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iCGPN: Interaction-Centric Graph Parsing Network
for Human-Object Interaction Detection

Wenhao Yang, Guanyu Chen, Zhicheng Zhao, Fei Su and Hongying Meng

Abstract—Human-Object Interaction (HOI) detection aims to
infer different interactions, which occur between humans and
related objects of images. HOI is usually represented by a triplet
〈human, action, object〉 and can be modeled as a graph. Thus,
with global structural information of images, graph-based meth-
ods can detect interactions. However, in existing graph networks,
although different fully-connected graphs are built, all detected
bounding boxes are regarded as graph nodes equally or different
types of nodes according to the category, thereby the dominant
role of humans in HOI is not obvious or ignored. In addition,
object node representations mainly focus on appearance features,
contributing little to HOI inference. To address these issues,
a novel graph-based HOI detection model, named interaction-
centric graph parsing network (iCGPN) is proposed here that
models one human node as a central node, and other nodes as
semantic nodes. Firstly, for each detected human bounding box,
a human-centric fully-connected graph is constructed to learn
related HOIs. Secondly, in order to reflect the difference between
central nodes and semantic nodes and model different edge re-
lationships, we design different feature representations. Through
introducing an attention mechanism like a transformer, global
information related to human-object interaction is explored to
enrich the semantic node representation, in which spatial layout,
relative locations and object categories information are combined.
Finally, a multi-relation graph convolutional network is applied
to update the node feature and infer the HOI. Furthermore, a
hierarchical random shift is proposed to augment the data of
the training set to fit the object detection deviation and enhance
the network generalization ability. Extensive experimental results
show that iCGPN achieves very competitive results in comparison
with state-of-the-art graph-based methods on the V-COCO and
HICO-DET datasets, which demonstrates the effectiveness of the
proposed method.

Index Terms—human-object interaction detection, attention
mechanism, multi-relation graph convolutional network, hierar-
chical random shift.

I. INTRODUCTION

In the past few years, object detection [5, 12, 15, 22, 34]
has great progress due to the application of deep learning.
However, relationship between objects are not sufficiently
explored, thereby Human-Object Interaction (HOI) [8, 13,
17, 21] has been introduced to determine the relationship
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Fig. 1. HOI detection. Bounding boxes are detection results of the object
detector. Green is for the human and red is for the object. The HOI result of
this example is a triplet 〈human, hold, tennis racket〉.

between humans and objects in given images, and many two-
stage methods [7, 8, 21, 26, 28, 30, 33] were proposed, in
which all human-object pairs are firstly enumerated, and then
interactions of the pair are detected. Generally, HOI detection
consists of two main steps: (1) object dete,ction and (2) HOI
prediction. We firstly use an object detector to detect all
human/object instances and then predict the interaction of all
human-object pairs. HOI is usually represented by a triplet
〈human, action, object〉 as shown in Fig.1.

Based on model architectures, the mainstream two-stage
HOI detection can be divided into two groups: multi-stream
methods [8, 9, 16, 19, 20, 26, 28] and graph-based methods
[21, 27, 31, 33]. There are some other works [7, 18, 30, 32]
combining them. Typical multi-stream methods contain three
kinds of streams: human, object, and spatial stream. Recent at-
tempts [19, 20] include the integrating of extra knowledge such
as word embedding. The input of the multi-stream network is
usually a human-object pair, which highlights the subjectivity
of the human and can discover multiple information related
to the HOI. Differently, graph-based methods make use of
global structural knowledge by constructing graphs where
detected boxes are treated as graph nodes, and then node
representations are updated to predict interaction labels. In
general, multi-stream methods can concentrate richer features
in many aspects than graph-based methods as they are weaker
in extracting relationship information. However, graph-based
methods are easier to utilize context and global information
and thus may get better performance in the relationship
reasoning for a more comprehensive understanding. Anyway,
several issues are still remaining.

Firstly, the dominant role of humans is not obvious, even
ignored in most graph-based methods [21, 27]. We argue that
in a real HOI graph, there should have only one central human
node, and it is different from other nodes (may be objects and
other human nodes). Therefore, we treat them as a central
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Fig. 2. The relationship information among all object, such as spatial
information and object category, can disambiguate in HOI detection. On the
left of the picture, the model may mistakenly infer cut-with predicates for
[human-knife] if it only depends on the visual and spatial feature of human
and knife. But the relationship information of [sink-knife] is useful for the
model to correctly infer wash predicates. On the right, with the message from
[tennis racket-sports ball], the model can also easily infer hit predicates for
[human-sports ball].

node and semantic nodes. Hence, different from Zheng, et al.
[27], the relationship between human nodes and object nodes
are different according to the role (central nodes or semantic
nodes) of the human nodes. Hence, it is helpful to understand
the scene and interaction (catching frisbee) between the central
node and related three semantic nodes.

Secondly, some recent works [7, 18] neglect the relationship
information among objects. In our opinion, the relationship
among all objects obtained by visual feature, spatial informa-
tion and object category, can disambiguate in HOI detection.
For example, on the left side of Fig.2, the relationship of
[sink-knife] is useful for correctly inferring wash instead
of predicting cut-with for [human-knife]. On the right side,
both two actions, i.e., throw or hit between human and ball
may be predicted if only the visual and spatial cues are
considered. Thus, by the supplement of contextual cue from
[tennis racket-sports ball], the right action hit can be easily
inferred. Therefore, a fully-connected graph can be constructed
to build the relationships among all nodes.

Thirdly, unlike multi-stream methods, most graph models
[18, 21, 27, 30–32] mainly use appearance features within
object bounding boxes to infer HOIs, and richer features such
as spatial and semantic features are neglected. Inspired by
multi-stream methods, we aggregate visual, spatial and seman-
tic information in parallel for HOI detection. Accordingly, for
different types of nodes, different modules are designed to
extract feature representations. Specially, via introducing an
attention mechanism like a transformer [24], global informa-
tion related to HOI is explored to enrich the semantic node
representation. In addition, spatial layout, relative locations
and object categories are also combined.

Moreover, during the inference, the detection model will
be firstly applied to get ROIs, while the detection may not
be good as that in training data. Considering that the IoUs
between ground-truth and detected boxes ranges from 0.5 to
1, a hierarchical random shift method is proposed to augment
the data of the training set, so as to relieve the inconsistency
between the detected ROIs and ground-truth.

In summary, we propose an interaction-centric graph parsing
network (iCGPN) in this paper. Firstly, for each detected
human bounding box in images, the iCGPN constructs a
fully-connected graph where a human box is treated as the

center (the central node), and other boxes are the semantic
nodes. During the training and inference stages, we enumerate
each centric node with other surrounding nodes (semantics
nodes) to construct a graph network. In this way, not only
the dominant role of the human can be highlighted, but
also richer HOI information related to the central node can
be explored. Secondly, for semantic nodes, via introducing
the attention mechanism, we propose an interaction-centric
module to selectively extract semantic features to enrich node
representations. Meanwhile, a multi-relation GCN is designed
to measure the relationship between nodes and update node
features with different edge information. Finally, a readout
function is used to predict interactions according to node
representations. Moreover, we adopt multi-IoU random shift
for data augmentation to enable the proposed model to adapt
to actual detection scenes.

To summarize, our contributions are as follows,
- By introducing a multi-relation GCN, an interaction-

centric graph parsing network (iCGPN) is proposed to
highlight the dominant role of humans in Human-Object
Interactions.

- We propose a novel semantic node representation, in
which interaction-related semantic features and meaning-
ful object information are integrated.

- To enhance the generalization capability of iCGPN, a new
data augmentation strategy based on multi-IoU random
shift is designed during the training.

- The experimental results on the V-COCO [10] and HICO-
DET [3] datasets show that the iCGPN achieves very
competitive results in comparison with state-of-the-art
graph-based methods, demonstrating the effectiveness of
the proposed method.

II. RELATED WORK

Object detection. Object detection [12, 15, 22, 34] plays an
important role in HOI detection, where the human and object
instances in images are firstly detected, and subsequently,
the interactions between all pairs of people and objects are
identified. [12, 22] are corresponding bounding box based
two-stage detectors with accurate detection results. However,
[15, 34] used keypoint estimation to find center points and
regresses to object location so as to be faster than two-
stage methods. In this paper, we use CenterNet [34] and
the Hourglass-104 [15] models as the feature extractor and
backbone network respectively.

Graph Neural Network (GNN). GNN has attracted more
attention, and lots of graph models [4, 11, 14, 25] were pro-
posed to capture the interdependent relations between nodes,
in which node features could be dynamically updated by con-
tinuously obtaining information flow from neighboring nodes.
Kipf, et al. [14] introduced the convolution operation into the
graph network, and became the basis of many complex GNNs.
Hamilton, et al. [11] generated the embedding vector of the
target node by learning a function that aggregated neighboring
nodes. Chen, et al. [4] propose a novel hierarchical graph
neural network for few-shot learning to explore multi-level
relationships. Cucurull, et al. [25] introduced the attention
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Fig. 3. The overview of iCGPN. After initializing the graph by using the central node (red node) and semantic nodes (blue nodes), a GCN is applied to
update node features according to the connectivity matrix and predict the final HOI labels.

mechanism into the GNN, thus the weight aggregating feature
of neighboring nodes could be determined. In this paper,
considering semantic nodes representation has used visual
features extracted by the attention mechanism, our proposed
interaction-centric graph parsing network is elaborately con-
structed based on graph convolutional networks (GCNs) [14],
not graph attention networks (GATs) [25].

HOI detection. HOI aims to deal with human-centric visual
relationship detection. [2, 9] proposed a multi-stream model
combining appearance features of detected human and object,
and spatial layout features between human and objects. In [26],
human pose information was also utilized to extract detailed
local appearance cues for HOI detection. And some recent
works [19, 20] paied more attention to extracting semantic
information. Moreover, the visual attention mechanism was
introduced to learn human and object features related to
image contents. Gao, et al. [8] proposed an instance-centric
attention network to refine the pairwise features. Wang, et al.
[28] introduced context-aware human and object appearance
features to learn important contextual features. Similar to
them, we introduce an attention mechanism like a transformer
to extract visual context features. In addition, the GNN was
also applied to model the interactive relationship in HOI
detection. Qi, et al. [21] constructed a homogeneous graph, in
which humans and objects are equally treated, i.e., nodes and
edges in graphs are looked as the same type, thus the leading
role of humans was ignored. Zhou, et al. [33] proposed the
object-bodypart graph and human-bodypart graph to assemble
body part contexts for HOI detection. Lin, et al. [18] per-
formed relation reasoning on human-object pairs with a graph
network, where each graph node contained the information of
each human-object pair, thus the relationships of objects were
ignored. Zheng, et al. [27] designed a heterogeneous graph
that models humans and objects as different kinds of nodes,
yet the subjectivity of humans is still ambiguous because the
conductions of different human nodes representation and the
inter-class relations between human-object nodes are the same.
Gao, et al. [7] constructed a human-centric and an object-
centric HOI subgraph instead of full-connected graph and
applied GAT [25] to aggregate the contextual information, but
it also ignored the contextual cues among objects.

Existing graph-based methods have achieved significant
results in HOI detection, however, as mentioned before, they
have three main issues: 1) the leading role of humans is not
obvious; 2) the relationships among objects are neglected; 3)
The node representations rely on appearance features is weak

for HOI inference. As a result, in this paper, an interaction-
centric graph parsing network (iCGPN) is constructed to learn
related HOIs.

III. METHODOLOGY

Fig.3 shows the framework of proposed iCGPN, which
mainly contains three parts: graph initialization, node updat-
ing and HOI inference. Aiming to detect the interaction of
human in the red box, we conduct a fully-connected graph
with the central human node and three semantic nodes (two
humans and one frisbee). In the initialization, for the central
node, we construct a fully-connected graph G. Specifically,
an interaction-centric module is applied to generate semantic
node features fs. Considering that human appearance contains
information of the posture and action, we simply use a residual
block followed by a Global Average Pooling (GAP) layer to
extract central node representations fc. Then, a link function
is used to measure the connectivity between different graph
nodes, and subsequently, according to predicted relationships,
a GCN is applied to the fully-connected graph to update node
features. Finally, based on the updated graph G′, HOI labels
are predicted using node features.

A. Interaction-Centric Module
To combine semantic interaction features with useful ob-

ject information for semantic nodes, as shown in Fig. 4,
an interaction-centric module is proposed, and it has two
key components. Given the detected object instances by
CenterNet [34], we apply global information sub-module to
obtain interaction-related visual features. And meanwhile the
node information sub-module is used to aggregate spatial and
category information for HOI detection.

CenterNet proposed by Zhou et al. [34] was used for
object detection here with the Hourglass-104 [15] backbone to
generate bounding boxes for all human and object instances in
an image. CenterNet models an object as a single point — the
center point of its bounding box and regresses to its location.
Hourglass-104 backbone is adopted to extract image features.

1) Global information sub-module: Considering that be-
sides appearance features, the semantic node representations of
objects should pay attention to semantic features, containing
interactions between central and semantic nodes. Therefore,
inspired by the transformer [24], a global information sub-
module, in which central node boxes and semantic node boxes
are regarded as the instance inputs respectively, is proposed to
find the interaction-related features in the entire image.
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Fig. 4. Illustration of the interaction-centric module. || means concatenation. The backbone feature fb is extracted from Hourglass-104 in CenterNet. fc
inter

and fs
inter denote the features obtained from the central node and semantic nodes respectively. Two global information sub-modules share the parameters.

The proposed node information sub-module (marked by dotted box) includes three parts: spatial configure, relative position, and word vectors, which are used
to integrate spatial layout features and object categories. By concatenating all features, the interaction-centric module generates semantic node features fs.

Fig.5 provides an overview of global information sub-
module. Here, positional encoding and multi-head attention
[24] are introduced. Firstly, we design two different positional
encodings for the node feature and backbone feature. The
conduction of node positional encoding is followed. After
resizing to a fixed size, the original image region is taken
as a reference, then a binary spatial mask is created by
filling the bounding box of the node with 1. Afterwards, one-
channel binary images are fed into a convolutional block to
get the spatial feature fspn . In addition, we use a 4-dimensional
position vector rn|b as the input of the fully-connected layer
to get a position feature fposn of the node. The position vector
can be written as:

rn|b = {xn − xb
wb

,
yn − yb
hb

, log
wn

wb
, log

hn
hb
} (1)

where (xn, yn) and (xb, yb) are central coordinates of the
node bounding boxes and original images, and (wn, hn) and
(wb, hb) are their widths and heights. fposn will generate
more distinctive location features of the node, as fspn maybe
inaccurate due to spatial mask encoding errors caused by
resizing operation. Thus, we add fposn to fspn and input it to a
convolutional block to get the final node positional encoding
fnpe, which supplies location information to node appearance
features. It will be beneficial in HOI detection. For example,
in a plays baseball scene, the appearance features of a baseball
near a baseball bat should be different from a baseball falling
on the ground, thereby position information provides a strong
clue for accurate HOI detection.

Inspired by the successful applications [23, 29] of relative
positional encodings in vision tasks with Transformer-based
models, we simply add two learnable parameters RH×1

h and
R1×W

w , whose shape respectively equals to the height and
width of the backbone feature map after RoI align [12], to

get backbone positional encoding with shape of H ×W . And
then we obtain visual feature with positional awareness with
the fusion of backbone feature map and positional encoding.
Differently, we apply the supervision from the loss of HOI to
guarantee that semantic node representations are interaction-
related. Thus, the learnable backbone positional encoding also
introduces spatial clues to capture interaction-related features.
The visualization of positional encoding shows that it is
effective to highlight image regions that are likely to contain
human-object interaction instances.

To obtain multiple contextual appearance features, the
multi-head attention is introduced to the global information
sub-module. Specifically, as shown in Fig.5, we firstly obtain
query features, key features and value features. Then, these
features are divided into S slices according to the channels and
mark them as {qi}Si=1, {ki}Si=1, {vi}Si=1 respectively. Finally,
we apply scaled dot-product operation for each pair of features
separately and concatenate results from each q− k− v pair to
obtain the final output feature finter (f cinter for central nodes
and fsinter for semantic nodes).

finter = FC[||Si=1softmax(qTi ki)vi] (2)

where FC[.] denotes fully-connected layers, and || indicates
concatenation. [24] indicates that multi-head attention allows
the model to jointly attend to information from different
representation subspaces. And the feature maps of different
channels obtained from CNN with many filters correspond to
different feature subspaces. Thus, we split features based on
channels and compute each q−k−v pair on each feature map
slice. In experiment, the effectiveness of aggregating features
related to HOI from multiple representation subspaces with
multi-head attention will be demonstated.
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Fig. 5. The overall architecture of global information sub-module.
⊕

means add operation. The multi-head attention is introduced to obtain multiple
contextual appearance features. Two different positional encodings are designed to represent node features and backbone features respectively. The node
positional encoding module, where spatial features from spatial masks and location features from position vectors are combined to get more accurate and
distinctive positional encoding.

2) Node information sub-module: As shown in Fig. 4,
three different features related to HOI are combined in this
sub-module. Previous works [8, 9, 16, 26] indicated that
the spatial relationships of human-object pairs could provide
strong cues for interaction detection. In our implementation,
we use a two-channel binary union region mask to encode spa-
tial relationships between central nodes and semantic nodes.
Then, a convolutional network is applied to extract spatial
layout features fsp from spatial relation maps. In addition
to spatial features, two important object-related factors con-
tribute to HOI detection, namely, relative positions and object
categories. Inspired by InteractNet [9], a 4D relative position
encoding rs|c, as shown in Equation (3), is obtained as the
input of fully-connected layers to extract the relative position
features frp.

rs|c = {xs − xc
wc

,
ys − yc
hc

, log
ws

wc
, log

hs
hc
} (3)

where (xs, ys) and (xc, yc) are central coordinates of the
bounding boxes of semantic node and central node respec-
tively, and (ws,hs) and (wc, hc) are widths and heights of
boxes. For category features fcate, we use Bert [6] to extract
word vectors of object categories and then the 768 dimensional
word vectors are fed into a multi-layer perceptron (MLP) with
a single 96 dimensional hidden layer with ReLU to extract
category representations.

Through two sub-modules, different extracted features
(f cinter, fsinter, fsp, frp and fcate) are concatenated, and then
a MLP with one hidden layer with 512 neurons is used
to obtain the final semantic node representations fs. The
new semantic node representations not only contain multiple
contextual features complementary to the appearance features,
but also add useful information, such as spatial configure,

relative positions and category information for HOI detection,
which is insensitive to appearance variations.

B. Graph Convolutional Network
After extracting features for graph nodes, a GCN is built to

update node representations and predict interaction labels.
Similar to GPNN [21], a link function L(•) is constructed

to measure connectivity between nodes. L(•) considers the
central node features fc and semantic node features fs as the
inputs, and outputs an adjacency matrix A ∈ [0, 1]

|V |×|V | as
follows:

Aij = sigmoid(L([fi, fj ])) (4)

where Aij denotes the (i, j)-th entry of the adjacency matrix
A, and fi and fj are the i-th and j-th node features respec-
tively. [.., ..] indicates concatenation, L(•) is implemented by
a simple convolutional block.

Considering different roles that central nodes and semantic
ones play in human-object interaction, we divide the adjacency
matrix into four parts: 1) identity matrix A0 = I is used for
self-update; 2) semantic-semantic relation matrix A1 is used to
update semantic nodes with other semantic node features. The
nodes can gather more messages from other relevant nodes by
learning with context among semantic nodes, and all semantic
nodes construct the semantic information of the entire scene;
3) semantic-central relation matrix A2 is applied for updating
semantic nodes with central node features. Contextual features
of semantic nodes can be supplemented by central node
appearance features, which contain some useful clues for inter-
action detection, such as posture; 4) central-semantic relation
matrix A3 is adopted to update central nodes with semantic
node features. The context from surrounding semantic nodes
provides abundant scene information for the central node to
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better understand and determine the HOIs. In addition, A2 and
A3 indicate the relationships between different node types.
Thus, they are also expected to determine whether the nodes
have interactions to strengthen the relations between nodes,
which are interactive. According to this relation partitioning
strategy, node features are updated with the following formula:

fpost =
∑
j

Λj
− 1

2AjΛj
− 1

2 fpreWj (5)

where Λ is a diagonal matrix used for graph normalization,
and Λii

j =
∑

k (Aik
j ) + α. Here, we set α = 10−5 to avoid

empty columns. fpre and fpost are node features before and
after update, and Wj is weight matrix for different feature
transformations.

Lastly, the node features are fed into fully-connected layers
to output interaction labels. Here, central node features are
used to predict all related actions of the central node, whereas
semantic node features are applied to infer central-semantic
node pair related actions, showing the uniqueness of human
nodes in graphs. The final action score of the object node is
calculated by the following:

sac,s = (sac + sas ∗ rcs) /2 (6)

where sac and sas are the output score of the central node and
semantic node for the action a, respectively; rcs is the relation
score calculated from the relation matrix. Then, the action-
related object is confirmed by the following:

bs∗ = argmaxbss
a
s ∗ rcs (7)

C. Multi-IoU random shift

Because the object detection results during inference may
not be as excellent as those during training, thus the unbalance
data distribution is serious. To deal with this problem and
to improve the generalization ability of the network, a multi-
IoU random shift is proposed to generate augmented bounding
boxes to satisfy approximately uniform distribution of IoU
with GT boxes between 0.5 and 1.0, as shown in Fig.6(b).
In our implementation, two boxes (blue boxes in Fig.6(a))
with the same center and the same aspect ratio as the GT
box (red box in Fig.6(a)) are generated, and the IoU of these
boxes with the GT box is p. Augmented bounding boxes
(green dotted box in Fig.6(a)) should satisfy the requirement
of including the boundary of the smaller box but not exceeding
the one of the larger box. We find that the IoU of all generated
boxes satisfy approximately normal distribution of IoU with
GT boxes between p and 1. Thus, a large number of generated
boxes satisfy the IoU (p+ 1)/2 with the GT box. Therefore,
to obtain a large number of augmented bounding boxes with
IoU as q, the two generated boxes with the same centre and
aspect ratio as the GT box should satisfy the IoU 2q+ 1 with
the GT box. During training, q will sample from a uniform
distribution between 0.5 and 1.

Fig. 6. (a) Overview of multi-IoU random shift. The red box is GT and two
blue ones have the same center and aspect ratio with the GT. The green dotted
box is an augmented box. (b) An approximate uniform IoU distribution after
data augmentation.

xmax0 = x+ 0.5 ∗ w ∗ √p
ymax0 = y + 0.5 ∗ h ∗ √p

xmin1 = max(0, x− 0.5 ∗ w ∗ 1
√
p

)

ymin1 = max(0, y − 0.5 ∗ h ∗ 1
√
p

)

∆x = 0.5 ∗ w ∗ 1
√
p
− 0.5 ∗ w ∗ √p

∆y = 0.5 ∗ h ∗ 1
√
p
− 0.5 ∗ h ∗ √p (8)

Fig.6(a) shows an overview of our method. The masks in
Fig.6(a) can be calculated according to Equation (8), where (x,
y) is the central coordinate of GT boxes, (w, h) are widths and
heights of GT boxes, respectively. According to Equation (9),
where U(0, 1) denotes the uniform distribution between 0 and
1, augmented bounding boxes can be obtained, and the green
dotted box in Fig.6(a) shown an instance, whose coordinates
are (xmin, ymin, xmax and ymax).

xmin = ∆x ∗ U(0, 1) + xmin1

ymin = ∆y ∗ U(0, 1) + ymin1

xmax = ∆x ∗ U(0, 1) + xmax0

ymax = ∆y ∗ U(0, 1) + ymax0 (9)

D. The Loss

Considering HOI detection is a multilabel task, a multilabel
loss for interaction classification is used. Here, an asymmetric
loss [1] LHOI for final interaction classification is applied
to solve the imbalance problem of positivenegative samples
in HOI datasets. Meanwhile, to guarantee that semantic node
representations focus on interaction-related semantic features,
we use semantic node features to predict human-object in-
teractions and apply another asymmetric loss Linter as an
intermediate loss. In relation to matrix learning, the L1 loss
Lr for human-object relation training is adopted. In summary,
the objective function L is the weighted sum of the interaction
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classification loss LHOI , Linter and interactiveness loss Lr,
as follows:

L = LHOI + α ∗ Linter + β ∗ Lr (10)

where α and β are the hyper-parameters and are set to 0.1 in
the experiments.

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed method, we
conduct extensive experiments on the HICO-DET and V-
COCO datasets.

A. Datasets
Two HOI datasets, i.e., HICO-DET [3] and V-COCO [10]

are used to evaluate the performance. HICO-DET includes
47,776 images (38,118 images for training and 9,658 ones
for testing), which are labeled into 80 object categories, 117
verb classes and 600 HOI categories. HICO-DET also provides
more than 150K annotated instances of human-object pairs.
V-COCO dataset contains 10,346 images (2,533 images for
training, 2,867 images for validation, and 4,946 ones for
testing) and 16,199 human instances, which are annotated with
80 object categories and 29 verb classes.

B. Metrics
In our experiments, the role means average precision

(role mAP [10]) is used as the evaluation metric. A
〈human, action, object〉 triplet is considered as a true pos-
itive if the predicted action matches the ground-truth, and
both predicted human and object bounding boxes have
min(IOUh, IOUo) ≥ 0.5 with reference to GT boxes. For
the cases when there is no object (human only) in VCOCO,
a prediction is correct if the corresponding bounding box for
the object is empty in Scenario 1 and the bounding box of the
object is not considered in Scenario 2.

TABLE I
PERFORMANCE COMPARISON ON THE V-COCO TEST SET.

THE BEST AND THE RUNNER-UP ARE LABELED IN BOLD AND
UNDERSCORED RESPECTIVELY.

Method role mAP (Sc 1) role mAP (Sc 2)
GPNN[21](ECCV2018) 44.0 -

Xu et al.[30](CVPR2019) 45.9 -
Li et al.[16](CVPR2019) 47.8 -
RPNN[33](ICCV2019) 36.7 47.5

PMFNet[26](ICCV2019) 52.0 -
AGRR[18](IJCAI2020) 48.1 -

Contextual HGNN[27](ECCV2020) 52.7 -
In-GraphNet[31](IJCAI-PRICAI2020) 48.9 -

SIGN[32](ICME2020) 53.1 -
DRG[7](ECCV2020) 51.0 -

iCGPN(ours) 53.8 62.7

C. Implementation Details
We use CenterNet [34] with a backbone of Hourglass-

104 [15] to generate human and object bounding boxes. In
test, human and object boxes with scores higher than 0.3
will be kept. We initialize our appearance feature backbone

Fig. 7. Several visualization results of HOI detection. Blue lines connect all
human-object pairs, and relation scores give the confidences.

network with the COCO pretrained weight from CenterNet.
During training, for each central node, semantic nodes are
randomly sampled, i.e., includes 5 positive samples and up
to 15 negative samples. Because the number of detected node
bounding boxes is different in different images, thereby this
strategy can improve the performance and robustness of our
model. Note that random sampling is not performed in testing.
For HICO-DET, we train the model for 15 epochs using SGD
with a learning rate of 1e-4, a momentum of 0.9 and a weight
decay of 1e-5. For V-COCO, the model is trained for 30 epochs
with a learning rate of 1e-5. All experiments are conducted on
a single Nvidia GeForce 1080Ti GPU with PyTorch. Training
our network on V-COCO requires 0.5 hours for each epoch,
and HICO-DET requires 3.5 hours. In testing, our model runs
at 4 fps for V-COCO and HICO-DET.

D. Quantitative evaluation
The overall quantitative results of role mAP on V-COCO

and HICO-DET are listed in Table I and Table II respectively.
For the V-COCO dataset, our proposed iCGPN achieves the
best performance among state-of-the-art graph-based methods.
In general, many methods introduce pose information as
additional feature to more accurately classify the HOI, while it
requires complex data preprocessing. For example, compared
with PMFNet[26], our method without human pose infor-
mation still achieves a significant performance gain (1.8%).
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TABLE II
PERFORMANCE COMPARISON ON THE HICO-DET TEST SET.

Default Known Object
Method Full Non Rare Rare Full Non Rare Rare

GPNN[21](ECCV2018) 13.11 14.23 9.34 - - -
Xu et al.[30](CVPR2019) 14.70 15.13 13.26 - - -
Li et al.[16](CVPR2019) 17.03 18.11 13.42 - - -
RPNN[33](ICCV2019) 17.35 18.71 12.78 - - -

PMFNet[26](ICCV2019) 17.46 18.00 15.65 20.34 21.20 17.47
AGRR[18](IJCAI2020) 16.63 18.22 11.30 19.22 20.61 14.56

Contextual HGNN[27](ECCV2020) 17.57 17.78 16.85 21.00 21.08 20.74
In-GraphNet[31](IJCAI-PRICAI2020) 17.72 19.31 12.93 - - -

SIGN[32](ICME2020) 17.51 18.53 15.31 20.49 21.51 17.53
DRG[7](ECCV2020) 19.26 19.71 17.74 23.40 23.89 21.75

iCGPN(ours) 19.40 20.19 16.76 21.81 22.63 19.08

Furthermore, the results show that our iCGPN outperforms all
graph-based methods such as GPNN [21], RPNN [33], AGRR
[18], In-GraphNet [31], SIGN [32] and DRG [7]. Particularly,
we improve dramatically by 0.7% to SIGN [32], which gained
the second best performance. These results demonstrate the
effectiveness of our approach.

For the HICO-DET dataset, the results show that our method
achieves the best performance in full setting and non-rare
setting of Default mode, as well as achieves very competitive
results on Known Object mode. The results of rare setting is
slightly low because the long tail distribution is very serious
in HICO-DET dataset. Particularly, iCGPN outperforms most
graph-based methods by a significant margin, such as GPNN
[21], RPNN [33], AGRR [18], In-GraphNet [31] and SIGN
[32].

E. Subjective evaluation

Visualizing the HOI detection results of iCGPN. In Fig.7,
the detected persons and objects are drawn by red and green
bounding boxes, and the predicted action labels and scores in
the left images are also annotated, and meanwhile, the relation
scores, indicating the interaction between each human-object
pair, are listed in the right. The first row in Fig.7 shows
a human holding a baseball glove; thus, the relation score
between the human and baseball gloves is evidently higher
than other object nodes without interactions. In the middle
row, the woman is holding a tennis racket to hit a sports
ball. Thus, the relation scores between the human node and
two object nodes are similar and high. The third row shows
a boy eating a cake, its relation score with the cake is far
higher than two objects with low object detection confidence,
and interestingly, although other two nodes are detected, they
are inaccurate, thus the confidences are very low. The above
results show that the relation module can effectively exclude
low-confidence semantic nodes.

Analysis of positional encoding in global information sub-
module. Fig.8(a) visualizes typical node positional encodings.
We find that obvious differences appear in the positional
encoding of detected nodes if positions are different, and the
high bright values are the responses of location encoding of
nodes, which can effectively add location information to the
appearance features of the nodes. As shown in Fig.8(b), the
highlighted region really pops up a human-object interaction,

and will enhance the effectiveness of feature representation of
nodes.

F. Ablation Analysis

TABLE III
ABLATION STUDY OF THE CORE COMPONENTS IN GLOBAL INFORMATION

SUB-MODULE.

Method role mAP (Sc 1)
w/o Global information Sub-Module 49.7
w/o Node information Sub-Module 46.9

w/o Multi-relation GCN 52.0
w/o Multi-IoU random shift 53.1

iCGPN 53.8

Effectiveness of all modules in iCGPN. In Table III, we
evaluate the contributions of different modules. Evidently,
the best performance is obtained via combining all modules.
The comparisons on the role mAP of different verbs with or
without data argumentation situations imply the effectiveness
of the data argumentation, as shown in Fig.9. Specifically,
as listed in rows 1 and 5 of Table III, the proposed design
of the global information sub-module improves role mAP by
4.1%, indicating that the learned interaction features are more
discriminative in HOI detection. Similarly, because the node
information sub-module can learn the information of spatial
layout, object relative location and category to coordinate
with interaction-centric features, the sub-module can improve
the overall performance from 46.9% to 53.8%. In addition,
we conduct four different types of feature transformation,
corresponding to four edge relationships in GCN according to
the roles of nodes. To verify the effectiveness of our proposed
method, we conduct experiments on the graph model that
updates node features with the same feature transformation.
Table III shows that with the multi-relation GCN, the mAP
increases 1.8%, indicating that diversified contextual informa-
tion is very valuable in improving the feature representation
for HOI. These experiments demonstrate the effectiveness of
our proposed method.

Effectiveness of core components in global information
sub-module. Table IV shows that the mAP approximately
decreases by 1% in V-COCO when the multi-head attention
or positional encoding is not adopted. For examining the
influence of multi-head attention, we do not split features



9

Fig. 8. (a) Node positional encoding visualization. The detected object
is annotated in red, and the encoding heatmaps below show the location
responses of the object. (b) Backbone positional encoding visualization. The
heatmap has a high response value in the region where the interactions often
occur in datasets.

TABLE IV
ABLATION STUDY OF THE CORE COMPONENTS IN GLOBAL INFORMATION

SUB-MODULE.

Method role mAP (Sc 1)
w/o multi-head attention 52.6
w/o positional encoding 52.9

iCGPN 53.8

into many slices according to channels (denoted as w/o multi-
head attention). The experimental result indicates that nodes
can selectively learn multiple contextual features with strong
relevance to HOI based on multi-head attention, and avoid
gather useless messages from entire images. In addition,
location information, provides a clue for HOI, is supplied
into appearance features with positional encoding, thereby
improves model performance. Experimental results show that

Fig. 9. Comparisons of the role mAP (Sc 2) of different verbs under two
situations: train network with or without data argumentation.

the global information sub-module can effectively capture the
interactive information between the central node and semantic
nodes.

V. CONCLUSION

In this paper, a novel interaction-centric graph parsing
network (iCGPN) is proposed for HOI detection. Through
mining interaction-related features and preserving useful ob-
ject information including relative position, spatial layout and
object category, a new semantic node representation is applied.
Since human-related semantic features and positional features
are both considered in semantic nodes, the dominant role
of humans in human-object interactions, named as central
nodes, is highlighted. Furthermore, a hierarchical random shift
training strategy is proposed to augment data of the training
set, which enhances the generalization ability of the proposed
model. The extensive experimental results demonstrate the
effectiveness of the proposed method.
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