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1. Introduction 

A well-known stylised fact about the behaviour of interest rates is their high degree of 

persistence. This is an important issue that has implications for both the design of 

monetary policy and the empirical validity of different interest rate theories, such as 

consumption-based asset pricing models and the Fisher effect, and thus it has been 

extensively investigated in the literature. In the early stages, the framework most 

commonly adopted was based on the I(0)/I(1) dichotomy. Examples of such studies 

include: Cox et al. (1985), who argued that US short-term nominal interest rates can be 

characterised as a stationary and mean-reverting I(0) process; Campbell and Shiller 

(1987), who instead reached the conclusion that both short- and long-term US bond yields 

exhibit unit root behaviour, with shocks having permanent effects; Karanasos et al. 

(2006), who found stationarity of US monthly interest rates over the period from1876 to 

2000.  

Subsequently, it became apparent that unit root tests have very low power against 

fractional alternatives owing to over- or under-differencing (Diebold and Rudebusch, 

1991; Hassler and Wolters, 1993; Lee and Schmidt, 1996; etc.)1, and therefore fractional 

integration techniques started being used to examine the degree of persistence of interest 

rates. Studies using this approach include Lai (1997), Phillips (1998) and Tsay (2000), 

who analysed US real interest rates (see also Barkoulas and Baum, 1997; Meade and 

Maier, 2003; Gil-Alana, 2004a,b), and Couchman et al. (2006), who examined a broader 

sample including data from sixteen countries. More recently, Caporale and Gil-Alana 

(2009) found that the estimated degree of persistence of the US Federal Funds effective 

rate is affected by the assumptions about the behaviour of the underlying residuals, and 

                                                           
1 Kramer (1998) showed that ADF test (Dickey and Fuller, 1979) is consistent under fractional alternatives 
if the order of the autoregression does not tend to infinity too fast; however, his simulation results indicate 
that this is not the case in finite samples. 
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Caporale and Gil-Alana (2016, 2017) modelled long memory as well as cyclical 

behaviour in both the Euribor and the Fed Funds rate. 

All the above studies are based on the assumption of linearity. However, it has 

become increasingly clear that fractional integration is possibly linked to the existence of 

non-linearities (see Granger and Hyung, 2004; Deo et al., 2006; etc.). The latter have 

become a particularly important issue following the onset of the global financial crisis 

(GFC), as a result of which many countries adopted unconventional monetary policy 

measures such as Quantitative Easing (QE) and interest rates were cut sharply creating 

the so-called zero lower bound (ZLB) problem, namely a situation characterised by a 

liquidity trap and limited central bank’s ability to boost growth. Given the results in the 

more recent econometrics literature and the current economic environment, it is therefore 

essential to use a modelling framework that captures both persistence and non-linearities 

in interest rates. These issues are addressed in a recent paper by Caporale et al. (2022) 

who analyse the stochastic behaviour of monthly 10-year US Treasury bond yields using 

a fractional integration model for persistence that also allows for non-linearities in the 

form of Chebyshev polynomials; their findings confirm the presence of both features in 

the data (though there is evidence of mean reversion). 

The present study extends the work of Caporale et al. (2022) by (i) including in 

the sample the latest available observations, (ii) carrying out the analysis at both the 

monthly and quarterly frequency (as opposed to monthly only), and (iii) also using a 

second approach for modelling non-linearities which is based on Fourier functions – the 

latter two as robustness checks. The structure of the paper is the following: Section 2 

describes the methodology; Section 3 discusses the data and the empirical results, and 

Section 4 offers some concluding remarks. 
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2. Methodology 

The general fractional integration approach considers the model 

    ,...,2,1,)1(;);( ==−+= tuxLxty tt
d

tt θρ        (1) 

where 𝑦𝑦𝑡𝑡 is the observed series of size T; 𝜌𝜌(𝜃𝜃; 𝑡𝑡)𝑥𝑥𝑡𝑡 is a non-linear function of time that 

depends on a vector of unknown parameters θ; L is the lag operator, i.e., (𝐿𝐿𝑘𝑘𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−𝑘𝑘), 

and the parameter d stands for the order of integration of the series that can be any real 

value.  

First, we assume that ρ is a function of Chebyshev polynomials in time, which 

implies that Eq. (1) can be re-written as: 

    ,...,2,1t,ux)L1(;x)t(Py tt
d

t
m
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with m indicating the order of the Chebyshev polynomial Pi,T(t) defined as: 

,1)(,0 =tP T  

( ) ...,2,1;,...,2,1,/)5.0(cos2)(, ==−= iTtTtitP Ti π . (3) 

Bierens (1997) and Tomasevic and Stanivuk (2009) argue that it is possible to 

approximate highly non-linear trends with rather low degree polynomials. If m = 0 the 

model contains an intercept, if m = 1 it also includes a linear trend, and if m > 1 it becomes 

non-linear - the higher m is the less linear the approximated deterministic component 

becomes.2 Specifically, we use the method developed in Cuestas and Gil-Alana (2016) 

which is essentially an extension to the non-linear case of the Robinson’s (1994) 

fractional integration (linear) approach. 

                                                           
2 See Hamming (1973) and Smyth (1998) for a detailed description of these polynomials. 
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Equation (1) can be extended to include additional forms of non-linear 

deterministic terms, also capturing both non-linear cycles and persistence in the time 

series, as in the following model proposed in Gil-Alana and Yaya (2021), where 𝜌𝜌(𝜃𝜃; 𝑡𝑡) is 

defined as: 

( ) ( ) ( )
1 1

; sin 2 cos 2 ;        2;      1, 2,...,
n n

k k
k k

t t kt T kt T n T t Tρ θ α β λ π γ π
= =

= + + + ≤ =∑ ∑    (4) 

where α  and β  are the intercept and the coefficient on a linear trend, respectively; kλ  and 

kγ  are parameters corresponding to the amplitude and displacement of the Fourier form 

which induces non-linearity, and the Fourier form expansion has frequency n with k  being 

a given frequency set equal to 1, 2, …. T, and T is the number of observations. Thus, the 

significance of the parameters kλ  and/or kγ  (for all k) implies the presence of non-

linearity in the process.  

   

3. Data and Empirical Results 

The series used for the analysis are non-seasonally adjusted quarterly and monthly market 

yields on US Treasury bonds with 10-Year maturity, expressed in percentage. The 

monthly data span the period from January 1962 to November 2021, while the 

corresponding period for the quarterly ones goes from 1962 Q1 to 2021 Q3. The source 

is the Federal Reserve Economic Data (FRED) online database at 

https://fred.stlouisfed.org. Figure 1 contains plots of the two series, both of which rose 

sharply in the early part of the sample period and peaked in 1982 before starting to 

decrease and reaching very low levels in recent years. 

Insert Figure 1 about here 

 As a first step we carry out standard unit root tests, more precisely the ADF 

(Dickey and Fuller, 1979) and PP (Phillips and Perron, 1988) ones. The results displayed 

https://fred.stlouisfed.org/
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in Table 1 imply non-rejection of the unit root null at both frequencies. Given the well-

known low power of such tests (Diebold and Rudebusch, 1991), next we use fractional 

integration methods to measure the degree of persistence of the series. We follow in turn 

each of the two non-linear modelling approaches described before (the results are reported 

in Table 2 and 3 respectively), and also consider two alternative specifications for the 

errors assuming that they are either white noise or autocorrelated (see panel i) and ii) in 

the tables); in the latter case a non-parametric approach based on the exponential spectral 

model of Bloomfield (1973) is adopted. When using the first non-linear approach based 

on Chebyshev polynomials (see Table 2), we find that, under the assumption of white 

noise errors, the Chebyshev coefficients are not significantly different from 0, the 

estimates of d being slightly higher than 1 at both frequencies; also, the unit root null 

hypothesis cannot be rejected for the quarterly series, but it is rejected in favour of d > 1 

with monthly data. However, when allowing for autocorrelated disturbances, a different 

picture emerges: the orders of integration are 0.69 for the quarterly data, and 0.79 for the 

monthly data, and in both cases the I(1) hypothesis is rejected in favour of mean reversion 

(d < 1), which implies that shocks have transitory effects. Moreover, there is evidence of 

non-linear structures since both θ2 and θ3 are statistically significant for both series. 

Insert Tables 2 and 3 about here 

 The results based on the second non-linear approach based on Fourier transforms 

(see Table 3) are qualitatively similar. Under the assumption of white noise errors, the 

estimates of d are slightly above 1 (1.12 and 1.18 respectively for the quarterly and 

monthly data); the I(1) hypothesis cannot be rejected with quarterly data while d is found 

to be significantly higher than 1 with monthly data, and no deterministic term is found to 

be statistically significant. However, when allowing for autocorrelation, d is significantly 

smaller than 1 (0.90 for the quarterly data, and 0.80 for the monthly case), and the non-
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linear trends appear to be significant (specifically, the two coefficients for sin(t) and cos(t) 

with quarterly data, and sin(t) for the monthly one, are significant). Thus, the results for 

the two non-linear specifications considered are broadly consistent, in both cases mean 

reversion and non-linearity being found with autocorrelated errors. 

 

  
4.  Conclusions 

This paper analyses persistence and non-linearities in quarterly and monthly US Treasury 

10-year bond yields over the period 1962-2021 using two different fractional integration 

approaches including Chebyshev polynomials and Fourier functions respectively. The 

results provide evidence of non-linear structures and mean reversion (i.e., of transitory 

effects of shocks) at both frequencies under the assumption of autocorrelated errors. 

These findings complement and confirm those reported by Caporale et al. (2022) in a 

previous study using only the first of those two approaches to modelling non-linearities 

and analysing only monthly data. 

 Future work could extend the analysis of the present paper in various ways. For 

instance, stochastic nonlinear structures (such as Markov Switching models) rather than 

deterministic ones could be considered. Cyclical fractional integration methods could also 

be used to investigate possible cyclical patterns. 
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Figure 1: Quarterly and Monthly 10-year US Treasury bond yields 
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Table 1: Unit root tests 

Quarterly series 
 None Intercept only Intercept with trend 
ADF -0.7970 [1] -1.2413 [1] -2.3144 [1] 
PP -0.7698 [4] -1.1015 [5] -2.1405 [4] 

Monthly series 
 None Intercept only Intercept with trend 
ADF -0.7371 [2] -1.0734 [2] -2.1588 [2] 
PP -0.7702 [2] -1.1433 [2] -2.1422 [1] 
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Note: t-statistics for unit root tests are reported with optimal lags and bandwidth parameters for the ADF 
and PP tests  respectively. 

 

 

 

Table 2: Non-linear I(d) model with Chebyshev’s polynomials in time 

i) White noise errors 

Series d 
(95% band) 

θ0 
(t-value) 

θ1 
(t-value) 

θ2 
(t-value) 

θ3 
(t-value) 

QUARTERLY 1.12 
(0.99,  1.29) 

5.844 
(0.80) 

1.599 
(0.39) 

-1.811 
(-1.01) 

-1.070 
(-0.94) 

MONTHLY 1.18 
(1.10,  1.28) 

5.879 
(0.53) 

1.621 
(0.23) 

-1.815 
(-0.64) 

-1.068 
(-0.61) 

ii) Autocorrelated errors 

Series d 
(95% band) 

θ0 
(t-value) 

θ1 
(t-value) 

θ2 
(t-value) 

θ3 
(t-value) 

QUARTERLY 0.69 
(0.48,  0.95) 

5.702 
(5.94) 

1.753 
(3.19) 

-1.910 
(-4.99) 

-1.030 
(-3.51) 

MONTHLY 0.79 
(0.70,  0.88) 

5.690 
(4.64) 

1.766 
(2.46) 

-1.883 
(-4.16) 

-1.038 
(-3.13) 

In bold the parameters whose estimates are significant with t-statistics in parenthesis. 

 

Table 3: Non-linear I(d) model with Fourier functions in time 

i) White noise errors 

Series d 
(95% band) 

c 
(t-value) 

t 
(t-value) 

sink 
(t-value) 

cosk 
(t-value) 

QUARTERLY 1.128 
(0.997, 1.259) 

1.654 
(0.380) 

-0.007 
(0.119) 

2.014 
(0.778) 

-2.644 
(-1.010) 

MONTHLY 1.183 
(1.107, 1.259) 

-5.232 
(-0.508) 

0.014 
(0.334) 

6.039 
(0.840) 

4.040 
(0.384) 

ii) Autocorrelated errors 

Series d 
(95% band) 

c 
(t-value) 

t 
(t-value) 

sink 
(t-value) 

cosk 
(t-value) 

QUARTERLY 0.406 
(0.096, 0.715) 

0.4994 
(0.584) 

-0.0057 
(-0.798) 

2.247 
(2.78) 

-2.790 
(-4.54) 

MONTHLY 0.807 
(0.656, 0.958) 

-6.8266 
(-1.66) 

0.0128 
(1.03) 

5.9632 
(2.84) 

4.1365 
(1.14) 

In bold the parameters whose estimates are significant with t-statistics in parenthesis. 

 


	with m indicating the order of the Chebyshev polynomial Pi,T(t) defined as:

