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RESTRICTED HYPERCONTRACTIVITY ON THE POISSON

SPACE

IVAN NOURDIN, GIOVANNI PECCATI, AND XIAOCHUAN YANG

Abstract. We show that the Ornstein-Uhlenbeck semigroup associated with

a general Poisson random measure is hypercontractive, whenever it is restricted
to non-increasing mappings on configuration spaces. We deduce from this

result some versions of Talagrand’s L1-L2 inequality for increasing and concave

mappings, and we build examples showing that such an estimate represents a
strict improvement of the classical Poincaré inequality. We complement our

finding with several results of independent interest, such as gradient estimates

and an inequality with isoperimetric content.

1. Introduction

The aim of this paper is to study some form of restricted hypercontractvity for
the Ornstein-Uhlenbeck semigroup associated with a Poisson random measure, with
specific focus on the derivation of variance estimates in the spirit of Talagrand’s
L1-L2 inequality [13, 28]. This complements several findings about concentration
and logarithmic Sobolev inequalities on configuration spaces, whose interest has
recently been revived by geometric applications: see [3, 4, 5, 15, 25, 26] for results
in a geometric context, as well as the classical references [2, 8, 9, 10, 16, 29] for
theoretical foundations.

We start by recalling some classical facts about Gaussian measures, to which our
findings should be compared.

For the rest of the paper, generic random objects are defined on an appropriate
common probability space (Ω,F ,P), with E and Var denoting, respectively, expec-
tation and variance with respect to P. When dealing with a specific probability
measure µ on a measurable space (A,A) and with a mapping f : A→ R, we write
Eµ[f ] :=

∫
A
fdµ, whenever this expression is well-defined.

1.1. Some Gaussian estimates. Standard references for the results discussed in
this subsection are e.g. [1, 6, 21, 23]. For k ≥ 1, let γk denote the standard Gaussian

measure on Rk, that is: γk(dz) := (2π)−k/2e−‖x‖
2/2dx, where ‖ · ‖ stands for the

Euclidean norm, and dx = dx1 · · · dxk. The Poincaré inequality states that, for
every smooth f ∈ L2(γk),

Varγk(f) :=

∫
f2dγk −

(∫
fdγk

)2

≤
k∑
i=1

Eγk [(∂if)2],(1.1)
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2 IVAN NOURDIN, GIOVANNI PECCATI, AND XIAOCHUAN YANG

where ∂i := ∂/∂xi, and the logarithmic Sobolev inequality states that, for f smooth,

Entγk(f2) :=

∫
f2 log f2dγk −

∫
f2dγk log

(∫
f2dγk

)
≤ 2

k∑
i=1

Eγk [(∂if)2],(1.2)

which, by a change of variable and the chain rule for derivatives, is equivalent to
the estimate

Entγk(f) ≤ 1

2

k∑
i=1

Eγk
[

(∂if)2

f

]
,(1.3)

for every f positive and smooth. Note that γk is the invariant distribution of the
Ornstein-Uhlenbeck semigroup, which (in its Mehler’s form) is defined as

P γkt f(x) =

∫
f(e−tx+

√
1− e−2ty)γk(dy), f ∈ L1(γk), t ≥ 0.

The logarithmic Sobolev inequality (1.2) (or (1.3)) is actually equivalent to the
hypercontractivity of {P γkt } [6, p. 246], and the latter property is the key to
prove Talagrand’s L1-L2 bound for the variance [13, 28]. Recall that {P γkt } is
hypercontractive in the following sense: for p > 1 and t ≥ 0,

‖P γkt f‖1+e2t(p−1) ≤ ‖f‖p(1.4)

where ‖g‖qq = Eγk [|g|q] for any q > 1, and Talagrand’s L1-L2 bound on the Gaussian

space [13, Th. 1, κ = ρ = 1] states that, for each f ∈ L2(γk) smooth,

Varγk(f) ≤ 4e2
k∑
i=1

‖∂if‖22
1 + log(‖∂if‖2 / ‖∂if‖1)

.(1.5)

A bound analogous to (1.5) was originally proved in [28] for functions defined on
hypercubes, and later generalized in [13] to the framework of Markov semigroups
enjoying a form of hypercontractivity, yielding (1.5) as a special case. It is clear
that Talagrand’s bound strictly improves upon the Poincaré inequality (1.1), and
that such an improvement becomes substantial whenever the ∂if ’s are somehow
close to an indicator function. For a self-contained proof of this inequality, and for
applications to the superconcentration phenomenon, see [12, Ch.5].

It is a standard exercise to suitably adapt the approach of [13, 28] in order to
lift (1.5) to an infinite-dimensional setting (we leave the details of the proof to
the reader). To see this, let (X,X ) be a measurable space, let λ be a σ-finite
measure on it, and consider a Gaussian measure G with intensity λ (see [23, p.
24] for a definition). Then, the Ornstein-Uhlenbeck semigroup associated with G
is hypercontractive (see [23, Section 2.8.3]). Moreover, given a square-integrable
functional F ∈ σ(G) in the domain of the Malliavin derivative D associated with
G (see [23, Section 2.3]), one can prove that

Var(F ) ≤ 4e2

∫
X

‖DxF‖22
1 + log(‖DxF‖2 / ‖DxF‖1)

λ(dx),(1.6)

where in this case ‖DxF‖pp := E[|DxF |p]. Relation (1.6) is a strict improvement
of the classical Poincaré inequality for infinite-dimensional Gaussian fields, see e.g.
[23, Exercise 2.11.1], and contains (1.5) as a special case.
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RESTRICTED HYPERCONTRACTIVITY ON THE POISSON SPACE 3

One of the principal achievements of the present paper is the derivation of esti-
mates analogous to (1.6) in the framework of the non-hypercontractive Ornstein-
Uhlenbeck semigroup associated with a Poisson random measure, under some spe-
cial assumptions on the random variable F .

1.2. Basic inequalities for Poisson measures. Let (X,X , λ) be a σ-finite mea-
sure space. In what follows, we denote by η = {η(A) : A ∈ X} a Poisson random
measure with intensity λ. Here, we observe that η is a random element taking
values in the space of countably supported, integer-valued mesures on (X,X ), and
refer the reader to Section 2 for precise definitions. Poisson random measures are
one of the most fundamental objects of modern probability theory, emerging in a
number of theoretical and applied domains such as Lévy processes, Brownian ex-
cursion theory, stochastic geometry, extreme values and queueing theory – see e.g.
[19, 25] for an overview. Note that, in the case where X = {x} is a singleton, then η
can be identified with a one-dimensional Poisson random variable with parameter
α := λ({x}). From now on, we write ‖F‖p := E[|F |p]1/p, p ≥ 1.

For every x ∈ X, we denote by Dx the add-one cost operator at x, defined as
follows: for every F ∈ σ(η), DxF (η) := F (η + δx)− F (η), where δx stands for the
Dirac mass centered at x. We also write {Pt} to indicate the Ornstein-Uhlenbeck
semigroup associated with η, which is formally defined in formula (2.4) below (once
again in its Mehler’s form). We start by recalling the classical Poincaré inequality
on the Poisson space (see e.g. [19, p. 193]).

Fact 1.1 (Poincaré inequality). Suppose F ∈ L2(P). Then

Var(F ) ≤
∫

E[|DxF |2]λ(dx).(1.7)

In a Poisson setting, the estimate (1.7) plays a role analogous to (1.1) (and of
its infinite-dimensional counterpart) on a Gaussian space. On the other hand, as
observed e.g. in the classical references [8, 27], the Ornstein-Uhlenbeck semigroup
{Pt} associated with η is not hypercontractive, and a logarithmic Sobolev inequality
analogous to (1.2) cannot hold, even in the simple case in which X is a singleton
(see the discussion contained in Section 1.4.1 below). The next result is a modified
logarithmic Sobolev inequality proved by Wu [29, Th. 1.1], see also [2, 8, 11], as well
as [25, p. 212].

Fact 1.2 (Modified logarithmic Sobolev inequality). Let F ∈ L1(P) be such that
F > 0 a.s.. Then,

Ent(F ) := E(Φ(F ))− Φ(E(F )) ≤ E
∫

[DxΦ(F )− Φ′(F )DxF ]λ(dx),(1.8)

where Φ(u) = u log u.

For the rest of the paper we adopt the usual convention Φ(0) = 0 log 0 := 0.
The bound (1.8) immediately yields the next statement, containing in particular
an estimate analogous to (1.3).

Corollary 1.3 (See [29, Cor. 2.1 and 2.2]). Let F ∈ L1(P) be such that F > 0
a.s.. Then,

Ent(F ) ≤ E
∫

min

(
|DxF |2

F
,DxFDx logF

)
λ(dx).(1.9)
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A direct application of [9, Theorem 6.1] implies that, as a consequence of (1.9),
the following form of weak hypercontractivity holds: for every bounded F ∈ σ(η)
and every t ≥ 0,

‖ePtF ‖et ≤ ‖eF ‖1.(1.10)

To the best of our expertise, it does not seem possible to use (1.10) in order to
deduce any meaningful extension of (1.6) to generic functionals of η.

1.3. Main results. The goal of this note is twofold. On the one hand, we will
determine a subset of functionals of a general Poisson point process on which the
Ornstein-Uhlenbeck semigroup enjoys a hypercontractivity property analogous to
(1.4); we call such a property restricted hypercontractivity. On the other hand, we
will apply the restricted hypercontractivity of {Pt} in order to obtain several L1-L2

bounds in the spirit of (1.6). Our first result is the following.

Theorem 1.4 (Restricted hypercontractivity). Let η be a Poisson point process
on a measurable space (X,X ) with σ-finite intensity measure λ. Let F ≥ 0 be
σ(η)-measurable and such that DxF ≤ 0 for all x ∈ X. Then, for t ≥ 0 and p > 1,

‖PtF‖1+(p−1)et ≤ ‖F‖p ,(1.11)

where {Pt} is the Ornstein-Uhlenbeck semigroup associated with η.

Remark 1.5. (a) One difference between the restricted hypercontractivity of
the Ornstein-Uhlenbeck semigroup in the Poisson setting and that in the
Gaussian setting (1.4) is the factor et replacing e2t in (1.11). Such a fac-
tor is consistent with the constants appearing in the logarithmic Sobolev
inequality for decreasing functionals, obtained from the forthcoming Corol-
lary 3.2 by setting q = 2 (that should be compared with (1.2)). See e.g. [1,
Section 2.8 and Section 5.4].

(b) The computations leading to the proof of Theorem 1.4 (in particular, Corol-
lary 3.2 combined with a standard implementation of Herbst’s argument)
also implicitly yield the following concentration estimate from [29, Propo-
sition 3.1]: if F ∈ σ(η) is such that DxF ≤ 0 for every x ∈ X, and∫
X(DxF )2λ(dx) ≤ α2 <∞, then F is integrable and, for t > 0,

P[F − E(F ) > t] ≤ exp

{
− t2

2α2

}
.

See the forthcoming Section 3.1.

We now apply Theorem 1.4 to either DxF or −DxF for each x and obtain the
following L1-L2 bound. For the rest of the paper, and for every x, y ∈ X, we write
D2
x,y = DxDy = DyDx, in such a way that

D2
x,yF (η) = F (η + δx + δy)− F (η + δx)− F (η + δy) + F (η).

Theorem 1.6 (Talagrand’s L1-L2 bound). Let F ∈ σ(η) be a square-integrable
functional satisfying either (i) DxF ≥ 0 and D2

x,yF ≤ 0 for every x, y ∈ X, or (ii)

DxF ≤ 0 and D2
x,yF ≥ 0 for every x, y ∈ X. Then,

Var(F ) ≤ 1

2

∫ ‖DxF‖22
1 + log(‖DxF‖2 / ‖DxF‖1)

λ(dx).(1.12)
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RESTRICTED HYPERCONTRACTIVITY ON THE POISSON SPACE 5

Requirements (i) and (ii) in the statement of Theorem 1.6 have to be interpreted
in the following way: for (i), we require that DxF ≥ 0 a.e.-P⊗λ and that D2

x,yF ≤ 0,

a.e.-P⊗λ2, and the same relations with reversed inequalities for (ii). The discussion
contained in Section 1.4 shows that (unlike in the Gaussian setting) a bound such as
(1.12) cannot hold in full generality, even in the case of a one-point space X = {x}.
A similar method based on restricted hypercontractivity can be applied to prove a
L1 bound for the variance. This is a Poisson counterpart to [13, Th. 6].

Theorem 1.7. Let F be a bounded functional. Suppose either (i) DxF ≥ 0 and
D2
x,yF ≤ 0 for every x, y ∈ X, or (ii) DxF ≤ 0 and D2

x,yF ≥ 0 for every x, y ∈ X.
Then, with α(F ) = 1 if 2 ‖F‖∞ > 1 and α(F ) = 2/(e+ 1) otherwise,

Var(F ) ≤ 11 (2 ‖F‖∞)α(F )

∫
λ(dx)×

{
2
∫ λ(dx)

1+log(1/E[|DxF |]) if E[|DxF |] ≤ 1

E[|DxF |] if E[|DxF |] ≥ 1
.

Remark 1.8. The previous bound in the case where E[|DxF |] ≤ 1 differs from that
of [13, Th. 6] by a square root of the denominator. This is due to our use of the
commutativity property (2.5), which yields a pointwise gradient estimate that is
very different from the Gaussian case – compare [13, Equation (25)] with our (2.6).
In Section 4, we will show an integrated gradient estimate closer to the Gaussian
case, which is of independent interest – see Theorem 4.1.

1.4. Two examples.

1.4.1. The one-dimensional Poisson distribution. Let Xλ be a Poisson random vari-
able with parameter λ. For every function G : N → R+ and every n ∈ N, set
DG(n) = G(n+ 1)−G(n), and D2G(n) = DDG(n). In this simple framework, the
Poincaré inequality (1.7) boils down to the statement: if G(Xλ) is square-integrable,
then VarG(Xλ) ≤ λE[(DG(Xλ))2]. Similarly, if DG(n) ≥ 0 and D2G(n) ≤ 0, then
one deduces from (1.12) that

(1.13) VarG(Xλ) ≤ 2λ
E[(DG(Xλ)2]

1 + log(‖DG(Xλ)‖2 / ‖DG(Xλ)‖1)
.

To apply and compare the previous estimates, let g : N → R+ be positive and
non-increasing. Then, the function G : N → R+ defined by G(0) = 0 and G(n) =∑n−1
j=0 g(j), n ≥ 1, satisfies, for n ≥ 0,

DG(n) = G(n+ 1)−G(n) = g(n) and D2G(n) = Dg(n) ≤ 0.

By the Poincaré inequality and the L1-L2 inequality stated above, one therefore
deduces that

VarG(Xλ) ≤ λE[g(Xλ)2] and VarG(Xλ) ≤ 2λE[g(Xλ)2]

1 + log
‖g(Xλ)‖2
‖g(Xλ)‖1

.

We can easily devise examples where the L1-L2 bound dominates the Poincaré
bound, as λ ↑ ∞. For instance, one can take g(j) = 1{j≤M} for some M ≥ 1. Then

‖g(Xλ)‖2 =
√
‖g(Xλ)‖1

27 Nov 2019 06:27:34 EST
Version 2 - Submitted to Proc. Amer. Math. Soc.

Applied+Prob+StatThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



6 IVAN NOURDIN, GIOVANNI PECCATI, AND XIAOCHUAN YANG

and

‖g(Xλ)‖1 = P(Xλ ≤M) = e−λ
M∑
k=0

λk

k!
→ 0,

so that

log
‖g(Xλ)‖2
‖g(Xλ)‖1

= −1

2
log ‖g(Xλ)‖1 →∞.

It is a fundamental observation that the estimate (1.13) cannot hold for general
random variablesG(Xλ). To see this, letX = X1 be a Poisson random variable with
mean 1, and, for some integer k ≥ 2, define the random variable Fk = 1{X≤k−1},
in such a way that DFk(X) = −1{X=k−1}. Then, as k →∞,

Var(Fk) ∼ e−1

k!
, and E[DFk(X)] = E[DFk(X)2] =

e−1

(k − 1)!
;

however, an application of Stirling’s formula yields

1 + log(‖DFk‖2 / ‖DFk‖1) ∼ 1

2
k log(k),

thus proving that (1.13) (and therefore (1.12)) cannot hold in general. It is inter-
esting to notice that the random variable 1 − Fk = 1{X≥k} =: fk(X) can be used
in order to show that an inequality analogous to (1.2) cannot hold on a Poisson
space. To see this, denote by π the law of X1, and assume that there exists a finite
positive constant C such that, for f bounded on N,

Entπ(f2) ≤ CEπ[|Df |2].(1.14)

Applying such an estimate to f = fk+1, one infers that

−π([k + 1,∞)) log π([k + 1,∞)) ≤ Cπ(k)

which is seen to be absurd, by letting k →∞. See [8] for a full discussion.

1.4.2. Maxima. Let µ be a probability measure on (Rd,B(Rd)), d ≥ 1. We denote
by ηn a Poisson measure on Rd, with intensity λn(dx) = nµ(dx). Write ‖x‖ for
the Euclidean norm of x = (x1, ..., xd) ∈ Rd. Assume that µ is diffuse so that each
ηn is simple, that is, every point in the support of ηn is charged with mass 1 (see
Section 2); in particular, with a slight abuse of notation, in what follows we will
identify ηn and its support. For every t > 0, define

F := F (t, n) = 1{maxx∈ηn‖x‖>t}.

One has

VarF = P(max
x∈ηn

‖x‖ > t)P(max
x∈ηn

‖x‖ ≤ t).

Now writing B(0, t) = {y : ‖y‖ ≤ t}, we have

P(max
x∈ηn

‖x‖ ≤ t) = P(ηn(B(0, t)c) = 0) = e−nµ(B(0,t)c).

One has also that for z ∈ Rd,
DzF = 1{maxx∈ηn+δz‖x‖>t} − 1{maxx∈ηn‖x‖>t}

=

{
1 ‖z‖ > t and maxx∈ηn ‖x‖ ≤ t,
0 otherwise.
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Consequently,

E
∫

(DzF )2λn(dz) = n

∫
B(0,t)c

e−nµ(B(0,t)c)µ(dz) = ne−nµ(B(0,t)c)µ(B(0, t)c),

implying that, in this framework, the Poincaré inequality is suboptimal by a factor
of n. We argue that the L1-L2 inequality provides the right order for the variance.
For this, note first that

DzF (ηn + δy) =

{
1 ‖z‖ > t and max(maxx∈ηn ‖x‖ , ‖y‖) ≤ t,
0 otherwise,

yielding D2
y,zF ≤ 0. Therefore,

‖DzF‖L2(P) =
√
e−nµ(B(0,t)c)1{‖z‖>t} =

√
‖DzF‖L1(P)

and for z with ‖z‖ > t,

log
‖DzF‖L2(P)

‖DzF‖L1(P)

=
n

2
µ(B(0, t)c).

Theorem 1.6 yields that

VarF (t, n) ≤ 2
ne−nµ(B(0,t)c)µ(B(0, t)c)

1 + n
2µ(B(0, t)c)

∼ 4e−nµ(B(0,t)c)

as n→∞, as desired.

1.5. Acknowledgments. Earlier versions of Theorem 1.4 and Theorem 1.6 above
were communicated to G. Peccati by Sascha Bachmann in January 2016. Sascha
declined our offer to become a co-author of the present paper and generously allowed
us to use his ideas and results: we heartily thank him for this. We are grateful to
M. Ledoux for useful discussions. Also, we wish to thank an anonymous referee for
a careful reading of the manuscript as well as for valuable suggestions and remarks.
I. Nourdin is supported by the FNR grant APOGee at Luxembourg University; G.
Peccati is supported by the FNR grant FoRGES (R-AGR-3376-10) at Luxembourg
University; X. Yang is supported by the FNR Grant MISSILe (R-AGR-3410-12-Z)
at Luxembourg and Singapore Universities.

2. Stochastic analysis for Poisson measures: definitions and results

We adopt the notation and follow the presentation of [18, 19]. Let (X,X ) be a
measurable space, and write N0 = N ∪ {0} and N0 = N0 ∪ {∞}. Let N<∞ be the
space of N0-valued measures on X . Define N as the space of measures which can
be written as a countable sum of elements in N<∞. Equip N with the smallest
σ-algebra N generated by the sets {µ ∈ N : µ(B) = k}, for all B ∈ X and k ∈ N0.

Let (Ω,F ,P) be a probability space. A point process η is a measurable map from
(Ω,F) to (N,N ). A Poisson random measure η is a point process that satisfies the
following properties: (i) for any B ∈ X , the random variable η(B) is Poisson
distributed; (ii) for any m ∈ N and disjoint sets B1, ..., Bm ∈ X , the family of
random variables (η(Bi))1≤i≤m are mutually independent. The measure λ defined
by λ(·) = E[η(·)] is called the intensity of the Poisson measure η. By virtue of
[19, Cor. 3.7], up to equality in distribution, every Poisson process with σ-finite
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8 IVAN NOURDIN, GIOVANNI PECCATI, AND XIAOCHUAN YANG

intensity is proper, in the sense that there exists a sequence of X-valued random
variables Xi and a N0-valued random variable κ such that

η =

κ∑
n=1

δXn .(2.1)

Also, we have the classical Mecke’s formula (see [19, Ch. 4]), valid for all measurable
h : N× X→ [0,∞]:

(2.2) E
∫
h(η, x)η(dx) = E

∫
h(η + δx, x)λ(dx).

In this note, we study square-integrable functionals on the canonical space
(N,N ) of a Poisson point process η with σ-finite intensity λ. The most ba-
sic operation on F ∈ L0(P) is the add-one-cost operator, defined by DxF (η) =
F (η+ δx)−F (η). We then define recursively DnF = D(Dn−1F ). Each F ∈ L2(P)
admits a Wiener-Itô chaos expansion [19, p.195]

F =
∑
q≥0

Iq(fq)(2.3)

where the series converges in L2(P), Iq(fq) is the q-th multiple integral of fq with
respect to the compensated Poisson process η̂ = η − λ and fq : Xq → R is a λq-a.e.
symmetric function whose explicit form is given by fq(x1, ..., xq) = 1

q!E[Dq
x1,...,xnF ].

Let F ∈ L2(P) have the chaos expansion (2.3). Denote by domD the set of
F ∈ L2(P) satisfying ∑

q≥1

qq! ‖f‖2L2(λq) <∞.

By [18, Th. 3], F ∈ domD if and only if DF ∈ L2(P ⊗ λ). In this case we have
P-a.s. and for λ-a.e. x ∈ X that

DxF =
∑
q≥1

qIq−1(fq(x, ·)).

Hence, the add-one-cost operator coincides with the Malliavin derivative for Wiener-
Itô multiple integrals. Let δ be the adjoint operator of D, that is, for H in the
domain of δ, we have

E[〈H,DF 〉L2(λ)] = E[δ(H)F ] for all F ∈ domD.

Finally, let domL be the subclass class of F ∈ L2(P) such that∑
q≥1

q2q! ‖fq‖2L2(λq) <∞.

In this case we define

LF := −
∑
q≥1

qIq(fq).

The (pseudo)-inverse L−1 of L is given by

L−1F := −
∑
q≥1

1

q
Iq(fq).

The operator L is the generator of the Orstein-Uhlenbeck semigroup (Pt)t≥0, yet
to be recalled, which interpolates between F and its expectation. Recall that η is
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proper as in (2.1). Let (Ui)i≥1 be a sequence of iid uniform random variables in
[0, 1] and independent of (κ, (Xn)n≥1). Define

ηu :=

κ∑
n=1

1{Un≤u}δXn , 0 ≤ u ≤ 1.

Then ηu is a u-thinning of η, see [19, Ch. 5] for definition. Define for F ∈ L1(P)

PtF = E[F (ηe−t + η′1−e−t)|η], t ≥ 0,(2.4)

where η′1−e−t is a Poisson process with intensity (1−e−t)λ, independent of the pair

(η, ηe−t). Note that P0F = F , P∞F = EF , and

E[PtF ] = EF, F ∈ L1(P).

Moreover, (2.4) yields a commutation relation between D and Pt, see [19, p.212]

Dx(PtF ) = e−tPtDxF, λ- a.e.x ∈ X,P- a.s..(2.5)

In particular, when |F | ≤ 1, we have the pointwise gradient estimate

(2.6) |Dx(PtF )| ≤ 2e−t, λ⊗ P− a.e.
For F ∈ L2(P) with the chaos expansion (2.3), we have by [18, p.27]

PtF =
∑
q≥0

e−qtIq(fq), t ≥ 0.

For F,G ∈ domL such that FG ∈ domL, the carré-du-champ operator is defined
by Γ(F,G) = 1

2 (L(FG) − FLG − GLF ). Since L is symmetric (meaning that
E[FLG] = E[GLF ]) we have

E[GLF ] = E[FLG] = −E[Γ(F,G)].

Using the pathwise representation [14, p.1888] of Γ and Mecke’s formula (2.2), we
also obtain that, under suitable integrability assumptions on DF,DG,

E[Γ(F,G)] =

∫
E[DxFDxG]λ(dx).

3. Proofs

3.1. Entropy estimates. The main result of this subsection is Corollary 3.2. The
following pathwise inequality will be useful.

Lemma 3.1. Let G be σ(η)-measurable. Then, for any q > 1, x ∈ X and η ∈ N,
we have

(Dx|G|q)2

|G|q
≤ q2

q − 1
(Dx|G|q−1)(Dx|G|)

(∣∣∣∣G(η + δx)

G

∣∣∣∣q ∨ 1

)
,

where we have implicitily adopted the convention 1/0 = +∞.

Proof. Set a = |G(η + δx)| and b = |G(η)|. The inequality holds trivially if a = b
or b = 0. Assume that a 6= b > 0. We intend to prove

(aq − bq)2

bq
≤ q2

q − 1
(a− b)(aq−1 − bq−1)

((a
b

)q
∨ 1
)
.

By the variable change (a, b) 7→ (ab , 1), we can assume b = 1 and this amounts to

(aq − 1)2 ≤ q2

q − 1
(a− 1)(aq−1 − 1)(aq ∨ 1).
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We have

|aq − 1| =

{
q
q−1

∫ 1

aq−1 v
1
q−1 dv ≤ q

q−1 (1− aq−1) a < 1
q
q−1

∫ aq−1

1
v

1
q−1 dv ≤ q

q−1 (aq−1 − 1)a a > 1
.(3.1)

Similarly,

|aq − 1| =

{
q
∫ 1

a
vq−1dv ≤ q(1− a) a < 1

q
∫ a

1
vq−1dv ≤ q(a− 1)aq−1 a > 1

.(3.2)

The desired inequality follows by taking the product of (3.1)-(3.2). �

Via truncation we arrive at some kind of logarithmic Sobolev inequality for the
power function of non negative, non increasing Poisson functionals.

Corollary 3.2. Let G ≥ 0 be σ(η)-measurable, and such that DG ≤ 0. For any
q > 1 such that EGq <∞,

Ent(Gq) ≤ q2

q − 1
E[Γ(Gq−1, G)].

Proof. Assume first that G > 0 a.s. By (1.9) and Lemma 3.1, we have

Ent(Gq) ≤ E
∫

(DxG
q)2

Gq
λ(dx) ≤ q2

q − 1
E
∫

(DxG
q−1)(DxG)λ(dx).

Since the last integral can be written in terms of the carré du champ operator (see
the discussion at the end of Section 2, as well as [14]) , we thus have

E
∫

(DxG
q−1)(DxG)λ(dx) = E[Γ(Gq−1, G)],

as desired. To deal with the general case, let Gε := G ∨ ε, with ε > 0 and x ∨ y :=
max {x, y} for all x, y ∈ R. Then Gε > 0 and DGε ≤ 0, thus

Ent(Gqε) ≤
q2

q − 1
E[Γ(Gq−1

ε , Gε)].

Note that

Ent(Gqε) = qE[(G ∨ ε)q log(G ∨ ε)1{G≥2}]

+ qE[(G ∨ ε)q log(G ∨ ε)1{G<2}]− E[(G ∨ ε)q] logE[(G ∨ ε)q].

Now, since Gq is integrable, one obtains immediately that E[(G ∨ ε)q] → EGq, as
ε ↓ 0. On the other hand, qE[(G∨ ε)q log(G∨ ε)1{G<2}]→ qE[Gq log(G)1{G<2}] by
dominated convergence, and qE[Gq log(G)1{G≥2}] ≤ lim infε↓0 qE[(G ∨ ε)q log(G ∨
ε)1{G≥2}], by Fatou’s lemma. From this, we infer that Ent(Gq) ≤ lim infε↓0 Ent(Gqε).
To conclude, we write explicitly

E[Γ(Gq−1
ε , Gε)]

= E
[∫

(G(η + δx) ∨ ε)q−1 − (G(η) ∨ ε)q−1)(G(η + δx) ∨ ε−G(η) ∨ ε)λ(dx)

]
,

and observe that, for a ≥ b ≥ 0 and γ, ε > 0, one has (a∨ ε)γ − (b∨ ε)γ ≤ (aγ − bγ),
yielding

E[Γ(Gq−1
ε , Gε)] ≤ E[Γ(Gq−1, G)].

The desired result follows. �
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Remark 3.3. This form of logarithmic Sobolev inequality is nearly optimal when
G = e−aη(B) with λ(B) = γ ∈ (0,∞), and a sufficiently small. For such a G, we
have

DxG = G(e−a − 1)1B(x)

DxG
q−1 = Gq−1(e−a(q−1) − 1)1B(x).

We thus have

E
∫

(DxG
q−1)(DxG)λ(dx) = E[Gq](1− e−a)(1− e−(q−1)a)γ

On the other hand, standard calculation for Poisson variables gives

E[Gq] = exp(γ(e−qa − 1))

E[Gq log(Gq)] = −aqγe−aq exp((e−aq − 1)γ)

so that

Ent(Gq) = γ exp(γ(e−qa − 1))(1− aqe−aq − e−aq).

The corollary establishes thus

1− aqe−aq − e−aq ≤ q2

q − 1
(1− e−a)(1− e−(q−1)a).

Letting q ↓ 1, we have

1− ae−a − e−a ≤ a(1− e−a)

where the equality is achieved when a = 0.

3.2. Proof of Theorem 1.4. We adapt the classic proof in [6, p.247]. Let F ≥ 0
and q > 1. By truncation and a monotone convergence argument, we can assume
that F is bounded. In particular, E[F q] < ∞. Define Λ := Λ(t, q) = E[(PtF )q].
We have

∂tΛ(t, q) = qE[(PtF )q−1LPtF ] = −qE[Γ((PtF )q−1, PtF )],(3.3)

∂qΛ(t, q) = E[(PtF )q logPtF ] =
1

q
(Ent((PtF )q) + Λ log Λ).(3.4)

Now let q(t) = 1 + (p − 1)et for p > 1 and t > 0. Thus q′(t) = q(t) − 1. Consider
H(t) = 1

q(t) log Λ(t, q(t)). Since H(0) = log ‖F‖p, it remains to prove that

H ′(t) =
(∂tΛ + q′(t)∂qΛ)q(t)/Λ− q′(t) log Λ

q(t)2
≤ 0

for t > 0. Using (3.3)-(3.4), this amounts to

Ent((PtF )q(t)) ≤ q(t)2

q(t)− 1
E[(Γ(PtF )q−1, PtF )]

which is precisely Corollary 3.2 with G = PtF and q = q(t). The proof is complete.
�
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3.3. Proof of Theorem 1.6. We adapt the arguments from [13]. By Var(F ) =
E[(P0F )2]− E[(P∞F )2] and interpolation, we have

Var(F ) = −
∫ ∞

0

∂tE[(PtF )2]dt = −
∫ ∞

0

E[PtFLPtF ]dt =

∫ ∞
0

E[Γ(PtF, PtF )]dt.

By the commutation relation (2.5), the above integral becomes

(3.5)

∫ ∞
0

dt e−2t

∫
λ(dx)E[(PtDxF )2].

Applying the hypercontractivity (Theorem 1.4) with p = 1+e−t to DxF if DF ≥ 0,
to −DxF otherwise, we obtain that (3.5) is bounded from above by∫ ∞

0

dt e−2t

∫
λ(dx)E[|DxF |1+e−t ]

2

1+e−t .

After the change of variable v = 1 + e−t, we obtain

Var(F ) ≤
∫
λ(dx)

∫ 2

1

dv (v − 1)[E|DxF |v]
2
v dv ≤

∫
λ(dx)

∫ 2

1

dv [E|DxF |v]
2
v

=

∫
λ(dx)

∫ 2

1

dv [E|DxF |2−v+2(v−1)]
2
v .

By Hölder’s inequality with 1/p = 2− v and 1/q = v − 1, we have

E|DxF |2−v+2(v−1) ≤ ‖DxF‖2−v1 ‖DxF‖2(v−1)
2 .

Setting b = ‖DxF‖1 / ‖DxF‖2, this implies

Var(F ) ≤
∫
λ(dx)E[(DxF )2]

∫ 2

1

b
4
v−2dv

≤ 1

4

∫
λ(dx)E[(DxF )2]

∫ 2

0

budu ≤ 1

2

∫
E[(DxF )2]

1 + log(1/b)
λ(dx),

see [13, p. 9] for the last inequality. The desired conclusion follows. �

3.4. Proof of Theorem 1.7. The Poincaré inequality implies that following vari-
ance bound:

Var(F ) ≤ 1

1− e−1

(
E[F 2]− E[(P1F )2]

)
,

see [13, Equation (10)]. Applying the semigroup interpolation argument leading to
Theorem 1.6 and the hypercontractivity, we have

Var(F ) ≤ 1

1− e−1

∫
λ(dx)

∫ 1

0

dt e−2tE[(PtDxF )2]

≤ 1

1− e−1

∫
λ(dx)

∫ 1

0

dt e−2tE[|DxF |1+e−t ]
2

1+e−t dt.
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An application of the trivial bound |DxF | ≤ 2 ‖F‖∞ yields, with α(F ) = 1 if
2 ‖F‖∞ > 1 and α(F ) = 2/(e+ 1) otherwise,

Var(F ) ≤
(2 ‖F‖∞)α(F )

1− e−1

∫
λ(dx)

∫ 1

0

dt e−2tE[|DxF |]
2

1+e−t

≤
(2 ‖F‖∞)α(F )

1− e−1

∫
λ(dx)

∫ 1

2/(1+e−1)

duE[|DxF |]u
2

u2

≤ 11 (2 ‖F‖∞)α(F )

∫
λ(dx)

∫ 1

0

E[|DxF |]udu

≤ 11 (2 ‖F‖∞)α(F )

∫
λ(dx)×

{
2
∫ λ(dx)

1+log(1/E[|DxF |]) if E[|DxF |] ≤ 1

E[|DxF |] if E[|DxF |] ≥ 1
.

�

4. Gradient bounds and isoperimetric inequalities

Our last result may be compared with the classical gradient estimate in the
Gaussian space: for |f | ≤ 1 and t > 0,

|∇(P γkt f)| ≤ e−t√
1− e−2t

,

see [24, Prop. 5.1.5] (see also [13, Equation (25)]).

Theorem 4.1. Let F ∈ Lp(P) be such that ‖DF‖Lp(Ω;L2(λ)) < ∞ for some p ∈
[2,∞]. Then for t > 0,

‖DPtF‖Lp(Ω;L2(λ)) ≤
e−t√

1− e−t
‖F‖p .

Proof. It suffices to show the gradient bound when p = ∞. Indeed, it holds for
p = 2 from the general spectral theory of Dirichlet forms and then one can use
the Riesz-Thorin interpolation theorem to get the gradient bound in the range
p ∈ [2,∞]. By (2.4), we have PtDxF = E′[DxF (ηe−t + η′1−e−t)] where E′ is the

expectation with respect to the distribution of η′1−e−t . Thus, with λt = (1− e−t)λ
denoting the intensity measure of η′1−e−t and by using the commutation relation

(2.5) in the first equality, one has for any h ∈ L2(λ),∫
h(x)DxPtFλ(dx) = e−t

∫
h(x)PtDxFλ(dx)

=
e−t

1− e−t
E′
∫
DxF (ηe−t + η′1−e−t)h(x)λt(dx) =:

e−t

1− e−t
Yt.

We now proceed with Mecke’s formula (2.2) to arrive at

Yt = E′
∫
F (ηe−t + η′1−e−t + δx)h(x)λt(dx)− E′

∫
F (ηe−t + η′1−e−t)h(x)λt(dx)

= E′
[
F (ηe−t + η′1−e−t)

∫
h(x)(η′1−e−t(dx)− λt(dx))

]
≤ E′[F (ηe−t + η′1−e−t)

2]
1
2E′[I ′1(h)2]

1
2

= [Pt(F
2)]

1
2 ‖h‖L2(λt)

=
√

1− e−t[Pt(F 2)]
1
2 ‖h‖L2(λ) ,
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14 IVAN NOURDIN, GIOVANNI PECCATI, AND XIAOCHUAN YANG

where I ′1(h) is the compensated Poisson integral of order 1 of h with respect to
η′1−e−t . Using these estimates and the boundedness of F , we have

|〈DxPtF, h〉L2(λ)| =
e−t

1− e−t
|Yt| ≤

e−t√
1− e−t

‖F‖∞ ‖h‖L2(λ) a.s.

for all h ∈ L2(λ). It follows that

‖DxPtF‖L2(λ) = sup
h:‖h‖L2(λ)≤1

〈DxPtF, h〉L2(λ) ≤
e−t√

1− e−t
‖F‖∞ a.s.

ending the proof. �

Following the approach of [20], we will now exploit such a gradient bound to-
gether with restricted hypercontractivity and deduce an inequality with an isoperi-
metric content (see e.g. [7, 17]).

Theorem 4.2. For all event E such that P(E) ≤ 1/2 and D1E ≤ 0, one has

E[‖D1E‖L2(λ)] ≥
1

32
P(E)

√
log

1

P(E)
.

Proof. Let G be smooth and bounded by 1. The symmetry of L and Ps gives

|E[G(F − PtF )]| =
∣∣∣∣∫ t

0

E[GLPsF ]ds

∣∣∣∣ ≤ ∫ t

0

|E[〈DPsG,DF 〉L2(λ)]|ds

≤
∫ t

0

E[‖DPsG‖L2(λ) ‖DF‖L2(λ)]ds

≤ E ‖DF‖L2(λ)

∫ t

0

‖DPsG‖L∞(Ω,L2(λ)) ds,

yielding, by duality and Theorem 4.1, that for all t > 0,

‖F − PtF‖1 ≤ 2
√
t E ‖DF‖L2(λ) .(4.1)

Now one applies (4.1) to F = 1E where E is an event satisfying D1E ≤ 0. Note
that the left-hand side of (4.1) can be written as

E[(1− Pt1E)1E ] + E[Pt1E(1− 1E)] = 2(P(E)− E[1EPt1E ]) = 2(P(E)−
∥∥Pt/21E

∥∥2

2
).

By the restricted hypercontractivity, one obtains

2
√
tE ‖D1E‖L2(λ) ≥ 2(P(E)− P(E)2/p(t))

where p(t) = 1 + e−t. Choosing t appropriately as in [20, Section 2] leads to the
bound, ending the proof. �
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