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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

The objective of this study is to provide an innovative and efficient method to measure the geometric imperfections of 

complex sections such as steel rack uprights and to numerically study their behavior with imperfection sensitivity. Steel 

rack uprights are generally thin-walled cold-formed steel members, and their compressive capacity and stability are sensitive 

to initial geometric imperfections. Due to the complexity of the section, accurately measuring the imperfection of such 

sections could be challenging and labor-intensive. In this paper, the projection speckle correlation method and close-range 

photogrammetry technique are used to measure the full circumference morphology of the steel rack upright and obtain a 

3D point cloud morphology of the member specimen. The initial geometric imperfection is then calculated from the point 

cloud database. Some characteristics of the imperfection field in the member are further analyzed. The proposed 

measurement method in this paper, as the first of its kind in the application of geometric imperfection measurement for 

cold-formed steel structures, has the advantages of low cost, high-speed, and high precision in 3D full-field geometric 

imperfections for complex sections, and can help further develop more reliable imperfection models for simulations. 

Moreover, the shell finite element (FE) model is established from the point cloud database along with the ideal member of 

the upright. Geometric imperfections are also incorporated into the ideal model of the upright in the FE nonlinear collapse 

analysis to study imperfection sensitivity and compare with the point-cloud model. The results highlight the sensitivity in 

selecting the imperfection mode shape and its magnitude using the traditional modal approach, which warrants more 

imperfection databases for the upright. 
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1.  Introduction 

 

The rapid development of logistics and e-commerce industries has led to 

high demand for warehouses filled with steel storage racks from low-rise to 

high-rise. The main load-bearing components of racks are the uprights, pallet 

beams, and their connections. Complex racks might have bracings to enhance 

their seismic performance. Nonetheless, as the main member of the rack’s load 

path, the upright demands a higher safety requirement.  

Meanwhile, the members of steel storage racks are usually cold-formed 

from steel plates (or coils) through rolling or press-braked. In particular, for the 

upright, it is usually rolled into a complex shape such as Omega sections, with 

uniaxial symmetry and multiple stiffeners. As a thin-walled steel member, its 

performance is usually controlled by the stability of various buckling modes (or 

their interaction) [1]. Consequentially, the strength of the member could be 

sensitive to the geometric imperfection inherent in the member due to the 

manufacture, shipping, and storage. For example, the upright member is 

inevitably subjected to initial geometric imperfection including cross-sectional 

imperfections and global imperfection caused by torsion or bending due to the 

press-brake, shipping, and storage [2,3]. The strength of the member is sensitive 

to these geometric imperfections in terms of both magnitude and shape [4]. 

Therefore, initial geometric imperfections are required to be considered by 

current design specifications either implicitly or explicitly depending on 

approaches [5].  

In particular for computational simulation that is commonly used today, 

how the geometric imperfections are introduced into the model has generated 

numerous studies [2,6-12]. Meanwhile, significant efforts were also dedicated 

to investigating the real pattern of imperfections from experimental 

measurements [13-23] and tried to recommend what the best approach is to 

include these imperfections in computational modeling. Gao [24] used meter 

and feeler gauges to measure the initial geometrical imperfections. The linear 

variable differential transformer displacement transducer (LVDT) [25-27] is a 

common tool to obtain global geometric imperfection of a steel section along 

the longitudinal direction. Young [28] added a local imperfection measurement 

frame with linear ball bearings in addition to the global geometric imperfection 

measurement frame to simultaneously measure both local and global 

imperfections of a simple steel section. However, using LVDT to measure 

geometric imperfections has challenges in keeping it straight with the specimen 

due to the friction during the translational movement. Meanwhile, the reference 

points are hard to be locked under the rotation of the specimen during 

measurement. Large errors can be generated which results in a low accuracy in 

this type of mechanical topography method. In addition, LVDT measurement 

can only generate continuous point cloud data in the direction of the measured 

lines, not global continuous point cloud data over the specimen, which renders 

the method not able to generate a full-field measurement.  

With the technological advances, non-contact methods with high precision 

are gradually used to obtain a full-field measurement. Zhao [29] combined a 2D 

laser scanner and a rotating table to construct a three-dimensional imperfection 

field of cold-formed steel members. Selvaraj and Tran [30,31] used a 3D laser 

scanner to obtain the initial geometric imperfections of steel sections. Feng [32] 

used a handheld 3D laser scanner to obtain the 3D geometric imperfections of 

an I-beam before and after reinforcement and established a digital model based 

on the 3D point cloud data. Boissonnade [33] placed a regular grid of targets on 

the web surface and obtained the initial geometrical imperfections through an 

appropriate numerical treatment of images. These demonstrated the high 

accuracy and convenience that the 3D laser scanner could bring into measuring 

geometric imperfections. However, other than the fact that a 3D laser scanner 

system is usually very expensive, due to the operation nature of the laser beam, 

the measurement efficiency could be limited when measuring complex sections 

or large-scale structures. 

Another non-contact technique that has great potential is the 3D Digital 

Image Correlation (3D-DIC), a 3D full-field, non-contact optical technique to 

measure contour, deformation, and even strain on most materials. It has 

attracted wide attention and applications in the fields of civil engineering, 

mechanical engineering, biomedical engineering, and materials science [34-36], 

due to the benefits of 3D full-field measurement and its high accuracy.  

There are applications of DIC in measuring thin-walled members, 

particularly in composite cylindrical shells that are highly sensitive to 

imperfections. Kepple et al. [37] used the ATOS system and ultrasonic 

inspection to measure the geometry and material imperfections of composite 

cylindrical shells and used the 3D-DIC system to measure their deformation 

during loading. Degenhardt et al. [38] used a 3D-DIC system (e.g., ARAMIS) 

to measure the deformation during the test of CFRP cylindrical shells to study 

the imperfection sensitivity and improve the stochastic modeling of thickness 

and material imperfections. With the focus of those studies on cylindrical shells 

with relatively smooth surfaces, the effectiveness of DIC’s applications for 

members with more complex cross-sections and rougher surfaces is worth 
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further investigation. 

In this study, a 3D-DIC with a projector system is proposed using only a 

two-camera system for high efficiency and used to measure the full-filed 

geometrical imperfections of a steel rack upright, which has a complex section 

profile with multiple stiffeners. This, to the best of the authors’ knowledge, is 

the first application of 3D-DIC in geometric imperfection measurement for 

cold-formed steel structures. The close-range photogrammetry technology is 

used to establish global coordinates to realize point cloud splicing. The initial 

geometric imperfection is then calculated by comparing and analyzing the 

difference between the point cloud data and ideal geometry. The imperfection 

pattern of the measured 3D full-field imperfection is analyzed and investigated. 

Based on the measured imperfections, numerical models of the member under 

axial loading are established. Several strategies of modeling imperfections are 

investigated against those with the one using the measured full-field 

imperfection. 

 

2.  3D-DIC Principle 

 

2.1. 3D-DIC method 

 

3D-DIC combines DIC with stereo vision, which enables the measurement 

of 3D shapes. In our previous work, the parallel IC-GN algorithm was proposed 

[39] for a multiple-camera system and applied to real-time DIC software. In this 

study, to reduce the hardware cost, the system is modified to use just two 

cameras. The mathematical model of the stereo vision with two cameras is 

shown in Fig.1. The coordinates of point P in the world coordinate system is 

(Xw, Yw, Zw), while in the camera coordinate system is (Xc, Yc, Zc) and in the 

image coordinate system is (u, v), e.g., (u1, v1) and (u2, v2) for the two image 

planes shown in Fig.1. The transformation relationship between the image 

coordinate system and the world coordinate system can be expressed as [40]: 
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where M1 and M2 are projection matrices that can be obtained by camera 

calibration. Four independent equations with three unknown quantities Xw, Yw, 

and Zw can be obtained after eliminating Zc1 and Zc2. Then, the world 

coordinates of the point P can be obtained by solving the overdetermined 

equation using the least square method. The 3D reconstruction of the object can 

then be obtained by repeating the process for all the points needed to be 

calculated. 

 

 

Fig. 1 Stereo vision coordinates with 2 cameras 

 

2.2. Target-based calibration algorithm 

 

The traditional 3D-DIC system cannot be directly used for full-field 

measurement of complex structures due to the limitation of the field of view. To 

establish a full-field digital geometric model of the structure, it is necessary to 

take photos from multiple perspectives. A common approach is to adopt a multi-

camera system so point cloud data splicing can be achieved by unifying the 

extrinsic parameters between the cameras [41,42]. To perform the calibration of 

these extrinsic parameters between different stereo systems (e.g., OC), a global 

coordinate system Ow is required as shown in Fig. 2. HC (i.e., HC1 and HC2 in 

Fig. 2) is the rigid body transformation matrix from the global coordinate system 

to the camera coordinate system, and HL (i.e., HL1 in Fig.2) is the extrinsic 

parameter matrix between cameras. A multi-camera system can realize the full-

field high-precision measurement of the test specimen, and ensure the 

consistency of measurement in the time domain as well. As a result, it is suitable 

for tracking dynamic deformation. However, the cost of hardware and space for 

setting up cameras will increase. Additional calibration among multiple cameras 

will also bring additional operational complexity. Genovese [43] used a single 

SLR camera which was moved to multiple positions around the specimen 

through a turntable to simulate the effect of multiple cameras. The extrinsic 

parameters of the camera were calibrated through a control point fixed to the 

bottom of the specimen. However, this method of placing a control point at one 

end of the specimen will reduce the spatial resolution when measuring long 

specimens to ensure sufficient control points in each frame. 

 

 

Fig. 2 Rotation and translation transformation of the coordinate system 
 

In this study, the coded points were distributed on the surface of the 

specimen, and the close-range photogrammetry method develop in our previous 

work [44] was adopted to carry out 3D reconstruction of the coded points 

attached to the surface of the specimen, to establish the global coordinate system. 

There are three main steps of close-range photogrammetry including coded 

point detection, coded point pre-orientation, and bundle adjustment 

optimization. First, coded point detection is to obtain the coding and location 

information of coded points through image preprocessing, edge detection, target 

screening, and coded point decoding. Second, coded point pre-orientation can 

obtain the relative orientation between two photos as well as the positions of the 

cameras in the global coordinate system, which is then used to calculate the 

cameras’ intrinsic and extrinsic parameters between different views. Third, 

bundle adjustment optimization is a final nonlinear optimization process to 

reconstruct the global coordinates of the coded points as well as the camera 

intrinsic and extrinsic parameters [44,45].  

The reconstructed coded points have a unified coordinate system, which 

will move with the movement of the tested part. This unified coordinate system 

is used as the global coordinate system of the measurement system. For a fixed 

3D-DIC system, each movement of the specimen is equivalent to a virtual multi-

camera system, and the transformation relationship between the local coordinate 

system and the global coordinate system can be solved by using the coded points 

captured from this pose. This method not only achieves the full-field 

topography measurement of the specimen, but also reduces the number of 

cameras, calibration times, and operation difficulty. As shown in Fig.3, adjacent 

cameras represent a 3D-DIC system. Minimization of the following objective 

function is needed to obtain HCi from the local to global coordinates:  

 

𝐸 =∑‖𝒒𝑖 − (𝑅𝑖𝒑𝑖 + 𝒕𝑖)‖
2

𝑛

𝑖=1

(2) 

 

Where, 𝐻𝐶𝑖 = [
𝑅𝑖 𝒕𝑖
0 1

], qi and pi are the coordinates of coded points in 

global and local coordinate systems, respectively,  and Ri and ti are the rotation 

matrix and translation vector from local to global coordinates, respectively. 

Through the above function, Ri and ti can be obtained through Singular 

Value Decomposition (SVD) [46]. 
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Fig. 3 Virtual multi-camera system setup scheme (for clarity of representation, only two 

positions of the 3D-DIC systems are illustrated) 

 
The method proposed here can achieve a fast yet accurate solution of the 

specimen’s geometry using just two cameras. Compared to the multi-camera 

system, the hardware cost is significantly less and also reduces the calibration 

time, which makes this suitable for a large scale of scanning tasks.  

 

3.  System design and precision evaluation 

 

3.1. System design 

 

The 3D-DIC system used in this study consists of two industrial cameras 

(i.e., IDS UI-3370CP, 2048×2048 Pixel CMOS sensor) and a projector (DLP 

Light Crafter 4500 Evaluation Module) as shown in Fig.4a. The projector 

projects speckle images required by the digital correlation calculation, and two 

industrial cameras form a stereo vision system for the 3D-DIC 

reconstruction. Coded points were coded by 15-bit concentric circles [47]. A 

single DSLR camera (NIKON D7100, 6000×4000 Pixel CMOS sensor) was 

used for close-range photogrammetry to reconstruct the three-dimensional 

spatial coordinates of the coded points [45]. Industrial cameras have c-port 

50mm prime lens (KowA-LM50XC, 50mm, 4/3") and DSLR camera utilizes a 

Nikon 50mm prime len (50mm F / 1.4g). The object distance of the 3D-DIC 

system was about 1m, the field of view was about 160×160mm, and the 

stereoscopic perspective was 35o. In this study, in-house softwares developed 

by the team as shown in Fig.4b were used for 3D-DIC calculation and the 

reconstruction of coded points. 

 

 

(a) 3D-DIC with projector system 

  
3D-DIC software 3D-points reconstruction software 

(b) Measurement softwares 

Fig. 4 3D-DIC with projector system 

 

3.2. Precision evaluation of a cylindrical tube 

 

The accuracy of 3D-DIC’s measurement relies heavily on not only the 

accuracy of equipment but also the reconstruction algorithm. In this section, the 

accuracy of the method applied to imperfection measurement is verified using 

a simple cylindrical member first before applying to more complex members. 

First, the 3D-DIC system itself can be accurate to ±0.0016mm. Second, the 

accuracy of point cloud splicing will be further affected by the identification 

accuracy of coded points. Combinedly, these determine the accuracy of the 

measurement, e.g., geometric imperfections in this study. 

A verification measurement was conducted using a cylindrical tube with a 

diameter of 106mm and a length of 280 mm. Coded points were arranged on the 

outer surface of the tube as shown in Fig. 5a. The specimen with coded points 

was imaged by a DSLR camera from multiple angles, and the close-range 

photogrammetry technique was then used to reconstruct the spatial coordinates 

of the coded points and establish the global coordinate system as illustrated in 

Fig. 5b. Sequentially, the geometrical morphology point clouds were obtained 

by moving the specimen, and each local point cloud can cover about 20% of the 

circumference of the specimen. The stereo vision principle was applied to 

calculate the coordinate data of coded points in the local coordinate system and 

the full-filed point cloud of the specimen was spliced. The radius of each point 

cloud point was converted into cylindrical coordinates. The full-filed point 

cloud in terms of the radius R is shown in Fig. 5(c), where the blank areas 

correspond to the coded points. Overall, compared to the perfect geometry, the 

standard deviation of the calculated radius R is 0.0739.  In the region where 

splicing occurs as shown in Fig. 6, the rectangular region x, the two sets of 

measurement from point clouds 1 and 2 (i.e., before and after rotating the 

specimen) are very close. Therefore, the global accuracy of the method used in 

this study is about ±0.1mm (5% of the thickness), which meets the accuracy 

requirement. 

 

   
(a) (b) (c) 

Fig. 5 Precision analysis test and visualization: a) the cylindrical tube with coded points 

b) global coordinate of coded points c) measured R results 

 

 
(a) the cross-section with stitching area in rectangle 

 

 
(b) measured point cloud R 

Fig. 6 Point cloud stitching (vertical view): a) the cross-section with stitching area in 

rectangle, b) measured point cloud R in splicing region 

 

4.  Geometrical morphology measurement of a rack upright 

 

4.1. Specimen and measurement procedure 
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As validated before, the accuracy of the developed 3D-DIC system in 

geometric imperfection is well in the acceptable range. Hence, it was applied to 

measure the imperfection of a more complex section: a steel storage rack upright. 

As shown in F, there are several returns and stiffeners within the section. The 

dimension of the section is a Ω120×85×2.0mm formed by press-braking a 

Q235B (i.e., yielding stress fy = 235MPa) steel plate. The specimen is 600mm 

in length, with no perforations. Note that there are obvious localized geometric 

imperfections at both ends in the specimen due to cutting. 

 

  
(a) Design section of the steel rack upright (mm) 

 
(b) Tested specimen 

Fig. 7 Steel rack upright: (a) Design section of the steel rack upright (mm) (b) Tested specimen 

 

With multiple turns, the surface of this section could not be measured just 

by a single pose of cameras due to the obstruction of views and also the camera’s 

limitation of the field of view. Therefore, to measure the specimen, multiple 

poses were used to ensure the integrity of the morphology measurement result. 

As illustrated in Fig.8, the annular morphology could be obtained by rotating 

the specimen 4 times while keeping the 3D-DIC system with the projector fixed. 

Then the specimen was moved to the new test zone translationally along the 

longitudinal direction and the next annular morphology is conducted. 

Particularly, to ensure that there was no untested area, each new test zone 

needed to have a small amount of overlap with the last zone. Given the length 

of the specimen was 600mm and the field of view was 160×160mm, 4 

translations were needed, which resulted in 16 groups of images. Hence, 16 

local morphologies of the specimen in local coordinate systems were obtained 

by 3D-DIC calculation as illustrated in Fig.8b. In addition, as shown in Fig.8c, 

the global coordinate system reconstructed from the close-range 

photogrammetry with the coded points in the local coordinate system was used 

to obtain the rigid body transformation matrix Hi. With the rigid body 

transformation matrices, the point clouds could then be unified into the global 

coordinate system to realize the full-field morphology reconstruction of the 

specimen as shown in Fig.9. 

 

 

Fig. 8 Measurement procedure 
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Fig. 9 3D reconstruction result (mm) 

 

4.2. Initial geometric imperfection of the upright 

 

To obtain the geometric imperfection of the specimen, the measured cloud 

data (580mm cloud data in middle was used for IGI calculation and modeling) 

is needed to compare with the design value of the member (i.e., idealized perfect 

geometry). To remove outlier points and reduce the impact of splicing joints, 

the obtained point cloud will be filtered and smooth first. The iterative closest 

point algorithm (ICP) [48] was used to register the point cloud data with the 

idealized geometric point cloud. The following objective function is used: 

 

𝐸(𝑅, 𝑡) =
1

𝑛
∑‖𝒒𝑖 − (𝑅𝒑𝑖 + 𝒕)‖

2

𝑛

𝑖=1

(3) 

 

where, qi and pi are coordinates of the idealized geometric point and 

measured cloud data, respectively, and R and t are the rotation matrix and 

translation vector from the measured cloud data to the idealized geometric point, 

respectively.  

The registered point cloud is the one with a minimum difference from the 

idealized geometric point cloud. The difference between the two clouds after 

registration is the geometric imperfection of the specimen. When registering the 

cloud points using ICP, there are 329 points for each section and a total of 580 

sections along the member length. The ICP registration results of the two-cloud 

data are shown in Fig.10. 

 

 

Fig. 10 ICP registration results 

 

As shown in Fig., there are 12 turn angles in this so-called Ω cross-section. 

These turn angles were calculated along the specimen’s length by taking the 

point cloud data of every 10mm in the z-direction. Then a linear fitting was 

performed for point clouds on both sides of each turn angle and the angle 

between the two fitting lines is the turn angle value.  

The statistical results of these turn angles are summarized in Table 1 and 

plotted in Fig. These turn angles possess a difference from 3.92 degrees to 14.02 

degrees compared to their design values. Overall, the difference from the design 

values is relatively large. The differences of turn angles 7 and 8 are comparably 

small (e.g., below 4%). It is interesting to notice that all the turn angles designed 

to be 90o are smaller in reality (i.e., see turn angles 1, 2, 7, and 8 in Fig. 11a). 

This might be from the fact that during manufacture, the pre-brake process tends 

to overbend the right angle to compensate for potential spring back. Also, the 

differences of these four turn angles are on the smaller side. For the turn angles 

3, 4, 5, and 6 in the flanges, the measured values are all bigger than the design 

values. Their average differences are bigger than those of 7 and 8 but the 

majority is still smaller than 10%. On the other hand, turn angles in the web (i.e., 

9-12) demonstrate a much bigger difference from their design angle. The 

difference is around 25% for all these four angles. These four angles are 

intended to form the stiffener in the web and the large difference of these turn 

angles might result from the difficulty in precision control during the press-

brake within such a small length. Furthermore, Figb illustrates the variation of 

these turn angles along the specimen’s length in the z-direction. Again, turn 

angles 7 and 8 show less fluctuation along the length. All others show a much 

larger fluctuation. 

 

 
(a) 

 
(b) 

Fig. 11 Turn angles: (a) Statistics of turn angles (b) fluctuation of turn angles along the z-

direction 

 

Table 1 

Turn angle results from measurement 

Number Measured results 

(deg) 

Design value (deg) error 

1 84.40 90 -6.22% 

2 82.21 90 -8.66% 

3 115.79 110 5.26% 

4 115.34 110 4.85% 

5 116.75 110 6.14% 

6 121.70 110 10.64% 

7 86.60 90 -3.78% 

8 86.88 90 -3.47% 

9 134.76 107 25.94% 

10 133.42 107 24.69% 

11 134.43 107 25.64% 

12 133.64 107 24.90% 

 

The difference changes the overall geometry of the specimen. Turn angles 

9, 10, 11, and 12 in the web are all larger than the design value by 25 degrees, 

which made the stiffener wider and more curved than the design. The width of 

the stiffener is 34.70mm which is 38.8% more than the design width of 

25.03mm, and the depth of the stiffener is 6.64mm with an increase of 10.6% 

compared with the design depth of 6.0 mm. The difference of turn angles 5 and 

6 in the middle of the flanges makes the flanges deviate from the designed 

position, which renders the section a distortional imperfection mode. This is 

further illustrated in Fig, where the measured section versus the design section 

is shown along the length. While the web is relatively flat, the flanges are 

distorted to the outside. In buckling, this corresponds to the outward distortional 

buckling mode. The distortion amplitude along the z-direction is large at both 

ends and small in the middle. 
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(a) Cross-sections at different z (mm) (b) Comparison of cross-sections at different z (mm) 

Fig. 12 Cross-sectional view of the specimen: (a) Cross-sections at different z (mm) (b) Comparison of cross-sections at different z (mm) 

 

Fig. 13 Initial crookedness and relative twist 

  
(a) Smoothness (b) Contour error 

Fig. 14 Full-field geometric imperfections: (a) Smoothness (b) Contour error 

 

5.  Numerical analyses 

 

Thin-walled members are subjected to complex instabilities, and geometric 

imperfections have been shown to have a significant impact on their ultimate 

strength and post-buckling mechanisms. Hence, in computational modeling, 

careful treatment of geometric imperfection is needed, which demands the 

specification of both the imperfection distribution and magnitude. Two 

approaches are generally adopted to simulate the imperfection field: 1) using 

measured imperfection field; 2) a modal approach using buckling mode shape(s) 

with a certain magnitude. With the full-field imperfection measured from above 

for this rack upright section, the geometric imperfection can be incorporated 

directly from the measured cloud data. Meanwhile, the traditional modal 

approach is also used here to highlight the effectiveness of this approach in 

strength prediction against that from the full-field measurement.  

 

5.1. Computational model details 

 

Shell finite element (FE) modeling using the commercial finite element 

package ABAQUS [49] is established with those geometric imperfections. 

However, ultimate strength prediction and investigation of collapse behavior 

necessitate the inclusion of material nonlinearity as well. The solutions of these 

models can also be influenced by several other model inputs, such as residual 
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stresses, plastic strain, yield criteria, material model, boundary conditions, and 

also the fundamental mechanics, particularly concerning element selection and 

solution schemes [6].  

In this study, residual stresses and initial plastic strains are not included. 

Material is the Q235 steel with a with Young's modulus E = 206,000 MPa, 

Poisson's ratio v = 0.28, and yield stress of 235 MPa. Material is modeled as 

homogeneous and isotropic with von Mises yield criteria with the plasticity 

shown in Table 2. The finite element models are shown in Fig.15. The perfect 

(or ideal) model and point cloud model are respectively established by using the 

design values and point cloud data (note, interpolation is used to complete the 

blank space due to coded points.).  

 

Table 2 

Material plasticity in ABAQUS model 

Yield Stress (N / mm2) Plastic Strain 

235 0 

248 0.00124 

294.5 0.03936 

332.48 0.07749 

361.975 0.115621 

393.042 0.1537 

395.682 0.19187 

399.896 0.23 

 

In the model, shell element S4R in the ABAQUS library is selected to 

model the member and solid element C3D8R is selected to model the loading 

plates. A fine mesh is chosen for both the perfect and point cloud models. The 

mesh size for the perfect model is 5 mm and the point cloud model is 2mm to 

account for the potential large un-smoothness in the member. It is worth noting 

that for both models, a convergence analysis was shown that the mesh had a 

negligible impact on the solution with a fine mesh like this. The mesh size for 

loading plates is 10mm. A shell-solid coupling constraint is applied between the 

upright and the loading plates, the fixed constraint 

(U1=U2=U3=UR1=UR2=UR3=0) is applied to the bottom loading plate, while 

the fixed constraint (except U3≠0 in the axial direction) is applied to the top-

loading plate. Finally, a 5mm displacement load was applied in the axis 

direction to simulate a column member. The solution scheme for the collapse 

analysis is the arc-length method (the modified Riks method [49] in ABAQUS). 

 

  
(a) Ideal Model (b) Point cloud model 

Fig. 15 Numerical models: (a) Ideal model (b) Point cloud model 

 

5.2 Geometric imperfections 

 

First, for the ideal model, an eigenvalue analysis was conducted. A 

selective set of modes was pulled out and shown in Fig.16. For thin-walled 

members, mode categorization can be challenging due to the complex buckling 

natures and their potential interaction. A laborious visual inspection of the 

modes can determine the mode type as listed in Fig.16. For the traditional modal 

approach of modeling geometric imperfections, these will be the fundamental 

shapes assumed in the model. For a short member like this, the dominated 

modes are the distortional modes. The 4th to 7th modes shown also demonstrate 

interaction among distortional modes (or with local modes). Only the 22nd mode 

visually demonstrates a strong local buckling trait. The numerical models herein 

incorporate the selected modes and their combinations with varying magnitude. 

Global imperfections such as camber, bow, and twist recommended in [3] are 

not included. Much higher modes need to be extracted to potentially identify 

those modes. Also, based on the full-fielded measurement in Fig, the bow effect 

is negligible. There is initial crookedness in the x-direction but the shape is 

significantly different from the camber assumed in [3] – a half-sine wavelength. 

Similarly, for the twist mode, in the measured specimen, it largely resides 

towards the ends unlike the one assumed in [3].  

For the traditional modal approach, magnitude needs to specify for the 

mode shapes being incorporated in the model. In this study, several magnitudes 

are selected for each mode and their combinations as listed in Table 3. The 25%, 

50%, 75%, and 95% percentiles related to the imperfection magnitude are the 

statistical data on lipped channel sections in [3]. While the upright section is 

different from the lipped channel, with lack of a more comprehensive statistical 

data of upright right sections, those numbers in [2] were adopted for the study 

here to illustrate the impact of magnitude selection. In [3], Type I imperfection 

mode is treated as the one corresponding to local mode imperfection while Type 

II is the distortional mode imperfection. Meanwhile, based on the full-field 

measurement shown in Fig, the measured imperfection demonstrates a strong 

outward distortional mode. The maximum magnitude of this imperfection mode 

(corresponding to Type II in [3]) is calculated and plotted in Fig.17. This 

magnitude is also used to scale the distortional mode imperfections in the model 

as listed in Table 3. On the other hand, the Type I imperfection (i.e., local mode) 

is not significant from the measured full-field data, hence no measured 

magnitude for the local mode imperfection (i.e., the 22nd mode) is scaled in the 

model. In addition, mixed-mode imperfections (e.g., local and distortional) 

using the traditional modal approach are also considered in this study as listed 

in Table 3. Only the mixed modes between local (i.e.,22nd) and distortional (e.g., 

1st) are considered here. Note that the magnitude for each mode is based on the 

value of their individual percentiles in [3]. For distortional mode imperfection, 

even though from measured data in Fig, the imperfection is observed as outward 

distortional mode, not inward, the potential positive and negative magnitudes 

that represent the outward and inward distortional modes, respectively, are 

considered for some modes as well.  

 

Fig. 17 Maximum measured magnitude of distortional mode imperfection 

 

    
   

(a) 1st mode: 

730kN – outward distor-

tional mode 

(b) 2nd mode: 

881kN – asymmet-

rical distortional 

mode 

(c) 3rd mode: 

893kN –higher-order 

distortional mode 

(d) 4th mode: 

1035kN – interactive 

distortional mode 

(e) 5th mode: 

1171kN – inter-

active distortional 

mode 

(f) 7th mode: 

1275kN – interac-

tive distortional 

mode 

(g) 22nd mode: 

2010kN – local 

mode 

Fig. 16 eigenmodes of the upright section 
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Table 3 

Imperfection magnitudes 

Mode Mode type 
Imperfection magnitude based on percentile 

25% 50% 75% 95% Measured magnitude 

1 outward D 0.64t 0.94t 1.55t 3.44t 4.01t 

2 asymmetrical D 0.64t 0.94t 1.55t 3.44t 4.01t 

3 higher-order D 0.64t 0.94t 1.55t 3.44t 4.01t 

4 interactive D 0.64t 0.94t 1.55t 3.44t 4.01t 

5 interactive D 0.64t 0.94t 1.55t 3.44t 4.01t 

7 interactive D 0.64t 0.94t 1.55t 3.44t 4.01t 

22 L 0.14t 0.34t 0.66t 1.35t - 

1 & 22 D/L 0.14t*22+0.64t*1 0.34t*22+0.94t*1 0.66t*22+1.55t*1 1.35t*22+3.44t*1 - 

1(-) & 22 D/L 0.14t*22-0.64t*1 0.34t*22-0.94t*1 0.66t*22-1.55t*1 1.35t*22-3.44t*1 - 

Note: t is the thickness of the member 

 

Table 4 

Ultimate loads of all models 

 Ultimate load (kN) 

Relative difference to the point cloud model (%) Ideal 188.4 

Point cloud 176.0 

Mode  
Imperfection magnitude based on percentile Imperfection magnitude based on percentile 

25% 50% 75% 95% Measured magnitude 25% 50% 75% 95% Measured magnitude 

1 183.1  180.7  176.1  163.9  160.8  4.0 2.7 0.1 -6.9 -8.7 

1(-) 192.3  192.4  182.1  161.0  156.1  9.3 9.3 3.5 -8.5 -11.3 

2 188.5  188.4  187.2  177.1  174.5  7.1 7.1 6.4 0.6 -0.9 

3 180.5  176.3  168.1  146.3  121.6  2.5 0.1 -4.5 -16.9 -30.9 

4 181.7  178.8  173.1  148.8  143.7  3.3 1.6 -1.6 -15.5 -18.4 

5 180.9  177.4  169.9  150.0  123.9  2.8 0.8 -3.5 -14.8 -29.6 

7 182.2  178.7  171.7  153.9  149.8  3.5 1.5 -2.5 -12.5 -14.9 

7(-) 181.3  178.3  173.3  158.7  152.8  3.0 1.3 -1.5 -9.9 -13.2 

22 179.1  173.2  164.2  148.4  - 1.7 -1.6 -6.7 -15.7 - 

1 & 22 182.3  177.4  167.2  147.4  - 3.6 0.8 -5.0 -16.2 - 

1(-) & 22 191.9  190.0  176.3  147.3  - 9.0 8.0 0.2 -16.3 - 

 
5.3 Nonlinear collapse analyses 

 

The load versus displacement (i.e., end-shortening) responses were 

extracted from the nonlinear collapse analyses of all models with a variety of 

geometric imperfections based on the traditional modal approach in Table 3. 

The result of the point-cloud model which represents the measured imperfection 

was carried out as well, along with the perfect model (or ideal model) without 

any imperfections. Note that the point-cloud model represents a true dimension 

of the physical specimen, which should provide the closest prediction of the 

member’s actual behavior. The ultimate loads of each model (i.e., peak load 

from the load vs. displacement response) are summarized in Table 4. 

First, for the point cloud model, the predicted ultimate load is 176.0 kN. 

This is lower than the perfect model’s prediction, 188.4 kN, which represents a 

7% difference compared to the point cloud model. The initial stiffness of the 

two models is close but slightly different. The member is in the inelastic 

buckling regime (i.e., the critical buckling load is 729.6 kN). Both the models 

demonstrate large flange deformation in the middle region of the member at the 

peak, which corresponds to a distortional deformation. However, the ideal 

model has an outward flange distortional deformation (Fig. 18b) while the point 

cloud model shows an inward one (Fig.18c). Material nonlinearity further 

deteriorates the outward and inward distortional deformation, respectively, in 

the post-peak regime and creates slight localization in the middle (Fig. 18d-e). 

This is an interesting observation from the point cloud model given that the 

imperfect model possesses an outward distortional imperfection as measured 

(Fig. 12). The von mises stress contours of the two models at three selected 

points along with the load-displacement responses in Fig. 19 further illustrate 

the differences in the yielding mechanism. The yielding distribution is quite 

different in the flange lips between the two models, which eventually leads to 

different collapse mechanisms (i.e., inward or outward distortional). Note that 

red represents the yielding elements. The lips in the point cloud model have 

yielding regions in the middle of the member while still in elastic in the perfect 

model. 

 

(a) Load-displacement responses 

    

(b) Ideal model: 

peak 

(c) Point cloud 

model: peak 

(d) Ideal model: 

post-peak 

(75% of peak 

load, Pus) 

(e) Point cloud 

model:  

post-peak (75% of 

peak load, Pus) 

Fig. 18 Load-displacement responses of ideal and point cloud models with deformation 

modes 
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(a) First yielding (ideal) (b) At peak (ideal) (c) At post-peak (75% of peak load, Pus) (ideal) 

   

(d) First yielding (point cloud) (e) At peak (point cloud) (f) At post-peak (75% of peak load, Pus) (point 

cloud) 

Fig. 19 Von Mises stress contours of ideal and point cloud models 

 

 

Fig. 20 load-displacement responses with a variety of eigenmodes and magnitudes 

 
Second, the traditional modal approach relies on the buckling mode shapes 

that are to be assumed as the geometric imperfections of the model. Usually, the 

1st buckling mode bears relatively heavyweight in consideration of geometric 

imperfections, which is usually thought of as a sympathy mode to imperfection-

sensitive structures. For this member, the 1st buckling mode is a distortional 

buckling mode. A positive magnitude scaled based on this mode will provide 

an outward distortional imperfection, which matches the measured imperfection 

on the cross-sectional level (Fig. 12). From the results shown in Fig. 20a and 

Table 4, the impact of the magnitude of the imperfection can be observed. Using 

25th and 50th percentiles of imperfection magnitudes still overestimate the peak 

load by more than 2.7% compared to that of the point cloud model. While using 

the 95th percentile of magnitude underestimate around 7%. Using the measured 

magnitude in Fig. 17 predicts an even lower peak load than that of the 95th 

percentile. The closest prediction in terms of peak load is using the 75 th 

percentile magnitude, which shows a difference less than 0.1% of that of the 

point cloud model. However, the initiation of the yielding is quite different and 

the failure mode is different as well. The failure modes and yielding at peak and 

post-peak of the 75th percentile model are shown in Fig. 21a-d. The failure at 

peak and post-peak all demonstrate an outward distortional deformation, which 

is different from those of the point-cloud model. The yielding distribution 

reveals that the lips in this model are still in elastic from Fig. 21c while the 

section has yielding regions in the middle length of the member in the point 

cloud model (Fig. 19e). Meanwhile, if a negative magnitude is scaled using this 

mode, it represents an inward distortional imperfection. This is different from 

what is observed from measured imperfection in Fig. 12 but worth investigating 

the impacts on strength and failure mode. Clearly, based on the strength 

prediction in Table 3 and Fig. 20b, the assumed imperfection field generate a 

large error. The closest prediction in strength is also the 75th percentile 

magnitude but has a 3.5% error compared to that of the point cloud model. 

However, the failure modes and yielding distribution as illustrated in Fig. 21e-

f for the 75th percentile model shows an inward distortional deformation, which 

is similar to those of the point cloud model. 
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(a) At peak (75th) 
(b) At post-peak 

(75th) 
(c) At peak (-75th) 

(d) At post-peak (-

75th) 

    

(e) At peak (75th) 
(f) At post-peak 

(75th) 
(g) At peak (-75th) 

(h) At post-peak (-

75th) 

Fig. 21 Failure modes and von Mises stress contour of the model with 1st mode 

imperfection: (a)-(d) 75th percentile magnitude; (e)-(h) negative 75th percentile 

magnitude 

 

Third, the 2nd eigenmode is an asymmetrical distortional mode. Using this 

mode as imperfection with a magnitude close to the 95th percentile and measured 

magnitude can predict a close strength to that of the point cloud model (both 

within 1%) as shown in Fig. 20c and Table 4. However, the failure modes and 

yielding distribution at peak and post-peak showed in Fig. 22 reveal a different 

failure mechanism compared to those of the point cloud model. The failure 

mode is heavily influenced by the initial imperfection mode shape. 

 

    
(a) At Peak (b) At Post-peak (c) At Peak (d) At Post-peak 

Fig. 22 Failure modes and von Mises stress contour of the model with 2nd mode imperfec-

tion – 95th percentile magnitude: (a)-(b) failure modes; (c)-(d) von Mises stress contour 

 

Fourth, the 3rd mode is identified as a distortional mode with two half-waves. 

The 50th percentile magnitude with this imperfection mode predicts a close 

strength compared to the point cloud model (i.e., within 0.2% difference from 

Table 4). Others have relatively large errors, especially using the measured 

magnitude in Fig. 20d. Large imperfection models also lead to a large difference 

in the initial stiffness of the member as well compared to that of the point cloud 

model. Meanwhile, the failure modes and yielding distribution at peak and post-

peak are quite different from those of the point-cloud model as shown in Fig. 

19. 

 

  
  

(a) At Peak (b) At Post-peak (c) At Peak (d) At Post-peak 

Fig. 23 Failure modes and von Mises stress contour of the model with 3rd mode imperfec-

tion – 50th percentile magnitude: (a)-(b) failure modes; (c)-(d) von Mises stress contour 
 

Fifth, modes 4, 5, and 7 are all identified as interactive modes between 

different orders of distortional modes. Or it might be identified as conventional 

local and distortional interaction. All these three models predict a relatively 

small error in strength compared to the point cloud model using the 50th 

percentile magnitude as shown in Fig. 20e-h. However, using the measured 

magnitude, the errors are big as shown in Table 4. Also, the initial stiffness of 

the member using this magnitude has a large difference compared to that of the 

point cloud model. In Fig. 24, the failure mode of the 4th mode imperfection 

with 50th percentile magnitude shows an inward distortional deformation similar 

to that of the point cloud model. All others have an outward distortional 

deformation similar to the ideal model. In addition, more deformation 

localization in the web is observed in all these models. 

 

    

(a) At peak (4th) (b) At post-peak 

(4th) 

(c) At peak (5th) (d) At post-peak 

(5th) 

 
  

 
(e) At peak (7th) (f) At post-peak 

(7th) 

(g) At peak (-7th) (h) At post-peak 

(-7th) 

Fig. 24 Failure modes of the models with 4th, 5th, and 7th (positive and negative) mode 

imperfections – 50th percentile magnitude 

 

Sixth, the 22nd mode is the first mode demonstrating a strong local buckling 

trait. The models with 25th and 50th percentile magnitudes predict a strength 

within 2% of the point cloud model as shown in Fig. 20i and Table 4. However, 

the failure mode and yielding distribution (Fig. 25) are different compared to 

those of the point cloud model as shown in Fig. 23. More deformation 

localization in the web is observed in these models. 

 

    
(a) At Peak (b) At Post-peak (c) At Peak (d) At Post-peak 

Fig. 25 Failure modes and von Mises stress contour of the model with 22nd mode 

imperfection – 50th percentile magnitude: (a)-(b) failure modes; (c)-(d) von Mises stress 

contour 

 

Finally, a combination of 1st mode (i.e., distortional) and 22nd mode (i.e., 

local) with varying magnitude are investigated. The 1st mode is scaled with both 

positive and negative magnitudes. The load-displacement responses are plotted 

in Fig. 26 and their strengths are summarized in Table 4. With a positive 

magnitude of the 1st mode (i.e., outward imperfection) with the 22nd mode, a 

50th percentile magnitude is able to predict a strength within 1% of the point 

cloud model; while the negative case (i.e., inward imperfection), a 75th 

percentile magnitude predicts a strength within 0.5%. The failure modes and 

yielding distribution of these two models are illustrated in Fig. 27. They reveal 

the different failure mechanisms compared to that of the point cloud model. 

With the inward distortional imperfection (Fig. 27e-h), this model demonstrates 

a similar inward distortional failure but differs in the web region, where more 

localization can be observed compared to that of the point cloud model. 
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(a) 1st and 22nd combination 

 
(b) 1st (negative) and 22nd combination 

Fig. 26 Load displacement responses of combined mode imperfections 

 

   
 

(a) At peak (75th) (b) At post-peak 

(75th) 

(c) At peak (-

75th) 

(d) At post-peak 

(-75th) 

  
  

(e) At peak (75th) (f) At post-peak 

(75th) 

(g) At peak (-

75th) 

(h) At post-peak 

(-75th) 

Fig. 27 Failure modes and von Mises stress contour of the model with 1st and 

22nd mode imperfections: (a)-(d) 50th percentile magnitude; (e)-(h) negative 1st mode 

with 75th percentile magnitude; (a,b,e,f) failure mode; (c,d,g,h) von Mises stress contour 

 

6.  Discussions 

 

The proposed method using 3D-DIC is able to construct a full 3D 

imperfection field for complex section profiles like the one in the rack upright. 

With the accuracy this method can achieve, details of the characteristics of the 

imperfections in these members can be further analyzed and studied. Useful 

information can be collected to aid the future analysis of direct modeling of 

geometric imperfections. This requires a large data-gathering effort by scanning 

more sections and forming the needed 3D full-field imperfection database.   

Meanwhile, while simulating the member with measured 3D full-field 

imperfection can be realized, developing new geometric imperfection models 

based on a large database to simulate the real imperfection field would be more 

helpful for efficient modeling of the member. In particular, the measured full-

field imperfection in this study reveals a potentially different pattern of the 

upright section compared to the conventional lipped C sections.    

Moreover, the numerical simulation using the traditional modal approach 

highlights the sensitivity of the simulation with the selection of the imperfection 

mode shape and its magnitude. The consistent and reliable prediction of the 

load-displacement response with correct failure modes is challenging as shown 

from this study. While more advanced modal approaches are available (e.g., [3]), 

the study herein is not able to perform due to the limited dataset obtained in this 

study so far. With the aforementioned data gathering, future studies in this 

aspect will be pursued.   

 

7.  Conclusions 

 

In this paper, an efficient measurement method using the 3D-DIC system 

with projection speckles is proposed and applied to measure the initial 

geometric imperfections of steel rack uprights. This system utilizes the 

projection speckle correlation method and close-range photogrammetry. As the 

first of its kind in the application of measuring geometric imperfections of cold-

formed steel structures, it is demonstrated to possess high accuracy and 

efficiency. The application to the complex steel rack upright member establishes 

a 3D point cloud of the geometry and enables a full-field geometric imperfection 

for such a complex section with so many stiffeners. Analysis of the full-field 

imperfection reveals a potentially different imperfection pattern of the upright 

section compared to the conventional lipped C sections. Numerical modeling 

from the point cloud model and ideal member models incorporated with 

different imperfections using the traditional modal approach highlights the need 

for a careful selection of the imperfection mode shape and its magnitude in 

simulation. In particular, for the upright section, the proposed measurement 

method could enable a large set of geometric imperfection data gathering with 

relatively low cost due to the efficiency of the system. This can assist a large 

data-gathering effort by scanning more sections and forming the needed 3D full-

field imperfection database, thus enabling the development of new geometric 

imperfection models and aiding the future analysis of direct modeling of 

geometric imperfections. 
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