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Abstract: In evolutionary multiobjective optimization, effectiveness refers to how an evolutionary algo-
rithm performs in terms of converging its solutions into the Pareto front and also diversifying them over
the front. This is not an easy job, particularly for optimization problems with more than three objec-
tives, dubbed many-objective optimization problems. In such problems, classic Pareto-based algorithms
fail to provide sufficient selection pressure towards the Pareto front, whilst recently developed algorithms,
such as decomposition-based ones, may struggle to maintain a set of well-distributed solutions on certain
problems (e.g., those with irregular Pareto fronts). Another issue in some many-objective optimizers
is rapidly increasing computational requirement with the number of objectives, such as hypervolume-
based algorithms and shift-based density estimation (SDE) methods. In this paper, we aim to address
this problem and develop an effective and efficient evolutionary algorithm (E3A) that can handle various
many-objective problems. In E3A, inspired by SDE, a novel population maintenance method is proposed to
select high-quality solutions in the environmental selection procedure. We conduct extensive experiments
and show that E3A performs better than 11 state-of-the-art many-objective evolutionary algorithms in
quickly finding a set of well-converged and well-diversified solutions.
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1 Introduction

Many-objective optimization problems (MaOPs) refer to the optimization scenarios having four or
more objectives to be considered simultaneously [1]. MaOPs abound in real-world applications in
many fields, such as software engineering, manufacturing, and logistics. In the last decade, there
is an increasing interest in the use of evolutionary algorithms for MaOPs, resulting in a variety of
many-objective evolutionary algorithms (MaOEAs).

In the context of evolutionary multi-/many-objective optimization, effectiveness refers to how
a search algorithm performs in terms of converging its solutions into the Pareto front and also
diversifying them over the front. Efficiency refers to how quickly a search algorithm is executed.
Achieving both high effectiveness and efficiency is not easy, particularly on practical applications
where the problem’s Pareto front may be highly complex and unpredictable.

Convergence is especially challenging in many-objective optimization. Pareto-based algorithms in
evolutionary multiobjective optimization (EMO), e.g., the non-dominated sorting genetic algorithm II
(NSGA-II) [2] and the strength Pareto evolutionary algorithm 2 (SPEA2) [3], often fail to scale up well
in objective dimensionality. Moreover, recent studies [4] suggest that well-established decomposition-
based [5, 6], and indicator-based [7, 8] algorithms may also struggle to converge their solutions even
when the objective dimension is as low as four.
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Maintaining a well-distributed solution set is another important issue in many-objective optimiza-
tion. Improving convergence may come at a cost of compromising the diversity. For example, new
dominance relations (such as the ε-dominance [9] and the fuzzy Pareto dominance [10]), which are
designed for promoting the convergence, may lead the population into one (or several) sub-area(s)
of the Pareto front [11, 12]. Decomposition-based algorithms, which perform very well in terms of
convergence, typically face challenges of diversifying their solutions over the Pareto front for prob-
lems with irregular Pareto front shapes [13]. In addition, indicator-based algorithms tend to favor
a certain region of the Pareto front, such as the indicator-based evolutionary elgorithm (IBEA) [7]
for the boundary solutions of the Pareto front [14] and the S metric Selection based evolutionary
multiobjective optimization algorithm (SMS-EMOA) [8] for the knee point(s) [15]. In contrast, some
recent many-objective algorithms may miss a certain region of the Pareto front. For example, the
SPEA2 based on shift-based density estimation (SPEA2+SDE) [16] has difficulty in maintaining
boundary solutions in some problems [17].

On the other hand, the efficiency of some EMO algorithms decreases dramatically with the in-
crease of the number of objectives. For example, the time requirements of algorithms based on the
hypervolume indicator [18], such as SMS-EMOA [8], increases exponentially with the increase of the
objective dimensionality. For another example, SPEA2+SDE, which has been found to perform well
on many-objective optimization problems [4,19], also suffers from poor efficiency as the computational
complexity is O(mn3), where n denotes the size of the population.

Lastly, many multi-/many-objective evolutionary algorithms need some extra parameters which
should be set properly and individually for different problems. For example, for algorithms based
on the modified Pareto dominance relation (e.g., the ε-domination based multiobjective evolutionary
algorithm, or simply ε-MOEA [20]), it is crucial to specify the relax degree of the Pareto dominance
(i.e., the area that a solution dominates) for a problem with a large number of objectives [21, 22].
For another example, in some region-based MaOEAs, it is important to find right parameters to
determine the size of the region, such as the grid division parameter in the grid-based evolutionary
algorithm (GrEA) [23] and the neighborhood size in the knee point driven evolutionary algorithm
(KnEA) [24]. However, the sweet-spot of such parameters may significantly shrink with the number
of objectives [25]. It is difficult or even impossible to find their best settings in the high-dimensional
objective space [22].

Given the above, this paper aims to develop a many-objective evolutionary algorithm (called E3A)
that is able to achieve both high effectiveness and efficiency. The main contributions of this paper
can be summarized as follows:

1) The proposed algorithm is of the following desirable features: a) effectiveness in the sense
of converging its solutions into the Pareto front and also diversifying them on the front; b)
efficiency in the sense of a reasonable amount of execution time; c) suitability for MaOPs with
various Pareto front shapes; and d) no additional parameter except those associated with an
evolutionary algorithm (e.g., population size and crossover rate.

2) In E3A, a novel population maintenance method is proposed to preserve promising solutions
during the evolutionary process. The proposed population maintenance method consists of
two key operations – selecting boundary solutions and selecting non-boundary solutions. The
former is to determine the range of the estimated Pareto front, from which the latter aims to
maintain a set of well-distributed and well-converged solutions in the high-dimensional space.

3) Extensive experiments are conducted to evaluate E3A. We consider 60 well-established prob-
lem instances with up to 15 objectives and 11 state-of-the-art MaOEAs. The experimental
results demonstrate that E3A generally outperforms its peers in achieving high effectiveness
and efficiency.
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The remainder of this paper is organized as follows. Section 2 gives basic definitions in MaOPs and
reviews the related work on MaOEAs. Section 3 describes the framework and details the proposed
E3A algorithm. The experimental results are presented in Section 4. Finally, the conclusion and
future work are given in Section 5.

2 Background

2.1 Concepts and Terminology

Mathematically, a minimization MaOP with m objectives and d decision variables can be defined as
follows:

minimize F (x) = (f1(x), f2(x), . . . , fm(x))

subject to x = (x1, x2, . . . , xd), x ∈ Ω
(1)

where x represents a solution (d-dimensional decision variable vector) in the decision space Ω, F :
Ω→ Θ defines an objective vector consisting of m ≥ 4 objective functions, which maps the decision
space Ω to the objective space Θ.

In many-objective optimization, since these objectives often conflict with each other, there is no
single optimal solution for an MaOP, but rather a set of Pareto-optimal solutions, which is defined
on the basis of the Pareto dominance relation.

Definition 1 (Pareto Dominance). For a given MaOP, a decision vector x = (x1, x2, . . . , xd) is
said to (Pareto) dominate another decision vector y = (y1, y2, . . . , yd) (denoted as x ≺ y), or
equivalently y is dominated by x, if and only if

∀ i ∈ (1, 2, . . . ,m) : fi(x) ≤ fi(y)

∧∃ i ∈ (1, 2, . . . ,m) : fi(x) < fi(y).
(2)

Definition 2 (Pareto Optimality). For a solution to a given MaOP in (1), x∗ ∈ Ω, if there is no
solution z ∈ Ω that dominates solution x∗, then x∗ is said to be Pareto optimal. All such solutions
are called Pareto-optimal (or non-dominated) solutions.

Definition 3 (Pareto Set). The Pareto set of a given MaOP is defined as all Pareto-optimal (or
non-dominated) solutions in the decision space.

Definition 4 (Pareto Front). The Pareto front of a given MaOP is defined as corresponding objective
vectors to the Pareto set.

2.2 Related Work

Over the last decade, there is a growing interest in developing many-objective evolutionary algorithms
(MaOEAs) for various MaOPs. Roughly, these MaOEAs can be classified into five categories.

The first category is concerned with modifying the conventional Pareto dominance relation for
many-objective optimization. Along this line, some algorithms relax the dominance condition, such
as the ε-dominance [9] and the strengthened dominance relation [26]. Some other algorithms develop
new dominance relations, such as the fuzzy Pareto dominance [10], the grid-based dominance [23], and
the angle dominance [27]. Overall, compared with the Pareto dominance relation, these dominance
relations allow a solution to be easily dominated by other solutions in the high-dimensional space,
thus enhancing the selection pressure towards the Pareto front.

The second category is concerned with modifying density estimation of the conventional Pareto-
based algorithms since maintaining diverse nondominated solutions may harm the convergence of the
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population evolving towards the Pareto front in the high-dimensional space [25]. Some algorithms
in this category weaken the diversity maintenance mechanism, such as [28, 29], whereas some other
algorithms incorporate convergence information into density estimation, such as SPEA2+SDE [16],
which proposes a shift-based density estimation (SDE) strategy to enable poorly converged solutions
to be penalized by high density values.

The third category refers to decomposition-based algorithms. Such algorithms decompose an
MaOP into a set of subproblems (single-objective optimization subproblems [5] or simple multiobjec-
tive subproblems [30]), and optimize these subproblems simultaneously. Specifically, the comparison
between solutions is based on their scalar values on a weight vector, thus being unaffected by the
increase of the objective dimensionality. Since the emergence of the multiobjective evolutionary al-
gorithm based on decomposition (MOEA/D) [5], decomposition-based algorithms have enjoyed pop-
ularity in the area. Some representative algorithms include the reference-point-based many-objective
evolutionary algorithm following NSGA-II framework (NSGA-III) [6], the reference vector-guided
evolutionary algorithm (RVEA) [31], the evolutionary many-objective optimization algorithm based
on dominance and decomposition (MOEA/DD) [32], and the decomposition-based multiobjective
evolutionary algorithm with weights updated adaptively (DMEA-WUA) [33].

The fourth category of MaOEAs consists of algorithms based on indicators. Such algorithms adopt
performance indicators as selection criteria to guide the search of a population towards the Pareto
front. Some algorithms in this category tend to employ one specific indicator, such as IBEA using
the Iε+ indicator [7], the hypervolume estimation algorithm for multiobjective optimization (HypE)
using the hypervolume (HV) indicator [34], and the inverted generational distance (IGD) based
many-objective evolutionary algorithm (MaOEA/IGD) using the IGD indicator [35]. In contrast,
some others adopt multiple indicators, with the aim of obtaining a balance between the indicators,
such as the stochastic ranking-based multi-indicator algorithm (SRA) using two indicators Iε+ and
ISDE [17].

The last category is the aggregation-based approaches. They aggregate the objectives of solutions
into one or multiple criteria to make solutions comparable. Some algorithms in this category de-
velop novel selection methods through estimating solutions’ performance regarding convergence and
diversity, such as the many-objective evolutionary algorithm using a one-by-one selection strategy
(1by1EA) [36] and the many-objective evolutionary algorithms based on coordinated selection strat-
egy (MaOEA-CSS) [37]. Some other algorithms integrate (assumed) preference information into the
fitness assignment, such as KnEA for the knee points [24] and the preference-inspired coevolutionary
algorithm (PICEA-g) for the goals (i.e., target vectors) [38].

Despite the advances above, there are few algorithms that are able to work well on a variety of
MaOPs effectively and efficiently. For example, it is difficult for the aggregation-based algorithms
to strike a balance between convergence and diversity. This also applies to the algorithms modify-
ing Pareto dominance or diversity maintenance. The decomposition-based algorithms often fail to
maintain diversity on problems with irregular Pareto front shapes. The computational complexity
of hypervolume-based algorithms can dramatically increase with the increase of the number of ob-
jectives. In addition, many algorithms need some extra parameters, particularly for the algorithms
modifying the Pareto dominance relation; unfortunately, the sweet-spot of such parameters is difficult
to find in many-objective optimization. Given the above, we propose a many-objective evolutionary
algorithm (called E3A), with the aim of achieving both high effectiveness and efficiency, and without
any extra parameter.
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3 The Proposed Algorithm

3.1 Framework of E3A

The framework of the proposed E3A is described in Algorithm 1. The basic procedure follows many
MaOEAs. First, a population P containing n solutions is randomly generated. Next, each solution in
P is assigned a fitness value according to its nondominated rank. Then, the mating selection is applied
to select promising solutions based on their nondominated ranks, followed by the variation operation
to generate an offspring population. Finally, the environmental selection procedure is performed to
preserve the n best solutions for the next-generation evolution. Like most of the existing MaOEAs
(e.g., NSGA-III [6]), the proposed algorithm focuses on the design of environmental selection, an
operation which plays a key role in algorithm performance in many-objective optimization.

Algorithm 1 Framework of E3A

Require: P (population), n (population size)
1: P ← Initialize population(n)
2: Front← Pareto nondominated sort(P );
3: while the termination criterion is not met do
4: P ′ ←Mating selection(P , F ront)
5: P ′′ ← V ariation(P ′)
6: P ← Environmental selection(P ∪ P ′′)
7: end while

8: return P

3.2 Environmental Selection

3.2.1 Main Procedure

Environmental selection is an evolutionary operation to determine the survival of solutions (i.e., next-
generation population) from the current population and their offspring. Algorithm 2 shows the main
procedure of our method. First, the combined set of the current population and their offspring are
sorted into different fronts (F1,F2, . . . ) using the nondominated sorting method [2] (line 4). Then,
fronts are selected one by one to construct a new population P , starting from F1, until the critical
front Fi is found, where |F1 ∪F2 ∪ · · · ∪Fi−1| < n and |F1 ∪F2 ∪ · · · ∪Fi−1 ∪Fi| ≥ n (n denotes the
population size) (lines 5–8). In fact, for MaOPs, the solutions are typically Pareto nondominated to
each other and consequently the critical front is usually the first front, namely i is equal to 1. When
the size of the population exceeds a predefined capacity, a population maintenance operation (i.e.,
the function Population maintenance in line 15) will be implemented to select promising solutions
from the critical front. For simplicity, we use “candidate set” to represent all the solutions in the
critical front. The population maintenance method can break down into two operations: selecting
boundary solutions and selecting non-boundary solutions as shown in Algorithm 3. In the next two
sections, we will introduce them respectively.

3.2.2 Selecting Boundary Solutions

Given a candidate set P , we first select m (m denotes the number of objectives) boundary solutions
from P and place them into a set Q (which stores the solutions for the next-generation evolution).
Specifically, boundary solution bj corresponds to the one in P that minimizes a modified version of
the Tchebycheff function agg(x,wj) [6]:

bj = arg min
x∈P

agg(x,wj) (3)
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Algorithm 2 Environmental selection(P )

Require: P (combination of the current population and the newly produced solutions)
1: Q← ∅
2: S ← ∅
3: i← 1
4: (F1,F2, . . . )← Pareto nondominated sort(P )
5: while |S|+ |Fi| < n do
6: S ← S ∪ Fi

7: i← i+ 1
8: end while
9: Fl = Fi /* Find the critical front */

10: if |S| = n then
11: Q← S
12: else
13: Q← ∪l−1j=1Fj

14: Q ← Population maintenance(Fl, n − |Q|) /* Select n − |Q| promising solutions from Fl for the
next-generation evolution */

15: end if

16: return Q

Algorithm 3 Population maintenance(P , k)

Require: P (candidate set), k (number of solutions to be selected from the candidate set)
1: Q← Boundary solution selection(P )

/* Select boundary solutions from P */
2: Q← Nonboundary solution selection(P ,Q, k)

/*Select high-quality non-boundary solutions from P */

3: return Q

agg(x,wj) =
m

max
i=1

{
1

wj,i
|f̂i(x)− zmini |

}
(4)

where f̂i(x) is the ith normalized objective value of individual x, zmini is the minimum value of the
ith objective for all solutions in the candidate set, and wj = (wj,1, wj,2, . . . , wj,m)T is a weight vector
very close to the jth objective axis direction:

wj,i =

{
1, i = j
10−6, i 6= j

(5)

In the case that multiple weight vectors share the same boundary solutions, we delete duplicate
boundary solutions.

Selecting boundary solutions determines the range of the solution set approximating the Pareto
front for the preprocessing of selecting non-boundary solutions as described in the next section.
Algorithm 4 gives the procedure of selecting boundary solutions.

In Algorithm 4, the function Normalization in line 7 is utilized to normalize objectives of solutions
in the candidate set. In particular, we adopt the normalization method proposed in NSGA-III [6].

3.2.3 Selecting Non-Boundary Solutions

To maintain a representative solution set that approximate the Pareto front, we need to further
distinguish between the remaining solutions (i.e., non-boundary solutions). Inspired by SDE [16], we
consider shifted positions of solutions to reflect their convergence and diversity. The main difference
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Algorithm 4 Boundary solution selection(P )

Require: P (candidate set), m (number of objectives)
1: Q← ∅
2: for j ← 1 to m do
3: bj ← arg minx∈P agg(x,wj)
4: end for
5: Q← {b1, b2, . . . , bm}
6: Q← Unique(Q); /* Delete duplicate boundary solutions */
7: Normalization(P ,Q) /* Normalize the objectives */

8: return Q

of SDE and our algorithms will be described in the end of this section. The process of selecting
non-boundary solutions is described below.

After the boundary solutions are selected, now we want to select solutions far away from them (thus
good diversity), but at the same time take into account how these solutions perform in terms of their
closeness to the Pareto front, relative to other solutions. That is, we want to select solutions which
have a good balance between diversity and convergence, in which the diversity is measured based
on the solutions we have already selected whereas the convergence is concerned with the comparison
between the unselected solutions. To do so, we propose a step-by-step selection approach.

First, we define a metric (sd) to reflect the quality of the unselected solutions in terms of both
convergence and diversity, relative to the selected solutions:

sd(x,Q) = min
y∈Q

dist(x,y′) (6)

where Q denotes the set of solutions which are already selected for the next-generation evolution,
dist(x,y′) represents the normalized Euclidean distance between solution x and y′, x = (f̂1(x),
f̂2(x), . . . , f̂m(x)) is an unselected solution in the candidate set, and y′ = (f̂1(y

′), f̂2(y
′), . . . ,

f̂m(y′)) is the shifted version of selected solution y = (f̂1(y), f̂2(y), . . . , f̂m(y)), which is defined as
follows [16]:

f̂i(y
′) =

{
f̂i(x), if f̂i(y) < f̂i(x)

f̂i(y), otherwise
(7)

where f̂i(x), f̂i(y), and f̂i(y
′) stand for the ith normalized objective value of individuals x, y, and y′,

respectively. Based on y′, we calculate the normalized Euclidean distance between x and y′, namely
dist, as follows:

dist(x,y′) =

√√√√ m∑
i=1

(f̂i(x)− f̂i(y′))2 (8)

where m denotes the number of objectives.
Note that the sd value is calculated based on Euclidean distance instead of an angle-based metric.

The main difference is that an angle-based metric is often used to maintain the distribution of the
solution set (such as the maximum-vector-angle-first principle in the vector angle-based evolutionary
algorithm (VaEA) [39]), while sd value based on Euclidean distance could measure both diversity
and convergence of a solution relative to those already selected solutions.

Second, we select high-quality non-boundary solutions based on the sd metric. Specifically, first,
we select the solution with the maximum sd value among the unselected solutions and place it into
Q. Then, we update the sd value of each remaining solution in the candidate set, and, again, the
current best solution that has the highest sd value is found and added into Q. The above steps are
repeated until the size of Q reaches a predefined population size. Algorithm 5 gives the procedure
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of selecting non-boundary solutions.

Algorithm 5 Nonboundary solution selection(P ,Q, k)

Require: P (candidate set), Q (selected solutions), k (number of solutions to be selected from the candidate
set)

1: P ← P \Q
2: for x ∈ P do
3: sd(x,Q) ← min

y∈Q
dist(x,y) /* Initialize the sd values of all unselected solutions in the candidate set

according to (8) */
4: end for
5: while |Q| < k do
6: s← arg max

x∈P
sd(x,Q) /* Select non-boundary solutions from the remaining solutions in the candidate

set according to (6) */
7: Q← Q ∪ {s}
8: P ← P \{s}
9: for x ∈ P do

10: sd(x,Q)← min{dist(x, s′), sd(x,Q)} /* According to (6) and (8) */
11: end for
12: end while
13: return Q

3.2.4 An Example of the Population Maintenance Operation

Consider a bi-objective minimization problem where a set of seven candidate solutions A–G to be
selected. Figure 1 shows the procedure of population maintenance in E3A. The actual objective values
(f1, f2) and sd values of the non-boundary solutions in the candidate set are given in Figure 2.

0

A

C

21.
5°

D

B

0

E

F G

f1f1

f2f2

0

A

C(7)

21.
5°

D(8.5)

B(4.5)

0

E(8)

F(7) G

f1f1

f2f2

0

A

C(0.5)

21.
5°

D

B(3)

0

E(1)

F(4) G

f1f1

f2f2

0

A

C(0.5)

21.
5°

D

B(3)

0

E(1)

F G

f1f1

f2f2

(a) (b) (c) (d)

Figure 1: A bi-objective example of the population maintenance procedure, where the population
size is set to five and the candidate set consists of seven solutions A–G. The number
in parentheses associated with a non-boundary solution represents the sd value of that
solution. (a) Selecting A and G (since they are two boundary solutions). (b) Selecting
D (since it has the maximum sd value of 8.5 among non-boundary solutions B–F). (c)
Selecting F (since it has the maximum sd value of 4 among non-boundary solutions B,
C, E, F). (d) Selecting B (since it has the maximum sd value of 3 among non-boundary
solutions B, C, E).

First, A and G are selected (i.e., Q = {A, G}) since both A and G are boundary solutions
identified by (3) and (4), as shown in Figure 1 (a). For the non-boundary solutions B–F, we calculate
their sd values, as shown in Figure 2 (a).

Second, the non-boundary solution D is selected (i.e., Q = {A, G, D}) since it has the maximum
sd value among non-boundary solutions B–F (Figure 1 (b)). Accordingly, the sd values of the
unselected solutions B, C, E, F are updated (Figure 2 (b)) according to lines 9–11 in Algorithm 5.
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1 INTRODUCTION

Table 1. An illustration of how the 𝑠𝑑 value of each solution changes during selecting non-boundary solutions.
The framed solutions mean that they have been selected. The population size is set to five.

(a) (b) (c) (d)

(𝑓1 , 𝑓2) 𝑠𝑑

A (1.5, 15) -
G (15.5, 1) -
B (2.5, 10.5) (4.5)
C (5, 8) (7)
D (5.5, 6.5) (8.5)
E (7.5, 5.5) (8)
F (8.5, 2.5) (7)

(𝑓1 , 𝑓2) 𝑠𝑑

A (1.5, 15) -
G (15.5, 1) -
D (5.5, 6.5) -
B (2.5, 10.5) (3)
C (5, 8) (0.5)
E (7.5, 5.5) (1)
F (8.5, 2.5) (4)

(𝑓1 , 𝑓2) 𝑠𝑑

A (1.5, 15) -
G (15.5, 1) -
D (5.5, 6.5) -
F (8.5, 2.5) -
B (2.5, 10.5) (3)
C (5, 8) (0.5)
E (7.5, 5.5) (1)

(𝑓1 , 𝑓2) 𝑠𝑑

A (1.5, 15) -
G (15.5, 1) -
D (5.5, 6.5) -
F (8.5, 2.5) -
B (2.5, 10.5) -
C (5, 8) (0.5)
E (7.5, 5.5) (1)

Table 2. An illustration of how the 𝑠𝑑 value of each solution changes during selecting non-boundary solutions.
The framed solutions mean that they have been selected. The population size is set to five.

(b) (a) (c) (d)

(𝑓1 , 𝑓2) 𝑠𝑑

A (1.5, 15) -
G (15.5, 1) -
D (5.5, 6.5) -
B (2.5, 10.5) (3)
C (5, 8) (0.5)
E (7.5, 5.5) (1)
F (8.5, 2.5) (4)

(𝑓1 , 𝑓2) 𝑠𝑑

A (1.5, 15) -
G (15.5, 1) -
B (2.5, 10.5) (4.5)
C (5, 8) (7)
D (5.5, 6.5) (8.5)
E (7.5, 5.5) (8)
F (8.5, 2.5) (7)

(𝑓1 , 𝑓2) 𝑠𝑑

A (1.5, 15) -
G (15.5, 1) -
D (5.5, 6.5) -
F (8.5, 2.5) -
B (2.5, 10.5) (3)
C (5, 8) (0.5)
E (7.5, 5.5) (1)

(𝑓1 , 𝑓2) 𝑠𝑑

A (1.5, 15) -
G (15.5, 1) -
D (5.5, 6.5) -
F (8.5, 2.5) -
B (2.5, 10.5) -
C (5, 8) (0.5)
E (7.5, 5.5) (1)
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Figure 2: An illustration of how the sd value of each solution changes during selecting non-boundary
solutions. The framed solutions mean that they have been selected. The population size is
set to five.

Third, the non-boundary solution F is chosen (i.e., Q = {A, G, D, F}) since it has the maximum
sd value among the non-boundary solutions B, C, E, F (Figure 1 (c)). The sd values of the
unselected solutions B, C, E remain unchanged (Figure 2 (c)) since the Euclidean distance between
these solutions and the shifted version of F, namely dist values, are no less than their original sd
values.

Finally, the non-boundary solution B is selected since it has the maximum sd value among the non-
boundary solutions B, C, E (Figure 1 (d)). The sd values of C and E remain unchanged (Figure 2
(d)) since the Euclidean distance between these solutions and the shifted version of B, namely dist
values, are no less than their original sd values. The final selected solutions are A, G, D, F, B.

Overall, two key operations of the population maintenance in E3A, i.e., selecting boundary solutions
and selecting non-boundary solutions, work collaboratively. The former is to preserve solutions which
perform best on at least one objective. On the basis of these selected boundary solutions, the latter
is to preserve well-balanced solutions step by step. As can be seen in Figure 1, the best balanced
solution, relative to the current selected solutions, is selected in turn; i.e., select D (relative to A
and G), select F (relative to A, G, and D), and select B (relative to A, G, D and F).

3.3 Time Complexity

Considering a situation having m objectives and the evolutionary population consisting of n individ-
uals. Here, we assume n >> m and consider the worst case where all solutions are nondominated
with each other in the population. In one generation of E3A, nondominated sorting (line 4 in Algo-
rithm 2) of the population requires O(mn2) comparisons. In the environmental selection, selecting
boundary solutions (lines 2–4 in Algorithm 4) requires O(m2n) comparisons. The normalization of
the candidate solutions (line 7 in Algorithm 4) requires O(n) comparisons. Initializing the sd val-
ues of all the unselected solutions in the candidate set (lines 2–4 in Algorithm 5) requires O(m2n)
computations. Selecting high-quality non-boundary solutions from the unselected solutions (line 6 in
Algorithm 5) requires O(n) computations. Updating the sd values for the unselected solutions (lines
7–11 in Algorithm 5) requires O(mn) computations. In summary, by taking into account all the
above operations, the overall time complexity of one generation of E3A in the worst case is O(mn2).

3.4 Comparison with SPEA2+SDE

Since both our algorithm and SPEA2+SDE [16] use the shift-based comparison between solutions in
the selection procedure, we would like to point out their differences. In SPEA2+SDE, the solutions
are shifted for the density estimation, thus the performance depends heavily on the accuracy of the
density estimation operator of the original SPEA2. In contrast, E3A is a standalone algorithm which
focuses on how to select a set of well-converged and diverse solutions. Furthermore, E3A preserves
the boundary solutions explicitly, but SPEA2+SDE does not and may lose the boundary solutions
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of the Pareto front in some problems, as shown in [17]. In addition, the time complexity of E3A is
O(mn2), lower than O(mn3) of SPEA2+SDE.

The above differences result in E3A outperforming SPEA2+SDE in terms of both performance
and computational time, as we will see in the next section.

4 Experimental Results

4.1 Experimental Design

To assess the performance of E3A, we consider the following test suite, performance metric, state-
of-the-art peer algorithms, and parameter settings, which are summarized in Table 1.

Table 1: Experimental setup

Factor Details

Test problems MaF1–15 [40]

Performance metrics IGD [41], HV [18]

Number of objectives (m) {3, 5, 10, 15}
Population size (n) for m = {3, 5, 10, 15} {105, 126, 230, 240}
SBX [42] probability (pc) 1.0

PM [43] probability (pm) 1/d

Distribution index for SBX (ηc) 20

Distribution index for PM (ηm ) 20

Number of runs 30

Maximum of generations (MaxGen) 300

Parameter values of RVEA α = 2, fr = 0.1

Parameter values of MOEA/DD T = 0.1n, δ = 0.9, θ = 5

Parameter values of 1by1EA k = 0.1n, R = 1

Parameter values of MaOEA-CSS t = 0

Parameter values of SRA pc = 0.6

4.1.1 Test Problems

The MaF test suite [40] is a continuous benchmark test suite proposed for the CEC’2017 competition
on evolutionary many-objective optimization. In MaF, 15 test functions with diverse properties,
which are selected or modified from existing test problems, aim to provide a good representation of
various real-world scenarios. The characteristics of all the MaF problems are summarized in Table
2. The number of objectives is set to m = 3, 5, 10, 15. Their parameters are set according to [40].

4.1.2 Performance Metrics

Two commonly used performance metrics, IGD [41] and HV [18] are adopted to assess algorithm
performance. The IGD and HV metrics can reflect the quality of a solution set in terms of convergence
(i.e., the closeness to the true Pareto front) and diversity (i.e., the distribution over the whole Pareto
front). Following the suggestions in [44], we test the Pareto dominance relation among the solution
sets obtained by different algorithms. The results indicate that the compared solution sets in the
experiments are nondominated to each other, and therefore, IGD is well-suited for the experiments.
Let P ∗ denotes a set of uniformly distributed reference points on the Pareto front and P represents
a solution set, the IGD is the average distance from points in the set P ∗ to their nearest solution in
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Table 2: Characteristics of test problems in MaF.

Problem Characteristics

MaF1 Linear, no single optimal solution in any subset of objectives

MaF2 Concave, no single optimal solution in any subset of objectives

MaF3 Convex, multimodal

MaF4
Concave, multimodal, badly scaled and no single optimal

solution in any subset of objectives

MaF5 Convex, biased, badly scaled

MaF6 Concave, degenerate

MaF7 Mixed, disconnected, multimodal

MaF8 Linear, degenerate

MaF9
Linear, degenerate, Pareto optimal solutions are similar to

their image in the objective space

MaF10 Mixed, biased

MaF11 Convex, disconnected, nonseparable

MaF12 Concave, nonseparable, biased deceptive

MaF13 Concave, unimodal, nonseparable, degenerate, complex Pareto set

MaF14
Linear, partially separable, large scale, non-uniform correlations

between decision variables and objective functions

MaF15
Convex, partially separable, large scale, non-uniform correlations

between decision variables and objective functions

the set P , which is given by

IGD =
1

|P ∗|
∑
z∈P ∗

d(z,P ) (9)

where d(z,P ) stands for the minimum Euclidean distance between a reference point z and its nearest
solution in P , and |P ∗| represents the size of P ∗. A smaller value of IGD is preferable, which indicates
better quality of the set P for approximating the Pareto front.

The HV metric calculates the volume of the objective space between a solution set and a reference
point, and a larger value indicates better overall quality of the solution set. The HV can be formulated
as follows [18]:

HV = Λ(
⋃

F (x)∈P

{[f1(x), r1]× [f2(x), r2]× · · · × [fn(x), rm]}) (10)

where Λ(·) represents the Lebesgue measure, P stands for a solution set, F (x) = (f1(x), f2(x),
. . . , fm(x)) denotes an objective vector in P , r = (r1, r2, . . . , rm)T represents a reference point in
the objective space, and m stands for the number of objectives. In the calculation of HV, we set
the reference point r to 1.1 times of the nadir point. In addition, to enhance the robustness of the
algorithm when the ranges of the objective values are different, in our experiments, each objective
value of a solution is normalized according to the range of the problem’s Pareto front. Moreover, to
reduce the computational cost of HV with respect to both the exact computation, we utilized Monte
Carlo sampling with 106 sampling points to approximate the HV value [34].

4.1.3 Peer Algorithms

Eleven state-of-the-art MaOEAs are chosen to evaluate the proposed algorithm. They are NSGA-
III [6], RVEA [31], MOEA/DD [32], the reference point-based dominance based NSGA-II (RPD-
NSGA-II) [45], 1by1EA [36], MaOEA-CSS [37], VaEA [39], NSGA-II based on the strengthened
dominance relation (NSGA-II/SDR) [26], SPEA2+SDE [16], SRA [17], and the IGD-NS indicator
based multiobjective evolutionary algorithm (AR-MOEA) [46]. These algorithms span over the main
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categories (cf. Section 2.2). Specifically, NSGA-III, RVEA, MOEA/DD, RPD-NSGA-II, and VaEA
are decomposition-based algorithms. 1by1EA and MaOEA-CSS are aggregation-based algorithms.
NSGA-II/SDR modifies the conventional Pareto dominance relation. SPEA2+SDE changes the
density estimation of the conventional Pareto-based algorithms. Finally, SRA and AR-MOEA are
two indicator-based algorithms.

All algorithms are implemented in a recently developed Matlab platform PlatEMO1 [47]. PlatEMO
includes more than 50 EMO algorithms and more than 100 test problems (e.g., MaF test problems), as
well as some widely used performance metrics (e.g., IGD metric). All the experiments are conducted
on an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz with 16 GB RAM, running on Windows 10. To
make the comparison statistically significance, the statistical tests (i.e., Friedman test and posthoc
Nemenyi test) is used throughout the experiments.

4.1.4 Parameter Settings

For a fair comparison, we adopt the following settings for all tested algorithms.

• Each algorithm is executed 30 runs independently on each test problem to decrease the impact
of their stochastic nature.

• The termination criterion is specified as the maximum number of generations being set to 300.

• The simulated binary crossover [42] and polynomial mutation [43] operators are employed to
perform variation, with both distribution indexes being set to 20. The crossover and mutation
probabilities are set to 1.0 and 1/d (d denotes the number of decision variables), respectively.

• The population size is consistent with the number of weight vectors in decomposition-based
algorithms, NSGA-III, RVEA, MOEA/DD, and RPD-NSGA-II, being set to 105, 126, 230,
and 240 for test problems with three, five, ten, and fifteen objectives, respectively. In this
study, two approaches for weight vector generation are utilized, i.e., the Das and Dennis’s [48]
systematic approach for test problems with m ≤ 5 and the two-layer weight vectors generation
approach [6] for test problems with m > 5, where m represents the number of objectives.

Specific parameters are required in certain peer algorithms. Here we set them according to their
original papers. In RVEA, the parameter α to control the rate of change of the penalty function is
set to 2, and the frequency fr to employ reference vector adaptation is set to 0.1. In MOEA/DD,
the neighbourhood size T is set to 10 percent of the population size, the neighbourhood selection
probability δ is set to 0.9, and the penalty parameter θ of the PBI function is set to 5. In 1by1EA,
the parameter k to balance the computational cost and the accuracy in density estimation is set to
10 percent of the population size, and the parameter R of controlling distribution threshold is set
to 1. In MaOEA-CSS, the threshold value t of determining the difference of two closest solutions’
Euclidean distance in the environmental selection is set to 0. For SRA, the parameter pc for the
purpose of balancing the different indicators in the stochastic ranking strategy is set to 0.6.

4.2 Performance Comparison

4.2.1 Algorithm Performance on Tri-Objective Problems

Tables 3 and 4 show the mean and standard deviation (in parentheses) of the IGD and HV results
obtained by E3A and the peer algorithms on the tri-objective MaF, respectively. From Table 3, it
can be seen that E3A obtains the best IGD results on seven test problems (i.e., MaF1–4 and MaF8–
10). Concerning pairwise comparison, the proportions of the test problems where E3A significantly

1PlatEMO can be downloaded from: https://github.com/BIMK/PlatEMO.
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Table 3: Mean and standard deviation of the IGD values obtained by the 12 algorithms on the tri-
objective MaF problems.

Problem Obj. NSGA-III RVEA MOEA/DD RPD-NSGA-II 1by1EA MaOEA-CSS VaEA NSGA-II/SDR SPEA2+SDE SRA AR-MOEA E3A

MaF1 3
5.587e-2 + 7.499e-2 + 6.176e-2 + 6.348e-2 + 4.123e-2 ≈ 4.135e-2 ≈ 4.114e-2 ≈ 3.227e-1 + 4.099e-2 ≈ 4.519e-2 + 4.166e-2 + 4.008e-2

(1.33e-3) (3.01e-3) (1.83e-3) (1.48e-3) (2.35e-3) (1.16e-3) (5.47e-4) (3.07e-1) (5.80e-4) (1.25e-3) (5.85e-4) (2.12e-4)

MaF2 3
3.352e-2 + 3.839e-2 + 4.839e-2 + 3.486e-2 + 2.934e-2 ≈ 2.866e-2 ≈ 2.875e-2 ≈ 3.114e-2 + 3.023e-2 + 3.501e-2 + 2.991e-2 + 2.816e-2

(9.09e-4) (1.10e-3) (2.36e-3) (2.87e-4) (1.06e-3) (2.69e-3) (3.06e-4) (6.88e-4) (5.61e-4) (1.78e-3) (8.44e-4) (2.70e-4)

MaF3 3
1.246e+0 + 2.054e+2 + 2.213e+1 + 1.176e+0 + 5.771e-1 + 1.590e+0 + 1.212e+0 + 1.203e+0 + 5.015e-1 ≈ 1.824e+0 + 4.277e-1 ≈ 1.536e-1

(1.76e+0) (6.29e+2) (2.15e+1) (1.89e+0) (1.23e+0) (1.85e+0) (1.88e+0) (2.46e+0) (8.76e-1) (2.25e+0) (1.30e+0) (4.06e-1)

MaF4 3
1.070e+0 + 1.875e+0 + 1.331e+0 + 5.520e-1 + 1.732e+0 + 1.056e+0 + 1.073e+0 + 9.432e-1 + 6.157e-1 + 2.226e+0 + 7.428e-1 ≈ 4.396e-1

(1.19e+0) (1.87e+0) (1.04e+0) (4.43e-1) (5.48e-1) (1.05e+0) (1.93e+0) (9.62e-1) (5.87e-1) (2.43e+0) (1.05e+0) (5.11e-1)

MaF5 3
4.432e-1 − 2.822e-1 − 3.189e-1 ≈ 2.465e-1 − 6.565e-1 ≈ 3.221e-1 − 2.875e-1 − 2.147e+0 + 1.069e+0 ≈ 6.082e-1 ≈ 1.247e+0 ≈ 6.326e-1

(5.36e-1) (2.30e-1) (2.29e-1) (3.81e-3) (5.01e-1) (2.31e-2) (2.28e-1) (2.92e-1) (1.04e+0) (6.10e-1) (1.59e+0) (6.25e-1)

MaF6 3
1.367e-2 ≈ 6.180e-2 + 2.881e-2 + 5.113e-2 + 4.334e-3 − 2.396e-2 + 4.427e-3 − 7.096e-3 ≈ 9.777e-3 ≈ 7.738e-3 ≈ 4.371e-3 − 8.753e-3

(1.41e-3) (2.06e-2) (7.61e-4) (1.94e-2) (1.11e-4) (2.76e-3) (1.33e-4) (9.44e-4) (1.11e-3) (9.93e-4) (7.85e-5) (4.27e-4)

MaF7 3
7.115e-2 ≈ 1.033e-1 + 3.711e-1 + 1.024e-1 + 9.632e-2 + 1.002e-1 + 5.954e-2 ≈ 8.177e-2 + 6.756e-2 ≈ 1.258e-1 + 2.248e-1 + 6.738e-2

(2.69e-3) (3.58e-3) (1.34e-1) (6.72e-2) (1.91e-2) (1.24e-2) (1.39e-3) (4.24e-3) (5.45e-2) (1.06e-1) (2.09e-1) (6.30e-2)

MaF8 3
1.225e-1 + 1.413e-1 + 1.317e-1 + 1.233e-1 + 3.415e-1 + 7.882e-2 ≈ 8.251e-2 ≈ 9.021e-2 + 7.713e-2 ≈ 5.579e-1 + 7.950e-2 ≈ 6.767e-2

(3.18e-2) (1.57e-2) (2.14e-2) (1.18e-2) (5.06e-2) (1.52e-2) (1.96e-2) (1.16e-2) (1.75e-2) (1.70e+0) (7.37e-3) (8.87e-3)

MaF9 3
7.892e-2 ≈ 1.949e-1 + 6.868e-2 ≈ 2.131e-1 + 2.187e-1 + 7.818e-2 + 4.420e-1 + 8.834e-2 + 6.813e-2 ≈ 8.101e-2 + 7.540e-2 ≈ 6.248e-2

(1.72e-2) (1.19e-1) (9.68e-3) (2.42e-1) (3.10e-2) (7.06e-3) (8.75e-2) (1.74e-2) (1.05e-2) (2.43e-2) (2.74e-2) (4.59e-3)

MaF10 3
4.125e-1 + 5.276e-1 + 5.843e-1 + 2.704e-1 ≈ 6.673e-1 + 4.085e-1 + 4.263e-1 + 2.573e-1 ≈ 2.095e-1 ≈ 6.575e-1 + 3.108e-1 + 1.880e-1

(5.38e-2) (7.61e-2) (1.38e-1) (3.83e-2) (7.80e-2) (3.92e-2) (5.16e-2) (3.79e-2) (2.27e-2) (8.64e-2) (3.56e-2) (1.97e-2)

MaF11 3
1.500e-1 − 1.764e-1 ≈ 1.690e-1 ≈ 1.465e-1 − 2.497e-1 + 2.380e-1 + 1.607e-1 − 1.899e-1 ≈ 2.023e-1 ≈ 2.202e-1 ≈ 1.492e-1 − 1.894e-1

(1.12e-3) (8.85e-3) (3.63e-3) (1.70e-3) (2.77e-2) (2.18e-2) (3.79e-3) (1.42e-2) (1.13e-2) (1.30e-2) (1.50e-3) (8.31e-3)

MaF12 3
2.095e-1 − 2.170e-1 − 2.260e-1 ≈ 2.389e-1 ≈ 3.337e-1 + 2.786e-1 ≈ 2.166e-1 − 2.370e-1 ≈ 3.086e-1 + 2.827e-1 ≈ 2.122e-1 − 2.542e-1

(2.52e-3) (4.89e-3) (3.49e-3) (4.08e-2) (4.85e-2) (1.78e-2) (5.12e-3) (7.39e-3) (2.43e-2) (1.25e-2) (2.41e-2) (5.92e-3)

MaF13 3
8.728e-2 ≈ 1.220e-1 + 6.954e-2 − 1.317e-1 + 7.837e-2 − 8.168e-2 ≈ 9.545e-2 ≈ 9.828e-2 ≈ 1.182e-1 + 1.251e-1 + 8.649e-2 ≈ 9.465e-2

(9.63e-3) (2.20e-2) (5.62e-3) (2.18e-2) (7.80e-3) (6.31e-3) (1.08e-2) (6.96e-3) (2.12e-2) (1.49e-2) (8.56e-3) (1.14e-2)

MaF14 3
1.320e+0 ≈ 2.945e+0 + 1.128e+0 ≈ 1.597e+0 + 9.238e-1 ≈ 8.823e-1 ≈ 1.243e+0 ≈ 1.398e+0 ≈ 1.272e+0 ≈ 1.369e+0 ≈ 8.284e-1 ≈ 1.017e+0

(4.00e-1) (1.07e+0) (2.22e-1) (5.24e-1) (2.82e-1) (1.24e-1) (4.18e-1) (4.72e-1) (4.59e-1) (4.55e-1) (1.97e-1) (2.54e-1)

MaF15 3
7.568e-1 + 8.138e-1 + 2.874e-1 ≈ 9.375e-1 + 3.405e-1 ≈ 3.426e-1 ≈ 7.546e-1 + 5.902e-1 + 2.313e-1 − 2.404e-1 ≈ 3.825e-1 ≈ 3.585e-1

(1.71e-1) (2.10e-1) (4.29e-2) (3.93e-2) (6.36e-2) (4.41e-2) (7.73e-2) (4.34e-2) (2.79e-2) (2.56e-2) (6.37e-2) (1.18e-1)

+/≈/− 7/5/3 12/1/2 8/6/1 11/2/2 8/5/2 7/7/1 5/6/4 9/6/0 4/10/1 9/6/0 4/8/3

‘+’, ‘≈’, and ‘−’ indicate that the result of E3A is significantly better than, equivalent to, and significantly worse
than that of the peer algorithm at a 0.05 level by the statistical tests (i.e., Friedman test and posthoc Nemenyi test),
respectively.

outperforms NSGA-III, RVEA, MOEA/DD, RPD-NSGA-II, 1by1EA, MaOEA-CSS, VaEA, NSGA-
II/SDR, SPEA2+SDE, SRA, and AR-MOEA are 7/15, 12/15, 8/15, 11/15, 8/15, 7/15, 5/15, 9/15,
4/15, 9/15, and 4/15, respectively. Conversely, the proportions of the test problems where E3A
performs significantly worse than these peer algorithms are 3/15, 2/15, 1/15, 2/15, 2/15, 1/15, 4/15,
0/15, 1/15, 0/15, and 3/15, respectively.

From Table 4, it can be seen that E3A obtains the best HV results on 11 test problems (i.e., MaF1–
3 and MaF6–13). Concerning pairwise comparison, the proportions of the test problems where E3A
significantly outperforms NSGA-III, RVEA, MOEA/DD, RPD-NSGA-II, 1by1EA, MaOEA-CSS,
VaEA, NSGA-II/SDR, SPEA2+SDE, SRA, and AR-MOEA are 11/15, 13/15, 10/15, 11/15, 12/15,
11/15, 9/15, 9/15, 1/15, 11/15, and 5/15, respectively. Conversely, the proportions of the test
problems where E3A performs significantly worse than these peer algorithms are 0/15, 0/15, 1/15,
0/15, 1/15, 1/15, 0/15, 0/15, 1/15, 2/15, and 0/15, respectively.

For a visual understanding of how solutions are distributed, Figure 3 plots the final solution set
obtained by each algorithm on the tri-objective MaF1 with the median IGD value among all the 30
runs. As seen in Figure 3, VaEA, SRA, AR-MOEA, and E3A are the only four algorithms that per-
form well in terms of both convergence and diversity. Among them, E3A appears to be the best, with
its solutions uniformly distributed over the Pareto front. For the other eight algorithms, maintain-
ing a set of diverse solutions seems challenging, especially for four decomposition-based algorithms,
NSGA-III, RVEA, MOEA/DD, and RPD-NSGA-II. The main reason is that decomposition-based
algorithms, which work well for MaOPs with regular Pareto front shapes, typically struggle for irreg-
ular shapes, which is the case in this instance having an inverted hyperplane. It is worth mentioning
that RVEA only keeps one solution to a weight vector, leading to an evenly distributed solution set
but with fewer solutions remaining (only 35 out of 105 solutions). It can be observed from Table 3
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Table 4: Mean and standard deviation of the HV values obtained by the 12 algorithms on the tri-
objective MaF problems.

Problem Obj. NSGA-III RVEA MOEA/DD RPD-NSGA-II 1by1EA MaOEA-CSS VaEA NSGA-II/SDR SPEA2+SDE SRA AR-MOEA E3A

MaF1 3
2.798e-01 + 2.349e-01 + 2.718e-01 + 2.663e-01 + 2.881e-01 + 2.867e-01 + 2.909e-01 + 1.723e-01 + 2.948e-01 ≈ 2.872e-01 + 2.954e-01 ≈ 2.981e-01

(1.41e-03) (3.48e-02) (2.26e-03) (2.58e-03) (3.05e-03) (1.70e-03) (1.33e-03) (1.20e-01) (5.03e-04) (1.79e-03) (1.06e-03) (1.33e-04)

MaF2 3
6.858e-01 + 6.632e-01 + 6.029e-01 + 6.842e-01 + 6.659e-01 + 6.638e-01 + 6.966e-01 ≈ 7.006e-01 ≈ 7.039e-01 ≈ 6.941e-01 + 6.920e-01 + 7.048e-01

(3.00e-03) (4.42e-03) (7.94e-03) (1.98e-03) (5.69e-03) (1.51e-02) (3.16e-03) (1.73e-03) (1.97e-03) (2.24e-03) (2.84e-03) (1.08e-03)

MaF3 3
6.638e-01 + 1.619e-02 + 6.455e-03 + 8.054e-01 + 8.889e-01 + 5.088e-01 + 7.841e-01 + 9.227e-01 ≈ 9.796e-01 ≈ 6.181e-01 + 1.126e+00 ≈ 1.171e+00

(5.88e-01) (8.72e-02) (3.48e-02) (4.46e-01) (3.15e-01) (5.54e-01) (5.59e-01) (5.17e-01) (5.10e-01) (5.92e-01) (3.77e-01) (2.70e-01)

MaF4 3
4.565e-01 + 3.416e-01 + 3.603e-01 + 6.013e-01 + 3.394e-01 + 5.133e-01 + 5.121e-01 + 5.302e-01 + 6.141e-01 ≈ 2.872e-01 + 5.575e-01 ≈ 6.359e-01

(2.55e-01) (2.66e-01) (2.85e-01) (1.39e-01) (1.29e-01) (2.54e-01) (2.32e-01) (2.31e-01) (1.97e-01) (2.91e-01) (2.24e-01) (1.66e-01)

MaF5 3
7.095e-01 ≈ 7.388e-01 ≈ 7.199e-01 − 7.447e-01 ≈ 6.350e-01 + 7.031e-01 − 7.320e-01 ≈ 3.608e-01 + 6.196e-01 ≈ 6.897e-01 − 5.882e-01 ≈ 6.816e-01

(1.01e-01) (5.30e-02) (5.42e-02) (1.52e-03) (8.76e-02) (9.84e-03) (5.02e-02) (6.03e-02) (1.63e-01) (1.03e-01) (2.21e-01) (1.22e-01)

MaF6 3
2.580e-01 + 2.174e-01 + 2.451e-01 + 2.407e-01 + 2.661e-01 ≈ 2.441e-01 + 2.662e-01 ≈ 2.645e-01 + 2.657e-01 ≈ 2.632e-01 + 2.659e-01 ≈ 2.661e-01

(1.21e-03) (1.27e-02) (8.47e-04) (7.19e-03) (1.27e-04) (5.29e-03) (1.03e-04) (4.54e-04) (2.69e-04) (6.42e-04) (7.60e-05) (1.09e-04)

MaF7 3
5.449e-01 + 5.187e-01 + 4.349e-01 + 5.433e-01 + 5.193e-01 + 5.107e-01 + 5.597e-01 ≈ 5.473e-01 + 5.597e-01 ≈ 5.419e-01 + 5.165e-01 + 5.633e-01

(3.24e-03) (7.54e-03) (2.86e-02) (2.03e-02) (1.61e-02) (1.53e-02) (1.66e-03) (3.24e-03) (1.56e-02) (3.01e-02) (5.37e-02) (2.73e-02)

MaF8 3
3.422e-01 + 3.238e-01 + 3.326e-01 + 3.382e-01 + 2.408e-01 + 3.658e-01 ≈ 3.662e-01 ≈ 3.587e-01 + 3.683e-01 ≈ 2.722e-01 + 3.679e-01 ≈ 3.755e-01

(2.01e-02) (1.00e-02) (1.03e-02) (7.51e-03) (2.28e-02) (7.93e-03) (1.07e-02) (6.40e-03) (9.76e-03) (1.08e-01) (4.17e-03) (5.53e-03)

MaF9 3
1.098e+00 ≈ 9.921e-01 + 1.105e+00 ≈ 9.636e-01 + 8.683e-01 + 1.064e+00 + 8.092e-01 + 1.063e+00 + 1.097e+00 ≈ 1.093e+00 + 1.101e+00 ≈ 1.113e+00

(1.80e-02) (9.71e-02) (1.11e-02) (2.29e-01) (4.78e-02) (1.43e-02) (4.36e-02) (2.60e-02) (9.05e-03) (2.02e-02) (2.34e-02) (5.33e-03)

MaF10 3
1.020e+00 + 9.474e-01 + 8.912e-01 + 1.145e+00 ≈ 1.014e+00 + 1.069e+00 + 9.939e-01 + 1.129e+00 ≈ 1.217e+00 ≈ 8.359e-01 + 1.093e+00 + 1.221e+00

(3.90e-02) (5.66e-02) (8.70e-02) (2.76e-02) (3.93e-02) (3.12e-02) (3.77e-02) (3.30e-02) (2.02e-02) (5.54e-02) (3.09e-02) (1.93e-02)

MaF11 3
1.238e+00 + 1.226e+00 + 1.233e+00 + 1.244e+00 ≈ 1.190e+00 + 1.180e+00 + 1.230e+00 + 1.215e+00 + 1.238e+00 + 1.229e+00 + 1.240e+00 ≈ 1.247e+00

(2.20e-03) (3.60e-03) (3.61e-03) (1.47e-03) (1.56e-02) (1.72e-02) (2.22e-03) (1.05e-02) (5.01e-03) (4.48e-03) (1.81e-03) (1.39e-03)

MaF12 3
7.031e-01 ≈ 7.002e-01 + 6.905e-01 + 6.864e-01 + 6.527e-01 + 6.501e-01 + 6.953e-01 + 7.090e-01 ≈ 7.080e-01 ≈ 7.019e-01 + 6.958e-01 + 7.130e-01

(6.09e-03) (4.90e-03) (5.28e-03) (3.20e-02) (1.47e-02) (9.94e-03) (9.03e-03) (3.86e-03) (3.05e-02) (5.74e-03) (2.96e-02) (6.78e-03)

MaF13 3
6.572e-01 + 5.963e-01 + 6.889e-01 ≈ 6.009e-01 + 6.784e-01 + 6.707e-01 + 6.364e-01 + 6.563e-01 + 7.023e-01 ≈ 7.048e-01 ≈ 6.544e-01 + 7.100e-01

(1.82e-02) (4.18e-02) (1.70e-02) (3.26e-02) (1.50e-02) (1.55e-02) (1.81e-02) (1.91e-02) (1.89e-02) (1.47e-02) (2.14e-02) (1.58e-02)

MaF14 3
7.134e-03 ≈ 8.921e-04 ≈ 1.274e-02 ≈ 5.213e-03 ≈ 7.648e-02 ≈ 3.417e-02 ≈ 1.499e-02 ≈ 1.251e-02 ≈ 2.041e-02 ≈ 5.029e-03 ≈ 9.238e-02 ≈ 3.086e-02

(2.24e-02) (3.90e-03) (3.27e-02) (1.31e-02) (9.46e-02) (3.98e-02) (4.16e-02) (3.63e-02) (5.39e-02) (1.57e-02) (8.15e-02) (5.14e-02)

MaF15 3
2.352e-02 + 2.729e-02 + 3.762e-01 ≈ 6.709e-03 + 4.106e-01 − 3.778e-01 ≈ 2.831e-02 + 1.379e-01 ≈ 4.539e-01 − 4.106e-01 − 2.516e-01 ≈ 2.391e-01

(4.16e-02) (3.47e-02) (3.31e-02) (6.49e-03) (4.68e-02) (2.88e-02) (1.54e-02) (2.85e-02) (2.49e-02) (1.48e-02) (5.25e-02) (8.66e-02)

+/≈/− 11/4/0 13/2/0 10/4/1 11/4/0 12/2/1 11/3/1 9/6/0 9/6/0 1/13/1 11/2/2 5/10/0

‘+’, ‘≈’, and ‘−’ indicate that the result of E3A is significantly better than, equivalent to, and significantly worse
than that of the peer algorithm at a 0.05 level by the statistical tests (i.e., Friedman test and posthoc Nemenyi test),
respectively.

that the four algorithms (NSGA-III, RVEA, MOEA/DD, and RPD-NSGA-II) obtain poor results
regarding the IGD metric with RVEA performing the worst.

4.2.2 Algorithm Performance on Five-Objective Problems

Tables 5 and 6 show the mean and standard deviation (in parentheses) of the IGD and HV results
obtained by E3A and the peer algorithms on the five-objective MaF problems. From Table 5, it
can be seen that E3A obtains the best mean, in terms of IGD, on four test problems, MaF4, MaF8,
MaF10, and MaF13. Concerning pairwise comparison, the proportions of the test problems where
E3A significantly outperforms NSGA-III, RVEA, MOEA/DD, RPD-NSGA-II, 1by1EA, MaOEA-
CSS, VaEA, NSGA-II/SDR, SPEA2+SDE, SRA, and AR-MOEA are 10/15, 11/15, 12/15, 9/15,
9/15, 10/15, 6/15, 5/15, 3/15, 7/15, and 2/15, respectively. Conversely, the proportions of the test
problems where E3A performs significantly worse than these peer algorithms are 1/15, 2/15, 1/15,
2/15, 3/15, 3/15, 1/15, 0/15, 1/15, 1/15, and 2/15, respectively.

From Table 6, it can be seen that E3A obtains the best HV results on six test problems (i.e., MaF2,
MaF4, MaF8, MaF10, MaF11, and MaF13). Concerning pairwise comparison, the proportions of
the test problems where E3A significantly outperforms NSGA-III, RVEA, MOEA/DD, RPD-NSGA-
II, 1by1EA, MaOEA-CSS, VaEA, NSGA-II/SDR, SPEA2+SDE, SRA, and AR-MOEA are 10/15,
11/15, 13/15, 7/15, 10/15, 11/15, 9/15, 6/15, 1/15, 5/15, and 6/15, respectively. Conversely, the
proportions of the test problems where E3A performs significantly worse than these peer algorithms
are 0/15, 1/15, 1/15, 0/15, 2/15, 1/15, 1/15, 1/15, 1/15, 1/15, and 1/15, respectively.
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(a) NSGA-III (b) RVEA (c) MOEA/DD (d) RPD-NSGA-II

(e) 1by1EA (f) MaOEA-CSS (g) VaEA (h) NSGA-II/SDR

(i) SPEA2+SDE (j) SRA (k) AR-MOEA (l) E3A

Figure 3: The final solution set with the median IGD obtained by the 12 algorithms on the tri-
objective MaF1.

Table 5: Mean and standard deviation of the IGD values obtained by the 12 algorithms on the five-
objective MaF problems.

Problem Obj. NSGA-III RVEA MOEA/DD RPD-NSGA-II 1by1EA MaOEA-CSS VaEA NSGA-II/SDR SPEA2+SDE SRA AR-MOEA E3A

MaF1 5
2.507e-1 + 3.141e-1 + 3.992e-1 + 2.108e-1 + 1.197e-1 − 1.201e-1 − 1.268e-1 ≈ 1.230e-1 ≈ 1.253e-1 ≈ 1.387e-1 ≈ 1.355e-1 ≈ 1.297e-1

(8.49e-3) (3.84e-2) (1.38e-1) (8.58e-3) (6.55e-3) (2.44e-3) (1.16e-3) (1.70e-3) (1.34e-3) (2.57e-3) (1.20e-3) (1.35e-3)

MaF2 5
1.284e-1 + 1.263e-1 + 1.605e-1 + 1.290e-1 + 9.688e-2 ≈ 9.207e-2 − 1.058e-1 ≈ 1.139e-1 ≈ 1.158e-1 ≈ 1.181e-1 + 1.115e-1 ≈ 1.101e-1

(2.69e-3) (2.06e-3) (5.54e-3) (1.02e-3) (2.72e-3) (1.46e-3) (1.77e-3) (2.53e-3) (1.64e-3) (3.11e-3) (1.71e-3) (1.63e-3)

MaF3 5
8.795e+0 + 4.539e+1 + 2.212e+1 + 1.023e+0 + 6.951e-1 + 2.367e+0 + 5.937e+1 + 1.520e-1 ≈ 1.913e-1 ≈ 1.011e+0 ≈ 4.182e-1 ≈ 2.763e-1

(1.33e+1) (4.54e+1) (2.46e+1) (1.35e+0) (1.05e+0) (3.25e+0) (8.34e+1) (1.27e-2) (3.61e-1) (4.33e+0) (7.19e-1) (5.61e-1)

MaF4 5
1.272e+1 + 7.091e+0 + 6.246e+0 + 4.493e+0 + 8.078e+0 + 5.019e+0 + 6.922e+0 + 3.685e+0 ≈ 3.685e+0 + 4.530e+0 + 3.095e+0 ≈ 2.630e+0

(1.36e+1) (5.77e+0) (3.16e+0) (4.46e+0) (6.68e-1) (2.03e+0) (7.75e+0) (2.30e+0) (1.58e+0) (4.28e+0) (1.62e+0) (1.46e+0)

MaF5 5
2.552e+0 + 2.589e+0 + 5.037e+0 + 2.378e+0 ≈ 4.591e+0 + 4.639e+0 + 2.102e+0 ≈ 1.350e+1 + 2.684e+0 + 2.647e+0 + 2.522e+0 + 2.227e+0

(6.64e-1) (4.09e-1) (6.75e-1) (5.07e-2) (6.37e-1) (7.47e-1) (4.03e-2) (2.27e+0) (9.26e-1) (9.09e-1) (6.27e-1) (3.19e-1)

MaF6 5
4.790e-2 ≈ 1.491e-1 + 7.374e-2 + 1.490e-1 + 3.568e-3 − 6.069e-2 + 4.223e-3 ≈ 1.747e-2 ≈ 8.101e-3 ≈ 7.020e-3 ≈ 3.513e-3 − 7.839e-3

(8.30e-3) (1.48e-1) (9.37e-3) (5.87e-2) (7.00e-5) (1.12e-2) (1.59e-4) (9.13e-3) (7.92e-4) (2.19e-3) (7.21e-5) (1.32e-4)

MaF7 5
3.398e-1 ≈ 5.921e-1 + 3.001e+0 + 3.730e-1 − 4.086e-1 + 3.945e-1 + 3.408e-1 ≈ 3.823e-1 + 3.070e-1 ≈ 3.002e-1 ≈ 3.259e-1 ≈ 3.733e-1

(2.21e-2) (4.14e-2) (1.56e-6) (1.17e-2) (4.10e-2) (2.42e-2) (1.73e-2) (3.63e-2) (4.34e-2) (4.47e-2) (9.97e-3) (1.87e-1)

MaF8 5
2.034e-1 + 4.033e-1 + 3.342e-1 + 3.099e-1 + 5.191e-1 + 1.137e-1 ≈ 1.159e-1 ≈ 1.419e-1 + 1.184e-1 ≈ 5.193e-1 + 1.250e-1 ≈ 1.064e-1

(3.26e-2) (3.25e-2) (7.99e-2) (2.98e-2) (5.87e-2) (8.77e-3) (1.13e-2) (1.67e-2) (1.98e-2) (9.76e-1) (2.59e-2) (1.35e-2)

MaF9 5
5.181e-1 + 3.556e-1 + 2.669e-1 + 3.250e-1 + 2.717e-1 + 2.019e-1 + 5.023e-1 + 1.702e-1 ≈ 9.954e-2 ≈ 1.122e-1 ≈ 1.250e-1 ≈ 1.206e-1

(2.12e-1) (4.95e-2) (5.64e-2) (6.31e-2) (4.93e-2) (1.92e-2) (2.66e-1) (1.53e-2) (1.25e-2) (1.94e-2) (1.94e-2) (2.02e-2)

MaF10 5
9.263e-1 + 7.799e-1 + 1.440e+0 + 5.898e-1 ≈ 9.473e-1 + 8.581e-1 + 1.218e+0 + 8.074e-1 + 5.225e-1 ≈ 1.213e+0 + 8.091e-1 + 4.704e-1

(9.27e-2) (9.08e-2) (1.37e-1) (5.77e-2) (6.61e-2) (6.31e-2) (1.15e-1) (1.05e-1) (2.75e-2) (1.26e-1) (7.40e-2) (2.46e-2)

MaF11 5
4.650e-1 − 4.601e-1 − 5.433e-1 ≈ 4.549e-1 − 7.613e-1 + 6.662e-1 + 4.635e-1 − 5.723e-1 ≈ 5.688e-1 ≈ 5.498e-1 ≈ 4.718e-1 ≈ 5.323e-1

(3.84e-3) (1.93e-2) (1.35e-2) (5.62e-3) (6.16e-2) (4.50e-2) (8.76e-3) (6.98e-2) (2.08e-2) (2.15e-2) (4.02e-3) (1.50e-2)

MaF12 5
1.114e+0 ≈ 1.136e+0 ≈ 1.207e+0 + 1.152e+0 ≈ 1.614e+0 + 1.477e+0 + 1.091e+0 ≈ 1.150e+0 ≈ 1.256e+0 + 1.196e+0 + 1.135e+0 ≈ 1.135e+0

(5.38e-3) (3.98e-3) (1.04e-2) (3.76e-2) (1.37e-1) (7.20e-2) (1.69e-2) (1.43e-2) (2.74e-2) (2.73e-2) (3.71e-3) (9.92e-3)

MaF13 5
2.396e-1 + 4.700e-1 + 2.534e-1 + 4.185e-1 + 1.197e-1 ≈ 1.506e-1 + 1.732e-1 + 1.821e-1 + 1.411e-1 ≈ 1.445e-1 ≈ 1.328e-1 ≈ 1.195e-1

(3.22e-2) (1.27e-1) (7.24e-2) (5.97e-2) (1.12e-2) (1.35e-2) (2.68e-2) (1.89e-2) (1.92e-2) (2.53e-2) (1.27e-2) (1.47e-2)

MaF14 5
4.133e+0 + 1.669e+0 ≈ 1.585e+0 ≈ 6.702e+0 + 1.015e+0 ≈ 1.003e+0 ≈ 8.138e+0 + 9.462e-1 ≈ 1.537e+0 ≈ 2.210e+0 + 1.318e+0 ≈ 1.223e+0

(1.33e+0) (9.68e-1) (4.75e-1) (2.02e+0) (3.89e-1) (1.73e-1) (2.56e+0) (2.37e-1) (3.82e-1) (6.28e-1) (3.81e-1) (3.34e-1)

MaF15 5
2.458e+0 ≈ 6.161e-1 − 6.142e-1 − 1.473e+0 ≈ 6.497e-1 − 5.510e-1 − 1.473e+0 ≈ 8.568e-1 ≈ 4.492e-1 − 5.260e-1 − 6.262e-1 − 1.540e+0

(8.30e-1) (6.46e-2) (1.18e-1) (2.33e-1) (7.31e-2) (5.25e-2) (1.41e-1) (3.26e-2) (5.34e-2) (5.24e-2) (5.16e-2) (1.02e+0)

+/≈/− 10/4/1 11/2/2 12/2/1 9/4/2 9/3/3 10/2/3 6/8/1 5/10/0 3/11/1 7/7/1 2/11/2

‘+’, ‘≈’, and ‘−’ indicate that the result of E3A is significantly better than, equivalent to, and significantly worse
than that of the peer algorithm at a 0.05 level by the statistical tests (i.e., Friedman test and posthoc Nemenyi test),
respectively.
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Table 6: Mean and standard deviation of the HV values obtained by the 12 algorithms on the five-
objective MaF problems.

Problem Obj. NSGA-III RVEA MOEA/DD RPD-NSGA-II 1by1EA MaOEA-CSS VaEA NSGA-II/SDR SPEA2+SDE SRA AR-MOEA E3A

MaF1 5
7.271e-03 + 3.884e-03 + 3.638e-03 + 8.698e-03 + 1.847e-02 − 1.821e-02 ≈ 1.599e-02 ≈ 1.779e-02 ≈ 1.740e-02 ≈ 1.350e-02 ≈ 1.458e-02 ≈ 1.677e-02

(4.86e-04) (1.08e-03) (2.47e-03) (6.51e-04) (4.82e-04) (1.47e-04) (3.25e-04) (2.74e-04) (1.89e-04) (4.73e-04) (3.44e-04) (1.72e-04)

MaF2 5
7.673e-01 + 7.568e-01 + 6.236e-01 + 7.513e-01 + 7.916e-01 + 7.773e-01 + 8.119e-01 + 8.605e-01 ≈ 8.720e-01 ≈ 8.307e-01 ≈ 7.883e-01 + 8.734e-01

(1.35e-02) (9.55e-03) (2.26e-02) (9.16e-03) (1.36e-02) (1.39e-02) (1.19e-02) (1.10e-02) (7.73e-03) (1.00e-02) (8.11e-03) (6.11e-03)

MaF3 5
3.975e-01 + 0.000e+00 + 5.266e-02 + 1.049e+00 + 1.132e+00 + 5.362e-01 + 4.511e-02 + 1.562e+00 ≈ 1.471e+00 ≈ 1.437e+00 ≈ 1.357e+00 ≈ 1.419e+00

(6.08e-01) (0.00e+00) (2.84e-01) (6.89e-01) (6.00e-01) (6.69e-01) (2.43e-01) (2.18e-02) (4.01e-01) (4.79e-01) (5.41e-01) (4.97e-01)

MaF4 5
2.925e-02 + 1.631e-02 + 4.889e-02 + 1.001e-01 ≈ 3.954e-02 + 8.523e-02 + 6.212e-02 + 1.496e-01 ≈ 9.529e-02 ≈ 7.708e-02 + 8.642e-02 + 1.514e-01

(3.49e-02) (1.29e-02) (2.32e-02) (3.33e-02) (1.52e-02) (4.13e-02) (5.14e-02) (6.10e-02) (3.73e-02) (4.33e-02) (3.53e-02) (4.48e-02)

MaF5 5
1.250e+00 ≈ 1.225e+00 ≈ 9.926e-01 + 1.265e+00 ≈ 1.016e+00 + 9.709e-01 + 1.240e+00 ≈ 2.424e-01 + 1.217e+00 ≈ 1.184e+00 ≈ 1.266e+00 ≈ 1.248e+00

(7.47e-02) (9.35e-02) (1.16e-01) (9.49e-03) (4.01e-02) (2.38e-02) (5.38e-03) (1.32e-01) (4.28e-02) (3.61e-02) (3.76e-02) (6.30e-02)

MaF6 5
1.962e-01 + 1.819e-01 + 1.838e-01 + 1.805e-01 + 2.083e-01 ≈ 1.305e-01 + 2.088e-01 − 1.962e-01 + 2.071e-01 ≈ 2.052e-01 ≈ 2.084e-01 ≈ 2.074e-01

(2.73e-03) (9.88e-03) (2.08e-03) (1.06e-02) (1.03e-04) (3.16e-02) (6.15e-05) (7.44e-03) (4.58e-04) (1.22e-03) (5.99e-05) (5.85e-05)

MaF7 5
4.893e-01 + 4.030e-01 + 1.464e-01 + 5.145e-01 ≈ 2.933e-01 + 2.851e-01 + 4.830e-01 + 5.195e-01 ≈ 5.445e-01 ≈ 5.160e-01 ≈ 4.829e-01 + 5.255e-01

(1.36e-02) (2.28e-02) (6.59e-07) (7.36e-03) (5.54e-02) (3.37e-02) (1.08e-02) (7.80e-03) (9.84e-03) (6.73e-03) (6.27e-03) (9.51e-02)

MaF8 5
1.605e-01 + 1.273e-01 + 1.306e-01 + 1.417e-01 + 1.403e-01 + 2.010e-01 ≈ 1.993e-01 ≈ 1.962e-01 + 2.014e-01 ≈ 1.496e-01 + 1.950e-01 + 2.018e-01

(1.06e-02) (7.69e-03) (1.63e-02) (9.28e-03) (1.10e-02) (1.78e-03) (2.84e-03) (2.02e-03) (3.40e-03) (5.89e-02) (6.07e-03) (2.47e-03)

MaF9 5
2.824e-01 + 3.185e-01 + 3.816e-01 + 3.434e-01 + 3.649e-01 + 4.101e-01 + 2.994e-01 + 4.445e-01 ≈ 4.998e-01 ≈ 4.942e-01 ≈ 4.833e-01 ≈ 4.909e-01

(8.28e-02) (2.47e-02) (3.47e-02) (3.37e-02) (2.98e-02) (1.20e-02) (9.67e-02) (9.80e-03) (8.83e-03) (1.41e-02) (1.45e-02) (1.34e-02)

MaF10 5
1.062e+00 + 1.164e+00 + 7.850e-01 + 1.348e+00 ≈ 1.127e+00 + 1.182e+00 + 8.463e-01 + 1.269e+00 + 1.513e+00 ≈ 8.351e-01 + 1.154e+00 + 1.546e+00

(6.80e-02) (7.88e-02) (6.36e-02) (6.67e-02) (7.23e-02) (5.49e-02) (6.38e-02) (8.40e-02) (4.73e-02) (7.39e-02) (5.56e-02) (5.23e-02)

MaF11 5
1.591e+00 ≈ 1.578e+00 + 1.551e+00 + 1.593e+00 ≈ 1.564e+00 + 1.514e+00 + 1.585e+00 + 1.551e+00 + 1.575e+00 + 1.558e+00 + 1.597e+00 ≈ 1.606e+00

(3.30e-03) (9.67e-03) (7.34e-03) (3.60e-03) (8.61e-03) (1.92e-02) (3.98e-03) (1.20e-02) (7.34e-03) (7.90e-03) (3.15e-03) (1.59e-03)

MaF12 5
1.149e+00 ≈ 1.152e+00 ≈ 1.064e+00 + 1.137e+00 ≈ 9.670e-01 + 9.259e-01 + 1.079e+00 + 1.182e+00 − 1.157e+00 ≈ 1.114e+00 + 1.112e+00 ≈ 1.145e+00

(2.08e-02) (1.83e-02) (2.60e-02) (4.36e-02) (2.67e-02) (3.20e-02) (5.41e-02) (7.57e-03) (9.95e-03) (1.37e-02) (2.77e-02) (4.19e-02)

MaF13 5
3.120e-01 + 2.787e-01 + 3.331e-01 + 1.304e-01 + 4.816e-01 ≈ 4.455e-01 + 3.995e-01 + 4.072e-01 + 4.872e-01 ≈ 4.802e-01 ≈ 4.491e-01 + 5.035e-01

(5.28e-02) (7.48e-02) (8.86e-02) (4.48e-02) (1.56e-02) (1.40e-02) (2.61e-02) (2.01e-02) (1.47e-02) (1.55e-02) (1.50e-02) (1.46e-02)

MaF14 5
0.000e+00 ≈ 4.348e-02 ≈ 1.747e-02 ≈ 0.000e+00 ≈ 1.518e-01 ≈ 8.000e-02 ≈ 0.000e+00 ≈ 1.585e-01 ≈ 1.183e-02 ≈ 4.464e-04 ≈ 3.441e-02 ≈ 4.395e-02

(0.00e+00) (6.65e-02) (5.06e-02) (0.00e+00) (1.34e-01) (9.18e-02) (0.00e+00) (1.21e-01) (3.81e-02) (2.30e-03) (6.46e-02) (7.26e-02)

MaF15 5
0.000e+00 ≈ 1.454e-02 − 1.127e-02 − 0.000e+00 ≈ 3.153e-02 − 4.106e-02 − 0.000e+00 ≈ 1.229e-03 ≈ 5.409e-02 − 2.745e-02 − 1.155e-02 − 8.201e-05

(0.00e+00) (6.99e-03) (7.22e-03) (0.00e+00) (1.10e-02) (9.65e-03) (0.00e+00) (8.13e-04) (1.58e-02) (1.23e-02) (3.87e-03) (1.80e-04)

+/≈/− 10/5/0 11/3/1 13/1/1 7/8/0 10/3/2 11/3/1 9/5/1 6/8/1 1/13/1 5/9/1 6/8/1

‘+’, ‘≈’, and ‘−’ indicate that the result of E3A is significantly better than, equivalent to, and significantly worse
than that of the peer algorithm at a 0.05 level by the statistical tests (i.e., Friedman test and posthoc Nemenyi test),
respectively.

4.2.3 Algorithm Performance on Ten-Objective Problems

Tables 7 and 8 show the mean and standard deviation (in parentheses) of the IGD values obtained
by E3A and the peer algorithms on the ten-objective MaF problems. From Table 7, it can be
seen that E3A obtains the best results on four test problems, MaF4, MaF8, MaF10, and MaF13.
Concerning pairwise comparison, E3A performs significantly better than peer algorithms except
SPEA2+SDE on over half of the ten-objective test problems. Specifically, the proportions of the
test problems where E3A significantly outperforms NSGA-III, RVEA, MOEA/DD, RPD-NSGA-II,
1by1EA, MaOEA-CSS, VaEA, NSGA-II/SDR, SPEA2+SDE, SRA, and AR-MOEA are 6/15, 9/15,
11/15, 8/15, 12/15, 7/15, 5/15, 9/15, 1/15, 4/15, and 4/15, respectively. Conversely, the proportions
of the test problems where E3A performs significantly worse than these peer algorithms are 0/15,
1/15, 1/15, 2/15, 1/15, 2/15, 5/15, 1/15, 3/15, 3/15, and 2/15, respectively.

From Table 8, it can be seen that E3A obtains the best HV results on eight test problems (i.e.,
MaF2–4, MaF10–11, and MaF13–15). Concerning pairwise comparison, the proportions of the
test problems where E3A significantly outperforms NSGA-III, RVEA, MOEA/DD, RPD-NSGA-II,
1by1EA, MaOEA-CSS, VaEA, NSGA-II/SDR, SPEA2+SDE, SRA, and AR-MOEA are 6/15, 8/15,
11/15, 6/15, 7/15, 8/15, 4/15, 6/15, 2/15, 6/15, and 5/15, respectively. Conversely, the proportions
of the test problems where E3A performs significantly worse than these peer algorithms are 2/15,
2/15, 1/15, 4/15, 1/15, 1/15, 0/15, 3/15, 1/15, 0/15, and 2/15, respectively.

For a visual understanding of how the solutions are distributed, Figure 4 plots the final solution set
obtained by each algorithm with the median IGD value among all the 30 runs on the ten-objective
MaF8, where the optimal region is a decagon in the decision space. From Figure 4, it can be observed
that all the algorithms except RVEA, MOEA/DD, and MaOEA-CSS perform well regarding conver-
gence (solutions located inside or very close to the polygon). Among these algorithms, NSGA-III,
RPD-NSGA-II, 1by1EA, and SRA perform poorly regarding diversity, with their solutions crowded in
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Table 7: Mean and standard deviation of the IGD values obtained by the 12 algorithms on the ten-
objective MaF problems.

Problem Obj. NSGA-III RVEA MOEA/DD RPD-NSGA-II 1by1EA MaOEA-CSS VaEA NSGA-II/SDR SPEA2+SDE SRA AR-MOEA E3A

MaF1 10
2.960e-1 ≈ 5.769e-1 + 3.805e-1 + 3.869e-1 + 3.936e-1 + 2.057e-1 − 2.217e-1 − 2.244e-1 ≈ 2.311e-1 ≈ 2.648e-1 ≈ 2.373e-1 ≈ 2.474e-1

(4.03e-3) (7.79e-2) (2.45e-2) (5.75e-2) (5.56e-2) (1.03e-3) (1.37e-3) (2.17e-3) (1.49e-3) (3.05e-3) (1.47e-3) (1.34e-2)

MaF2 10
2.179e-1 ≈ 3.980e-1 + 2.572e-1 + 2.095e-1 ≈ 4.618e-1 + 1.968e-1 ≈ 1.800e-1 − 2.365e-1 + 1.702e-1 − 1.616e-1 − 2.073e-1 ≈ 2.064e-1

(1.95e-2) (1.85e-1) (3.10e-2) (3.60e-3) (2.03e-2) (9.51e-3) (2.26e-3) (1.78e-2) (4.17e-3) (3.22e-3) (7.29e-3) (7.20e-3)

MaF3 10
1.947e+3 + 6.067e+0 + 6.370e+1 + 4.772e-1 + 4.235e+1 + 2.403e+0 ≈ 3.717e+4 + 1.670e-1 ≈ 1.066e-1 ≈ 1.862e+2 ≈ 3.234e+0 ≈ 1.087e-1

(2.98e+3) (6.75e+0) (4.47e+1) (1.01e+0) (6.52e+1) (6.33e+0) (6.77e+4) (9.34e-2) (5.51e-3) (1.02e+3) (1.11e+1) (1.75e-2)

MaF4 10
1.226e+2 + 1.977e+2 + 4.041e+2 + 1.403e+2 + 3.095e+2 + 1.483e+2 + 5.870e+1 ≈ 1.961e+2 + 1.340e+2 + 1.216e+2 + 9.843e+1 ≈ 5.416e+1

(8.39e+1) (5.49e+1) (2.17e+1) (2.54e+1) (2.58e+1) (2.01e+1) (4.76e+0) (3.17e+1) (1.62e+1) (2.74e+1) (5.11e+0) (2.35e+0)

MaF5 10
8.665e+1 ≈ 9.436e+1 ≈ 2.875e+2 + 7.743e+1 ≈ 2.052e+2 + 2.603e+2 + 4.705e+1 − 2.987e+2 + 6.704e+1 ≈ 5.660e+1 ≈ 1.006e+2 + 7.620e+1

(1.58e+0) (6.80e+0) (1.46e+1) (4.31e+0) (1.51e+1) (1.70e+1) (1.92e+0) (2.89e+1) (3.74e+0) (4.90e+0) (4.03e+0) (3.01e+0)

MaF6 10
6.623e-1 ≈ 1.468e-1 − 1.100e-1 − 2.515e-1 − 1.918e-3 − 2.242e-1 − 1.121e+0 ≈ 7.803e-3 − 8.912e-1 ≈ 4.159e+0 ≈ 1.620e-1 − 1.304e+0

(2.33e-1) (8.93e-2) (1.12e-2) (1.64e-1) (3.00e-5) (8.62e-2) (4.72e-1) (2.17e-3) (4.56e-1) (1.48e+0) (2.24e-1) (5.71e-1)

MaF7 10
1.219e+0 ≈ 2.036e+0 ≈ 2.130e+0 ≈ 1.703e+0 ≈ 2.412e+0 + 2.426e+0 + 1.078e+0 − 1.653e+0 ≈ 8.581e-1 − 8.630e-1 − 1.418e+0 ≈ 1.675e+0

(1.04e-1) (5.43e-1) (3.11e-1) (2.17e-1) (4.15e-1) (4.54e-1) (4.37e-2) (3.43e-1) (3.24e-2) (2.40e-2) (8.22e-2) (7.06e-1)

MaF8 10
3.835e-1 + 7.819e-1 + 8.993e-1 + 5.342e-1 + 4.379e-1 + 1.222e-1 ≈ 1.158e-1 ≈ 1.633e-1 + 1.281e-1 ≈ 7.649e-1 + 1.384e-1 + 1.135e-1

(7.49e-2) (1.07e-1) (1.97e-2) (9.71e-2) (6.95e-2) (5.56e-3) (2.73e-3) (1.77e-2) (6.73e-3) (1.97e+0) (4.46e-3) (1.86e-3)

MaF9 10
5.916e-1 + 8.262e-1 + 4.948e-1 + 4.154e-1 + 1.238e-1 ≈ 1.861e-1 ≈ 1.639e-1 ≈ 1.880e-1 ≈ 1.063e-1 − 1.113e-1 − 1.739e-1 ≈ 1.762e-1

(1.98e-1) (2.53e-1) (9.87e-2) (4.84e-2) (1.44e-2) (7.91e-3) (3.65e-2) (9.22e-3) (1.25e-3) (3.20e-3) (7.17e-3) (1.87e-2)

MaF10 10
1.646e+0 + 1.292e+0 + 1.712e+0 + 1.052e+0 ≈ 1.760e+0 + 1.438e+0 + 2.453e+0 + 1.703e+0 + 1.143e+0 ≈ 1.938e+0 + 1.489e+0 + 9.818e-1

(1.29e-1) (6.00e-2) (1.05e-1) (2.99e-2) (9.65e-2) (6.38e-2) (1.70e-1) (1.12e-1) (4.02e-2) (1.46e-1) (5.49e-2) (2.16e-2)

MaF11 10
1.262e+0 ≈ 1.148e+0 ≈ 1.483e+0 ≈ 1.129e+0 − 1.776e+0 + 1.680e+0 + 1.022e+0 − 1.668e+0 + 1.179e+0 ≈ 1.182e+0 ≈ 1.10e+0 − 1.284e+0

(1.31e-1) (4.48e-2) (2.98e-2) (1.64e-2) (6.44e-2) (7.25e-2) (1.33e-2) (1.10e-1) (3.97e-2) (3.62e-2) (3.22e-2) (1.30e-1)

MaF12 10
4.481e+0 + 4.488e+0 + 6.195e+0 + 4.632e+0 + 5.584e+0 + 5.504e+0 + 3.994e+0 ≈ 4.500e+0 + 4.471e+0 ≈ 4.438e+0 ≈ 4.619e+0 + 4.214e+0

(4.07e-2) (7.37e-2) (2.09e-1) (6.21e-2) (2.07e-1) (1.80e-1) (2.48e-2) (4.85e-2) (4.53e-2) (7.41e-2) (3.47e-2) (4.85e-2)

MaF13 10
2.580e-1 + 9.350e-1 + 2.780e-1 + 5.802e-1 + 1.946e-1 + 1.506e-1 + 1.387e-1 + 1.856e-1 + 1.211e-1 ≈ 1.276e-1 ≈ 1.281e-1 ≈ 1.027e-1

(2.71e-2) (2.17e-1) (2.73e-2) (6.02e-2) (3.22e-2) (1.01e-2) (1.33e-2) (1.93e-2) (2.58e-2) (1.95e-2) (7.20e-3) (1.08e-2)

MaF14 10
1.364e+1 + 1.491e+0 ≈ 1.777e+0 ≈ 6.032e+0 ≈ 1.627e+0 ≈ 1.613e+0 ≈ 1.349e+1 + 1.465e+0 ≈ 2.656e+0 ≈ 5.655e+0 + 1.487e+0 ≈ 2.281e+0

(5.88e+0) (3.11e-1) (4.19e-1) (5.79e+0) (3.83e-1) (1.53e-1) (4.08e+0) (1.60e-1) (8.41e-1) (1.68e+0) (4.46e-1) (1.00e+0)

MaF15 10
3.841e+0 + 1.122e+0 ≈ 1.354e+0 + 1.384e+0 + 1.196e+0 + 9.876e-1 ≈ 1.918e+0 + 1.196e+0 + 8.632e-1 ≈ 1.006e+0 ≈ 1.103e+0 ≈ 9.521e-1

(1.75e+0) (1.26e-1) (2.06e-1) (3.40e-1) (6.48e-2) (5.72e-2) (2.90e-1) (7.23e-2) (1.80e-1) (1.42e-1) (8.71e-2) (4.18e-1)

+/≈/− 6/9/0 9/5/1 11/3/1 8/5/2 12/2/1 7/6/2 5/5/5 9/5/1 1/11/3 4/8/3 4/9/2

‘+’, ‘≈’, and ‘−’ indicate that the result of E3A is significantly better than, equivalent to, and significantly worse
than that of the peer algorithm at a 0.05 level by the statistical tests (i.e., Friedman test and posthoc Nemenyi test),
respectively.

Table 8: Mean and standard deviation of the HV values obtained by the 12 algorithms on the ten-
objective MaF problems.

Problem Obj. NSGA-III RVEA MOEA/DD RPD-NSGA-II 1by1EA MaOEA-CSS VaEA NSGA-II/SDR SPEA2+SDE SRA AR-MOEA E3A

MaF1 10
1.210e-06 ≈ 0.000e+00 ≈ 1.729e-07 ≈ 2.594e-07 ≈ 5.187e-07 ≈ 2.075e-06 ≈ 6.917e-07 ≈ 1.556e-06 ≈ 7.781e-07 ≈ 3.458e-07 ≈ 1.124e-06 ≈ 4.323e-07

(1.74e-06) (0.00e+00) (6.47e-07) (7.78e-07) (1.04e-06) (2.54e-06) (1.33e-06) (2.07e-06) (1.66e-06) (8.82e-07) (2.19e-06) (9.67e-07)

MaF2 10
1.519e+00 + 1.079e+00 + 1.237e+00 + 1.468e+00 + 1.111e+00 + 1.501e+00 + 1.606e+00 ≈ 1.569e+00 + 1.583e+00 ≈ 1.573e+00 + 1.573e+00 + 1.678e+00

(2.37e-02) (4.36e-01) (3.92e-02) (6.93e-03) (5.72e-02) (1.93e-02) (1.01e-02) (1.46e-02) (1.29e-02) (7.56e-03) (1.01e-02) (5.44e-03)

MaF3 10
0.000e+00 + 1.527e-01 + 2.545e-03 + 2.054e+00 + 1.124e-01 + 1.758e+00 + 0.000e+00 + 2.538e+00 + 2.589e+00 ≈ 2.324e+00 ≈ 2.122e+00 ≈ 2.594e+00

(0.00e+00) (4.99e-01) (1.37e-02) (5.26e-01) (4.74e-01) (1.16e+00) (0.00e+00) (1.92e-01) (1.91e-03) (7.14e-01) (9.58e-01) (1.55e-04)

MaF4 10
4.470e-04 ≈ 6.917e-07 + 6.917e-07 + 2.907e-04 ≈ 3.977e-06 + 1.107e-05 + 1.660e-04 ≈ 2.585e-05 + 5.360e-06 + 2.075e-06 + 5.620e-06 + 7.454e-04

(1.81e-04) (2.00e-06) (1.49e-06) (1.24e-04) (5.71e-06) (8.81e-06) (5.42e-05) (1.29e-05) (4.23e-06) (3.02e-06) (7.46e-06) (7.66e-05)

MaF5 10
2.507e+00 − 2.458e+00 ≈ 1.473e+00 + 2.510e+00 − 2.062e+00 + 1.727e+00 + 2.374e+00 ≈ 2.886e-01 + 2.292e+00 ≈ 2.125e+00 + 2.496e+00 ≈ 2.433e+00

(6.88e-04) (1.37e-02) (6.94e-02) (2.10e-03) (3.31e-02) (5.85e-02) (3.10e-02) (1.28e-01) (1.38e-02) (5.78e-02) (4.96e-03) (4.39e-03)

MaF6 10
5.100e-03 ≈ 1.838e-01 − 2.319e-01 − 2.410e-01 − 2.622e-01 − 5.480e-03 ≈ 8.716e-03 ≈ 2.595e-01 − 2.599e-02 ≈ 0.000e+00 ≈ 1.671e-01 − 8.639e-03

(1.91e-02) (8.72e-02) (1.57e-02) (7.98e-03) (5.77e-04) (1.01e-02) (4.69e-02) (1.19e-03) (7.80e-02) (0.00e+00) (1.25e-01) (4.65e-02)

MaF7 10
4.202e-01 − 3.327e-01 − 4.242e-04 + 4.615e-01 − 9.377e-02 ≈ 8.201e-04 + 2.876e-01 ≈ 3.987e-01 − 1.816e-01 ≈ 2.012e-01 ≈ 3.278e-01 − 1.677e-01

(3.18e-02) (5.20e-02) (4.03e-04) (2.96e-02) (4.65e-02) (6.69e-04) (3.58e-02) (1.78e-01) (7.08e-02) (6.21e-02) (1.70e-02) (1.34e-01)

MaF8 10
2.480e-02 + 1.362e-02 + 1.710e-02 + 1.868e-02 + 2.920e-02 ≈ 3.085e-02 − 3.057e-02 ≈ 2.970e-02 ≈ 3.021e-02 ≈ 2.300e-02 + 2.944e-02 ≈ 2.978e-02

(1.08e-03) (1.50e-03) (4.99e-04) (1.20e-03) (9.29e-04) (3.02e-04) (3.06e-04) (3.30e-04) (3.16e-04) (9.20e-03) (3.12e-04) (3.12e-04)

MaF9 10
2.219e-02 + 1.214e-02 + 1.808e-02 + 2.726e-02 + 4.805e-02 ≈ 4.147e-02 ≈ 4.263e-02 ≈ 4.074e-02 ≈ 4.814e-02 − 4.766e-02 ≈ 4.156e-02 ≈ 4.302e-02

(6.37e-03) (2.88e-03) (3.58e-03) (2.68e-03) (5.13e-04) (5.23e-04) (3.40e-03) (7.63e-04) (3.43e-04) (3.83e-04) (7.35e-04) (1.24e-03)

MaF10 10
1.559e+00 + 2.259e+00 + 1.640e+00 + 2.397e+00 ≈ 1.812e+00 + 2.150e+00 + 8.373e-01 + 2.512e+00 ≈ 2.514e+00 ≈ 1.223e+00 + 1.807e+00 + 2.591e+00

(1.35e-01) (1.81e-01) (1.76e-01) (1.30e-01) (1.29e-01) (1.16e-01) (7.62e-02) (8.37e-02) (9.53e-02) (1.39e-01) (1.17e-01) (1.66e-03)

MaF11 10
2.578e+00 ≈ 2.536e+00 + 2.482e+00 + 2.557e+00 + 2.561e+00 + 2.537e+00 + 2.560e+00 + 2.547e+00 + 2.562e+00 + 2.552e+00 + 2.565e+00 + 2.589e+00

(5.55e-03) (1.11e-02) (2.20e-02) (7.37e-03) (6.21e-03) (1.32e-02) (6.38e-03) (8.96e-03) (6.19e-03) (8.31e-03) (7.74e-03) (2.30e-03)

MaF12 10
2.190e+00 ≈ 2.122e+00 ≈ 1.644e+00 + 2.240e+00 − 1.867e+00 + 1.780e+00 + 2.106e+00 ≈ 2.326e+00 − 2.186e+00 ≈ 2.107e+00 ≈ 2.090e+00 ≈ 2.140e+00

(7.71e-02) (7.14e-02) (1.06e-01) (6.92e-02) (6.61e-02) (4.88e-02) (6.95e-02) (6.56e-03) (2.70e-02) (2.74e-02) (5.84e-02) (7.53e-02)

MaF13 10
3.346e-01 + 3.188e-01 + 3.317e-01 + 2.118e-02 + 5.582e-01 ≈ 5.351e-01 ≈ 4.633e-01 + 4.383e-01 + 5.446e-01 ≈ 5.362e-01 ≈ 5.153e-01 + 5.505e-01

(6.94e-02) (9.41e-02) (7.87e-02) (5.11e-02) (6.53e-03) (7.07e-03) (3.69e-02) (1.75e-02) (8.50e-03) (8.34e-03) (1.38e-02) (8.99e-03)

MaF14 10
0.000e+00 ≈ 0.000e+00 ≈ 5.473e-05 ≈ 0.000e+00 ≈ 1.628e-02 ≈ 2.616e-04 ≈ 0.000e+00 ≈ 0.000e+00 ≈ 0.000e+00 ≈ 0.000e+00 ≈ 5.470e-02 ≈ 8.338e-03

(0.00e+00) (0.00e+00) (2.95e-04) (0.00e+00) (7.02e-02) (1.41e-03) (0.00e+00) (0.00e+00) (0.00e+00) (0.00e+00) (1.17e-01) (4.10e-02)

MaF15 10
0.000e+00 ≈ 8.646e-08 ≈ 0.000e+00 ≈ 0.000e+00 ≈ 0.000e+00 ≈ 0.000e+00 ≈ 0.000e+00 ≈ 0.000e+00 ≈ 5.533e-06 ≈ 0.000e+00 ≈ 0.000e+00 ≈ 1.037e-06

(0.00e+00) (4.66e-07) (0.00e+00) (0.00e+00) (0.00e+00) (0.00e+00) (0.00e+00) (0.00e+00) (9.84e-06) (0.00e+00) (0.00e+00) (2.73e-06)

+/≈/− 6/7/2 8/5/2 11/3/1 6/5/4 7/7/1 8/6/1 4/11/0 6/6/3 2/12/1 6/9/0 5/8/2

‘+’, ‘≈’, and ‘−’ indicate that the result of E3A is significantly better than, equivalent to, and significantly worse
than that of the peer algorithm at a 0.05 level by the statistical tests (i.e., Friedman test and posthoc Nemenyi test),
respectively.
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Figure 4: The final solution set with the median IGD obtained by the 12 algorithms on the ten-
objective MaF8.

some small sub-regions, leading to a large proportion of sparse regions. One interesting observation is
that 1by1EA obtains a solution set that are evenly distributed but only cover the central region of the
polygon. One possible explanation is that the boundary maintenance mechanism in 1by1EA may fail
to find boundary solutions when the Pareto front is irregular. This can also be seen in Figure 3 (e),
where 1by1EA is unable to obtain boundary solutions even for the tri-objective MaF1 which has an
inverted simplex-like Pareto front. Although VaEA, NSGA-II/SDR, AR-MOEA, and SPEA2+SDE
can provide a better balance between convergence and diversity, they have their own disadvantages.
The solutions of VaEA and AR-MOEA are not uniformly distributed over the decagon, with some
solutions crowded or even overlapping in some regions. NSGA-II/SDR and SPEA2+SDE struggle to
find boundary solutions of the decagon. Finally, among these algorithms, E3A obtains very promis-
ing results on the ten-objective MaF8, with a set of evenly distributed solutions covering the whole
decagon.

4.2.4 Algorithm Performance on Fifteen-Objective Problems

Tables 9 and 10 show the mean and standard deviation (in parentheses) of the IGD values obtained
by E3A and the peer algorithms on the fifteen-objective MaF problems. From Table 9, it can be
seen that E3A obtains the best IGD mean on five test problems, MaF2, MaF4, MaF8, MaF10,
and MaF13. Concerning pairwise comparison, the proportions of the test problems where E3A
significantly outperforms NSGA-III, RVEA, MOEA/DD, RPD-NSGA-II, 1by1EA, MaOEA-CSS,
VaEA, NSGA-II/SDR, SPEA2+SDE, SRA, and AR-MOEA are 9/15, 8/15, 11/15, 9/15, 9/15, 10/15,
9/15, 8/15, 3/15, 6/15, and 6/15, respectively. Conversely, the proportions of the test problems where
E3A performs significantly worse than these peer algorithms are 0/15, 1/15, 1/15, 2/15, 1/15, 2/15,
1/15, 3/15, 2/15, 2/15, and 1/15, respectively.
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Table 9: Mean and standard deviation of the IGD values obtained by the 12 algorithms on the
fifteen-objective MaF problems.

Problem Obj. NSGA-III RVEA MOEA/DD RPD-NSGA-II 1by1EA MaOEA-CSS VaEA NSGA-II/SDR SPEA2+SDE SRA AR-MOEA E3A

MaF1 15
3.196e-1 ≈ 6.171e-1 + 5.388e-1 + 5.129e-1 + 4.846e-1 ≈ 2.786e-1 − 2.767e-1 − 2.818e-1 − 3.034e-1 ≈ 3.256e-1 ≈ 3.228e-1 ≈ 3.296e-1

(6.86e-3) (8.12e-2) (2.97e-2) (4.24e-2) (3.65e-2) (2.94e-2) (2.32e-3) (3.45e-3) (1.59e-2) (9.80e-3) (8.10e-3) (1.37e-2)

MaF2 15
2.128e-1 ≈ 4.640e-1 + 4.263e-1 + 2.233e-1 + 5.556e-1 + 2.402e-1 + 1.999e-1 ≈ 3.492e-1 + 1.993e-1 ≈ 1.988e-1 ≈ 2.279e-1 + 1.930e-1

(1.82e-2) (1.27e-1) (4.64e-2) (2.93e-3) (2.27e-2) (1.15e-2) (2.27e-3) (3.58e-2) (1.24e-2) (6.25e-3) (9.56e-3) (1.13e-2)

MaF3 15
2.211e+3 + 6.271e+0 + 4.388e+1 + 3.094e-1 ≈ 7.445e+1 + 1.540e+1 + 6.712e+4 + 1.407e-1 ≈ 1.126e-1 ≈ 3.992e+4 + 5.024e+1 + 2.700e+0

(6.90e+3) (9.44e+0) (4.21e+1) (3.31e-1) (1.05e+2) (2.21e+1) (1.69e+5) (1.44e-3) (2.96e-3) (1.84e+5) (7.45e+1) (1.10e+1)

MaF4 15
3.358e+3 ≈ 8.806e+3 + 1.531e+4 + 4.614e+3 + 1.058e+4 + 5.451e+3 + 1.951e+3 ≈ 7.050e+3 + 5.513e+3 + 4.568e+3 + 3.901e+3 + 1.476e+3

(4.18e+2) (1.93e+3) (2.37e+3) (9.87e+2) (9.96e+2) (9.96e+2) (9.38e+2) (1.26e+3) (7.65e+2) (1.07e+3) (4.26e+2) (9.55e+1)

MaF5 15
2.372e+3 + 2.960e+3 + 7.302e+3 + 1.658e+3 ≈ 6.019e+3 + 7.157e+3 + 1.385e+3 ≈ 7.304e+3 + 2.131e+3 ≈ 1.333e+3 ≈ 3.607e+3 + 1.413e+3

(1.68e+2) (2.96e+2) (4.73e+1) (1.28e+2) (7.16e+1) (1.11e+2) (7.86e+1) (1.23e+2) (1.44e+2) (2.28e+2) (1.59e+2) (9.01e+1)

MaF6 15
8.378e-1 ≈ 4.023e-1 − 1.192e-1 − 3.427e-1 − 1.838e-3 − 3.294e-1 − 1.269e+0 ≈ 2.378e-2 − 1.413e+0 ≈ 4.589e+0 ≈ 4.108e-1 − 1.342e+0

(3.71e-1) (2.74e-1) (1.45e-2) (1.16e-1) (3.97e-5) (1.69e-1) (4.97e-1) (7.15e-2) (8.48e-1) (1.61e+0) (1.43e-1) (5.41e-1)

MaF7 15
5.992e+0 + 2.521e+0 ≈ 3.430e+0 ≈ 7.150e+0 + 3.074e+0 ≈ 5.057e+0 + 2.493e+0 ≈ 4.399e+0 + 1.452e+0 − 1.498e+0 − 3.361e+0 ≈ 2.975e+0

(1.42e+0) (4.21e-1) (3.55e-2) (6.91e-1) (3.52e-1) (5.22e-1) (1.99e-1) (9.35e-1) (3.26e-2) (1.57e-2) (8.03e-1) (9.71e-1)

MaF8 15
3.924e-1 + 1.268e+0 + 1.266e+0 + 7.496e-1 + 4.472e-1 + 1.667e-1 ≈ 1.579e-1 ≈ 2.018e-1 + 1.560e-1 ≈ 9.902e-1 + 1.735e-1 + 1.378e-1

(6.82e-2) (1.88e-1) (9.66e-2) (1.31e-1) (1.03e-1) (8.05e-3) (3.12e-3) (2.04e-2) (7.37e-3) (2.17e+0) (5.57e-3) (1.99e-3)

MaF9 15
2.320e+0 + 1.690e+0 + 9.510e-1 + 8.189e-1 + 2.727e-1 ≈ 2.108e-1 + 1.749e-1 ≈ 1.910e-1 ≈ 1.316e-1 ≈ 1.386e-1 ≈ 1.558e-1 ≈ 1.583e-1

(4.25e+0) (1.91e+0) (1.52e-2) (1.19e-1) (2.29e-1) (7.80e-3) (5.26e-2) (6.42e-3) (9.09e-4) (2.96e-2) (7.57e-3) (3.51e-2)

MaF10 15
2.197e+0 + 1.853e+0 ≈ 2.302e+0 + 1.588e+0 ≈ 2.319e+0 + 2.090e+0 + 3.358e+0 + 2.418e+0 + 1.745e+0 ≈ 2.904e+0 + 2.085e+0 + 1.570e+0

(9.53e-2) (8.24e-2) (1.21e-1) (4.24e-2) (1.29e-1) (7.61e-2) (1.92e-1) (5.95e-2) (4.12e-2) (4.28e-1) (7.12e-2) (1.69e-1)

MaF11 15
1.566e+0 ≈ 1.711e+0 ≈ 1.913e+0 + 1.495e+0 ≈ 2.276e+0 + 2.370e+0 + 1.665e+0 ≈ 2.341e+0 + 1.770e+0 + 1.754e+0 + 1.549e+0 ≈ 1.562e+0

(8.00e-2) (1.28e-1) (5.89e-2) (4.45e-2) (6.50e-2) (6.60e-2) (5.35e-2) (9.17e-2) (4.48e-2) (6.30e-2) (4.37e-2) (9.50e-2)

MaF12 15
8.034e+0 + 7.665e+0 ≈ 8.765e+0 + 8.410e+0 + 9.742e+0 + 9.817e+0 + 7.026e+0 ≈ 7.657e+0 ≈ 8.199e+0 + 7.997e+0 ≈ 7.991e+0 ≈ 7.624e+0

(1.45e-1) (2.51e-1) (3.02e-1) (6.20e-2) (3.29e-1) (2.44e-1) (7.60e-2) (1.70e-1) (4.01e-1) (2.34e-1) (2.10e-1) (1.90e-1)

MaF13 15
2.785e-1 + 1.198e+0 + 3.427e-1 + 6.548e-1 + 3.353e-1 + 1.978e-1 + 1.593e-1 + 1.797e-1 + 1.224e-1 ≈ 1.325e-1 ≈ 1.490e-1 ≈ 1.076e-1

(5.05e-2) (4.44e-1) (3.03e-2) (4.34e-2) (6.67e-2) (1.76e-2) (2.22e-2) (1.23e-2) (1.53e-2) (1.76e-2) (9.48e-3) (1.06e-2)

MaF14 15
5.701e+0 ≈ 3.577e+0 ≈ 2.542e+0 ≈ 1.622e+0 − 4.412e+0 ≈ 4.153e+0 ≈ 1.454e+1 + 1.539e+0 − 2.683e+0 ≈ 5.558e+0 + 1.848e+0 ≈ 2.961e+0

(4.99e+0) (1.75e+0) (9.36e-1) (4.41e-1) (1.99e+0) (1.23e+0) (5.92e+0) (2.99e-1) (9.00e-1) (1.64e+0) (6.14e-1) (1.29e+0)

MaF15 15
1.530e+1 + 1.391e+0 ≈ 3.401e+0 + 4.488e+0 ≈ 1.764e+0 ≈ 1.520e+0 ≈ 4.231e+0 + 1.347e+0 ≈ 1.168e+0 − 1.262e+0 − 1.956e+0 ≈ 2.225e+0

(4.44e+0) (6.35e-2) (9.21e-1) (5.85e-1) (1.12e-1) (9.81e-2) (6.98e-1) (4.00e-2) (5.47e-2) (4.51e-2) (2.07e-1) (1.78e+0)

+/≈/− 9/6/0 8/6/1 11/3/1 9/4/2 9/5/1 10/3/2 9/5/1 8/4/3 3/10/2 6/7/2 6/8/1

‘+’, ‘≈’, and ‘−’ indicate that the result of E3A is significantly better than, equivalent to, and significantly worse
than that of the peer algorithm at a 0.05 level by the statistical tests (i.e., Friedman test and posthoc Nemenyi test),
respectively.

From Table 10, it can be seen that E3A obtains the best HV results on six test problems (i.e., MaF2,
MaF4, MaF8, MaF10, MaF11, and MaF13). Concerning pairwise comparison, the proportions of
the test problems where E3A significantly outperforms NSGA-III, RVEA, MOEA/DD, RPD-NSGA-
II, 1by1EA, MaOEA-CSS, VaEA, NSGA-II/SDR, SPEA2+SDE, SRA, and AR-MOEA are 10/15,
11/15, 13/15, 7/15, 10/15, 11/15, 9/15, 6/15, 1/15, 5/15, and 6/15, respectively. Conversely, the
proportions of the test problems where E3A performs significantly worse than these peer algorithms
are 0/15, 1/15, 1/15, 0/15, 2/15, 1/15, 1/15, 1/15, 1/15, 1/15, and 1/15, respectively.

4.2.5 Overall Performance

Tables 11 and 12 summarize the comparative results in terms of IGD and HV of E3A against the 11
peer algorithms on all 60 MaF problem instances, respectively. Symbols ‘+’, ‘≈’, and ‘−’ indicate the
number of test instances where E3A performs significantly better than, equivalent to, and significantly
worse than the peer algorithm at a 0.05 level by the statistical tests (i.e., Friedman test and posthoc
Nemenyi test), respectively.

As shown in Table 11, in terms of IGD, E3A significantly outperforms the peer algorithms (NSGA-
III, RVEA, MOEA/DD, RPD-NSGA-II, 1by1EA, MaOEA-CSS, VaEA, NSGA-II/SDR, SPEA2+SDE,
SRA, and AR-MOEA) on 32, 40, 42, 37, 38, 34, 25, 31, 11, 26, and 16 out of all 60 test instances,
respectively. Conversely, E3A significantly performs worse than the 11 algorithms on 4, 6, 4, 8, 7, 8,
11, 4, 7, 6, and 8 out of all 60 test instances, respectively.

As shown in Table 12, in terms of HV, E3A significantly outperforms the peer algorithms (NSGA-
III, RVEA, MOEA/DD, RPD-NSGA-II, 1by1EA, MaOEA-CSS, VaEA, NSGA-II/SDR, SPEA2+SDE,
SRA, and AR-MOEA) on 37, 43, 47, 31, 39, 41, 31, 27, 5, 27, and 22 out of all 60 test instances,
respectively. Conversely, E3A significantly performs worse than the 11 algorithms on 2, 4, 4, 4, 6, 4,
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Table 10: Mean and standard deviation of the HV values obtained by the 12 algorithms on the
fifteen-objective MaF problems.

Problem Obj. NSGA-III RVEA MOEA/DD RPD-NSGA-II 1by1EA MaOEA-CSS VaEA NSGA-II/SDR SPEA2+SDE SRA AR-MOEA E3A

MaF1 15
7.271e-03 + 3.884e-03 + 3.638e-03 + 8.698e-03 + 1.847e-02 − 1.821e-02 ≈ 1.599e-02 ≈ 1.779e-02 ≈ 1.740e-02 ≈ 1.350e-02 ≈ 1.458e-02 ≈ 1.677e-02

(4.86e-04) (1.08e-03) (2.47e-03) (6.51e-04) (4.82e-04) (1.47e-04) (3.25e-04) (2.74e-04) (1.89e-04) (4.73e-04) (3.44e-04) (1.72e-04)

MaF2 15
7.673e-01 + 7.568e-01 + 6.236e-01 + 7.513e-01 + 7.916e-01 + 7.773e-01 + 8.119e-01 + 8.605e-01 ≈ 8.720e-01 ≈ 8.307e-01 ≈ 7.883e-01 + 8.734e-01

(1.35e-02) (9.55e-03) (2.26e-02) (9.16e-03) (1.36e-02) (1.39e-02) (1.19e-02) (1.10e-02) (7.73e-03) (1.00e-02) (8.11e-03) (6.11e-03)

MaF3 15
3.975e-01 + 0.000e+00 + 5.266e-02 + 1.049e+00 + 1.132e+00 + 5.362e-01 + 4.511e-02 + 1.562e+00 ≈ 1.471e+00 ≈ 1.437e+00 ≈ 1.357e+00 ≈ 1.419e+00

(6.08e-01) (0.00e+00) (2.84e-01) (6.89e-01) (6.00e-01) (6.69e-01) (2.43e-01) (2.18e-02) (4.01e-01) (4.79e-01) (5.41e-01) (4.97e-01)

MaF4 15
2.925e-02 + 1.631e-02 + 4.889e-02 + 1.001e-01 ≈ 3.954e-02 + 8.523e-02 + 6.212e-02 + 1.496e-01 ≈ 9.529e-02 ≈ 7.708e-02 + 8.642e-02 + 1.514e-01

(3.49e-02) (1.29e-02) (2.32e-02) (3.33e-02) (1.52e-02) (4.13e-02) (5.14e-02) (6.10e-02) (3.73e-02) (4.33e-02) (3.53e-02) (4.48e-02)

MaF5 15
1.250e+00 ≈ 1.225e+00 ≈ 9.926e-01 + 1.265e+00 ≈ 1.016e+00 + 9.709e-01 + 1.240e+00 ≈ 2.424e-01 + 1.217e+00 ≈ 1.184e+00 ≈ 1.266e+00 ≈ 1.248e+00

(7.47e-02) (9.35e-02) (1.16e-01) (9.49e-03) (4.01e-02) (2.38e-02) (5.38e-03) (1.32e-01) (4.28e-02) (3.61e-02) (3.76e-02) (6.30e-02)

MaF6 15
1.962e-01 + 1.819e-01 + 1.838e-01 + 1.805e-01 + 2.083e-01 ≈ 1.305e-01 + 2.088e-01 − 1.962e-01 + 2.071e-01 ≈ 2.052e-01 ≈ 2.084e-01 ≈ 2.074e-01

(2.73e-03) (9.88e-03) (2.08e-03) (1.06e-02) (1.03e-04) (3.16e-02) (6.15e-05) (7.44e-03) (4.58e-04) (1.22e-03) (5.99e-05) (5.85e-05)

MaF7 15
4.893e-01 + 4.030e-01 + 1.464e-01 + 5.145e-01 ≈ 2.933e-01 + 2.851e-01 + 4.830e-01 + 5.195e-01 ≈ 5.445e-01 ≈ 5.160e-01 ≈ 4.829e-01 + 5.255e-01

(1.36e-02) (2.28e-02) (6.59e-07) (7.36e-03) (5.54e-02) (3.37e-02) (1.08e-02) (7.80e-03) (9.84e-03) (6.73e-03) (6.27e-03) (9.51e-02)

MaF8 15
1.605e-01 + 1.273e-01 + 1.306e-01 + 1.417e-01 + 1.403e-01 + 2.010e-01 ≈ 1.993e-01 ≈ 1.962e-01 + 2.014e-01 ≈ 1.496e-01 + 1.950e-01 + 2.018e-01

(1.06e-02) (7.69e-03) (1.63e-02) (9.28e-03) (1.10e-02) (1.78e-03) (2.84e-03) (2.02e-03) (3.40e-03) (5.89e-02) (6.07e-03) (2.47e-03)

MaF9 15
2.824e-01 + 3.185e-01 + 3.816e-01 + 3.434e-01 + 3.649e-01 + 4.101e-01 + 2.994e-01 + 4.445e-01 ≈ 4.998e-01 ≈ 4.942e-01 ≈ 4.833e-01 ≈ 4.909e-01

(8.28e-02) (2.47e-02) (3.47e-02) (3.37e-02) (2.98e-02) (1.20e-02) (9.67e-02) (9.80e-03) (8.83e-03) (1.41e-02) (1.45e-02) (1.34e-02)

MaF10 15
1.062e+00 + 1.164e+00 + 7.850e-01 + 1.348e+00 ≈ 1.127e+00 + 1.182e+00 + 8.463e-01 + 1.269e+00 + 1.513e+00 ≈ 8.351e-01 + 1.154e+00 + 1.546e+00

(6.80e-02) (7.88e-02) (6.36e-02) (6.67e-02) (7.23e-02) (5.49e-02) (6.38e-02) (8.40e-02) (4.73e-02) (7.39e-02) (5.56e-02) (5.23e-02)

MaF11 15
1.591e+00 ≈ 1.578e+00 + 1.551e+00 + 1.593e+00 ≈ 1.564e+00 + 1.514e+00 + 1.585e+00 + 1.551e+00 + 1.575e+00 + 1.558e+00 + 1.597e+00 ≈ 1.606e+00

(3.30e-03) (9.67e-03) (7.34e-03) (3.60e-03) (8.61e-03) (1.92e-02) (3.98e-03) (1.20e-02) (7.34e-03) (7.90e-03) (3.15e-03) (1.59e-03)

MaF12 15
1.149e+00 ≈ 1.152e+00 ≈ 1.064e+00 + 1.137e+00 ≈ 9.670e-01 + 9.259e-01 + 1.079e+00 + 1.182e+00 − 1.157e+00 ≈ 1.114e+00 + 1.112e+00 ≈ 1.145e+00

(2.08e-02) (1.83e-02) (2.60e-02) (4.36e-02) (2.67e-02) (3.20e-02) (5.41e-02) (7.57e-03) (9.95e-03) (1.37e-02) (2.77e-02) (4.19e-02)

MaF13 15
3.120e-01 + 2.787e-01 + 3.331e-01 + 1.304e-01 + 4.816e-01 ≈ 4.455e-01 + 3.995e-01 + 4.072e-01 + 4.872e-01 ≈ 4.802e-01 ≈ 4.491e-01 + 5.035e-01

(5.28e-02) (7.48e-02) (8.86e-02) (4.48e-02) (1.56e-02) (1.40e-02) (2.61e-02) (2.01e-02) (1.47e-02) (1.55e-02) (1.50e-02) (1.46e-02)

MaF14 15
0.000e+00 ≈ 4.348e-02 ≈ 1.747e-02 ≈ 0.000e+00 ≈ 1.518e-01 ≈ 8.000e-02 ≈ 0.000e+00 ≈ 1.585e-01 ≈ 1.183e-02 ≈ 4.464e-04 ≈ 3.441e-02 ≈ 4.395e-02

(0.00e+00) (6.65e-02) (5.06e-02) (0.00e+00) (1.34e-01) (9.18e-02) (0.00e+00) (1.21e-01) (3.81e-02) (2.30e-03) (6.46e-02) (7.26e-02)

MaF15 15
0.000e+00 ≈ 1.454e-02 − 1.127e-02 − 0.000e+00 ≈ 3.153e-02 − 4.106e-02 − 0.000e+00 ≈ 1.229e-03 ≈ 5.409e-02 − 2.745e-02 − 1.155e-02 − 8.201e-05

(0.00e+00) (6.99e-03) (7.22e-03) (0.00e+00) (1.10e-02) (9.65e-03) (0.00e+00) (8.13e-04) (1.58e-02) (1.23e-02) (3.87e-03) (1.80e-04)

+/≈/− 10/5/0 11/3/1 13/1/1 7/8/0 10/3/2 11/3/1 9/5/1 6/8/1 1/13/1 5/9/1 6/8/1

‘+’, ‘≈’, and ‘−’ indicate that the result of E3A is significantly better than, equivalent to, and significantly worse
than that of the peer algorithm at a 0.05 level by the statistical tests (i.e., Friedman test and posthoc Nemenyi test),
respectively.

Table 11: Summary of the comparative results in terms of IGD between E3A and the other 11 state-
of-the-art algorithms in all 60 MaF problem instances.

Obj. NSGA-III RVEA MOEA/DD RPD-NSGA-II 1by1EA MaOEA-CSS VaEA NSGA-II/SDR SPEA2+SDE SRA AR-MOEA

E3A (+/≈/−)

3 7/5/3 12/1/2 8/6/1 11/2/2 8/5/2 7/7/1 5/6/4 9/6/0 4/10/1 9/6/0 4/8/3

5 10/4/1 11/2/2 12/2/1 9/4/2 9/3/3 10/2/3 6/8/1 5/10/0 3/11/1 7/7/1 2/11/2

10 6/9/0 9/5/1 11/3/1 8/5/2 12/2/1 7/6/2 5/5/5 9/5/1 1/11/3 4/8/3 4/9/2

15 9/6/0 8/6/1 11/3/1 9/4/2 9/5/1 10/3/2 9/5/1 8/4/3 3/10/2 6/7/2 6/8/1

Total 32/24/4 40/14/6 42/14/4 37/15/8 38/15/7 34/18/8 25/24/11 31/25/4 11/42/7 26/28/6 16/36/8

‘+’, ‘≈’, and ‘−’ indicate that the result of E3A is significantly better than, equivalent to, and significantly worse
than that of the peer algorithm at a 0.05 level by the statistical tests (i.e., Friedman test and posthoc Nemenyi test),
respectively.

Table 12: Summary of the comparative results in terms of HV between E3A and the other 11 state-
of-the-art algorithms in all 60 MaF problem instances.

Obj. NSGA-III RVEA MOEA/DD RPD-NSGA-II 1by1EA MaOEA-CSS VaEA NSGA-II/SDR SPEA2+SDE SRA AR-MOEA

E3A (+/≈/−)

3 11/4/0 13/2/0 10/4/1 11/4/0 12/2/1 11/3/1 9/6/0 9/6/0 1/13/1 11/2/2 5/10/0

5 10/5/0 11/3/1 13/1/1 7/8/0 10/3/2 11/3/1 9/5/1 6/8/1 1/13/1 5/9/1 6/8/1

10 6/7/2 8/5/2 11/3/1 6/5/4 7/7/1 8/6/1 4/11/0 6/6/3 2/12/1 6/9/0 5/8/2

15 10/5/0 11/3/1 13/1/1 7/8/0 10/3/2 11/3/1 9/5/1 6/8/1 1/13/1 5/9/1 6/8/1

Total 37/21/2 43/13/4 47/9/4 31/25/4 39/15/6 41/15/4 31/27/2 27/28/5 5/51/4 27/29/4 22/34/4

‘+’, ‘≈’, and ‘−’ indicate that the result of E3A is significantly better than, equivalent to, and significantly worse
than that of the peer algorithm at a 0.05 level by the statistical tests (i.e., Friedman test and posthoc Nemenyi test),
respectively.
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Figure 5: Plots of effectiveness and efficiency of the 12 algorithms on all 60 problem instances. The
effectiveness is the average performance scores of these algorithms on all 60 problem in-
stances in terms of IGD, and the efficiency is the average computational time (in seconds)
of these algorithms on all 60 problem instances. The smaller the score, the better the
overall performance of the algorithm in terms of IGD.

2, 5, 4, 4, and 4 out of all 60 test instances, respectively. The results demonstrate the effectiveness
of the proposed algorithm.

Next, we investigate whether E3A performs well in terms of both effectiveness and efficiency by
comparing it with all the peer algorithms based on the average performance score [34] and the
average computational time, respectively. For a specific problem instance, the performance score
of an algorithm is the number of the peer algorithms that perform significantly better than the
algorithm on the problem instance according to the statistical results. The smaller the score, the
better the performance of the algorithm on the problem instance.

Figure 5 shows the average performance scores in terms of IGD and the average computational
time (in seconds) of the 12 algorithms on all 60 problem instances. As can be seen, the proposed
E3A strikes in general the best balance between effectiveness and efficiency out of the 12 algorithms.
E3A and AR-MOEA obtain almost the same best average IGD score (1.23 and 1.22, respectively),
and the computational cost of E3A is significantly lower than other well-performed algorithms such
as SPEA2+SDE and AR-MOEA.

Note that the main goal of MaOEAs is to assist the decision maker to choose the preferred solu-
tion(s). Since the Pareto front of a real-world MaOP is often unknown, a set of well-distributed and
well-converged solutions that approximate the Pareto front can be used to investigate the character-
istics of the problem (e.g., the shape of the approximate Pareto front may be convex or degenerate).
Based on the approximate Pareto front, the decision maker can determine preferences. For example,
the decision maker may only be interested in solutions that the objective value is within a specific
range in certain objectives. In this case, we can incorporate the decision maker’s preferences into the
evaluation of the obtained solution set to select those preferred solutions.

5 Conclusion

Achieving both high effectiveness and efficiency can be a challenging task in many-objective op-
timization, particularly in a real-world application, where the problem’s Pareto front is typically
irregular. In this paper, we have proposed a many-objective evolutionary algorithm (called E3A)
to tackle problems with various Pareto fronts. We have compared our algorithm with 11 state-of-
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the-art algorithms on 60 problem instances with up to 15 objectives. The results have shown that
our algorithm achieves a better balance between effectiveness and efficiency than its peers. Lastly,
it is worth mentioning that like most many-objective optimization algorithms, our algorithm focuses
on the environmental selection, one key component in an evolutionary algorithm, leaving mating
selection flexible to be implemented. In the future, we would like to explore the mating selection
component in many-objective optimization further, particularly on how to select solutions based on
their shifted position for the crossover operation. Moreover, we would like to apply our approach
to the real-world MaOPs, such as the many-objective optimal software product selection problem in
engineering [49] and the many-objective task scheduling problem in cloud computing [50].
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