.2 Key data elements

	5 Thai fish supply network ecosystem
	5.1 Data capture and traceability
	5.2 Artificial intelligence and blockchain in operations
	5.3 Interplay between digital technologies and supply chain operations

	6 Artificial intelligence and blockchain in supply chains: a unified framework
	7 Conclusions
	7.1 Academic contributions
	7.2 Practical implications
	7.3 Limitations
	7.4 Future research

	Acknowledgements
	Appendix 1
	Interview protocol

	Appendix 2
	System dynamics model structure

	References




