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Abstract. We consider a class of Lévy-type processes with unbounded coefficients, arising as Doob
h-transforms of Feynman-Kac type representations of non-local Schrödinger operators, where the
function h is chosen to be the ground state of such an operator. First we show existence of a càdlàg
version of the so-obtained ground state-transformed processes. Next we prove that they satisfy a
related stochastic differential equation with jumps. Making use of this SDE, we then derive and prove
the multifractal spectrum of local Hölder exponents of sample paths of ground state-transformed
processes.

1. Introduction

The purpose of this paper is to investigate the local Hölder continuity properties of sample paths of

a class of Lévy-type processes. These processes are obtained through a Doob h-transform of random

processes occurring in the Feynman-Kac representation of non-local Schrödinger operators. Such

processes, and the related operators and non-local equations, are currently much used in a variety of

applications, for instance, in models of mathematical physics (anomalous diffusion in porous media,

quantum optics etc), however, we will not be concerned with applications in this paper and for a

discussion we refer to [23]. Apart from a direct theoretical relevance and applications, sample path

regularity properties are also of practical interest in modelling and numerical simulations.

Below we will consider Rd-valued Lévy processes (Xt)t≥0, generated by operators of the form

Lf(x) =
d∑

i,j=1

aij
∂2f

∂xj∂xi
(x) +

∫
Rd

(
f(x+ z)− f(x)− 1{|z|<1}(z) z · ∇f(x)

)
ν(z)dz, x ∈ Rd, (1.1)

with f ∈ C∞
c (Rd), and where the matrix A = (aij)i,j=1,...,d describes the diffusion part, and the

Lévy measure ν(dz) = ν(z)dz describes the jump part. (For details see Section 2 below.) A

landmark example is the fractional Laplacian L = (−∆)α/2, 0 < α < 2, giving rise to an isotropic

α-stable process, which is a specific case of the class L = Ψ(−∆), where Ψ is a Bernstein function.

Further cases of much interest include jump-diffusion processes obtained as the sum of a mutually

independent Brownian motion and an isotropic α-stable process generated by L = −a∆+b(−∆)α/2,

a, b > 0, isotropic relativistic stable processes generated by L = (−∆+m2/α)α/2−m,m > 0, isotropic

geometric α-stable processes generated by L = log(1 + (−∆)α/2), and many others.

Next we consider a suitable class of Borel functions V : Rd → R called potentials, and define the

non-local Schrödinger operator H = −L+ V and the related semigroup {e−tH : t ≥ 0}. Assuming
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that V is a Kato-class potential, we then have the Feynman-Kac type representation [12, 32](
e−tHf

)
(x) = Ex[e−

∫ t
0 V (Xs)dsf(Xt)] =: Ttf(x), f ∈ L2(Rd), x ∈ Rd, t ≥ 0, (1.2)

where the expectation is taken with respect to the probability measure of the Lévy process (Xt)t≥0.

The so obtained Feynman-Kac semigroup {Tt : t ≥ 0} has many convenient properties, allowing

a far reaching study of, for instance, spectral properties of H = −L + V or solutions of non-local

equations of the type ∂tu = Hu. However, it is not conservative in the sense that Tt1Rd ̸= 1Rd ,

t > 0, therefore the Lévy process (Xt)t≥0 perturbed by the function V is in general no longer a

random process. Nevertheless, by a suitable Doob h-transform one can change the measure under

which it becomes a Markov process.

Suppose that H has a non-empty discrete component in its spectrum, and let φ0 be its unique

eigenfunction (called ground state) corresponding to the lowest-lying eigenvalue, i.e., Hφ0 = λ0φ0

with φ0 ∈ DomH and λ0 = inf SpecH. Then the map f 7→ φ0f defines a unitary transform from

L2(Rd, φ2
0dx) to L

2(Rd, dx). It can be shown, see Section 2 below for further details, that the image

H̃ of H −λ0 under this unitary map gives the negative of the infinitesimal generator L̃ of a Markov

process, and for suitable test functions we have

(L̃f)(x) =
1

2
σ∇ · σ∇f(x) + σ∇ lnφ0(x) · σ∇f(x) +

∫
0<|z|≤1

φ0(x+ z)− φ0(x)

φ0(x)
z · ∇f(x)ν(z)dz

+

∫
Rd\{0}

(
f(x+ z)− f(x)− z · ∇f(x)1{|z|≤1}

)φ0(x+ z)

φ0(x)
ν(z)dz, (1.3)

where ν and A = σσT are as in (1.1) above, and where we use the notation σ∇ · σ∇f(x) =∑d
i,j=1(σσ

T )ij∂xi∂xjf(x). We call the resulting process a ground state-transformed process (also

called P (ϕ)1-process following the terminology of B. Simon [40]).

The ground state-transformed process is a Lévy-type process resulting from the effect of V giving

rise to position-dependent drift and jump components, having almost surely càdlàg paths. However,

in contrast with many cases of Lévy-type processes studied in the literature, the coefficients of L̃

are generally unbounded. It is known that pseudo-differential operators G defined by

(Gf)(x) = −
∫
Rd

eix·yg(x, y)f̂(y)dy, f ∈ C∞
c (Rd),

where the hat means Fourier transform, give rise to Lévy-type processes under suitable conditions

on the symbol g(x, y). Whenever C∞
c (Rd) ⊂ DomG and G generates a Feller process, the Courrège

representation

g(x, y) = g(x, 0)− ib(x) · y + 1

2
y ·A(x)y +

∫
Rd\{0}

(
1− eiz·y + iz · y1{|z|≤1}

)
ν(x,dz)

holds, where the coefficients b(x), A(x) and ν(x, ·) play the same role of drift vector, diffusion

matrix, and jump measure as for Lévy processes, with the essential difference that they are now

position dependent [9, 16, 8]. Furthermore, whenever the condition

sup
x∈Rd

|g(x, y)| ≤ C(1 + |y|2), y ∈ Rd, (1.4)

holds, with a constant C > 0, the symbol can be used to analyze various properties of the process

generated by G [37, 8]. It is also known, however, that (1.4) implies that all of the coefficients

b(x), A(x), ν(x, ·) are bounded [36]. Recently, there has been an increasing interest in working

also with unbounded coefficients, see [14, 30, 7, 38, 31] and [8, Sect. 3.6]. The results below on

ground state-transformed processes complement these efforts since our approach is not through an
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analysis of the symbol, and apart from a direct interest in this context, our class of processes has an

immediate relevance in the study of spectral properties of related self-adjoint operators and model

Hamiltonians as a bonus [13, 32].

Our concern in the present paper is to study sample path regularity properties of ground state-

transformed processes obtained for a large class of operators H. The typical long-time behaviour

of such processes has been established in [25], which is useful also in characterizing the support of

the related Gibbs path measures defined by the right hand side of the Feynman-Kac formula (for

perturbations of symmetric α-stable processes see also [21]). While the asymptotic behaviour on the

long run is driven by the large jumps, regularity at short range depends on the ultraviolet properties

of H involving the small jumps. It is reasonable to expect that at least under sufficiently “nice”

potentials V the regularity of paths of a ground state-transformed process inherits the regularity

of the underlying Lévy process and it does not deteriorate. However, since the drift generated by

the perturbation may become rough, the challenge is to establish conditions on V under which

path regularity is at least preserved. Results in [2, 43, 44], where L = (−∆)s(x) and V ≡ 0, i.e.,

stable-like processes generated by fractional Laplacians of variable order are considered, indicate

that local behaviour may become very complex, and instead of an almost sure rule it can be even

dependent on the individual path.

To describe local path regularity, we study the multifractal spectrum of local Hölder exponents

of paths. Recall that given a locally bounded function f : R → Rd, it is said to belong to the

pointwise Hölder space Ch(x0) for h > 0 and x0 ∈ R whenever there exist constants c, δ > 0, and a

polynomial P of degP < ⌊h⌋ such that for x ∈ B(x0, δ),

|f(x)− P (x− x0)| ≤ c|x− x0|h.

The Hölder exponent of f at point x0 is then defined by

Hf (x0) = sup{h > 0 : f ∈ Ch(x0)}.

Consider the set

Ef (h) = {x ∈ R : Hf (x) = h}.

The multifractal spectrum of f is the map

Df : h 7→ dimHEf (h),

where dimH denotes Hausdorff dimension, with the convention that dimH ∅ = −∞.

The multifractal spectrum of random processes has been studied by various authors. The above

objects are now defined pathwise. For Brownian motion, the Hölder exponent equals 1
2 everywhere

[35], giving

DB(h) =

{
1 if h = 1

2
−∞ otherwise

almost surely, in which case the multifractal reduces to a mono-fractal behaviour. For a general

Lévy process (Xt)t≥0,

Xt = bt+ σBt +

∫ t

0

∫
|z|≤1

zÑ(ds,dz) +

∫ t

0

∫
|z|>1

zN(ds, dz), (1.5)

where b ∈ Rd is the drift term, σσT is the d × d diffusion matrix, N is a Poisson measure, and

Ñ is the compensated Poisson measure in Rd with intensity given by the Lévy measure ν(dz), the
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behaviour relates with the upper Blumenthal-Getoor index [6] given by

βν = inf
{
γ ≥ 0 :

∫
|z|≤1

|z|γν(dz) <∞
}
, (1.6)

describing the growth rate of the Lévy measure around zero. The integrability condition of Lévy

measures implies that βν ∈ [0, 2]. Jaffard [19] has proved the following for a Lévy process with

βν ∈ (0, 2). If σ ̸= 0, then

D1
X(h) =


βνh if h < 1/2

1 if h = 1/2

−∞ otherwise

(1.7)

almost surely, and if σ = 0, then

D2
X(h) =

{
βνh if h ≤ 1/βν

−∞ otherwise
(1.8)

almost surely. Balança [1] has shown that the same result holds also for βν = 2. (An example of

a one-dimensional pure jump Lévy process with βν = 2 is one with intensity ν(z) = 1/(z3| log z|a),
a > 1.) Extensions to Lévy fields and time-changed Lévy processes can be found in [10, 3].

We also note that there are many further fractal properties of jump processes addressed in the

literature. We refer to [27, 34, 28, 26] and the references therein, and for a review see [41].

Our main results are as follows. First, in Theorem 2.1 we prove the existence and basic properties

of ground state-transformed processes in the generality considered in this paper. Next in Theorem

3.1, we derive a stochastic differential equation with jumps related to L̃, and show that the ground

state-transformed processes we consider are a weak solution. Using the SDE representation, in

Theorem 3.2 we then obtain the multifractal spectrum of local Hölder exponents of our class of

processes. We find that whenever the process contains a Brownian component, it has a sweeping

effect, and the behaviour is described by (1.7). For cases of pure jump processes, there is a split in

the behaviour according to Blumenthal-Getoor indices lower or higher than 1. For values βν ∈ [1, 2]

the behaviour is described by (1.8), while for βν ∈ (0, 1) this happens under an increased regularity

of the ground state. In Section 3.3 we also discuss the necessity of this extra regularity.

2. Ground state-transformed jump processes

2.1. Lévy processes and perturbations by potentials

Let (Xt)t≥0 be a rotationally symmetric Lévy process with values in Rd, d ≥ 1, i.e., as given

by (1.5) in which we set b = 0. The probability measure of the process starting at x ∈ Rd will

be denoted by Px, and expectation with respect to this measure by Ex. The process (Xt)t≥0 is

determined by its characteristic function

E0
[
eiy·Xt

]
= e−tψ(y), y ∈ Rd, t > 0,

with the characteristic exponent given by the Lévy-Khintchin formula

ψ(y) =
1

2
Ay · y +

∫
Rd

(1− cos(y · z))ν(dz). (2.1)

Here A = (aij)1≤i,j≤d = σσT is a symmetric non-negative definite matrix, and ν is a symmetric

Lévy measure on Rd\ {0}, i.e.,
∫
Rd(1 ∧ |z|2)ν(dz) < ∞ and ν(E) = ν(−E), for every Borel set

E ⊂ Rd\ {0}, thus the Lévy triplet of the process is (0, 12A, ν). We will assume throughout that the
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Lévy measure in (2.1) has infinite mass and it is absolutely continuous with respect to Lebesgue

measure, i.e., ν(Rd\ {0}) = ∞ and ν(dx) = ν(x)dx, with density ν(x) > 0.

The generator L of the process (Xt)t≥0 is determined by its symbol ψ through

L̂f(y) = −ψ(y)f̂(y), y ∈ Rd, f ∈ Dom(L), (2.2)

with domain Dom(L) =
{
f ∈ L2(Rd) : ψf̂ ∈ L2(Rd)

}
. It is a negative, non-local, self-adjoint

operator with core C∞
c (Rd), and it has the expression (1.1) for f ∈ C∞

c (Rd).
Next consider the set of functions

KX =
{
f : R → Rd : f is Borel measurable and lim

t↓0
sup
x∈Rd

Ex
[ ∫ t

0
|f(Xs)|ds

]
= 0
}
. (2.3)

We say that the potential V : Rd → R belongs to X-Kato class, i.e., associated with the Lévy

process (Xt)t≥0, whenever it satisfies

V− ∈ KX and V+ ∈ KX
loc, with V+ = max{V, 0}, V− = min{V, 0},

where V+ ∈ KX
loc means that V+1B ∈ KX , for all compact sets B ⊂ Rd. It is straightforward to see

that L∞
loc(Rd) ⊂ KX

loc, moreover, by stochastic continuity of (Xt)t≥0 also KX
loc ⊂ L1

loc(Rd). Note that

X-Kato class potentials may have local singularities.

By standard arguments based on Khasminskii’s Lemma, see [32, Lem.3.37-3.38], for an X-Kato

class potential V it follows that there exist suitable constants C1(X,V ), C2(X,V ) > 0 such that

sup
x∈Rd

Ex
[
e−

∫ t
0 V (Xs)ds

]
≤ sup

x∈Rd

Ex
[
e
∫ t
0 V−(Xs)ds

]
≤ C1e

C2t, t > 0. (2.4)

This implies that

Ttf(x) = Ex
[
e−

∫ t
0 V (Xs)dsf(Xt)

]
, f ∈ L2(Rd), t > 0,

are well-defined operators. Using the Markov property and stochastic continuity of (Xt)t≥0, it can

be shown that {Tt : t ≥ 0} is a strongly continuous semigroup of symmetric operators on L2(Rd),
which we call the Feynman-Kac semigroup associated with the process (Xt)t≥0 and potential V .

In particular, by the Hille-Yoshida theorem there exists a self-adjoint operator H, bounded from

below, such that e−tH = Tt, with core C∞
c (Rd). We call the operator H a non-local Schrödinger

operator whose kinetic term is the negative of the infinitesimal generator L of the process (Xt)t≥0.

Since any X-Kato class potential is relatively form bounded with respect to −L with relative bound

less than 1, we have

H = −L+ V,

in form sense, and V acts as a multiplication operator [32, Ch. 3]. For instance, when (Xt)t≥0

is a subordinate Brownian motion, we have L = Ψ(−∆), where Ψ is the Laplace exponent of the

corresponding subordinator (given by a Bernstein function), see [12].

We make the following standing assumption throughout this paper.

Assumption 2.1. The self-adjoint operator H = −L+ V has a ground state, i.e., there exists an

eigenfunction φ0 ∈ DomH ⊂ L2(Rd) such that

Hφ0 = λ0φ0, φ0 ̸≡ 0, λ0 = inf SpecH, (2.5)

and is normalized by ∥φ0∥2 = 1.

Remark 2.1. By general results it follows, see [32, Ch.3] and [22, 24], that for the class of operators

L and V that we consider, whenever a ground state φ0 of H does exist, it is unique, has a strictly

positive version (which will be chosen throughout below), and it is bounded and continuous, with a
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pointwise decay to zero at infinity. From (2.1)-(2.2) we have that Spec(−L) = Specess(−L) = [0,∞).

It also follows by general arguments that whenever the potential is confining, i.e., V (x) → ∞ as

|x| → ∞, the spectrum of −L completely changes under the perturbation and the spectrum of H

becomes purely discrete, consisting of isolated eigenvalues of finite multiplicities. Thus for confining

potentials a ground state (2.5) always exists. When the potential is decaying, i.e., V (x) → 0 as

|x| → ∞, or it is confining in one direction and decaying in another direction, the spectrum of

H may or may not contain a discrete component, and the existence of a ground state depends on

further details of V .

2.2. Existence and càdlàg property of ground state-transformed processes

By using φ0 > 0, we define the ground state transform as the unitary map

U : L2(Rd, φ2
0dx) → L2(Rd, dx), f 7→ φ0f.

Also, we define the intrinsic Feynman-Kac semigroup

T̃tf(x) =
eλ0t

φ0(x)
Tt(φ0f)(x) (2.6)

associated with {Tt : t ≥ 0}. Using the integral kernel u(t, x, y) of Tt, we then have that T̃tf(x) =∫
Rd ũ(t, x, y)f(y)φ

2
0(y)dy, with the integral kernel given by

ũ(t, x, y) =
eλ0tu(t, x, y)

φ0(x)φ0(y)
, (2.7)

and infinitesimal generator L̃ = −H̃, where

H̃ = U−1(H − λ0)U, (2.8)

with domain

Dom H̃ =
{
f ∈ L2(Rd, φ2

0dx) : Uf ∈ DomH
}
.

A calculation gives the expression (1.3), which holds at least for C∞
c functions. The operators

T̃t = etL̃ are contractions and we have T̃t1Rd = 1Rd for all t ≥ 0, thus {T̃t : t ≥ 0} is a Markov

semigroup on L2(Rd, φ2
0dx).

The self-adjoint operator L̃ generates a stationary strong Markov process, which we call ground

state-transformed (GST) process and denote by (X̃t)t≥0. GST processes have been constructed

first for Brownian motion perturbed by potentials, see [40, 5] and [32, Sects. 4.10.2, 4.11.9] for

further details and applications. However, due to the jumps in our case there are some essential

modifications, and we give a proof of the existence of a càdlàg version of GST jump processes in

the generality allowed by Assumption 2.1.

Denote by Ωr the space of right continuous functions from [0,∞) to Rd with left limits (i.e., càdlàg

functions), and by Ωl the space of left continuous functions from [0,∞) to Rd with right limits (i.e.,

càglàd functions). Denote the corresponding Borel σ-fields by B(Ωr) and B(Ωl), respectively. Also,

denote by Ω the space of càdlàg functions from R to R, and its Borel σ-field by B(Ω).

Theorem 2.1. Let (Xt)t≥0 be a Lévy process with generator L as given by (2.1)-(2.2), V be an

X-Kato class potential, and suppose that H = −L+V has a ground state φ0. For all x ∈ Rd, there
exists a probability measure P̃x on (Ω,B(Ω)) and a random process (X̃t)t∈R satisfying the following

properties:
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(1) Let −∞ < t0 ≤ t1 ≤ ... ≤ tn < ∞ be an arbitrary division of the real line, for any n ∈ N.
The initial distribution of the process is

P̃x(X̃0 = x) = 1,

and the finite dimensional distributions of P̃x with respect to the stationary distribution φ2
0dx

are given by∫
Rd

EP̃x

[ n∏
j=0

fj(X̃tj )
]
φ2
0(x)dx =

(
f0, T̃t1−t0 f1... T̃tn−tn−1 fn

)
L2(Rd,φ2

0dx)
(2.9)

for all f0, fn ∈ L2(Rd, φ2
0dx), fj ∈ L∞(Rd), j = 1, ..., n− 1.

(2) The finite dimensional distributions are time-shift invariant, i.e.,∫
Rd

EP̃x

[ n∏
j=0

fj(X̃tj )
]
φ2
0(x)dx =

∫
Rd

EP̃x

[ n∏
j=0

fj(X̃tj+s)
]
φ2
0(x)dx, s ∈ R, n ∈ N.

(3) (X̃t)t≥0 and (X̃t)t≤0 are independent, and X̃−t
d
= X̃t, for all t ∈ R.

(4) Consider the filtrations
(
F+
t

)
t≥0

= σ
(
X̃s : 0 ≤ s ≤ t

)
and

(
F−
t

)
t≤0

= σ
(
X̃s : t ≤ s ≤ 0

)
.

Then (X̃t)t≥0 is a Markov process with respect to
(
F+
t

)
t≥0

, and (X̃t)t≤0 is a Markov process

with respect to
(
F−
t

)
t≤0

.

(5) The map t 7→ X̃t is P̃x-almost surely càdlàg.

Furthermore, we have for all f, g ∈ L2(Rd, φ2
0dx) the change-of-measure formula

(f, T̃tg)L2(Rd,φ2
0dx)

= (fφ0, e
−t(H−λ0)gφ0)L2(Rd,dx) =

∫
Rd

EP̃x [f(X̃0)g(X̃t)]φ
2
0(x)dx, t ≥ 0. (2.10)

The probability measure P̃x is a Gibbs measure on the space of two-sided càdlàg paths, see a

discussion for stable processes in [21, Sect. 5.3]. For the remaining part of this section we present

a proof of this theorem.

Let n ∈ N be arbitrary, and consider any time division 0 ≤ t0 ≤ t1 ≤ ... ≤ tn. Define the set

function P{t0,...,tn} : ×n
j=0 B(Rd) → R by

P{t0}(A0) =
(
1, T̃t01A0

)
L2(Rd,φ2

0dx)
= (1,1A0)L2(Rd,φ2

0dx)
(2.11)

P{t0,...,tn}(×
n
j=0Aj) =

(
1A0 , T̃t1−t01A1 ...T̃tn−tn−11An

)
L2(Rd,φ2

0dx)
, n ∈ N, (2.12)

with arbitrary Borel sets A0, ..., An ∈ B(Rd).

Step 1 : First we obtain a probability measure on the set of all functions [0,∞) → Rd by a projective

limit of the prescribed finite dimensional distributions (2.11)-(2.12), which is a standard step. De-

note the set of finite subsets of the positive semi-axis by Pf (R+) = {Λ ⊂ [0,∞) : |Λ| <∞}, where
the bars denote cardinality of the set. It can be verified directly that the family of set functions

(PΛ)Λ∈Pf (R+) satisfies the consistency condition of the marginals

P{t0,...,tn+m}

(
(×n

j=0Aj)× (×n+m
j=n+1R

d)
)
= P{t0,...,tn}(×

n
j=0Aj), n,m ∈ N.

Hence by the Kolmogorov extension theorem there exists a probability measure P∞ and a random

process (Zt)t≥0 on the measurable space
(
(Rd)[0,∞), σ(A)

)
, where

A =
{
ω : R → Rd : Ran ω

∣∣
Λ
⊂ E, E ∈ (B(Rd))|Λ|, Λ ∈ Pf (R+)

}
, (2.13)
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such that

P{t0}(A) = EP∞ [1A(Zt0)] and P{t0,...,tn}
(
×n
j=0Aj

)
= EP∞

[ n∏
j=0

1Aj (Ztj )
]
, n ∈ N,

hold. Hence we have

EP∞ [f0(Zt0)] =
(
1, T̃t0f0

)
L2(Rd,φ2

0dx)
= (1, f0)L2(Rd,φ2

0dx)
(2.14)

EP∞

[ n∏
j=0

fj(Ztj )
]
=
(
f0, T̃t1−t0f1...T̃tn−tn−1fn

)
L2(Rd,φ2

0dx)
, (2.15)

for fj ∈ L∞(Rd), j = 1, ..., n− 1, f0, fn ∈ L2(Rd, φ2
0dx), 0 ≤ t0 ≤ t1 ≤ ... ≤ tn, and all n ∈ N.

Step 2: Next we prove the existence of both a càdlàg and a càglàd version of (Zt)t≥0. In this step

we show that the Dynkin-Kinney condition holds.

Lemma 2.1. Let T > 0 be arbitrary but fixed. Then for every ε > 0 we have P∞(|Zt−Zs| > ε) → 0

as |t− s| → 0, uniformly in s, t ∈ [0, T ].

Proof. We write the right hand side of (2.15) in terms of (Xt)t≥0, i.e.,

EP∞

[ n∏
j=0

fj(Ztj )
]
=

∫
Rd

Ex
[
e−

∫ tn
0 (V (Xs)−λ0)ds

( n∏
j=0

fj(Xtj )
)
φ0(Xtn)

]
φ0(x)dx. (2.16)

Let 0 ≤ s < t ≤ T , and denote by Bε(x) the ball of radius ε centered in x. Notice that by (2.15)

we have

P∞(|Zt − Zs| > ε) =
(
1, T̃t−s1Bε(0)c

)
L2(Rd,φ2

0dx)
.

Recall that Ex is expectation with respect to the measure Px of the Lévy process (Xt)t≥0. By

(2.16), the Markov property of (Xt)t≥0, and the conservative property of the intrinsic semigroup

{T̃t : t ≥ 0} on L2(Rd, φ2
0dx), we furthermore have

P∞(|Zt − Zs| > ε) =

∫
Rd

Ex
[
e−

∫ t−s
0 (V (Xr)−λ0)drφ0(Xt−s)1Bε(x)c(Xt−s)

]
φ0(x)dx.

Schwarz inequality gives

P∞(|Zt − Zs| > ε)

≤
∫
Rd

(
Ex
[
φ2
0(Xt−s)

])1/2 (Ex [1Bε(x)c(Xt−s)e
−2

∫ t−s
0 (V (Xr)−λ0)dr

])1/2
φ0(x)dx. (2.17)

Using again Schwarz inequality, we have

Ex
[
1Bε(x)c(Xt−s)e

−2
∫ t−s
0 (V (Xr)−λ0)dr

]
≤

(
Ex
[
1Bε(x)c(Xt−s)

])1/2 (Ex [e−4
∫ t−s
0 (V (Xr)−λ0)dr

])1/2
≤ C P(|Xt−s| > ε)1/2,

where C = supx∈Rd

(
Ex
[
e−4

∫ t−s
0 (V (Xr)−λ0)dr

])1/2
. Thus by (2.17) and a repeated use of Schwarz

inequality, we get

P∞(|Zt − Zs| > ε) ≤ C1/2P(|Xt−s| > ε)1/4∥φ0∥22,

which goes to zero as |t− s| → 0 by stochastic continuity of (Xt)t≥0.

To show uniform convergence, fix η > 0. By stochastic continuity, for every t there exists ρt > 0

such that P∞(|Zt −Zs| ≥ ε
2) ≤

η
2 for |s− t| < ρt. Let It = (t− ρt

2 , t+
ρt
2 ). There is a finite covering
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Itj , j = 1, ..., n, such that ∪nj=1Itj ⊃ [0, T ]. Let ρ = min1≤j≤n ρtj . If |s − t| < ρ and s, t ∈ [0, T ],

then t ∈ Itj for some j, hence |s− tj | < ρtj and

P∞(|Zt − Zs| > ε) ≤ P∞(|Zt − Ztj | > ε/2) + P∞(|Zs − Ztj | > ε/2) < η.

�

Recall that Ωr and Ωl denote the càdlàg and càglàd path spaces over [0,∞), respectively. By

Lemma 2.1, there exists a càdlàg version Z̄ = (Z̄t)t≥0 of (Zt)t≥0 on the space ((Rd)[0,∞), σ(A), P∞).

Denote the image measure of P∞ on (Ωr,B(Ωr)) by Qr = P∞ ◦ Z̄−1. Let (Yt)t≥0 be the coordinate

process on (Ωr,B(Ωr), Qr) such that Z̄t
d
= Yt. In terms of (Yt)t≥0, equalities (2.14)-(2.15) become(

1, T̃t0f0

)
L2(Rd,φ2

0dx)
= (1, f0)L2(Rd,φ2

0dx)
= EQr [f0(Yt0)], (2.18)

(
f0, T̃t1−t0f1...fn−1T̃tn−tn−1fn

)
L2(Rd,φ2

0dx)
= EQr

[ n∏
j=0

fj(Ytn)
]
. (2.19)

Similarly, a càglàd version Z = (Zt)t≥0 of (Zt)t≥0 can be also constructed on the same probability

space ((Rd)[0,∞), σ(A), P∞). Likewise, there exists a probability measure Ql on the càglàd space

(Ωl,B(Ωl) such that the coordinate process (Yt)t≥0 satisfies (2.18)-(2.19) with Ql, and Ql = P∞◦Z−1

holds.

Step 3 : We define the regular conditional probability measures Qxr ( · ) = Qr( · |Y0 = x) and Qxl ( · ) =
Ql( · |Y0 = x) for x ∈ Rd on (Ωr,B(Ωr)) and (Ωl,B(Ωl)), respectively. Since Y0 is distributed

by φ2
0(x)dx, we have Qr(A) =

∫
Rd EQx

r
[1A]φ

2
0(x)dx and Ql(A) =

∫
Rd EQx

l
[1A]φ

2
0(x)dx. Hence the

process (Yt)t≥0 on (Ωr,B(Ωr), Q
x
r ) satisfies(

1, T̃t0f0

)
L2(Rd,φ2

0dx)
= (1, f0)L2(Rd,φ2

0dx)
=

∫
Rd

EQx
r
[f0(Yt0)]φ

2
0(x)dx (2.20)

(
f0, T̃t1−t0f1...fn−1T̃tn−tn−1fn

)
L2(Rd,φ2

0dx)
=

∫
Rd

EQx
r

[ n∏
j=0

fj(Ytj )
]
φ2
0(x)dx, (2.21)

and the process (Yt)t≥0 on (Ωl,B(Ωl), Q
x
l ) satisfies (2.20)-(2.21) with Q

x
l .

Lemma 2.2. The coordinate process (Yt)t≥0 is a Markov process on (Ωr,B(Ωr), Q
x
r ) with respect to

the natural filtration (Ft)t≥0. Similarly, the coordinate process (Yt)t≥0 is a Markov process on the

probability space (Ωl,B(Ωl), Q
x
l ) with respect to the natural filtration (Ft)t≥0.

Proof. Let qt(x,A) = T̃t1A(x), for every A ∈ B(Rd), x ∈ Rd and t ≥ 0. Clearly, qt(x,A) =

EQx
r
[1A(Yt)], and by (2.20)-(2.21) the finite dimensional distributions of (Yt)t≥0 can be written as

EQx
r

[ n∏
j=0

1Aj (Ytj )
]
=

∫
Rd

n∏
j=0

1Aj (xj)qtj−tj−1(xj−1, dxj), (2.22)

with t0 = 0 and x0 = x. By using the properties of the semigroup {T̃t : t ≥ 0}, it is checked

directly that qt(x,A) is a probability transition kernel, thus (Yt)t≥0 is a Markov process with finite

dimensional distributions given by (2.22). The second statement can be proven similarly. �

Step 4 : Next we construct a random process indexed by the whole real line R. Consider Ω̂ = Ωr×Ωl,

with product σ-field F̂ = B(Ωr)×B(Ωl) and product measure Q̂x = Qxr ×Qxl . Define the coordinate

process (Ŷt)t≥0 by

Ŷt(ω) =

{
ω1(t) t ≥ 0

ω2(−t) t < 0
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for ω = (ω1, ω2) ∈ Ω̂. This is then a random process (Ŷt)t∈R on (Ω̂, F̂ , Q̂x) such that Q̂x(Ŷ0 = x) = 1,

and R ∋ t 7→ Ŷt(ω) is càdlàg. It is direct to see that Ŷt, t ≥ 0, and Ŷs, s ≤ 0, are independent, and

Ŷt
d
= Ŷ−t.

Step 5 : Denote the image measure of Q̂x on (Ωr,B(Ωr)) with respect to Ŷ = (Ŷt)t∈R by P̃x =

Q̂x ◦ Ŷ −1. Let X̃t(ω) = ω(t), t ∈ R, ω ∈ Ω, denote the coordinate process. Clearly, we have X̃t
d
= Yt

for t ∈ R. Thus we see that X̃t
d
= X̃−t, and by Step 4 above (X̃t)t≥0 and (X̃t)t≤0 are independent.

Furthermore, by Step 2 we have that (X̃t)t≥0 and (X̃t)t≤0 are Markov processes with respect to

(F+
t )t≥0 and (F−

t )t≤0, respectively.

To prove shift invariance, consider arbitrary time-points t0 ≤ . . . ≤ tn ≤ 0 ≤ tn+1 ≤ . . . ≤ tn+m,

n,m ∈ N. Then by independence of (X̃t)t≤0 and (X̃t)t≥0 we have∫
Rd

EP̃x

[n+m∏
j=0

fj(X̃tj )
]
φ2
0dx =

∫
Rd

EP̃x

[ n∏
j=0

fj(X̃tj )
]
EP̃x

[ n+m∏
j=n+1

fj(X̃tj )
]
φ2
0dx.

Moreover,

EP̃x

[ n+m∏
j=n+1

fj(X̃tj )
]
= (T̃tn+1fn+1T̃tn+2−tn+1fn+2 . . . T̃tn+m−tn+m−1fn+m)(x)

and

EP̃x

[ n∏
j=0

fj(X̃tj )
]
= EP̃x

[ n∏
j=0

fj(X̃−tj )
]
= (T̃−tnfnT̃tn−tn−1fn−1 . . . T̃t1−t0f0)(x).

A combination of the above gives∫
Rd

EP̃x

[ n+m∏
j=0

fj(X̃tj )
]
φ2
0(x)dx = (T̃−tnfn . . . T̃t1−t0f0, T̃tn+1fn+1 . . . T̃tn+m−tn+m−1fn+m)L2(Rd,φ2

0dx)

= (f0, T̃t1−t0f1 . . . T̃tn+m−tn+m−1fn+m)L2(Rd,φ2
0dx)

.

This implies the required time-shift invariance. Formula (2.10) is now a direct consequence, and

this completes the proof of the theorem.

3. Local path regularity of GST processes

3.1. Stochastic differential equation with jumps associated with the GST process

The generator L̃ = −H̃ of the ground state-transformed process (X̃t)t≥0 can be determined

explicitly yielding (1.3), which has first appeared in [23]. Since H and H̃ are unitary equivalent by

(2.8), we have Dom(H̃) = U Dom(H), and since H is closed, also H̃ is a closed operator. Moreover,

since H is self-adjoint, H̃ is also self-adjoint with core C∞
c (Rd).

To study the multifractal spectrum, first we show the existence of a solution to the martingale

problem for (L̃, C2
c (Rd)), and provide a jump SDE representation for the ground state-transformed

process, which we call the ground state SDE. We write Rd∗ = Rd \ {0} for a shorthand notation.

For the ground state SDE we will use the following condition (see also Remark 3.1 below).

Assumption 3.1. Let φ0 be the ground state of H. We assume that the function x 7→ ∇ lnφ0(x),

x ∈ Rd, is locally bounded.
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Theorem 3.1. Let Assumptions 2.1 and 3.1 hold. Consider the stochastic differential equation

with jumps

Mt =M0 + σBt +

∫ t

0
σ∇ lnφ0(Ms) ds+

∫ t

0

∫
|z|≤1

φ0(Ms + z)− φ0(Ms)

φ0(Ms)
zν(z)dzds

+

∫ t

0

∫
|z|≤1

∫ ∞

0
z1{

v≤φ0(Ms−+z)

φ0(Ms−)

}Ñ(ds,dz, dv) +

∫ t

0

∫
|z|>1

∫ ∞

0
z1{

v≤φ0(Ms−+z)

φ0(Ms−)

}N(ds, dz, dv),

(3.1)

where (Bt)t≥0 is an Rd-valued Brownian motion with covariance matrix σ, and N is a Poisson

random measure on [0,∞) × Rd∗ × [0,∞) with intensity dtν(z)dzdv. The GST process constructed

in Theorem 2.1 is a weak solution of (3.1).

Proof. Let

X̃f
t = f(X̃t)− f(X̃0)−

∫ t

0
L̃f(X̃r)dr, t ≥ 0, (3.2)

where f ∈ Dom(L̃). Using a general result, see e.g. Kurtz [30, Th. 2.3], we have that (X̃, P̃x) is a
weak solution of the SDE (3.1) if and only if P̃x solves the (L̃, C2

c ) martingale problem with initial

value x ∈ Rd, that is, (X̃f
t )t≥0 is a martingale under P̃x, for all f ∈ C2

c (Rd).
Using Assumption 3.1 and that φ0 > 0 is bounded continuous, we see that the functions x 7→∫

Rd φ0(z+x)/φ0(z)(1∧ |z|2)ν(dz), x 7→
∫
|z|≤1 z(φ0(z+x)−φ0(z))/φ0(z)ν(dz) and x 7→ ∇ logφ0(x)

are locally bounded, and the conditions in [30, Th. 2.3] hold. Also, since L̃ is a closed operator, by

using a mollifier we can close C∞
c (Rd) in the C2-norm as in [8, Th. 2.37] to obtain that C2

c (Rd) ⊂
Dom(L̃).

Let (M,P x) be a weak solution to (3.1) on a suitable probability space with probability measure

P x, and starting point P x(M0 = x) = 1. Write for the drift b : Rd → Rd,

b(x) = σ∇ lnφ0(x) +

∫
|z|≤1

φ0(x+ z)− φ0(x)

φ0(x)
zν(z)dz.

Using Itô’s formula for Rd-valued semimartingales, see e.g. [17], for every real-valued f ∈ C2
c (Rd)

we have

f(Mt) = f(M0) +

∫ t

0
∇f(Ms−) · d(σBs) +

∫ t

0
∇f(Ms) · b(Ms)ds+

1

2

∫ t

0
σ∇ · σ∇f(Ms)ds

+

∫ t

0

∫
Rd
∗

∫ ∞

0

[
f

(
Ms− + z1{

v≤φ0(Ms−+z)

φ0(Ms−)

})− f(Ms−)

]
Ñ(ds,dz, dv)

+

∫ t

0

∫
|z|>1

∫ ∞

0

[
f

(
Ms− + z1{

v≤φ0(Ms−+z)

φ0(Ms−)

})− f(Ms−)

]
dvν(z)dzds

+

∫ t

0

∫
|z|≤1

∫ ∞

0

[
f

(
Ms− + z1{

v≤φ0(Ms−+z)

φ0(Ms−)

})− f(Ms−)

−∇f(Ms−) · z1{
v≤φ0(Ms−+z)

φ0(Ms−)

}] dvν(z)dzds.
Note that in the second-to-last integral the integrand is zero for all v larger than the ground state

ratio φ0(Ms− + z)/φ0(Ms−). It is thus equal to∫ t

0

∫
|z|>1

(
f(Ms− + z)− f(Ms−)

)φ0(Ms− + z)

φ0(Ms−)
ν(z)dzds.
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Similarly, the last integral equals∫ t

0

∫
|z|≤1

(
f(Ms− + z)− f(Ms−)− z · ∇f(Ms−)

)φ0(Ms− + z)

φ0(Ms−)
ν(z)dzds.

Since f has bounded first and second derivatives, the Brownian component and the compensated

Poisson integral are martingales, therefore

Mf
t = f(Mt)− f(M0)−

∫ t

0
L̃f(Ms)ds, t ≥ 0,

is a P x-martingale.

It remains to show that the probability measures P x = P̃x constructed in Theorem 2.1 solve the

(L̃, C2
c ) martingale problem with initial value x ∈ Rd. Consider the natural filtration (Ft)t≥0 of

(X̃f
t )t≥0 and let 0 ≤ s ≤ t. Since EP̃x [X̃

f
t |Fs] = X̃f

s + EP̃x [X̃
f
t − X̃f

s |Fs], we only need to show that

the second term vanishes. By the Markov property of (X̃t)t≥0 established in Theorem 2.1, we have

EP̃x [f(X̃t)|Fs] = T̃t−sf(X̃s), 0 ≤ s ≤ t.

By differentiability of the function t 7→ T̃t, we obtain for all t ≥ 0 that d
dt T̃tf = L̃T̃tf = T̃tL̃f , and

hence T̃tf − f =
∫ t
0 L̃T̃rfdr. Thus we have

EP̃x

[
f(X̃t)− f(X̃s)−

∫ t

s
L̃f(X̃r)dr |Fs

]
= T̃t−sf(X̃s)− f(X̃s)−

∫ t

s
L̃T̃r−sf(X̃s)dr

= T̃t−sf(X̃s)− f(X̃s)−
∫ t−s

0
L̃T̃rf(X̃s)dr

= T̃t−sf(X̃s)− f(X̃s)− T̃t−sf(X̃s) + f(X̃s) = 0,

as required. �
Remark 3.1.

(1) In general, little information is available on the regularity of φ0. In some specific cases of

potentials growing to infinity at infinity and the operator L = (−d2/dx2)1/2, it is known that the

ground state is analytic [33, 11]. However, it is also known that the ground state for Brownian

motion in a finitely deep potential well, i.e., V (x) = −v1{|x|≤a}, v, a > 0, is only C1.

(2) The conditions under which the ground state SDE has a solution and Theorem 3.1 holds can

be improved. For a large class of Lévy processes (Xt)t≥0 and potentials V , it can be shown that for

large enough |x| and suitable constants C1, C2 > 0,

C1
ν(x)

V (x)
≤ φ0(x) ≤ C2

ν(x)

V (x)
for V (x) → ∞ as |x| → ∞

C1ν(x) ≤ φ0(x) ≤ C2ν(x) for V (x) → 0 as |x| → ∞.

For precise statements and conditions we refer to [22, 24]. For illustration consider d = 1, V (x) ≍
x2m, m > 0, and a symmetric α-stable process; then the above implies φ0(x) ≍ |x|−d−α−2m, and

thus far enough from the origin the drift would become b(x) = σ d
dx lnφ0(x) ≍ − sgn(x)

|x| . Hence for

large enough values of Xt we get Xtb(Xt) < 0, and this pull-back mechanism would prevent the

paths from exploding. Since our main concern here is the multifractal behaviour of GST processes,

the ground state SDE will be studied in further detail elsewhere.

(3) We note that we are not concerned with uniqueness of the solution of the martingale problem.

Since we show below that any solution of the SDE (3.1) has the same multifractal nature, we only

need to know that the GST process is a solution.
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3.2. Multifractal spectrum of GST processes

Now we are in the position to state and prove the multifractal nature of local Hölder exponents

of ground state-transformed processes via the ground state SDE. Recall the notations in (1.7)-(1.8).

Theorem 3.2. Let Assumptions 2.1 and 3.1 hold, and (M,Px) be a weak solution of (3.1).

(1) If σ ̸= 0, i.e., the underlying Lévy process has a Brownian component, then almost surely

DM (h) = D1
X(h), h > 0.

(2) If σ = 0, i.e., the underlying Lévy process is a pure jump process, and

(i) either βν ∈ [1, 2],

(ii) or βν ∈ (0, 1) with φ0 ∈ Ck+1(Rd) and k ≥ 1/βν ,

then almost surely

DM (h) = D2
X(h), h > 0.

In the remainder of this section we prove this theorem through a sequence of auxiliary results.

3.2.1. Associated Poisson point process

Recall that the jumps of the Poisson measure N give rise to a Poisson point process with measure

ν(z)dz. The pointwise regularity of Lévy processes with infinite jump measure, i.e.,
∫
Rd ν(z)dz = ∞,

relies on a configuration of a dense set of jumps. For the process (Mt)t≥0 the jump configuration

is more involved as it depends on the entire paths of the process. Indeed, the factor featuring

the indicator function in the compensated Poisson integral in (3.1) implies that our process jumps

only as long as the ground state ratio is not too small. Thus (Mt)t≥0 jumps less often than the

underlying Lévy process. We prove that the underlying Poisson point process characterizes the

pointwise regularity of (Mt)t≥0.

LetN(dt,dz, dv) be a Poisson measure with intensity dt n(dz,dv) on R+×E with E = Rd∗×(0,∞),

endowed with the product Borel σ-field B(E). Let {Ek, k ∈ N∗} be a partition of E, with Ek ∈ B(E)

and n(Ek) <∞. It is well-known [15, Ths 8.1, 9.1] that there exists

• a sequence of exponential random variables {τ (k)i , i ∈ N} with parameter n(Ek),

• a sequence of random variables {ξ(k)i , i ∈ N} with distribution 1Ek
n(dz, dv)/n(Ek),

such that

N((0, t]× U) = | {s ∈ D : s ≤ t, p(s) ∈ U} |, for all t > 0, U ∈ B(E),

where p is the point process defined by

p

(
i∑

ℓ=0

τ
(k)
ℓ

)
= ξ

(k)
i , k, i = 1, 2, . . .

and

D =

∞∪
k=0

{
i∑

ℓ=0

τ
(k)
ℓ : i ∈ N

}
.

Here, all τ
(k)
i , ξ

(k)
i are mutually independent random variables on the same probability space. Ex-

tending the probability space, if necessary, by passing to a product probability space, we can find a



14 J. LŐRINCZI AND X. YANG

sequence of uniform random variables ηi in [0, 1] that is independent of p. Define p′ : D → E× [0, 1]

by

p′

(
i∑

ℓ=0

τ
(k)
ℓ

)
= (ξ

(k)
i , ηi) k, i = 1, 2, . . .

It can be shown [15, Ths 8.1, 9.1] that the counting measure

Np′((0, t]× U × I) =
∣∣{s ∈ D : s ≤ t, p′(s) ∈ U × I

}∣∣ , for all t > 0, U ∈ B(E), I ∈ B([0, 1]),

is also a Poisson measure, with intensity dt n(dz, dv)1[0,1](x)dx. In particular, almost surely,

N((0, t]× U) = Np′((0, t]× U × [0, 1]). (3.3)

From now on, we consider the Poisson measure N as part of the weak solution (M, P̃x) of the SDE

(3.1) on a probability space. Possibly on the extended probability space, we have Np′ satisfying

(3.3) which will serve as an auxiliary measure to prove a covering property satisfied by a family of

point systems induced by the jumps of our process (Mt)t≥0. Informally, the measure Np′ allows us

to remove spatial dependence of the jump kernel; a similar argument has been first used in [42]. In

what follows we will write

p = {(s, z(s), v(s)) : s ∈ D} and p′ = {(s, z(s), v(s), x(s)) : s ∈ D}.

3.2.2. Hölder regularity

First we determine the pointwise Hölder exponent of the sample paths of the ground state SDE

under the assumption that the ratio of ground state evaluations appearing in the coefficients of the

SDE is bounded both from below and above, i.e., we assume that there exists 0 < c < 1 such that

c ≤ φ0(x+ z)

φ0(x)
≤ 1/c, x ∈ Rd, |z| ≤ 1. (3.4)

In a next step we remove this constraint by using a localization argument to get the result in a

desirable generality.

The following general result is due to Jaffard [19, Lem. 1], which is essential in deriving an upper

bound for the Hölder exponent of a locally bounded function with a dense set of jump discontinuities.

Lemma 3.1. Let f : R → Rd be a càdlàg function having a dense set of jump discontinuities of size

zn at the time-points tn. Then, for every t ∈ R and every sequence of jump discontinuities tnk
→ t

as k → ∞, we have

Hf (t) ≤ lim inf
k→∞

ln znk

ln |t− tnk
|
.

Clearly, only the small jumps have an impact on the local regularity. Write

J =

{
s ≥ 0 : |z(s)| ≤ 1, v(s) ≤ φ0(Ms− + z(s))

φ0(Ms−)

}
.

By the properties of the (compensated) Poisson integral, the solution to the ground state SDE (3.1)

makes a jump at each s ∈ J , of size |z(s)|. Borrowing an idea from [19], we consider a family of

limsup sets built from the Poisson point process p. Recall that βν is the Blumenthal-Getoor index

of the Lévy measure ν(z)dz defined in (1.6). For all δ > 0, define

A(ε, δ) =
∪

s∈J, |z(s)|≤ε

(s− |z(s)|βνδ, s+ |z(s)|βνδ),
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and

A(δ) = lim sup
ε↓0

A(ε, δ). (3.5)

This family of sets satisfies a convenient covering property when δ < 1.

Lemma 3.2. For all δ < 1 we have Aδ = [0,∞), almost surely.

Proof. Define

J ′ =

{
s ≥ 0 : |z(s)| ≤ 1, v(s) ≤ φ0(Ms− + z(s))

φ0(Ms−)
, x(s) ≤ cφ0(Ms−)

φ0(Ms− + z(s))

}
⊂ J,

and A′
δ as in (3.5) with J replaced by J ′. Observe that by the lower bound in (3.4), the right hand

side of the bound concerning x(s) in the above set is a random number in [0, 1]. Since A′
δ ⊂ Aδ

for all δ ≥ 0, it remains to show that for any fixed δ < 1, we have A′
δ = [0,∞) almost surely. The

result then follows by the monotonicity of the sets Aδ in δ.

Step 1 : First we note that the counting measure

µ(ds, dy) =
∑
s∈J

δ(s,|zs|δβν )

is a Poisson random measure with intensity ds(cπδ(dy)) on R+ × (0, 1], where πδ is the image

measure of ν(z)dz1|z|≤1 by the map z 7→ |z|δβν and c is the constant in (3.4). For any predictable

non-negative process (s, y) 7→ H(s, y),∫ t

0

∫ 1

0
H(s, y)µ(ds,dy)−

∫ t

0

∫
|z|≤1

H(s, |z(s)|δβν )cν(z)dzds

=

∫ t

0

∫
|z|≤1

∫ ∞

0

∫ 1

0
1{

v(s)≤φ0(Ms−+z(s))

φ0(Ms−)
, x(s)≤ cφ0(Ms−)

φ0(Ms−+z(s))

}H(s, |z(s)|δβν )Ñp′(ds,dz, dv, dx)

is a local martingale. Then the compensator of µ is c dt πδ(dy). By [17, Ch.2, Th.1.8], µ is a Poisson

measure with intensity c dt πδ(dy).

Step 2 : Applying the integral test of covering for limsup sets built from a Poisson measure, see

[4, 39], we only need to show that∫ 1

0
exp

(
2

∫ 1

t
cπδ((y, 1))dy

)
dt = ∞.

The divergence of this integral can be proved by a modification of [19, Lem. 2]. Note that∫ 1

t
cπδ((y, 1))dy = c

∫ 1

t
1

δβν

(∫
u<|x|<1

ν(x)dx

)
δβνu

δβν−1du.

Write Cj =
∫
2−j−1<|x|≤2−j ν(x)dx and ω(u) =

∫
u<|x|<1 ν(x)dx. Let j(t) be the unique integer such

that 2j(t)−3 < t
1

δβν ≤ 2−j(t)−2. Then we have∫ 1

t
1

δβν

ω(u)δβνu
δβν−1du ≥

∫ 2j(t)−1

2j(t)−2

ω(u)δβνu
δβν−1du

≥ Cj(t)δβν(2
−j(t)−2)δβν−12−j(t)−2

= Cj(t)δβν(2
−j(t)−2)δβν .
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By the definition of βν , for any r ∈ (δβν , βν), there exist infinitely many j such that Cj ≥ 2rj . For

any such j we have∫ 2−(j+2)δβν

2−(j+3)δβν

exp

(
2

∫ 1

t
cπδ((y, 1))dy

)
dt ≥ (2δβν − 1)2−(j+3)δβν exp(cδβν2

1−2δβν2j(r−δβ)),

which is bounded from below by 1 for all j sufficiently large. �

The latter lemma is a uniform approximation property of every time by the jumps. It is clear

that Aδ is monotone in δ, while the critical value is δ = 1 for which the limsup set may or may not

cover the semi-axis. As soon as δ < 1, full covering occurs. In particular, whenever δ < 1, for every

t ≥ 0 there exist infinitely many sn ∈ J with |z(sn)| ↓ 0, such that

|t− sn| ≤ |z(sn)|βνδ.

For fixed time-points, one might expect an improved inequality to hold, which motivates the

notion of the pointwise approximation rate defined below.

Definition 3.1. Let (tn, rn) ∈ R+ × R∗ be a family of points. We call

δt = sup
{
δ ≥ 0 : |t− tn| ≤ rβνδn infinitely often

}
(3.6)

the approximation rate of t ∈ R+ by the family of points.

The approximation rate is crucial in investigating the pointwise Hölder exponent of jump processes.

By the covering lemma, for all t ≥ 0 we have δt ≥ 1, almost surely. The use of this concept will

appear clearly in the upper estimate of HM (t) below.

Proposition 3.1. For all t ≥ 0,

HM (t) ≤ 1

βνδt

almost surely.

Proof. Take any t ∈ Aδ. An application of Lemma 3.1 to (Mt)t≥0 and the set of sn in (3.6) implies

that HM (t) ≤ 1/(βνδ). For an arbitrary t, we have the following cases. If δt < ∞, then for any

ε > 0, t ∈ Aδt−ε, we have HM (t) ≤ 1/(βν(δt − ε)). Letting ε → 0 gives the result. If δt = ∞, then

t ∈ ∩δ≥1Aδ, and thus HM (t) = 0, which is the claimed upper bound. �

To derive a lower bound, we need to control the increments of the sample paths. An analogue

of the following result appears in [1] for Lévy processes, however, since the GST processes have

position-dependent increments, we need a substantial upgrading. For each n ∈ N, write

Yn(t) =

∫ t

0

∫
|z|≤2

− n
δβν

∫ ∞

0
1{

v≤φ0(Ms−+z)

φ0(Ms−)

}zÑ(ds, dz, dv).

Lemma 3.3. Let δ > 1. There exist finite constants c1, c2 > 0 such that for all n ∈ N,

P

(
sup

s,t∈[0,1], |s−t|≤2−n

|Yn(t)− Yn(s)| ≥ 3n2
− n

δβν

√
d

)
≤ c1e

−c2n.

Proof. Let In,k = [k2−n, (k + 1)2−n). Using a dyadic approximation, the required probability can

be bounded from above by

2n−1∑
k=0

P

(
sup
t∈In,k

|Yn(t)− Yn(k2
−n)| ≥ n2

− n
δβν

√
d

)
. (3.7)
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We estimate the sum term by term. For each k, consider the semimartingale

Ỹn(t) = 2
n

δβν

(
Yn(t+ k2−n)− Yn(k2

−n) , t ∈ In,k.

Applying Itô’s formula with the map x 7→ ex·ξ, where ξ = e⃗i is the canonical orthonormal basis of

Rd, we obtain

eỸn(t)·ξ = 1 +

∫ t

k2−n

∫
|z|≤2

− n
δβν

∫ ∞

0
eỸn(s−)·ξ

(
exp

(
2

n
δβν 1{

v≤φ0(Ms−+z)

φ0(Ms−)

}z · ξ
)
− 1

)
Ñ(ds, dz, dv)

+

∫ t

k2−n

∫
|z|≤2

− n
δβν

∫ ∞

0
eỸn(s−)·ξ

(
exp

(
2

n
δβν 1{

v≤φ0(Ms−+z)

φ0(Ms−)

}z · ξ
)
− 1

−2
n

δβν 1{
v≤φ0(Ms−+z)

φ0(Ms−)

}z · ξ
)
dvν(z)dzds,

for all t ∈ In,k. Define the stopping times τr = inf{t ∈ In,k : |Ỹn(t)| ≥ r}, r ∈ N, with the convention

that inf ∅ = ∞. By the càdlàg property of sample paths, τr → ∞ as r → ∞, almost surely. Since

the stopped compensated Poisson integral is a centered martingale, on taking expectation in the

above formula and using |eu − 1− u| ≤ u2 for |u| ≤ 1, we get

E[eỸn(t∧τr)·ξ] ≤ 1 + E
[ ∫ t∧τr

k2−n

∫
|z|≤2

− n
δβν

∫ ∞

0
eỸn(s−)·ξ1{

v≤φ0(Ms−+z)

φ0(Ms−)

} (2 n
δβν z · ξ

)2
dvν(z)dzds

]
= 1 + E

[ ∫ t∧τr

k2−n

∫
|z|≤2

− n
δβν

φ0(Ms− + z)

φ0(Ms−)
eỸn(s−)·ξ

(
2

n
δβν z · ξ

)2
ν(z)dzds

]
.

Using the upper bound in (3.4), we furthermore obtain

E[eỸn(t∧τr)·ξ] ≤ 1 +
1

c
E
[ ∫ t∧τr

k2−n

eỸn(s−)·ξds

∫
|z|≤2

− n
δβν

2
2n
δβν |z|2−δβν |z|δβνν(z)dz

]
.

The integral over z in the expectation is bounded above by

2n
∫
|z|≤1

|z|δβνν(z)dz = C12
n,

with a suitable constant C1, which does not depend on n and is finite since δ > 1. By Fubini’s

theorem,

E[eỸn(t∧τr)·ξ] ≤ 1 +
2n

c1

∫ t

k2−n

E[eỸn(s∧τr)·ξ] ds,

where C2 = C1/c. Gronwall’s lemma yields then

E[eỸn(t∧τr)·ξ] ≤ e(t−k2
−n)2n/C2 ≤ e1/C2 ,

for all t ∈ In,k. Letting r → ∞ and using Fatou’s lemma, we get E[eỸn(t)·ξ] ≤ e1/C2 , and similarly

E[e−Ỹn(t)·ξ] ≤ e1/C2 . Hence, using that x1
2 + · · ·+ xd

2 ≤ dmaxi x
2
i , we have

E[e|Ỹn(t)|/
√
d] ≤

d∑
i=1

E[e|Ỹn(t)·e⃗i|] ≤ 2de1/C2 .

To conclude, by the Markov inequality we see that each term in (3.7) is bounded from above by

e−nE[e|Ỹn(t)|/
√
d], which is summable in n. �

Remark 3.2. This lemma can be extended to any bounded interval. We thus focus on the unit

interval [0, 1].
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We can now prove a lower bound for the Hölder exponent of the compensated Poisson integral

Yt =

∫ t

0

∫
|z|≤1

∫ ∞

0
1{

v≤φ0(Ms−+z)

φ0(Ms−)

}zÑ(ds,dz, dv).

Proposition 3.2. For all t ∈ [0, 1] \ J ,

HY (t) ≥
1

δtβν
,

almost surely.

Proof. The Borel-Cantelli lemma combined with Lemma 3.3 give that for all n larger than a suitable

n0 ∈ N,

sup
s,t∈[0,1], |s−t|≤2−n

|Yn(t)− Yn(s)| ≤ 3
√
dn2

− n
δβν , a.s.

Fix a point of continuity t ∈ [0, 1] \Aδ. Let s be close enough to t so that for some n < n0,

2−n−1 < |t− s| ≤ 2−n.

Then

|Yn(t)− Yn(s)| ≤ 6
√
d log

(
1

|s− t|

)
|t− s|

1
δβν .

Enlarging the value of n0 if necessary, we see that t /∈ Aδ implies that any jump sp ∈ [s, t] satisfies

2−n ≥ |s− t| ≥ |sp − t| ≥ |z(sp)|δβν ,

i.e., there are no jumps at the time-points sp ∈ J ∩ [s, t] of size |z(sp)| ≥ 2
− n

δβν . Hence,∣∣∣∣∣
∫ t

s

∫
1≥|z|≥2

− n
δβν

∫ ∞

0
1{

v≤φ0(Ms−+z)

φ0(Ms−)

}zÑ(ds, dz, dv)

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

s

∫
1≥|z|≥2

− n
δβν

∫ ∞

0
1{

v≤φ0(Ms−+z)

φ0(Ms−)

}zdvν(z)dzds
∣∣∣∣∣

≤ |s− t| φ0(Ms− + z)

φ0(Ms−)

∫
1≥|z|≥2

− n
δβν

|z|ν(z)dz.

The integral over z is bounded above by

(2
− n

δβν )1−δβν
∫
|z|≤1

|z|δβνν(z)dz ≤ C|s− t|
1

δβν
−1
,

with a constant C > 0. Combining these estimates, we get

|Ys − Yt| ≤ |Yn(t)− Yn(s)|+

∣∣∣∣∣
∫ t

s

∫
1≥|z|≥2

− n
δβν

∫ ∞

0
1{

v≤φ0(Ms−+z)

φ0(Ms−)

}zÑ(ds,dz, dv)

∣∣∣∣∣
≤ c|t− s|

1
δβν log

1

|s− t|
,

where c is a finite constant dependent on M and d. Hence, almost surely, for all rational δ > 1 we

have HY (t) ≥ 1/(δβν) at all times of continuity t ∈ [0, 1] \Aδ. By the definition of δt, it is seen that

HY (t) ≥ 1/(δtβν), for all continuity points t ∈ [0, 1], almost surely. �

Remark 3.3. Using the argument in the proof of Proposition 3.1, we can similarly show HY (t) ≤
1/(δtβν) for all t.
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Theorem 3.3. Under the assumptions of Theorem 1.3, for all times of continuity t,

HM (t) =


1

δtβν
∧ 1

2 if σ ̸= 0

1
δtβν

if σ = 0

almost surely.

Proof. We distinguish three situations according to the matrix σ and the value of βν .

Case 1 : Let σ ̸= 0 and βν ∈ (0, 2]. Recall that for any f, g : R+ → Rd locally bounded functions

Hf+g(t) ≥ min(Hf (t),Hg(t), where equality holds when the Hölder exponents of f and g are

different at t. Since the Hölder exponent of Brownian motion is 1/2 everywhere and the drift terms

are differentiable at every t (necessarily their Hölder exponent is larger or equal to 1), we see that

the sum of Brownian motion and the two drifts has Hölder exponent equal to 1/2 everywhere. The

uncompensated Poisson integral is locally constant, thus it does not influence the local regularity of

(Mt)t≥0 except on the set of jump times (finite in any bounded interval). The compensated Poisson

integral has Hölder exponent 1/(δtβν) at any point of continuity t. The claimed formula follows if

1/(δtβν) ̸= 1/2, otherwise 1/2 is a straightforward lower bound for HM (t), and it is also an upper

bound due to Lemma 3.1. Thus the identity follows.

Case 2 : Let σ = 0 and βν ∈ [1, 2]. In this case, 1/(δtβν) ≤ 1, since δt ≥ 1 for all t, i.e., the drifts

are all smoother than the compensated Poisson integral. The result follows.

Case 3 : Let σ = 0 and βν ∈ (0, 1). Our assumption implies that the drift terms are smoother than

the compensated Poisson integral. To see this, note that for any locally bounded f : R+ → Rd,
g : Rd → Rd, with F (t) =

∫ t
0 g(f(s))ds, we have that whenever g ∈ Ck(Rd) with k ≥ Hf (t), it follows

that HF (t) ≥ 1 +Hf (t). In particular, we have HF (t) > Hf (t). Applying this to f = M and with

g chosen to be the drift coefficient in (3.1), combined with the fact that HM (t) ≤ 1/(δtβν) ≤ 1/βν ,

yields HM (t) = HY (t), as claimed.

To complete the proof, in a concluding step we remove condition (3.4). Let

ΩK,b =

{
ω ∈ Ω : sup

t≤b
|Mt(ω)| ≤ K

}
.

The càdlàg properties of the sample paths imply that P(ΩK,b) → 1 as K → ∞. Assumption 2.1

implies that the two-sided inequality in (3.4) holds uniformly for |z| ≤ 1, |x| ≤ K, for every K ∈ N∗,

with c dependent on the value of K. For paths in ΩK,b, we have shown the result above. Letting

K → ∞, then b→ ∞ completes the proof. �

3.2.3. Proof of Theorem 3.2: multifractal spectrum

We determine the multifractal spectrum under condition (3.4); the extension to the general

situation can be done as at the end of the last subsection.

Note that by Theorem 3.3 it suffices to consider h ∈ [0, 1/βν ]. For every such h, we have that

EM (h) =

{
t ≥ 0 : δt =

1

hβν

}
\ J =

 ∩
α<1/(hβν)

Aα

 \

 ∪
α>1/(hβν)

Aα

 \ J

=

∩
n≥1

A1/(hβν)−1/n

 \

∪
n ̸=1

A1/(hβν)+1/n

 \ J. (3.8)
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First we give an upper bound on the Hausdorff dimension of the family of sets {Aδ, δ ≥ 1}.
Observe that for any j0,

Aδ ⊂
∪
j≥j0

∪
s∈J

2−j−1≤|z(s)|<2−j

(s− |z(s)|βνδ, s+ |z(s)|βνδ).

We can use these intervals as a covering system of Aδ. It suffices to show that for every s > 1/δ,

almost surely, ∑
j≥j0

(2−jβνδ)sN([0, 1]× [0, 1/c]× {z : 2−j−1 ≤ |z| < 2−j}) <∞, (3.9)

where c is the constant in (3.4). This implies that for all δ ≥ 1 we have dimHAδ ≤ 1/δ, almost

surely.

Next we prove (3.9). Note that Nj := N([0, 1] × [0, 1/c] × {z : 2−j−1 ≤ |z| < 2−j}) is a Poisson

random variable with parameter Cj/c, where Cj =
∫
2−j−1<|z|≤2−j ν(z)dz as in the previous section.

Let r ∈ (βν , βνδs). Then by the definition of βν we have Cj ≤ 2jr, for all j large enough. Hence by

the Markov inequality,

P(Nj ≥ 2 · 2jr) ≤ P(|Nj − Cj | ≥ 2jr) ≤ 2−jr.

It then follows by the Borel-Cantelli lemma that Nj ≤ 2jr almost surely, for all j sufficiently large.

The convergence of the series follows, since we choose r < βνδs.

The above combined with (3.8) implies that dimHEM (h) ≤ 1
βνδ

. To obtain a lower bound on the

spectrum, we make use of the following general result; for a proof see [20]. Let | · | denote Lebesgue

measure in R.

Theorem 3.4. Let (λn, εn) be a family of points, with λn ∈ [0, 1] and εn > 0. Define Gδ =

lim supn→∞(λn − εδn, λn + εδ). If |G1| = 1, then for all δ ≥ 1

Hϕδ(Gδ) > 0,

where ϕδ(x) = x1/δ| log x|2, and Hϕδ(E) is the Hausdorff measure of the set E with respect to the

gauge function ϕδ.

In order to apply the above result, one would need to prove the almost-covering |A1 ∩ [0, 1]| = 1

at critical index δ = 1, which holds for regular Lévy measures such as the isotropic α-stable case

with ν(z) = |z|−α−d. However, for some ill-behaved Lévy measures the situation |A1 ∩ [0, 1]| < 1

may occur. To overcome this, we use a trick from [42, Prop. 3.2] to construct a family of limsup

sets A∗
δ embedded in Aδ, in the sense that for every δ′ < δ,

Aδ ⊂ A∗
δ ⊂ Aδ′ (3.10)

satisfying

|A∗
1 ∩ [0, 1]| = 1. (3.11)

Using (3.10), we can express EM (h) in (3.8) with all Aδ replaced by A∗
δ . A use of (3.11) then

implies that Hϕδ(A∗
δ) > 0 almost surely, for all δ ≥ 1. Recalling that dimHA

∗
δ ≤ 1/δ, we have

Hϕ1/(hβν )(A∗
1/(hβν)+1/n) = 0, which gives that Hϕ1/(hβν )(EM (h)) > 0. This proves that DM (h) ≥ βνh

almost surely, simultaneously for all 0 ≤ h ≤ 1/βν , as required.
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To complete the argument, it remains to construct the sets A∗
δ satisfying (3.10)-(3.11). For all

integers m < n ≤ ∞, let

Am,nδ =
∪
s∈J

2−n≤|z(s)|<2−m

(s− |z(s)|βνδ, s+ |z(s)|βνδ).

Set m1 = 1. Due to Lemma 3.2, there exists m2 > m1 such that

[0, 1] ⊂ A1− 1
2
⊂ Am1,∞

1− 1
2

and |Am1,m2

1− 1
2

| ≥ 1

2
.

Similarly, there exists m3 > m2 such that

[0, 1] ⊂ A1− 1
3
⊂ Am2,∞

1− 1
3

and |Am2,m3

1− 1
3

| ≥ 1− 1

3
.

We define a sequence (mj)j≥1 inductively such that for all j ≥ 2, |Amj−1,mj

1−1/j | ≥ 1− 1/j. Hence,∣∣ lim sup
j→∞

A
mj−1,mj

1−1/j ∩ [0, 1]
∣∣ ≥ lim sup

j→∞

∣∣Amj−1,mj

1−1/j ∩ [0, 1]
∣∣ = 1.

Define A∗
δ = lim supj→∞A

mj ,mj+1

δ(1−1/j) ; then the above formula shows (3.11). To show property (3.10),

note that Aδ = lim supj→∞A
mj ,mj+1

δ , and the first inclusion then follows. The second inclusion also

holds since for every δ′ < δ we have δ′ < δ(1− 1/j), for all sufficiently large j. This completes the

proof.

3.3. Concluding remarks

As seen from the proof, the only case when we require some extra smoothness condition for the

ground state is when the Blumenthal-Getoor index is βν < 1 and σ = 0. As said in Remark 3.1 this

is known to hold in some cases, and it can be expected further to hold more widely.

We conjecture that the multifractal nature of a GST process will change if the ground state is

less regular and ∇ lnφ0 is Cε, with 1 + ε < 1/βν . To see this, consider a simple representation

for a GST process when βν < 1 and σ = 0. In such cases the process has finite variation, thus

the compensated Poisson integral can be decomposed in a difference of an uncompensated Poisson

integral and a drift term. More precisely, the GST process is a weak solution of the simple SDE

with jumps

Mt =M0 +

∫ t

0
b(Ms)ds+

∫ t

0

∫
Rd
∗

zN(ds, dz),

where N is a Poisson measure with intensity dtν(z)dz, and b(x) = ∇ lnφ0(x) + (
∫
|z|≤1 zν(z)dz)x

is the drift coefficient. Recall that the Hölder exponent of the pure jump Lévy term is equal to

1/(δtβν).

Define the point processes

p = {(s, z(s)); s ∈ D}
p̃ = {(s, r(s)); s ∈ D} with r(s) = b(Ms− + z(s))− b(Ms−),

and the associated approximation rates δt (for p) and δ̃t (for p̃) as in (3.6). The Hölder exponent

of the drift term will depend on p̃. Indeed, for the process b(Mt) = Gt Lemma 3.1 implies HG(t) ≤
1/(βν δ̃t). When b is only Cε, the jump size r(s) ≤ z(s)ε. Therefore, HG(t) ≤ ε/(βνδt) whenever

r(s) ≍ z(s)ε occurs for infinitely many s tending to t.

On the other hand, in [1] it is shown that when the Hölder exponent of a Lévy process is less

than 1/(2βν) at some point t, or equivalently δt > 2, the time t can not be an oscillating singularity
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in the sense that its primitive must have Hölder exponent 1 + 1/(δtβν) at time t. It is tempting

to expect that the drift term here has Hölder exponent at most 1 + ε/(δtβν) as long as δt > 2, for

instance, equal to 3, and r(s) ≍ z(s)ε occurs for infinitely many s tending to t. If such a t exists, we

get 1 + ε/(3βν) < 1/(3βν) for ε sufficiently small. This implies HM (t) ≤ 1 + ε/(3βν), and changes

the singularity sets EM (h) for h ≤ 1 + ε/(3βν).
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[1] P. Balança: Fine regularity of Lévy processes and linear (multi)fractional stable motion. Electron. J. Probab.,
19, 1-37, 2014

[2] J. Barral, N. Fournier, S. Jaffard, S. Seuret: A pure jump Markov process with a random singularity spectrum,
Ann. Probab. 38, 1924–1946, 2010
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[19] S. Jaffard: The multifractal nature of Lévy processes, Probab. Theory Rel. Fields 114, 207-227, 1999
[20] S. Jaffard: On lacunary wavelet series, Ann. Appl. Probab. 10, 313-329, 2000
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