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Abstract: Mooring systems are an integral and sophisticated component of offshore assets and are
subject to harsh conditions and cyclic loading. The early detection and characterisation of fatigue
crack growth remain a crucial challenge. The scope of the present work was to establish filtering and
alarm criteria for different crack growth stages by evaluating the recorded signals and their features.
The analysis and definition of parametrical limits, and the correlation of their characteristics with the
crack, helped to identify approaches to discriminate between noise, initiation, and growth-related
signals. Based on these, a filtering criterion was established, to support the identification of the
different growth stages and noise with the aim to provide early warnings of potential damage.

Keywords: parametrical analysis; signal feature extraction; high-frequency signals; filtering criterion;
fatigue crack growth; mooring chains

1. Introduction

Mooring systems are an integral and complex component of offshore assets. Mooring
chains for floating offshore installations, typically designed for a 25 year service life, are
subject to fatigue in a seawater environment. Structural components are subjected to
harsh conditions and cyclic loading and can present a significant risk to asset integrity and
personnel safety. Moreover, the life of old and new structures has to be extended, and the
maintenance strategies improved, calling for a more proactive management approach.

Structural health monitoring (SHM) is a crucial part of asset integrity management and
should be enforced in conjunction with traditional inspection programmes. The main objec-
tive of SHM is to continuously verify the condition of the mooring system’s performance
and provide input for the assessment of mooring integrity, complementing periodical in-
service inspections. The early detection and monitoring of fatigue crack growth in mooring
chains remain a crucial challenge. Current technologies cannot provide information on
fatigue cracking, ultimately leading to unexpected structural failure. Thus, its detection
and characterisation open the way towards a new, reliable monitoring approach that can
be used as an early warning of crack propagation.

One of the major problems in the design of offshore equipment is fatigue damage
accumulation, predominantly at the chain connection at the fairlead where failure can
occur rapidly [1]. Although this topic has been extensively studied in the literature, theo-
retically, numerically, and experimentally [2–4], the available inspection and monitoring
technologies developed to date have not been able to fully overcome the severe environ-
mental challenges associated with offshore service activities. ROVs have been widely used
since the 1970s but face serious difficulties, despite the technological advances, due to the
highly unpredictable operating environment characterized by poor visibility and unstable
conditions [5–7]. For fatigue damage detection in structural applications in general, several
sensing techniques have been developed [8] including guided ultrasonic waves [9,10], fibre
Bragg gratings (FBGs) [11–13], strain gauges [14], and piezoelectric sensors [15].
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Amongst the offshore assets that are vulnerable to corrosion-enhanced fatigue damage,
mooring chains are one of the most crucial mooring components used in permanently
anchored structures [16]. Despite their importance, limited experimental work on mooring
chain fatigue cracking monitoring exists in the literature. Studies have been carried out on
the chains’ material microstructural properties [17], whereas others have been numerical
modelling-oriented [18]. Few large-scale testing attempts have been made [19], conducting
feasibility studies to establish acoustic techniques’ capabilities in monitoring damage in a
mooring chain link subject to stress corrosion cracking in artificial sea water.

The present research presents a diagnostic feature extraction for vibration sensor-based
diagnosis technologies and evaluates the suitability of monitoring parameters of high-
frequency signals to detect fatigue crack growth in mooring chains. Experimental work was
performed to investigate the applicability of the technique and the accuracy of waveforms’
feature extraction to monitor and predict fatigue-related cracking in mooring systems.

This investigation results in the definition of a data filtering criterion for the pre-
diction and assessment of fatigue crack growth in mooring chains, characterising four
different clusters of events, three of which are directly related to the cracking phases:
initiation, growth, and final growth. Following these results, a colour-coded alarm for risk
identification can provide warnings based on low, medium, high, and very high-risk stages.

2. Materials and Methods

The testing was conducted at TWI Ltd.’s world-class mechanical test rig facility. The
work generated reliable test data for a more fundamental understanding of the parameters
providing information on real-time fatigue cracking. The test was executed in steel grade
R5 links of 127 mm in diameter. The rig was designed to test a segment of a chain in a
seawater environment, including seven studless links, and the rig allowed a chain section to
be tested horizontally under cyclic tension–tension loading. All links were fully immersed
in the solution during the duration of the fatigue and the testing.

2.1. Fatigue Testing Set Up and Results

The chain was subjected to a constant cycling tensile loading (tension–tension). During
the 31 days of the monitoring period, an average tension–tension load range of 3475 kN to
3755 kN was applied.

A displacement limit was set during the fatigue testing, measured by a high-sensitivity
displacement cell. This limit could be exceeded due to the potential development of a
crack, or in some cases, other operational circumstances. The aim was also to find an early
indication of fatigue cracking. If, after the trigger of the displacement cell, it was considered
that the source could be a potential crack developing in one of the links, the full tank would
be emptied, and consecutive NDT would be carried out from end to end of the complete
chain section.

The targeted fatigue life for the tested sample was 5 × 106 cycles, as established
by the manufacturer’s original calculations. From the deployment of the monitoring
equipment at 2,656,544 cycles, the first time the displacement limit was exceeded occurred
after 4,333,424 cycles. Subsequently, the water tank was fully drained and a complete
inspection of the chain using visual inspection and magnetic particle inspection (MPI)
revealed a ~5 mm crack located at the weld area in link #4 (Figure 1a). No other indication
of cracking was found thus the tank was re-filled and the experiment was resumed.

At 4,923,552 cycles, close to the fatigue life (5 × 106 cycles), the experiment was
interrupted for a second time. MPI revealed that the same crack that was originally
found in link #4 (4,333,424 cycles, 5 mm) had grown to ~120 mm (Figure 1b). A complete
inspection of the chain did not reveal any other cracks in the other links.

Fatigue failures are often easy to identify. The initiation region usually occurs on the
surface. The 5 mm crack initiated in link #4 was originated with a smooth surface and then
developed into a rougher area as the crack increased in size, following the crack growth
trajectory. This behaviour is characteristic of the fatigue crack propagation phase. A region
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corresponding to the final 120 mm fatigue crack displayed a granular grey portion outside
the crack’s arc, corresponding to the crack final fracture, and was artificially opened at low
temperature by applying a critical load to reveal the fracture surfaces.
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Figure 1. Crack indications after magnetic particle inspection (MPI): original crack found at the weld
on the inner surface of link #4, (a) 5 mm long to (b) 120 mm long.

2.2. The Effect of Cyclic Loading in Fatigue Crack Growth

Structural components subjected to cyclic loading can fail even if the stress level
remains well below the failure stress observed under static or monotonic loading. This
mechanical failure mechanism is what defines fatigue damage.

Previous research has investigated fatigue crack growth in relation to the applied
load. Cracks could grow during the loading and the unloading phase of the load cycle [20].
Nevertheless, any correlation attempt may be unsuccessful when the complete loading
range is considered. Some studies have attributed the top 10% and 5% of the load range
to crack growth-related [21] events. Other research has associated different signal groups
with the crack behaviour based on a spectral analysis of the data [22], concluding that the
signals generated at the top 75–85% of the load range were statistically dissimilar from
those in the bottom 60% range and were associated with the fatigue crack growth.

The effect of cycling loading in the present research work was analysed and it was
confirmed that activity related to crack initiation and growth always occurs during a cycle
ascending phase and at 85% of the top load range. In addition, those events occurring
at loads over 97% can be considered an indication of crack growth present in the sample.
These values will initiate the filtering criteria to be determined and analysed through
consecutive sections.

3. Monitoring Approach

Depending on the application and the monitoring strategy, two different approaches
are generally applied to acquire and analyse the vibration signals [23].

• Continuous type: refers to a waveform where transient bursts are not discriminated
against. This is the most common type of signal processing for the analysis of vibration
in rotating machinery.

• Burst type emission: burst type emission is expected when the monitored sources of
emission are non-repeatable and occur discretely; independent in the time domain,
such as local catastrophic yielding, crack growth, cavitation, or corrosion.

When the origin of these waves travelling through the material is due to plastic
deformation, as atomic planes slip past each other through the movement of dislocations,
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the fundamental characteristic of these signals is that they are in a broad frequency range
between 100 kHz and 1 MHz. In this case, these types of high-frequency vibration are
generally known as acoustic emissions (AEs). AE is defined as a rapid release of strain
energy caused by deformation or damage within or on the surface of a material that
generates transient elastic waves.

Approaches in logging and analysing AE data can be separated into two main groups:
parameter-based (classical) and signal-based techniques [24]. Other analysis approaches of
transient signals such as spectral, phase space, and wavelet methods can also be utilised
to process acoustic signals [25]. Techniques for the evaluation transient signals such as
spectral, phase space, and wavelet methods can also be utilised to process AE data. More
modern techniques such as artificial neural networks (ANNs) can be applied to analyse
and cluster signals and parametrical data [26]. These are, however, not within the scope of
the present work.

The most common technique to define burst type emissions is based on the signal
threshold. The threshold is usually set on the positive side of the signal and fixed just
over the average noise level. It can be adjusted regularly if the noise levels change in the
environment. Once a burst has been located, it must be determined. There are typically
three parameters that are used for this: the hit definition time (HDT), the hit lockout time
(HLT), and the peak definition time (PDT). Figure 2 illustrates the threshold-based hit
detection method and the main features under discussion.
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The HDT states the maximum time between threshold crossings, meaning that if no
signal crossing occurs during this time, then the hit has ended. Practically, if the HDT is set
too high, the system may consider two or more hits as one. If the HDT is set too low, the
system may not fully capture the burst and possibly treat one hit as multiple hits. The HLT
parameter specifies the time which must pass after a hit has been detected before a new hit
can be detected. In this case, if the HLT is set too high, then the system may not capture
the next event, and if it is set too low, then the system may capture reflections and the late
arriving component of the hits. The PDT parameter specifies the time allowed after a hit
has been detected to determine the peak value. If the PDT is set too high, then false peak
value measurements are more likely to occur [28,29].

The determination of the burst, also known as the hit, is the first step before extract-
ing the hit-based features. The most common and predominantly used parameters are
amplitude, duration, energy, counts, rise time, and average frequency. Figure 2 illustrates
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how these and other common hit-based features are related [30], and each of the key signal
features is described below [27–33]:

• Amplitude (A-dB): the greatest measured voltage in a waveform is measured in
decibels (dB). Amplitudes are expressed on a decibel scale instead of a linear scale
where 1µV at the sensor is defined as 0 dB. The amplitude is closely related to the
magnitude of the source event, and signals with amplitudes below the minimum
threshold will not be recorded. In general, the value does not represent the emission
source but the sensor response after losing the energy due to propagation.

• Duration (D-µs): the time interval between the first and last threshold crossings. The
duration is generally expressed in microseconds, which depends on source magnitude
and noise filtering. Like counts, duration relies upon the magnitude of the signal and
the acoustics of the material.

• Count (C) (also known as ring-down count/emission count): the number of times
within the duration when one signal exceeds a pre-set threshold. Counts depend
strongly on the employed threshold and the operating frequency. While this is a
relatively simple parameter to collect, it usually needs to be combined with amplitude
and duration measurements to provide quality information about the shape of a signal.

• Rise time (RT-µs): the time interval between the first threshold crossing of the signal
and the time of its peak amplitude. The rise time is closely related to the source-time
function and is commonly used to qualify signals or a noise filter criterion.

• Average frequency (AF-kHz): a calculated feature obtained from counts divided by
duration, determining an average frequency over one hit.

3.1. Equipment

During the duration of the monitoring period, two different sensors with resonant and
bandwidth frequencies were placed in links #4 and #5 of the mooring chain (see Figure 3).
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Data were collected using a data acquisition Vallen AMSY-6, a fully digital multi-
channel measurement system, and sensors.

• Link #4: VS150-WIC-V01 (resonant frequency 150 kHz, bandwidth 100–450 kHz);
• Links #5: VS900-WIC-V01 (resonant frequency 350 kHz, bandwidth 100–900 kHz).

3.2. Calibration

The sensors used in this study were calibrated following the ASTM E1106 [34] stan-
dard before starting the test to ensure the consistency of the collected signals. Since the
experiments were to be completed with the chain submerged in water, the reproducibil-
ity of the response of the sensor was verified in air and underwater according to ASTM
E976 [35] by breaking a 0.5 mm pencil lead against the link’s surface, known as the pencil
lead breakage (PLB) test. Also known as Hsu and Nielsen [36] pencil lead break, PLB is
a recognised technique used to artificially generate reproducible signals [37]. PLBs were
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performed in groups of four, at +10 cm and −10 cm from each sensor. Additionally, to
verify sensor coupling, the pulsing function was applied. Each sensor was used as a signal
generator that transmits signals to be captured by the rest of the sensors. Details of the
calibration plan are summarised in Table 1.

Table 1. Calibration and signal reproducibility verification plan.

Pencil Lead Break Sensor Pulsing

A PLB simulates AE events
PLBs at ±10 cm (4 at −10 cm, 4 at +10 cm)

PLBs at link inner face opposing weld (4 PLBs
per link)

Transmission across links was observed
Amplitude dropped from 85–90 dB in the first
link to ~65 dB after transmission through two

consecutive sensors (average)
PLB in air and underwater

Emission of ultrasound pulses by the sensor
Pulsing from the sensor, four pulses per sensor

Transmission across links was observed
Amplitude dropped from 80 dB in the first link

to ~70 dB after transmission through two
consecutive sensors (average)
Pulsing in air and underwater

3.3. Data Acquisition Parameters

Setting up the acquisition parameters is critical for optimum performance. The ac-
quisition sampling rate was set at 10 MHz. The transient data were recorded at 5 MHz,
taking 200 samples for the pre-trigger and 200 post duration. For the definition of the hit,
the duration was set at 400 µs, the rearm time at 3200 µs, and the hit threshold at 60 dB.
The frequency range was left at 95–850 kHz for a broader frequency perspective. The data
acquisition threshold value was set at 60 dB due to the noisy environment.

Trend analysis of hit-based features is widely used when dealing with high-frequency
signals, e.g., in AE, and so burst signal features, such as the time of the first threshold
crossing (time of arrival), duration, peak amplitude, energy, or counts, were extracted from
the ASIP-2 (AMSY-6 signal processor) using AE-Suite software. External parametric inputs
were recorded for the load (PA0) and displacement (PA1).

3.4. Data Collection Procedure

During the 31 days of the monitoring period, an average tension–tension load range
of 3475 kN to 3755 kN was applied. The crack of interest was revealed 17 days before
the end of the experiment. The periods leading to both the 5 mm indent and the 120 mm
crack were analysed and compared with the activity during normal rig operation before
the occurrence of any cracking.

Data were collected in windows with a duration of 3 to 8 days. Throughout the
processed monitoring period, data were split into four parts. This was due to two main
reasons. Firstly, the test rig natural load and unpredicted triggers (e.g., invalid system
triggers or cracks revealed at the end of period 2) also caused time loss between the
acquisition periods. Second, the size or duration of the files collecting transient data (e.g.,
file size/time for period 1 over 9 GB and period 3 over nine days). This also helped to
keep the files to a practical and similar size to perform the post-processing. The details and
characteristics of each one of them are described in Table 2.

The nomenclature used in this table will be followed through the following sections
and figures when describing the data results, namely: P1, P2, P3, P4. It is important to
remember that P2 corresponds to the crack initiation stage, leading to C1, initial 5 mm
crack observed, and P3 and P4 correspond to the crack growth phase, leading to C2, the
discovery of the 120 mm crack, and the end of the experiment.
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Table 2. Data monitoring periods and data structure.

ID File Name Size and
Duration State Period Notes

P1 Period 1 7 GB (25 × 104 s) No crack Data monitoring starts
P2 Period 2 2.7 GB (16 × 104 s) Crack initiation Period leading to C1
C1 Crack 1—MPI 5 mm
P3 Period 3 2.8 GB (6 × 105 s) Crack growth C1 developing into C2
P4 Period 4 3.2 GB (5 × 105 s) Crack growth end Period leading to C2
C2 Crack 2—MPI 120 mm crack

END End of the test

4. Results
4.1. A Qualitative Overview of the Cumulative Energy per Period

The energy of a burst signal is defined as the integral of the squared signal (voltage
signal) divided by the reference resistance, over the duration of the waveform. The
qualitative reading of a cumulative energy graph should take into account the following
existing conditions. First, if the slope is zero, no events are occurring. Second, if the slope
is relatively constant and the individual energy measured per event is low, the energy is
most often coming from environmental noise. However, if there is a manifestation of a
sudden rise in the cumulative energy indicated by the increase in the slope, this can be an
indication of the presence of an anomaly.

Figure 4 shows the cumulative energy versus time for the duration of the experiment
when the events with loads under 3700 kN and amplitudes under 80 dB were discarded.
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4.2. Evaluation of Burst Parameters and Their Relationship to Define a Filtering Criterion

Parametrical analysis of signals’ features is crucial for an evaluation and classification
of characteristic bursts concerning the type of damage and/or stage occurring at a given
time interval. These can support assessing and filtering the representative features’ values
for different cracking stages (initiation, growth, and final growth). The definition of these
limits will result in the establishment of a filtering criterion, which will ultimately be used
to provide a qualitative evaluation of the risk associated with the findings.
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4.2.1. Peak Amplitude vs. Signal Energy

High-energy and high-amplitude signals are generated when crack initiation or un-
stable crack extension occurs [38]. Figure 5 shows the evolution of the amplitude versus
energy for all periods. P1 and P2 display a slow rise in energy as the amplitude increases.
Only a few events go over the 80 dB limit and 6 × 105 eu. However, looking at P3 and P4, it
can be observed how the energy increases very quickly as the amplitude increases. There is
a change in the curve slope, where a small amplitude increase (from 80 dB to 85 dB) results
in a high energy values increase (from 6 × 105 eu to 22 × 105 eu). This is an indication of
the presence of relatively high-frequency signals, containing a large number of counts per
hit while still maintaining a reasonably high duration, and it is characteristic of signals
linked to cracking [39].
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These results indicate unstable crack growth-related activity in P3 and P4, given the
small increase in amplitude, resulting in a quick increase in energy per hit.

4.2.2. Counts vs. Peak Amplitude

Signal counts have also been used during fatigue crack propagation tests, and the
results from the previous research [6] agree that as the crack growth rate increases, the
count rate increases.
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The energy of a signal can be expressed by an area of a triangle that consists of the
width of signal duration and the height of peak amplitude. Therefore, if the energy of a
burst increased according to the crack growth, the peak amplitude would increase as well
as the count rate.

Discarding the signals recorded under 85% of the top load range, a plot of the burst
counts versus amplitude was created for the three damage stages: initiation, growth, and
ultimate growth (Figure 6). The number of counts quickly increases with the increase in
amplitude (from 80 to 85 dB) to over 250 counts per hit.
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When entering the plastic stage, the count rate gradually increases, indicating that
cracks begin to propagate [39]. Therefore, this result is in agreement with the sudden
increase in energy caused by a small increase in amplitude as described in Section 4.2. The
more counts the event contains, the more energy the signal will carry.
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4.2.3. Duration vs. Peak Amplitude

The relationship between duration and amplitude for the three data sets (P2, P3, P4) is
shown in Figure 7. It can be observed that these were only slightly affected by the fatigue
cycle as there was no clear difference in the results according to the loading filtering (over
85% of the top load range). P2, which was defined as the stabilisation to initiation period,
displays a number of long-duration events with low amplitudes. These (highlighted with
a circle) and signals with a duration under 2000 µs can be considered friction noise and
therefore discarded.
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Figure 7. Duration (µs) vs. amplitude (dB) filtered by the load.

During normal activity, the amplitude rarely reaches values above 80 dB (Figure 7),
and the duration appears to fall within 0 to 3500 µs, and it remains higher for larger
amplitudes. Duration is the elapsed time from the first threshold crossing to the last. As
occurs for energy and counts, as the amplitude increases, the duration of threshold crossing
increases. More importantly, the duration increases to values exceeding 6500 µs, two times
as large as the maximum duration for ‘normal’ activity. The amplitude also increases to at
least 85 dB, which is again larger than the largest values observed during ‘normal’ activity.
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Of interest is the activity for which duration exceeds 3500 µs, and if there are a
significant number of data points above 80 or 85 dB. It can then be confirmed that these
long-duration signals are attributed to events generated from the crack growth stage of
the test.

4.2.4. Peak Amplitude vs. Duration vs. Energy

When fracture occurs, the duration increases with amplitude, energy, and number of
counts, as described in previous sections. A 3D correlation plot of the signal amplitude,
energy, and duration can support the analysis and validation of the entire signals to
confirm characteristics, trends, and limits. Previous research [40] has used correlation
plots based on this three-dimensional relationship and cited that earlier literature shows
crack growth behaviour characterised by short-duration, high-amplitude, and high-energy
signals. Conversely, this same research defined the duration of the corresponding crack
propagation to be greater than the crack initiation and any fretting.

During the present experiment, the cycling loading tests in P4 showed that the energy
increases very quickly as the amplitude increases, especially in signals over 80 dB, where
the energy ranges from 6 × 105–22 × 105 eu (see Figure 8). Low-amplitude activity is seen
for short-duration events, with energy reaching a maximum of 5 × 105 eu, so this is at least
one order of magnitude smaller than that for the crack growth regions. A few hits exceed
85 dB, but none exceed 90 dB, set as the test limit.
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Based on the results of Section 4.2 and Figure 7, the 3D correlation plot shown in
Figure 8 corroborates the previous outcome for P4 and defines the characteristic signal
caused by crack propagation as a long-duration, high-amplitude, and high-energy pulse:
3500–6000 µs, 80–85 dB, and 6 × 105–22 × 105 eu.

4.2.5. Average Frequency: Counts over Duration

Average frequency is defined as the ratio of counts to duration in a burst. An analysis
of average frequency and its evolution across the four testing periods has been performed,
and the results are shown in Figure 9 (P4), Figure 10 (P3), Figure 11 (P2), and Figure 12 (P1).
Data are displayed starting from P4 as the thresholds become conclusive after applying the
established load and amplitude filters.
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Figure 11. Counts (c) over duration (µs) for P2 using predefined filters: (a) P0 > 3700 (85%) and
A > 70 dB, (b) P0 > 3700 (85%) and A > 80 dB, and (c) P0 > 3750 (97%) and A > 80 dB.

The first outcome of this frequency analysis is shown in Figure 9, which displays the
relationship between counts and duration for P4. The results are plotted for three different
filters to support the refinement of the thresholds. Once the second filter was applied
(b, P0 > 3700 and A > 80 dB), the majority of the low-count, short-duration signals were
eliminated. The characteristics of the remaining ones correspond to the crack growth phase,
with values over 3000 µs and 250 counts.

As the load filter was raised to 97% of the load, a limited number of hits remained,
presumably caused by the final stage cracking. These events are characterised by long
durations and a large number of counts, over 4000 µs and 300, respectively.
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Revising the results shown in Figures 7 and 8, and looking at Figure 9, the original
estimated threshold for crack initiation characterisation should be lowered from 3500 µs
to 3000 µs to ensure all potential relevant events are considered. In addition, the char-
acterisation of noise under 2000 µs must be taken into account while setting the limits
between the initiation phase and the noise, as indicated in Figure 9. In agreement with
the findings displayed on Figure 6, signals over 250 counts should be considered potential
events related to crack growth.

Figure 10 shows the analysis of the counts over duration for P3, still displaying crack
growth-related points. The major difference with P4 (Figure 10c) is that there are no hits
over the 4000 µs mark. Still, the crack growth area is limited to a low range by events over
250 counts and 3000 µs.

Building on these results, and as anticipated, the ratio for P2, corresponding to the
crack initiation phase, shows no data when the filters with amplitude over 80 dB are
applied (Figure 11b,c). This result agrees with the filtering criteria defined in previous
sections, defining the crack initiation threshold above 2000 µs and under 250 counts.

Finally, the results obtained for P1 (Figure 12) follow a similar trend but are inconclu-
sive given the large amount of noise present in the file.

In conclusion, it can be established that based on the data files and the filtering criteria,
events with a duration above 2000 µs would correspond to crack initiation, those above
3000 µs to growth, and those over 4000 µs to final crack growth. The number of counts
would be over 200 for crack initiation, 250 for the crack growth stage, and over 300 for the
ultimate cracking.

The threshold for crack growth definition set at 3000 µs overwrites the limit defined
in Figures 7 and 8 (3500 µs) as it is more conservative.

4.2.6. Average Frequency vs. Number of Hits

Figure 13 shows the average frequency (kHz) over time for each hit recorded using
three different predefined filters. The two regions of high amplitude and high energy
shown in Figure 13 (for P4) can also be observed to follow a higher-frequency spectrum,
as seen in Figure 4. The unfiltered noise signals are expected to have a lower average
frequency content, and a large number of those observed when applying the second filter
(b) still exhibit low average frequencies, just over the 70 kHz umbral (Figure 13a).

When the high load filter is applied (P0 > 3750 (97%) and A > 80 dB), only the final
crack growth-related hits remain (Figure 13c). These plots provide a trend, where the
average frequency of the dataset filtered at 97% of the load and over 80 dB displays average
frequencies between 75 kHz and 100 kHz, whereas the data with a 70 dB threshold filter, at
85% of the top load range, displays a much broader range of average frequencies between
40 kHz and over 110 kHz. This means that the frequency range can be narrowed for a
specific type of flaw, crack growth on this occasion.
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A broader look at the frequency content of the signals detected during the experiment,
presented in Figure 14, shows a continuous shift of the average frequency towards higher
values throughout the monitoring period.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 14. Hits (n) vs. average frequency (kHz). Shift of the average frequency in #4 (green trace). 

The shift in the signal frequency content may be indicative of a change in the damage 
mode or stage. For example, in composites, the signal frequency can directly correlate to 
the fracture mechanism [41]. Additionally, it has been found that tensile cracking is 
associated with a higher signal frequency range when compared to shear cracking in the 
same class of materials [42]. 

5. Discussion  
5.1. Improved Filtering and Integrity Warning Criteria 

There were many factors that contributed to the generation of data during the chain 
fatigue testing. It was demonstrated that each damage stage generated different signal 
properties, even while producing similar waveforms. The present research has analysed 
the signals’ typical characteristic parameters (per burst) for identified noise and crack 
growth stages. Based on this investigation, the compilation of the parametrical filtering 
criteria for the four major stages is summarised in Table 3.  

Table 3. Parametrical filtering criteria based on cracking stage. 

Parameter  Noise  Initiation  Growth Unstable Growth 
Amplitude (dB) A < 70  70 < A < 80 A > 80 A > 80 

Counts (#)  C < 200 200 < C < 250 250 < C < 300 C > 300 
Duration (µs) D < 2000 2000 < D < 3000 3000 < D < 4000 D > 4000 

Energy (eu) E < 3 × 105 
3 × 105 < E < 6 × 

105 
6 × 105 < E < 22 × 

105 6 × 105 < E < 22 × 105 

Average 
Frequency 

(kHz) 
1 < AF < 130 25 < AF < 120 70 < AF < 110 75 < AF < 100 

The average frequency calculation provides an estimation of the projected and 
ranged frequency present in crack-related events, but cannot be considered as a filtering 
criterion. 
• Noise is generally characterised by low amplitude, small number of counts, short 

duration, and low energy. The very early adaptation of the noise filter, if possible at 
the acquisition stage, will result in a reduced amount of irrelevant data collected and 

Figure 14. Hits (n) vs. average frequency (kHz). Shift of the average frequency in #4 (green trace).

The shift in the signal frequency content may be indicative of a change in the damage
mode or stage. For example, in composites, the signal frequency can directly correlate
to the fracture mechanism [41]. Additionally, it has been found that tensile cracking is
associated with a higher signal frequency range when compared to shear cracking in the
same class of materials [42].
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5. Discussion
5.1. Improved Filtering and Integrity Warning Criteria

There were many factors that contributed to the generation of data during the chain
fatigue testing. It was demonstrated that each damage stage generated different signal
properties, even while producing similar waveforms. The present research has analysed the
signals’ typical characteristic parameters (per burst) for identified noise and crack growth
stages. Based on this investigation, the compilation of the parametrical filtering criteria for
the four major stages is summarised in Table 3.

Table 3. Parametrical filtering criteria based on cracking stage.

Parameter Noise Initiation Growth Unstable Growth

Amplitude (dB) A < 70 70 < A < 80 A > 80 A > 80
Counts (#) C < 200 200 < C < 250 250 < C < 300 C > 300

Duration (µs) D < 2000 2000 < D < 3000 3000 < D < 4000 D > 4000
Energy (eu) E < 3 × 105 3 × 105 < E < 6 × 105 6 × 105 < E < 22 × 105 6 × 105 < E < 22 × 105

Average
Frequency (kHz) 1 < AF < 130 25 < AF < 120 70 < AF < 110 75 < AF < 100

The average frequency calculation provides an estimation of the projected and ranged
frequency present in crack-related events, but cannot be considered as a filtering criterion.

• Noise is generally characterised by low amplitude, small number of counts, short
duration, and low energy. The very early adaptation of the noise filter, if possible at
the acquisition stage, will result in a reduced amount of irrelevant data collected and
stored. This will be advantageous when trying to process the relevant information,
particularly if the intention is to provide real-time figures of the asset’s condition.
Therefore, it is recommended that a data recording filter is set at the acquisition stage
based on: A < 70 dB, C < 200, D < 2000 µs, and E < 3 × 105 eu. The limitation of
duration and number of counts will automatically limit the range of the average
frequency range. This simple step would drastically reduce the storage space and
processing speed and support more effective data management and display of results.

• At the crack initiation stage, the signals were generated by the local plastic deformation
and microcracks when the local surface stress was concentrated. Raising from the
characteristic noise phase, events with medium amplitude, moderate number of
counts, medium duration, and medium energy were observed for the corresponding
signal parameters. It must be noted that the established crack initiation will still
include information from signals from noise, friction, and other sources. This means
that all the events generated by crack initiation should fall within this range, but
not all the events recorded within the set limit will correspond to crack initiation.
In summary, the region where the hits, corresponding to crack initiation, will fall
within the limits is: 70 dB < A < 80 dB, 200 < C < 250, 2000 µs < D < 3000 µs, and
3 × 105 eu < E < 6 × 105 eu.

• During the crack propagation stage, the events, compared to the previous initiation
stage, amplitude, counts, duration, and energy characteristic values increased, and
the average frequency was limited to the 70 kHz < AF < 110 kHz range. The char-
acteristic number of counts and duration should be within the 250 < C < 300 and
3000 µs < D < 4000 µs ranges, respectively. Only hits with amplitudes of over 80 dB
can be considered to be related to crack growth. Additionally, as the chain entered the
unstable crack growth stage, the signal energy quickly rose, showing values of over
6 × 105 eu.

• Events with a large number of counts (C > 300) and long duration (D > 4000) can
be directly considered as an indication of a potential presence of an unstable crack
growth period when the load exceed 97% of the maximum load applied.
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5.2. Crack Growth Warning Criteria

Taking into account this behaviour, warning criteria can be defined for the real-
time SHM of a mooring chain under fatigue loading, based on the present experimental
conditions. This criteria and subsequent alarm setting will be based on the researched
characteristics for crack growth identification and will consist of the following factors
(Figure 15).
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Figure 15. Filtering criteria established per category.

Depending on the environmental conditions and noise, if medium risk is determined,
there will be an indication of crack initiation but it would be difficult to conclude the extent
of the damage.

If characterised as high risk, the burst will be recorded as a potential crack propagation
occurrence and the evolution will be closely followed and monitored. In addition, if either
counts > 300 or duration > 4000 µs, the hit would be characterised as critical, and indicate
prospective high risk due to the potential presence of unstable crack growth.

The outcome of the data clustering for the current experiment based on the defined
filtering criteria can be observed in Figure 16. These four clusters correspond to data
considered within the four categories: low, medium, high, and very high risk. This pre-
programmed clustering will allow real-time visualisation of the damage evolution and the
risk, which is ultimately the digested information that is required as part of SHM plans.

In addition to the alarm-setting tool, a procedure must be defined in order to establish
a plan of action based on the asset’s operational parameters, location, associated risk, asset
criticality, and other factors.
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6. Conclusions

The work presented in this paper included the use of theoretical, operational, and
signal-related data to provide a common method to analyse crack initiation and growth
based on the results of a large-scale chain fatigue test rig. Different signal parametric trends
and consequent plots with distinct variables were sampled and analysed to determine their
added value during the assessment of the data feeding into fatigue crack growth evaluation.

In summary, for the data analysis, amplitudes in the range of 80–85 dB can be taken as
indications of crack growth, while crack initiation would occur in the region of 70–80 dB.
Similarly, absolute energy exceeding 6 × 105 eu can be used to identify crack growth-related
events. Environmental noise would exhibit low amplitudes, not exceeding 70 dB, and
absolute energies would not exceed 3 × 105 eu. An increase in the average frequency was
also observed as the crack growth increased in size and propagation speed.

Filtering and clustering criteria have been defined to successfully characterise four
different clusters of events, three of which are directly related to the cracking phases: initia-
tion, growth, and final growth. Based on this, a colour-coded alarm for risk identification
can provide warnings based on low, medium, high, and very high risk stages. The analysis
and definition of limits of the parameters, and the correlation of their characteristics with
the crack, helped to identify filtering approaches to discriminate between noise, initiation,
and growth-related events. Based on these, the filtering criteria shown in Figure 17 were
established, to support the identification of different crack growth stages and noise.
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Environmental noise must be explored based on each scenario, in order to reinforce
the ability to extract information from signals so that the important features become easily
discernible. The application of any noise reduction method, usually a filter, has to be
preceded by a clear knowledge of which aspects of the signals need to be retained (e.g.,
linear, statistical, time-scale filters).

A disadvantage of AE is that systems can normally qualitatively estimate the extent
of damage or size of the defect. Monitoring methods are set in place to reinforce the
wider structural integrity strategies, and other NDT methods are still needed for a more
exhaustive examination and to provide quantitative results. Conventional ultrasonic
evaluation is often used to assess AE indications. Another disadvantage is that AE can be
sensitive to environmental noise, making it difficult to separate material emissions from
the noise made by the operational environment. This can be a limitation if adequate noise
identification and reduction strategies are not considered.

The optimum AE parameters must be estimated for different applications. The appro-
priate selection and installation of the AE sensors are crucial for a precise data collection
strategy. The data must be processed to determine crack initiation and growth and to
discriminate irrelevant information.

The ultimate aim of SHM and SI strategies is not only to detect faults but also to
provide diagnosis and prognosis to predict damage growth. This investigation has focused
on the detection and sizing of flaws. Further work must be carried out for modelling
prognostics of fatigue crack growth to reinforce predictive maintenance plans.
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