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Abstract 

Direct nitrous oxide (N2O) emissions during the biological nitrogen removal (BNR) processes 

can significantly increase the carbon footprint of wastewater treatment plant (WWTP) 

operations. However, quantifying the emissions and understanding the long-term behaviour of 

N2O fluxes in WWTPs remains challenging and costly. The aim of the current research is to 

combine wastewater domain knowledge with data-mining techniques to explain the long-term 

N2O emissions’ behaviour in full-scale biological reactors. A review of the recent full-scale 

N2O monitoring campaigns is conducted resulting in the development of an emission factor 

(EF) database with information on configurations, control strategies and operational 

conditions. The analysis focused on mechanistic model development, molecular biology 

methods and on the current data management and analysis practices (i.e. visualization 

techniques, statistical analysis). Sensor and laboratory data acquired from the N2O monitoring 

campaigns of mainstream and sidestream wastewater processes were used to develop, test and 

validate a methodological framework for knowledge discovery in wastewater databases. 

Abnormal events detection, structural changepoint detection, clustering, classification and 

regression algorithms are used in order to i) translate data into actionable information,  ii) link 

N2O emissions ranges with specific operational conditions, iii) identify and isolate re-occurring 

system disturbances that affect performance, iv) predict the range of N2O emissions based on 

operational and environmental conditions and v) provide feedback to monitoring campaigns 

for the minimisation of sampling requirements. The analysis showed that the relationship of 

N2O emissions with the operational variables fluctuates in long-term monitoring campaigns; 

this should be taken into consideration for the development of mitigation measures and during 

the investigation of triggering operational conditions. Additionally, findings indicate that 

structural changepoints of operational variables monitored online can be used to detect changes 

in the behaviour and range of N2O emissions. Finally, data-driven models can reliably estimate 

N2O behaviour in wastewater processes under given operational conditions. However, 

fluctuation of dependencies, system disturbances and process-specific characteristics should 

be taken into consideration.  
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1. Introduction 

1.1 Research Motivation 

Wastewater treatment is a growing segment of the water industry. It has been subjected to 

decades of continuous tightening of water quality regulations (Wang et al., 2015) increasing 

the demands from the sector to continuously adapt to new challenges and environmental 

targets. The introduction of the Urban Waste Water Treatment Directive (91/271/EEC) 

(UWWTD) and later the Water Framework Directive 2000/60/EC (WFD) have been the 

cornerstones instigating changes in the wastewater treatment practices across the EU. The 

directives aim to protect the European waters, and require the introduction of limits for the 

discharge of municipal and industrial wastewater contaminants, minimum treatment type, 

target actions against unsatisfactory intermittent discharges, while setting the framework for a 

holistic catchment management approach (Tippett, 2005). Specific deadlines were also defined 

urging member states to take action; the timeline of the agenda towards achieving the 

environmental targets and towards ‘good status’ for EU aquatic systems established by the 

WFD ended at 2015 with the possibility of postponement up to 2027 (two six-year phases) 

(European Commission, 2012a). Significant investments of the wastewater utilities have been 

made in the past years for the protection of the water bodies. For example, the UK water 

industry alone, reported in 2013, that the investment between 2010 and 2030 for capacity 

upgrade and conformity with the WFD is expected to be £27 billion (Severn Trent Plc, 2013). 

In Italy, municipal wastewater is the second most significant contributor to surface waters’ 

pressures after agriculture, whereas compliance with the UWTTD is still incomplete; less than 

72% of the collected wastewater is subjected to secondary treatment (COM, 2017; SWD, 

2017). 

Wastewater utilities are estimated to contribute by ~1% to 2% of the energy requirements in a 

country level (Haslinger et al., 2016; IEA, 2016). The US Environmental Protection Agency 

reported that the energy requirements for wastewater treatment in the US will increase by 20% 

in the following years; similar to what is expected in other developed countries (Curtis, 2010; 

Wang et al., 2012; EPA, 2006). The increase of the energy consumption in the form of 

electricity from the grid results in elevated Greenhouse Gas (GHG) emissions (Flores-Alsina 

et al., 2011; Maktabifard et al., 2018) putting more climate change pressures. In the UK 

wastewater utilities, the compliance with the WFD requirements is expected to result in 
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increase of the carbon dioxide (CO2) emissions by more than 110,000 tonnes annually only 

due to increase in operational energy requirements (Environment Agency, 2010). According to 

the Energy Efficiency Directive 2012/27/EU large water utilities (>250 employees, income 

exceeding €43 million or yearly trading volume >€50 million) are obliged to perform energy 

audits at their wastewater treatment facilities. In the UK, policy schemes, such as the Climate 

Change Act (UK CCA) and the Carbon Reduction Commitment (CRC) aiming at GHG 

emission reduction (targets >80% by 2050 with 1990 baseline) and energy efficiency, increase 

the pressure for water utilities. Severn Trent, a water utility in UK, paid £5.9 million in 2012, 

to the CRC due to carbon emissions from energy consumption in addition to the yearly 

electricity bill that was equal to £53 million (Severn Trent Plc, 2012). The water utilities have 

made efforts in order to cope with the increasing costs and climate change pressures. 

At the same time current attitude in the wastewater sector is shifting towards a philosophy of 

considering wastewater as a resource and recovering materials and energy (Puchongkawarin et 

al., 2015). In the last few years increasing number of studies are focusing on the WWTPs and 

new technologies are developed with the ability to recover valuable resources, such as 

chemicals, nutrients, bioplastics, enzymes, metals and water (Batstone et al., 2015; Frison et 

al., 2015; Puyol et al., 2017; Sharma et al., 2014; Wang and Ren, 2014). According to Cordell 

et al. (2009), 20% of the phosphorous consumed is contained in wastewater, whereas the 

nitrogen loads in wastewater are equal to 10%-30% of nitrogen required in agriculture (Mulder, 

2003). Therefore, the circular economy concept in the water sector is driven by economic, 

environmental and industrial incentives (Puyol et al., 2017).  

Energy efficiency improvement and resource recovery are the two dominant objectives that are 

presently pursued in WWTPs to improve their sustainability (Mo and Zhang, 2013). However, 

research studies have shown that electricity consumption might not be the most significant 

contributor to the operational carbon footprint in the wastewater sector. Nitrous oxide (N2O), 

is a potent GHG, 265 times stronger than CO2 in terms of global warming potential (IPCC, 

2013). N2O can be generated at large amounts and stripped in the atmosphere during biological 

nutrients removal at WWTPs. N2O can be formed in activated sludge systems, during the 

autotrophic oxidation of ammonia to nitrite/nitrate through the activity of ammonia oxidizing 

bacteria (AOB) under aerobic conditions (nitrification/nitritation). It is also an intermediate 

during the reduction of nitrate/nitrite to nitrogen gas (heterotrophic 

denitrification/denitritation) through the activity of heterotrophic denitrifying bacteria under 
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anoxic conditions. There is a wide variety of different biological nutrients removal (BNR) 

processes applied at wastewater facilities to treat the incoming wastewater (i.e. with different 

number of compartments/zones for nitrification and denitrification, recirculation flows, flow-

patterns, continuous processes vs batch processes etc.). Key operational conditions in the BNR 

processes associated with elevated emissions include: i) low dissolved  DO, NO2
- or free nitrous 

acid (HNO2) accumulation and changes in the NH4
+ concentration in the nitrifying zones, ii) 

limitation of organic substrate (i.e. low chemical oxygen demand to N (COD:N) ratio), as well 

as, NO2
- accumulation in the denitrifying zones, iii) alternation of anoxic/aerobic conditions 

and iv) abrupt changes in the processes and system shocks (Duan et al., 2017; Guo et al., 2017; 

Law et al., 2012; Massara et al., 2017).  Studies have shown that the direct N2O emissions of 

biological processes in WWTPs can contribute by up to by ~78% to the operational carbon 

footprint (Daelman et al., 2013b). 

Significant N2O emissions have been also reported from the biological treatment of high-

strength wastewater streams. The anaerobic supernatant is a by-product from the treatment of 

the primary and secondary sludge via anaerobic digestion when the digestate is dewatered. This 

stream is small in volume (1-2% compared to the mainstream line), but very concentrated in 

nutrients and is conventionally recycled back to the primary treatment increasing the loads (and 

thus, the energy requirements and costs) of the mainstream biological treatment (i.e. contains 

10-20% of the WWTP nitrogen load). For this purpose, biological technologies (i.e. partial-

nitritation – anammox (anaerobic ammonium oxidation, nitritation/denitritation etc.)) have 

been developed, to treat sidestream high-strength streams in a cost and energy efficient way 

(Lackner et al., 2014; Zhou et al., 2018). In the sidestream biological processes, favourable 

condition for N2O generation can prevail (i.e. NO2
- accumulation, elevated NH4

+ 

concentrations etc.). Studies have shown that biological processes treating high-strength 

streams can contribute by over 90% to the total direct N2O emissions compared to the 

mainstream BNR processes (Schaubroeck et al., 2015) 

The recent, mitigation roadmap to carbon neutrality in urban water published by Water and 

Wastewater Companies for Climate Mitigation (WaCCliM) project and the International Water 

Association (IWA) (Ballard et al., 2018), states that direct N2O emissions in water utilities, 

should be considered for the carbon footprint assessment, reporting and mitigation.  However, 

in practice, the quantification of direct N2O emissions at WWTPs via monitoring campaigns is 

not a regulatory requirement. Therefore, wastewater utilities  usually, estimate N2O emissions 
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via theoretical methods i.e. based on the population equivalent of the WWTP (IPCC, 2006); 

the latter can significantly underestimate the actual emissions (Cadwallader Adam VanBriesen, 

2017).   

Several full-scale monitoring campaigns have been implemented in full-scale biological 

reactors to provide insights on the dynamics and triggering mechanisms for N2O generation. 

However, benchmarking N2O emission fluxes at wastewater treatment processes is still 

challenging. The exact generating mechanisms, operational and environmental conditions for 

its formation and long-term dynamics are still investigated (Peng et al., 2015). This is mainly 

because N2O fluxes are characterised by significant spatial and temporal variability due to the 

different interacting biological processes that consume or produce N2O and the variation of 

operational conditions (Daelman et al., 2015; Gruber et al., 2019). Mechanistic process-based 

models have also been developed over the past years aiming to integrate N2O emissions 

generation of different processes in the design, operation and optimisation of biological 

processes  (Domingo-Félez et al., 2017a; Mannina et al., 2016; Massara et al., 2017). However, 

their online integration for the reliable quantitative estimation of N2O emissions is still a main 

challenge (Haimi et al., 2013; Mampaey et al., 2019). 

Currently operational strategies at WWTPs do not consider the mitigation of direct GHG 

emissions. New objectives, environmental and sustainability targets in the water industry 

require novel approaches dynamically integrating new parameters (i.e. GHG emissions 

sensors, energy meters) into the process monitoring, control and decision making (Corominas 

et al., 2013; de Faria et al., 2015; Flores-Alsina et al., 2010; Longo et al., 2016; Sweetapple et 

al., 2014) 

At present a significant amount of raw, heterogenous operational data are available from the 

daily operations of the WWTPs (Olsson et al., 2014). However, in practice data generated in 

WWTPs are underexploited (Newhart et al., 2019). The utilisation of the information hidden 

in the raw sensor signals can be the driving force of sustainable and efficient wastewater 

operations. Data-driven modelling and data-mining techniques have been applied in the 

wastewater sector in order to i) optimise monitoring and efficiency of wastewater processes 

(Mirin and Wahab, 2014) and improve process understanding (Moon et al., 2009), ii) detect 

process failures  (Haimi et al., 2016; Liu et al., 2014; Maere et al., 2012) and erroneous sensor 

measurements (Corominas et al., 2011; Lee et al., 2004) and iii) predict significant operational 

variables in the biological systems (i.e. COD, nitrogen effluent concentrations etc.)  (Lee et al., 
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2002; Rustum et al., 2008). Advanced data management and knowledge extraction techniques 

from wastewater data can maximise the information coming from N2O monitoring campaigns. 

The current PhD thesis develops and applies a framework for analysing the data and extracting 

useful conclusions for the behaviour of the system and the generated N2O emissions.   

1.2 Overview of research program 

1.2.1 Research questions addressed by this thesis 

The primary research questions (RQ) that will be addressed in this thesis are: 

• What are the recent findings of full-scale N2O monitoring campaigns in terms of EFs, 

triggering mechanisms and mitigation measures for different process groups?  How can the 

design of monitoring protocols (i.e. frequency, sampling method) impact the results of 

monitoring studies in terms of the quantified N2O EFs? What are the current techniques for 

data processing and analysis that are used to provide insights on N2O dynamics? What are 

the research needs that can support the integration of N2O emissions into process control 

(Chapter 2)? 

• How can data mining techniques link the different variables monitored online in biological 

processes and assess the temporal system performance?  Can the combined effect of 

operational variables on N2O emissions be identified? (Chapter 3).  

• Environmental and operational conditions at wastewater processes are not static and are 

characterised by temporal changes. What methods can be used to detect these changes? 

Can structural changes in the profiles of key operational variables (i.e. DO, NH4
+) indicate 

changes in the N2O dynamics? How can historical data from monitoring campaigns be used 

to develop data-driven risk-based models of the N2O emissions’ range (Chapter 4)? 

• Is it possible to develop reliable data-driven models to predict N2O behavior in wastewater 

systems? What is the role of domain knowledge when data-mining techniques are used in 

the wastewater sector (Chapter 5)? 

• What type of information can be extracted from wastewater databases, when data-mining 

techniques are integrated into the analysis within a structured framework for knowledge 

discovery to support WWTP operation (Chapters 3-5)?  
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1.2.2 Aim and objectives 

Research hypothesis:  Sensor data and laboratory analyses from wastewater treatment 

processes contain hidden information, that can be valorised to explain the long-term N2O 

emissions’ dynamics and triggering operational conditions. 

The aim of the current research is to develop a framework, coupling wastewater domain 

knowledge with data-mining techniques in order to enhance the understanding of the long-term 

N2O emissions dynamics in full-scale biological reactors. A structured approach for knowledge 

discovery from wastewater databases is developed transforming readily available WWTP data 

from different and heterogeneous sources into actionable information. The purpose of the 

research is to build on the existing plant monitoring and information and communication 

technology (ICT) capabilities of selected wastewater treatment processes, and to investigate 

how methods  to translate data into meaningful information using classical but relevant 

techniques, can be used to provide insights on the dynamic behaviour of N2O emissions under 

different operational conditions. The outcome is expected to form the basis for control and 

reduction of the N2O emissions from wastewater treatment processes. 

The specific objectives of this thesis are to:   

• Investigate the existing body of knowledge regarding past N2O monitoring campaigns 

in full-scale wastewater treatment processes, evaluate current data analysis methods 

and visualization techniques. The outcome of this investigation will be used to provide 

insights on N2O emissions’ dynamics and link i) N2O emission factors (EFs), ii) 

frequently reported N2O generation mechanisms, iii) triggering operational conditions 

and iv) mitigation measures, with different wastewater process groups 

• Investigate whether multivariate statistical techniques applied in long-term wastewater 

and N2O emission datasets can provide insights on the operational conditions. The aim 

is to link with specific ranges of N2O emissions, isolate sets of variables related to N2O 

emissions and facilitate the detection of system disturbances and their influence on N2O 

fluxes 

• Develop a framework that classifies operational conditions of treatment processes with 

different behavior of the variables monitored online. The aim is to identify links with 
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specific ranges of N2O fluxes, that can reduce the frequency and duration of the 

sampling requirements for reliable estimation of N2O EFs  

• Investigate whether data-mining techniques and emerging models can be used to 

accurately predict the pattern of N2O emissions, in wastewater treatment processes. 

1.2.3 Methodological approach 

In the first part of the thesis, a review of the findings from recent full-scale N2O monitoring 

campaigns in full-scale wastewater processes is conducted. The analysis covers the 

quantification and mitigation of emissions for different process groups, focusing on techniques 

that have been applied for the identification of dominant N2O pathways and triggering 

operational conditions using data and N2O emissions and other operational variables.  

The second part of the research investigates how wastewater treatment domain knowledge can 

be coupled with data-mining techniques, to extract useful information from wastewater sensor 

data and laboratory analyses, with the view to maximise the insights on the long-term N2O 

dynamics. The framework for knowledge discovery from WWTP databases is summarised in 

Figure 1.1 whereas Table 1.1 includes the specific steps undertaken in each phase of the 

framework. It has been adjusted from the framework proposed by Fayyad et al., (1996) for 

‘Knowledge discovery and data-mining’ in databases of several sectors (i.e. businesses, 

manufacturing etc.).  

As shown in Figure 1.1 and Table 1.1, the first phase of the knowledge discovery framework 

involves i) the investigation of existing knowledge on the behaviour of N2O emissions in 

wastewater systems, ii) gaining insight into the operating principles, the processes’ 

characteristics and the expected challenges associated with wastewater processes and iv) the 

definition of initial data-mining goals. Wastewater sector has unique characteristics that need 

to be considered during the analysis. Fundamental  considerations include: i) the volume and 

quality of influent flow-rates at a WWTP are characterised by significant temporal changes and 

cannot be controlled by wastewater operators, ii) wastewater streams cannot be stored in large 

quantities at a WWTP or discharged untreated to the environment, iii) changes of variables 

occur at different time-scales; from seconds (i.e. conductivity) to even years (i.e. population 

increase) (Corominas et al., 2018).  
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Conventional and innovative wastewater treatment technologies have been analysed. The first 

dataset has been acquired from a 15-month long N2O monitoring study in a mainstream 

secondary treatment system in Netherlands, consisting of a plug-flow followed by two parallel 

Carrousel reactors. The second dataset has been obtained from a sidestream SBR treating the 

anaerobic supernatant via short cut enhanced nutrient abatement process (SCENA). The 

SCENA process removes nitrogen from the anaerobic supernatant via nitritation-denitritation 

and phosphorus can be recovered in the form of phosphorus-rich sludge via enhanced 

biological phosphorus removal via nitrite with the alternation of anaerobic-aerobic-anoxic 

phases. Additionally, part of the mixed sludge is fermented for the production of volatile fatty 

acids (VFAs) that are subsequently dosed during the anoxic and anaerobic phases. 

The second phase (Figure 1.1)  involves the collection, exploration and initial understanding 

of the data. The analysis considers several parameters, such as the visual exploration of the 

data, the communication with the operators to maximise the understanding of process operation 

and data quality and the initial understanding of seasonal effects, abnormal events and dynamic 

system performance. This is one of the most time-consuming phases and guides towards the 

identification of data-mining methods that are more promising to test (i.e. linear vs non-linear 

methods). The inputs of the analysis consist mainly of the real-time monitored process 

variables (i.e. NH4, NO3, ORP, conductivity, temperature probes) due to their high resolution. 

However, laboratory analyses have also been considered. Regarding GHG emissions data 

different analysers have been used i) Low-cost commercial probes monitoring the dissolved 

N2O concentration (SCENA system) and ii) conventional gas analysers coupled with gas 

chambers (SCENA system)  or covered reactors (plug-flow and two Carousel reactors) for the 

collection and quantification of N2O in the gaseous phase.  The data obtained from the target 

biological processes have been assessed and explored in terms of frequency, duration, quality 

and quantity in order to obtain an initial understanding of the systems’ operational behaviour 

and dependencies with the N2O emissions. 
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Figure 1.1: Structured Framework applied in the thesis for knowledge discovery in WWTPs 

adjusted by Fayyad et al., (1996) 

Then data cleaning and appropriate transformations (i.e. dimensionality reduction, feature 

extraction, aggregation etc.)  are applied based on phase 2 findings and the requirements of the 

selected data-mining approach. 

Data-mining algorithms are applied, and the results are analysed and evaluated. The applied 

methodology depends on the application, the initial challenges, and the data exploration 

findings. Several methods, (i.e. clustering, classification, prediction) combined or standalone 

have been applied to analyse and assess the datasets. The description of the methods is provided 

in the relevant chapters.  As shown in Figure 1.1, this procedure is not linear, and several 

feedback loops are required to leverage the knowledge discovered and adjust the data-

preparation and mining phases. Whereas findings from the first phase of the analysis provide 

feedback to all subsequent phases (Figure 1.1). The final phase includes the consolidation, 

communication and reporting of the knowledge gained. 

The tested methods can serve towards i) understanding of dependencies between N2O 

emissions and operational conditions ii) identifying operational conditions with a high 

probability to result into high N2O emissions iii) understanding operational conditions that can 

mitigate N2O emissions.  
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Using the existing monitoring capabilities of biological processes and introducing GHG 

sensors the methodological framework translates the N2O emissions into timely performance 

measures facilitating optimal process control. Historical information is used, to facilitate the 

interpretation of emissions data. The dependencies between the system variables monitored 

online or through laboratory analyses and the N2O emissions are investigated. The analysis 

provides added value to the existing knowledge and sustainable operation of the wastewater 

treatment processes. The method can potentially lead to the identification of combinations of 

operating variables that have high probability to minimise GHG emissions in the target 

biological processes. Additionally, it can facilitate the visualization of set-points and operating 

parameters that optimise the operational carbon footprint of the processes. 

Table 1.1: Detailed steps of the knowledge discovery framework applied 

 Phase Main steps 

1. 

 

System 

understanding 

 

• Investigate current findings on N2O emissions, triggering 

mechanisms, operational conditions in processes with similar 

operational principles  

• Evaluate data and investigate links with N2O emissions  

• Define objectives and data mining goals 

• Develop a project plan 

2. Data collection 

and 

understanding 

 

• Data exploration at different scales in time, visual exploration of 

the data enhanced by advanced visualization techniques 

• Communication with site operators for an initial understanding of 

data  

• Initial evaluation and understanding of abnormal/extreme events 

• Definition of treated effluent limits 

3. Data 

preparation 

 

• Data cleaning, imputation and homogenisation 

• Identification and removal of outliers, abnormal/extreme events 

(if applicable in the following step) 

• Application of data transformation methods (i.e. feature 

selection, discretisation, standardisation etc.) 

• Application of other data preparation techniques  

4. Modelling / data-

mining 

• Data modelling/mining techniques (i.e. classification, clustering, 

regression etc.) selection 

• Generation of test design 

• Application of the method 

5. Interpretation 

 

• Detect patterns / evaluate applied algorithm accuracy  

• Interpretation / visualization of patterns 

• Next step determination (i.e. loop back to phases 3 and 4) 

6. Consolidating 

discovered 

knowledge 

• Documentation of results and actionable information 

• Communication of results  

• Incorporate model in the WWTP operation (if applicable) 
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1.2.4 Thesis outline 

Figure1.2, summarises the main objectives of each chapter and how information extracted from 

each chapter is used in the subsequent analysis.  

Chapter 2: Literature review - A decade of nitrous oxide (N2O) monitoring in full-scale 

wastewater treatment processes 

In this chapter, findings from full-scale N2O monitoring campaigns of the past decade are 

investigated. The analysis classifies quantified N2O EFs, triggering operational conditions and 

formation pathways and strategies proposed to minimise N2O emitted for different process 

groups. Main reasons for EF discrepancies are investigated. Additionally, advantages and 

limitations of the techniques (i.e. data analysis, modelling, isotopic analysis) used to provide 

insights on N2O generation and dynamics are analysed. Future work in the field of GHG 

monitoring and quantification at WWTP has been identified and reported. 

Chapter 3: Relating N2O emissions during biological nitrogen removal with operating 

conditions using multivariate statistical techniques 

This chapter investigates whether multivariate statistical techniques can be applied to the online 

data collected from real-field N2O monitoring campaigns in order to gain a better understanding 

on the dynamic behaviour of N2O emissions. It explains the combined effect of the operating 

variables monitored in wastewater treatment processes on N2O emissions generation. A 

statistical methodological approach is developed applying changepoint detection techniques to 

identify changes in the N2O fluxes behaviour combined with hierarchical k-means clustering 

and principal component analysis (PCA). It also provides insights on N2O emissions patterns 

and generation pathways. The methods rely on process data coming from a 15-month long N2O 

monitoring campaign at a covered reactor using a conventional gas analyser. 

Chapter 4: Data-driven versus conventional N2O EF quantification methods in wastewater; 

how can we quantify reliable annual EFs? 

This chapter builds upon the work undertaken in chapter 3 and reverses the target of the 

changepoint detection algorithm. It investigates whether identification of structural changes in 

environmental and operational variables in wastewater treatment systems can provide insights 

in changepoints in the N2O emissions range. Knowledge-based N2O sampling can minimise 

GHG sampling requirements without compromising the reliability of N2O emissions estimates. 
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Additionally, a classification model based on support vector machines (SVM) has been 

developed tested and validated using data from variables monitored online to predict the range 

of N2O emission loads (i.e. low, medium, high). A methodological framework is developed 

that can i) identify the state of the system at a specific time-period and ii) predict the N2O 

emissions behaviour based on historical data. 

Chapter 5: A knowledge discovery framework to predict the N2O emissions in the wastewater 

sector 

In this Chapter the knowledge discovery framework is applied to a full-scale sidestream 

sequence batch reactor (SBR) treating the anaerobic supernatant via nitritation-denitritation 

and via-nitrite enhanced biological phosphorus removal process (anaerobic, aerobic and anoxic 

phases alternating). Abnormal events detection, classification and regression techniques are 

applied to identify main conditions triggering N2O accumulation in the system and test data-

driven regression and classification models on their ability to predict the dissolved N2O 

behaviour and concentration for the different reactor phases. The proposed approach can 

predict the N2O emissions utilizing sensor data (online) that are conventionally monitored in 

biological batch processes.  

 

Figure 1.2: Main objectives of each chapter and how information extracted from each chapter 

is used in the subsequent analysis. 
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2. Literature Review  

Wastewater treatment plants (WWTPs) produce substantial anthropogenic nitrous oxide (N2O) 

amounts (Law et al., 2012). N2O emissions from wastewater treatment processes have 

increased by 44% from 1990 to 2014 (US EPA, 2016). Moreover, they are responsible for up 

to 26% of the greenhouse gas (GHG) emissions of the whole water supply chain (including 

drinking water supply, wastewater collection and treatment, effluent discharge, sludge 

processing and disposal) (Lane et al., 2015). Therefore, the evaluation of the environmental 

impact of WWTPs is gaining increasing attention worldwide (Guo et al., 2017; Harris et al., 

2015; Law et al., 2012; Mannina et al., 2016; Massara et al., 2017). N2O has an approximately 

300 times higher GHG effect than CO2 (IPCC, 2013). Compared to other unregulated combined 

halocarbon emissions, reducing the anthropogenic N2O emissions in the atmosphere plays the 

most significant role in preventing the ozone layer depletion (Daniel et al., 2010; Portmann et 

al., 2012). 

Stricter environmental regulations are being imposed on WWTPs, while the need to control the 

energy consumption costs, pushes the plant managers towards the deployment of more energy 

and cost efficient operational strategies (Batstone et al., 2015; Ghoneim et al., 2016). The 

integration of additional sustainability metrics (e.g. GHG emissions, resource recovery) for the 

evaluation of the WWTP performance is also gaining attention (Flores-Alsina et al., 2014; 

Cornejo et al., 2016). Recent studies have revealed that the direct N2O emissions of biological 

processes in WWTPs can increase the operational carbon footprint by ~78%  (Daelman et al., 

2013b) or even ~83% (Desloover et al., 2011). Moreover, the new technology adoption in 

WWTPs requires the consideration of trade-offs between direct and indirect GHG emissions 

to ensure that it will not result in increase of the overall carbon footprint. Since the GHG 

emissions have a major contribution to the overall environmental impact of WWTPs, they 

should be considered as part of the decision-making process for the improvement of the 

technological and operational plant performance (Sun et al., 2017; Frutos et al., 2018; Conthe 

et al., 2018). Therefore, research has been conducted in the past years to identify and suggest 

strategies leading to N2O mitigation during the biological nutrient removal (BNR) processes 

(Desloover et al., 2012; Duan et al., 2017; Law et al., 2012). Different operating parameters, 

such as dissolved oxygen (DO), pH, ammonium (NH4
+) and nitrite (NO2

-) concentration, 

configuration types and environmental conditions (e.g. temperature), can affect the N2O 
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production in WWTPs (Desloover et al., 2012; Kampschreur et al., 2009b; Massara et al., 

2017). The exact triggering operational and environmental conditions that govern the N2O 

generation are still under investigation by researchers and operators (Wan et al., 2019). 

Additionally, the exact mechanisms that determine the N2O generation are not fully 

understood, thus hindering the establishment of mitigation measures (Duan et al., 2017). 

Consequently, the long-term dynamics of N2O emissions in full-scale WWTPs cannot be fully 

explained, even for conventional processes (e.g. plug-flow (PF) reactors) (Daelman et al., 

2015). 

Different data, sampling techniques and analytical tools have been employed in existing full-

scale N2O studies. The objectives of the current review paper are to: i) evaluate recent findings 

from N2O monitoring campaigns in terms of N2O EFs, dominant pathways and mitigation 

measures for different  groups of full-scale configurations and reactor types, ii) examine the 

discrepancies among the methods applied in different monitoring campaigns, and iii) evaluate 

the data provided by studies investigating N2O emissions in WWTPs. The current study 

critically assesses how the findings of the research on N2O emissions have been extrapolated 

in different full-scale process groups. Moreover, this work evaluates the methods that have 

been applied at full-scale systems for the N2O quantification, control and mitigation. Finally, 

the research gaps that need to be addressed in future studies are highlighted. 

2.1 The impetus for quantifying the N2O emissions in WWTPs 

2.1.1 EF benchmarks 

EF quantification in conventional and advanced wastewater treatment processes is essential to 

assess and reduce the resulting environmental impact (Foley et al., 2015). Current methods for 

the theoretical calculation of N2O EFs at WWTPs rely on fixed (Palut and Canziani, 2007) or 

country-specific EFs and similar over-simplified approaches (Singh and Maurya, 2016). These 

methods underestimate the actual emissions and are considered unreliable (Cadwallader and 

VanBriesen, 2017), since they are not representative for different process configurations, 

operational and environmental conditions. Therefore, a main target of the studies analysed in 

this paper was to: i) develop an N2O emission database from different mainstream (Ahn et al., 

2010b, 2010a)/sidestream (Kampschreur et al., 2008b; Weissenbacher et al., 2010) processes 

and innovative configurations (Desloover et al., 2011), and ii) identify N2O EFs from processes 
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located in previously unreported regions with different environmental conditions (J. Wang et 

al., 2011).  

2.1.2 N2O pathways and triggering operational conditions  

The majority of the full-scale N2O monitoring campaigns were driven by the need to expand 

the knowledge on the N2O generation in wastewater treatment systems. Several studies have 

highlighted that it is important to understand the dominant N2O generation pathways in full-

scale processes and investigate the effect of specific operational conditions triggering specific 

enzymatic reactions linked with elevated EFs in full-scale biological systems (Bollon et al., 

2016a; Pan et al., 2016; Wang et al., 2016b).  

The N2O production during wastewater treatment involves several microbiological reactions 

during both autotrophic and heterotrophic processes that require either aerobic or anoxic 

conditions. Three main biological pathways have been identified in BNR systems; 

hydroxylamine (NH2OH) oxidation, nitrifier denitrification and heterotrophic denitrification 

(Kampschreur et al., 2009b). The NH2OH oxidation pathway is mainly catalysed by the 

autotrophic ammonia oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). 

However, several studies have shown that the contribution of AOA to N2O emissions in 

wastewater is expected to be low  (Hooper, 1968; Ritchie and Nicholas, 1972; Law et al., 2012). 

Caranto et al. (2016) have recently showed that N2O can also be the main product of anaerobic 

NH2OH oxidation catalysed by the cytochrome P460 in N. europaea. The latter can be 

considered as evidence of biological N2O generation under limited DO and high NH3 

concentrations (i.e. Law et al., 2012), or as potential explanation for the high N2O emissions 

observed during the transition from aerobic to anoxic conditions. White and Lehnert (2016) 

have also suggested that N2O can be directly produced during the NH2OH oxidation (mediated 

by the NH2OH oxidoreductase (HAO) enzyme) under aerobic conditions, whereas the NO2
- 

detected can result as by-product of the nitric oxide (NO) oxidation. The AOB can also reduce 

NO2
- to NO (by the aid of nirk) and, subsequently, NO to N2O (catalysed by norB) mainly 

under oxygen-limiting conditions via the other nitrification-related pathway (nitrifier 

denitrification) (Poth and Focht, 1985). During denitrification, the heterotrophic denitrifiers are 

responsible for the reduction of NO3
-/NO2

- to nitrogen gas (N2). N2O is an intermediate of 

denitrification (Schulthess and Gujer, 1996). With the NO reductase (NOR) as catalyst, NO is 

reduced to N2O (Hochstein and Tomlinson, 1988). NO can also result as by-product of the 
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incomplete NH2OH oxidation and then serve as a substrate during denitrification (Hooper and 

Terry, 1979). If the denitrification process continues undisturbedly, N2O is reduced to N2 in 

the final denitrification step (catalysed by the N2O reductase (N2OR)). Consequently, the 

heterotrophic denitrification process can act either as a sink or as a source of N2O (Robertson 

and Tiedje, 1987). Under elevated NH2OH and NO2
- concentrations, abiotic yet biologically-

driven N2O pathways can also constitute important contributors to the N2O emissions (Soler-

Jofra et al., 2016; Terada et al., 2017; Harper et al., 2015). Inside nitritation reactors for 

example, the abiotic-biotic pathway of nitrosation is possible; NO2
- can react with the 

biologically produced NH2OH and form N2O as end-product (Zhu-Barker et al., 2015).  

Based on the existing knowledge on the N2O production pathways, recent reviews on N2O 

emissions from wastewater treatment processes have concluded that the key operational 

variables responsible for the N2O generation include but are not limited to the following: i) low 

DO, NO2
- or free nitrous acid (HNO2) accumulation and changes in the NH4

+ concentration in 

the nitrifying zones, ii) limitation of organic substrate (i.e. low chemical oxygen demand to N 

(COD:N) ratio), as well as, NO2
- accumulation in the denitrifying zones, iii) alternation of 

anoxic/aerobic conditions and iv) abrupt changes in the processes and system shocks (Duan et 

al., 2017; Guo et al., 2017; Law et al., 2012; Massara et al., 2017).  

Therefore, N2O emissions can occur because of diverse contributing factors and enzymatic 

reactions. However, these parameters and reactions can occur simultaneously, dynamically and 

beyond operators’ control in full-scale systems, whereas small changes (e.g. DO changes) can 

significantly affect the N2O formation. Previous studies on full-scale monitoring campaigns 

intended to: i) identify the most important operating conditions (e.g. aeration rate, DO, NO2
- 

concentration, pH, etc.) and correlate them with the N2O generation (Brotto et al., 2015; 

Rodriguez-Caballero et al., 2014), ii) reveal the effects of seasonal variations on the N2O 

formation (Yan et al., 2014), and iii) identify the key pathways for the N2O production (Wang 

et al., 2016b).  

2.1.3 N2O mitigation strategies 

Another key objective of the N2O monitoring campaigns performed in the past years, 

particularly significant for the WWTP operators, was the development of operational strategies 

for the minimisation of the emissions (Desloover et al., 2012). Therefore, several authors have 

suggested N2O mitigating measures based on the findings of full-scale N2O monitoring 
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campaigns  (i.e. Chen et al., 2016; Mampaey et al., 2016; Pan et al., 2016; Wang et al., 2016b). 

The proposed strategies to control N2O emissions, are analysed in the following sections.  

2.2 EF estimation using full-scale N2O monitoring data   

This section emphasizes the need to increase the comparability amongst different studies that 

report N2O emissions. Moreover, it investigates potential trends in the EFs for certain groups 

of processes and summarises the data requirements for the EF assessment in WWTPs. In cases 

where the EFs were reported with respect to units other than the influent total nitrogen (TN) or 

the influent NH4
+ content, appropriate conversions were made (where possible) (see the 

Appendix A – Table A.2).  

Figure 2.1 shows the percentage of past full-scale N2O monitoring campaigns with reference 

to the treatment configurations applied each time. All processes considered in Figure 2.1 are 

given in the Appendix A (Tables A.3 and A.4). Distinct mainstream process configurations 

include, modified Ludzack-Ettinger (MLE) reactors, conventional activated sludge (CAS) 

systems (only aerobic reactors), A2/O (anaerobic/anoxic/aerobic) processes and A/O 

(anoxic/aerobic) reactors. Additionally, oxidation ditch (OD) reactor types and sequence batch 

reactor (SBR) types have been considered as distinct process groups. Sidestream processes that 

include partial-nitritation reactors, 1-step and 2-step partial-nitritation-anammox 

configurations) are considered a distinct process group in Figure 2.1. The processes that do not 

belong to the aforementioned process groups are categorized separately (i.e. Baresel et al., 

2016; Mello et al., 2013; Wang et al., 2016a). Details for all the processes are provided in the 

Appendix A. 

Most of the process-focused monitoring campaigns include, CAS systems (~12%), (MLE) 

configurations (~12%), A2/O configurations (~10%), oxidation ditches (ODs) (~8%) and 

sidestream partial-nitritation reactors or anammox systems (~11%) (Figure 2.1). Overall, these 

studies refer to a wide range of configurations (i.e. Aboobakar et al., 2013; Brotto et al., 2015; 

Castro-Barros et al., 2015; Sun et al., 2017)  that have been monitored mainly for short periods  

(i.e. Ahn et al., 2010b; Bellandi et al., 2018; Foley et al., 2010a; Pan et al., 2016) with varying 

methodology (e.g. different gaseous sampling and analytical measurement protocols) 

(Daelman et al., 2015; Ren et al., 2013).  
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EF comparability limitations and benchmarking amongst the various processes will be 

discussed in the following sections. However, as a general remark, the identification of 

potential emission patterns and the EF classification for specific groups of processes is still 

challenging, mainly due to differences in monitoring strategies, operational conditions and 

length of monitoring periods among the existing studies. Additionally, there is still little real-

field data regarding N2O emissions for several conventional and advanced biological processes 

(e.g. trickling filters, denitrifying packed bed reactors, biofilm or hybrid partial-nitritation 

anammox systems, etc.).  

 
Figure 2.1: EF of secondary and sidestream treatment processes 

The N2O emissions of the full-scale wastewater treatment processes reported in past studies 

vary significantly; e.g. ranging from 0.0025% of the TN-load for a mainstream MLE reactor 

(Spinelli et al., 2018) to 5.6% of the TN-load for a mainstream aerobic/anoxic settling SBR 

reactor (Sun et al., 2013). Overall, the potential of N2O emissions from sidestream reactors 

(ranging from 0.17% to 5.1% of the influent N-load – Appendix A, Table A.3) is considered 

higher compared to the mainstream BNR processes. The latter is mainly because the 

nitritation/nitrification occurring during sidestream treatment is linked with higher ammonia 

oxidation rate (AOR) and NO2
- accumulation (Desloover et al., 2011; Gustavsson and la Cour 

Jansen, 2011; Kampschreur et al., 2008b). Figure 2.2 shows boxplots of the observed EFs (with 

respect to the influent N-load) based on the treatment step. The width of the shaded area 

surrounding the boxplots represents the data kernel density distribution of the EFs. Specific 

information for the mainstream and sidestream technologies included in Figure 2.2 can be 
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found in in the Appendix A (Tables A.1, A.3 and A.4). Average N2O emissions for the studied 

mainstream processes is equal to ~0.87% of the N-load, whereas the majority of the quantified 

EFs are below 0.27% of the influent N-load according to Figure 2.2. On the other hand, Figure 

2.2 shows that N2O EFs resulting from the treatment of the anaerobic digestion supernatant 

(sidestream process) are highly concentrated just below the median (2% of the N-load). On 

average, ~2.1% of the N-load is emitted as N2O in sidestream processes (Appendix A, Table 

A.4). According to a life cycle assessment (LCA) study quantifying the direct GHG emissions 

for a WWTP in Austria, the sidestream DEMON process contributed by over 90% to the total 

direct N2O emissions compared to the mainstream BNR (Schaubroeck et al., 2015). However, 

examples of full-scale sidestream Anammox processes with EFs lower than 1% exist in the 

literature and demonstrate that the configuration and efficient operational strategies can 

mitigate a significant percentage of the N2O produced (Joss et al., 2009; Weissenbacher et al., 

2010). 

 
Figure 2.2: Boxplots of the of the reported EFs with respect to the stage of the treatment 

processes (i.e. mainstream or sidestream) using violin plot outlines. The rectangles represent 

the interquartile range. The median is denoted by the black horizontal line dividing the box in 

two parts. The dots represent the values exceeding 1.5 times the interquartile range. The 

upper and lower whiskers stand for values higher or lower the interquartile range, 

respectively (within 1.5 times the interquartile range above and below the 75th and 25th 

percentile, respectively). The violin plot outlines show the kernel probability density of the 

EF in mainstream and sidestream processes; the width of the shaded area represents the 

proportion of the data located there. 
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Figure 2.3 shows the EF boxplots of various processes applied in WWTPs. In total 51 systems 

were considered in Figure 2.3 (Appendix A, Tables A.1 and A.4). A general remark is that the 

N2O EF for the majority of the different process groups shown in Figure 2.3 varies from 0.01 

– 2% of the N-load. Discrepancies in the emission loads are observed in the majority of the 

different process groups and can be partially attributed to the different site-specific operational 

characteristics and control parameters. This indicates that apart from the reactor configuration, 

emission fluxes depend also on the operational/environmental conditions and preferred 

enzymatic pathways (Wan et al., 2019).   

Mainstream SBRs are generally associated with higher N2O emissions compared to the other 

process groups. EFs range between 2% of the influent TKN-load for an SBR operating under 

aerated feeding, aerobic, settling and decanting sequences (Foley et al., 2010) and 5.6% of the 

influent TN-load for an SBR operating under aerated feeding, aerobic and anoxic settling and 

decanting sequences (1h each). High N2O fluxes in SBRs are attributed to sudden changes in 

the concentrations of NH4
+ and NO2

−  within the cycle (compared to other configurations) or 

to accumulated dissolved N2O during anoxic settling and decanting in the subsequent aerobic 

phase (Pijuan et al., 2014). 

OD reactor types have been linked with relatively low N2O emissions (average equal to 0.14% 

of the N-load), probably due to the strong dilution of the reactor concentrations (very high 

recycling rates) and less sensitivity to system shocks. One exception is the study of Daelman 

et al. (2015) who monitored a covered anaerobic/anoxic/oxic plug-flow reactor followed by 

two parallel Carrousel reactors for 1 year and found that the system had EF equal to 2.8% of 

the N-load. The authors argued that in the Carrousel reactor, the surface aerators led to zones 

with limited oxygen concentration to allow for complete nitrification (leading to nitrite 

accumulation), whereas the anoxic zones were also limited to allow for complete 

denitrification.  

CAS systems shown in Figure 2.3 consist of aerobic reactors (1-step feed or multiple step-feed) 

without dedicated anoxic zones for denitrification. They are characterised by average EF equal 

to 0.27% of the N-load whereas the NH4
+ removal, ranges between 38% to 53%. Peak loads 

and recirculation of the anaerobic supernatant can be responsible for the N2O fluxes observed 

in CAS systems, whereas high aeration rates have been reported, enhancing N2O stripping 

(Chen et al., 2016). 
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MLE configurations have a median EF equal to 0.857% of the N-load. MLE processes with 

high EFs (up to 4% of the N-load) have been reported by Foley et al., (2010). Low EFs in MLE 

configurations (i.e. 0.003%, 0.065%) have been observed in reactors with diluted influent 

concentrations due to groundwater infiltration (Bellandi et al. 2018),  nitrification efficiency 

less than 73% (Ahn et al., 2010b) and low TN removal (~59%) due to COD/TN < 1.9 (Spinelli 

et al., 2018). Low EF in MLE reactors ranging from 0.003% to 0.065% of the NH4
+ load have 

been also reported in the studies of Caivano et al. (2017) and Bellandi et al. (2018); however, 

conversion of these EF to % N-load was not possible and were not included in Figure 2.3.  

N2O emission fluxes in A2/O configurations, are relatively low, in the majority of the studies, 

with median equal to 0.1% of the N-load. One exception is the study of Wang et al., (2016b); 

they monitored an A2/O reactor once per month for 1 year and showed that EF varied from 0.1 

to 3.4 % of the N-load between different months. The DO concentration and operating 

conditions varied significantly in the reactor (i.e. DO ranged from 0.6 to 6.8 mg/L).  

Limited N2O monitoring studies exist in full-scale sidestream processes. One-stage granular 

anammox reactors have an average EF of 1.1% of the N-load. The same two-stage suspended 

biomass partial-nitritation and anammox process has been monitored in two studies 

(Kampschreur et al., 2008b; Mampaey et al., 2016). In these studies, the average EF in the 

partial-nitritation SHARON reactor was ~2.8% of the N-load and was elevated compared to 

full-scale one-stage anammox reactors. N2O fluxes quantification, in lab and pilot-scale single-

stage granular anammox reactors have shown EFs ranging from 0.1 to 12.19% of N-load (Wan 

et al., 2019). Therefore, more studies are required to establish reliable ranges of EFs in 

sidestream processes. 

Differences in the reported N2O fluxes are also observed in studies that apply similar 

configurations and operational conditions (Appendix A, Tables A.3 and A.4). For example, 

Kampschreur et al., (2008) and  Mampaey et al. (2016)  monitored the N2O emissions in the 

same two-step SHARON-Anammox reactor system and observed EFs that were equal to 1.7% 

and 3.8% of the N-load, respectively. Apart from slightly different DO setpoints (2 mg/L in the 

work of Mampaey et al. (2016) and 2.5 mg/L in the work of Kampschreur et al., (2008), the 

operational conditions (i.e. temperature, influent N-load, system treatment efficiency, 

hydraulic retention time (HRT), etc.; Table A.3) during the two monitoring periods were quite 

similar. The main identified difference was the increased anoxic liquid N2O formation during 

the anaerobic period of the partial-nitritation reactor in the study of Mampaey et al. (2016). In 
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terms of monitoring protocols, Kampschreur et al. (2008) collected grab-samples for 

approximately 3 days, whereas continuous gas monitoring for 21 days was conducted by 

Mampaey et al. (2016). Moreover, the air infiltration in the covered reactor due to negative 

pressure was not considered in the study of Kampschreur et al. (2008).  

The aforementioned examples emphasize the difficulty in the comparison of GHG emissions 

among various studies and development of EF databases for process groups. The benchmarking 

of GHG emissions of different plants can be hampered even if the same monitoring protocol is 

applied to monitor processes belonging to the same group. There are also cases where 

emissions have been measured according to different analytical procedures within the same 

system; fact that adds further difficulty in the comparisons. The relatively short monitoring 

periods and varying monitoring strategies can also influence the comparability and accuracy of 

the reported EFs. This will be discussed in detail in the following sections.  

 
Figure 2.3: Boxplots visualizing the EF range for the different groups of mainstream 

processes. The rectangles represent the interquartile range. The median is denoted by the 

black horizontal line dividing the box in two parts. The dots represent values exceeding 1.5 

times the interquartile range. The upper and lower whiskers represent values higher or lower 

the interquartile range, respectively (within 1.5 times the interquartile range above and below 

the 75th and 25th percentile, respectively). 

2.2.1 Duration of monitoring campaigns and seasonality 

Seasonal environmental variabilities, such as temperature,  can influence the bacterial 

community structure in WWTPs (Flowers et al., 2013). The N2O formation and emissions 

during the BNR are expected to have temporal variations. Temperature can significantly affect 
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the AOB specific growth rate during nitrification (Van Hulle et al., 2010). The higher 

temperature also decreases the N2O solubility, thus intensifying the N2O stripping to the 

atmosphere (Reino et al., 2017). On the other hand, Adouani et al. (2015) observed that the 

N2O emissions increased up to 13%, 40% and 82% of the TN-removed at temperatures equal 

to 20°C, 10°C and 5°C, respectively, in a batch reactor fed with synthetic wastewater. The 

latter was attributed to the increased sensitivity of the N2O reductase activities at lower 

temperatures compared to other denitrification enzymes and, therefore, to incomplete 

denitrification. Other seasonal variations (e.g. influent loading, wet and dry season) can also 

impact on the enzymatic reactions and affect the emissions. Vasilaki et al., (2018) observed 

peaks of N2O emissions coinciding with precipitation events, at low temperatures, in an OD 

during a 15-month monitoring campaign. However, further investigation is required to 

understand potential seasonal effects on the N2O emissions.  

The monitoring periods of the full-scale campaigns for all the processes considered in this 

analysis are summarised in Appendix A, Tables A.3 and A.4. Figure 2.4 shows the EF for 

mainstream technologies based on the length of the monitoring period. Only studies that have 

reported EFs in terms of the influent N-load have been considered (Appendix A - Table A.1). 

The monitoring campaigns have been categorized into 3 distinct groups, based on their 

duration, i) short-term campaigns performed in a limited period of time (less than 1 month), ii) 

medium-term monitoring campaigns that last more than one month but have not captured all 

the temperature ranges observed in the system and ii) long-term monitoring campaigns that last 

at least 1 year.  Both continuous and discontinuous monitoring studies have been included in 

the analysis. In the discontinuous N2O monitoring studies, the gaseous N2O fluxes have been 

grab-sampled (i.e. via gas-bags, closed chambers etc.) and subsequently quantified using 

analytical methods in the lab (offline monitoring) or intermittently sampled (i.e. with floating 

chambers for 1-2 days/month) but quantified continuously on-site (i.e. via GHG analysers) 

(online monitoring). Most discontinuous monitoring campaigns had monthly or bi-monthly 

sampling frequency. The only exception is the study of Ahn et al., (2010b) who monitored 

several systems in only two distinct seasons (warmest and coldest temperatures). 

Discontinuous studies with sampling extending over 1-month period, have been categorized as 

medium-term or long-term based on the duration of the study (less or more than 1 year). In 

continuous monitoring campaigns N2O fluxes have been collected continuously (i.e. via 

chambers) and quantified online, on-site (i.e. via GHG analysers).  
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About 30% of the EFs shown in Fig 4. are based on monitoring periods lasting less than two 

days (Foley et al., 2010; Filali et al., 2013; Samuelsson et al., 2018). Annual EF variation has 

been investigated discontinuously (monthly or bimonthly sampling frequency) in 

approximately 10% of these systems (i.e. Sun et al., 2015; Wang et al., 2016b), whereas long-

term (≥ 1 year) continuous monitoring campaigns have been performed only in two of the 

examined works (Daelman et al., 2015; Kosonen et al., 2016). SBRs have been excluded in 

order to avoid further biases in the results, since the reported average N2O emissions are 

significantly higher than the average EF of other mainstream N-removal configurations. 

Sidestream technologies have been also excluded because they have not been monitored long-

term to examine seasonal effects. The average EF is equal to 0.8 % (median 0.2 %) and 0.3 % 

(median 0.1 %) of the N-load for the systems monitored short-term and medium-term (but 

without capturing the whole spectrum of seasonality effects), respectively. The studies 

investigating seasonal trends of N2O emissions reported an average EF of 1.5% (median 1.7%) 

of the N-load.  

Daelman et al. (2013a) demonstrated that short-term campaigns, in the system investigated, are 

likely to produce unreliable EF estimates independently of the monitoring approach. 

Additionally, the authors found that short-term campaigns have a high probability to 

underestimate actual emissions. According to Figure 2.4, the highest gaseous N2O loads belong 

to long-term continuous or discontinuous monitoring campaigns.  

Long-term and medium-term campaigns have also shown a high variability of the N2O 

emissions. Amongst the examined studies, Daelman et al. (2015) implemented the longest 

continuous real-field campaign that reinforced the existence of seasonal emission variability. 

Seasonality is also supported by the findings of several other studies (Brotto et al., 2015; Sun 

et al., 2013; Yan et al., 2014). Bollon et al. (2016a) and Bollon et al. (2016b) studied a 

sidestream nitrifying and post-denitrifying biofiltration system, respectively, by performing 

two monitoring campaigns; one in summer at 22.5°C and one in winter at temperatures lower 

than 14°C. Their results indicated a significant seasonal variation of the N2O formation. The 

EF of the nitrifying filters was equal to 2.3% of the NH4
+ removed during the summer 

campaign, and 4.9% of the NH4
+ removed during the winter campaign. The dissolved N2O 

concentration in the post-denitrifying biofilter effluent was equal to 1.3% in summer and 0.2% 

in winter with respect to the NO3
- uptake.  
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Short-term monitoring periods are likely to miss underlying seasonal variations in the N2O 

formation (or be affected by short-term process perturbations), and, consequently, complicate 

the direct cross-comparisons between different studies and their findings.  For instance, the 

monitoring of an A2/O process for nine months (grab-samples taken once per month) led to an 

average EF equal to 0.08% of the influent TN (Yan et al., 2014), whereas a similar A2/O process 

monitored for two days (by taking grab-samples) presented an EF of  0.85% of the influent 

TKN (Foley et al., 2010). Wang et al., (2016b) showed that the EF from a PF A2/O reactor was 

characterised by significant seasonality and varied from 0.01% to 3.5% of the influent TN; 

within the range of EFs reported in the studies by Yan et al., (2014) and Foley et al., (2010). It 

can be concluded that the EF differences between similar configurations shown in Figure 2.2 

and Figure 2.3, are strongly affected from the seasonality of the emissions. 

 
Figure 2.4: EF values with respect to the length of the monitoring period for mainstream 

treatment technologies. 

2.2.2 Monitoring and sampling methods 

Several authors have highlighted that the sampling methodology can influence the EF 

quantification (Daelman, 2013a; Aboobakar et al. 2013; Wang et al, 2016a; Kosonen et al., 

2016; Hwang et al., 2016). Main sources of uncertainty of N2O monitoring protocols are related 

to: i) the sampling methods, ii) the gas flux assessment methods, iii) the N2O quantification 

methods, ii) the sampling location and v) the sampling frequency (continuous vs discontinuous 

monitoring) employed. A detailed analysis of the potential uncertainties in full-scale N2O 

monitoring campaigns was out of the scope of this review. However, main sources of 

uncertainty are briefly discussed, to underline that further research is needed to reveal the 

influence of monitoring protocols and facilitate the benchmarking of EF values for different 

groups of processes. 
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▪ Uncertainties of gas sampling methods 

The majority of the examined studies have selected chamber methodologies (~71%) to collect 

the GHGs. Several sources of uncertainty in chamber techniques similar to the techniques 

applied in the wastewater sector, have been identified in GHG monitoring campaigns of 

running waters (Duchemin et al., 1999; Lorke et al., 2015; Matthews et al., 2003; Vachon et 

al., 2010). The lack of consensus on the N2O sampling methodologies via open, closed, static 

or dynamic chambers is highlighted in several recent reviews summarizing the different 

approaches (Denmead, 2008) and the recent developments (Hensen et al., 2013) of N2O fluxes 

assessment in soils and running waters.  

Additionally, there is a significant variability in the chamber techniques employed; there are 

differences in the chamber configuration (i.e. Desloover et al., 2011; Ren et al., 2013; 

Rodriguez-Caballero et al., 2015; Hwang et al., 2016), chamber area and material (i.e. 

Aboobakar et al., 2013; Sun et al., 2015), parameters monitored in the chamber (i.e. Pan et al., 

2016; Rodriguez-Caballero et al., 2014, 2015) and gaseous flux calculation methodology (i.e. 

Ahn et al., 2010; Wang et al., 2016).  

Dynamic floating chambers and especially the Surface Emission Isolation Flux Chamber 

(SEIFC)  (Schmidt, 1994), have been widely used in WWTPs. The SEIFC is accepted by the 

United States Environmental Protection Agency (USEPA) as a device for monitoring gaseous 

emissions from liquid surfaces and proposed by the monitoring protocol developed by 

Chandran, (2011). Significant variations, though, especially in the parameters monitored in the 

SEIFC can be identified between the different studies. For example, Wang et al., (2011) 

considered that the off-gas emissions from the reactor surface were equivalent to the aerators 

flow-rate in the aerated zone of an A/A/O. According to van Loosdrecht et al., (2016) this 

information can only be used as an estimation of the advective flow. This is because there is a 

high uncertainty in links between the flow-rate of the aerators and the distribution of air inside 

the reactor. According to Duchemin et al. (1999) temperature is an important parameter; 

temperature changes affect pressure, gas solubility and diffusivity. However, N2O 

concentration adjustments due to temperature variations have also not been considered in 

several studies. 

Several custom-made both open and closed chambers have been also widely applied. For 

example, Wang et al., (2016a, 2016b) integrated a fan and a pressure bag in a closed chamber. 
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The latter enable the mitigation of uncertainties related with unbalance headspace air and 

pressure variabilities that can significantly affect the water level inside the chamber and 

consequently the area of the chamber. Gas bags have been widely applied either standalone for 

the aerobic periods of biological processes (Wang et al., 2011; Sun et al., 2013; Yan et al., 

2014; Sun et al., 2015) or complementing a chamber (Ren et al., 2013), especially when the 

monitoring was not continuous. In an effort to simulate environmental conditions and mimic 

natural speed Desloover et al., (2011) have used a Lidvall hood (Lindvall et al., 1974) which 

follows the wind tunnel approach in a two-stage nitritation-Anammox reactor. A modified 

forced-draught chamber was used by Hwang et al., (2016) enabling the assessment of the flow-

rate and the inlet and outlet N2O concentration variation which again aiming to sustain the 

uncovered environmental conditions inside the chamber (International Fertilizer Industry 

Association, 2001).  

Even the material of the chambers varies from wood (Bollon et al., 2016b) to PVC (Mello et 

al., 2013). Chamber material can have a significant effect on the microclimate inside the 

chamber by accumulating heat from the sun and the atmosphere. Another source of potential 

errors in the calculation of N2O fluxes from soils has been attributed to the height (Senevirathna 

et al., 2006) or the effective area (Ah/Ar) of the chamber (Rochette and Eriksen-Hamel, 2008); 

however, in the examined studies both parameters are highly variable ranging 0.000083% (Li 

et al., 2016) for the anoxic area of an orbal oxidation ditch to 0.7% (Bollon et al., 2016a) for a 

biofiltration system.  Consequently, studies to investigating the effect of the various parameters 

on N2O sampling methods from the reactor’s surfaces are essential.  

Delre et al. (2017) and Yoshida et al. (2014) have argued that conventional chamber-based 

monitoring techniques do not consider leakages (e.g. from pipes) and can monitor only limited 

areas of the reactors in WWTPs.  Therefore, tracer gas dispersion methods for monitoring 

plant-wide N2O emissions at WWTPs have been tested either as standalone techniques (Delre 

et al., 2018, 2017; Yoshida et al., 2014) or combined with conventional methods (Samuelsson 

et al., 2018). Additionally, gas collection methods from covered reactors enable the gas 

sampling from the whole reactor area (i.e. Kampschreur et al., 2009; Stenström et al., 2014; 

Castro-Barros et al., 2015; Daelman et al., 2015), increasing the accuracy of assessment. 
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▪ Analytical techniques uncertainties 

In the majority of the discontinuous N2O monitoring studies, the gaseous N2O fluxes are 

quantified using analytical methods such as gas chromatography (GC) coupled with an 

electron-capture detector (ECD) (Chen et al., 2016; Ren et al., 2013; Sun et al., 2015; Yan et 

al., 2014). Potential interference and enhancement of the N2O measurements under the 

presence of contaminants and other gases (i.e. O2, CO2) has been reported in the literature 

(Crill et al., 1995; Wang et al., 2010), however, only a few studies  (Mello et al., 2013; Sun et 

al., 2013, 2015; Brotto et al., 2015) have introduced appropriate mixtures of tracer gases (i.e. 

Ar with 5-10% CH4) to mitigate such effects as proposed by the WMO-GAW (2009). 

Additionally the analytical precision has been reported only in the study of Brotto et al., (2015). 

Even though more than 40% of the monitoring studies in full-scale WWTPs have applied off-

line N2O monitoring methods, a decreasing trend over the years indicates a gradual transaction 

to online strategies. 

Infrared laser (i.e. Bollon et al., 2016b) and Fourier transform infrared (FTIR) spectroscopic 

(i.e. Castro-Barros et al., 2015; Kosonen et al., 2016) are commonly used commercial analysers 

for the online monitoring of gaseous emissions. The accuracy of commercial analysers is about 

1% for emissions ranging from 2 ppmv - 500ppmv (Pan et al., 2016) with variable detection 

limits (i.e. from 50 ppb for the study of Bollon et al., (2016a)) and weekly calibration is often 

required. Even though, in a noticeable number of studies insufficient information are provided 

for the analyser in terms of accuracy, detection limits, range of detectable measurements, 

calibration requirements (i.e. Ahn et al., 2010a; Joss et al., 2009; Castro-Barros et al., 2015) 

commercial gas analysers can be considered a reliable technique for the requirements of N2O 

monitoring in WWTPs (Rapson and Dacres, 2014). 

Dissolved N2O is normally monitored online with a modified Clark electrode probe (Unisense 

A/S, N2O-R, Denmark) to provide insights on the mechanisms of N2O formation (i.e. Mampaey 

et al., 2016; Pan et al., 2016). Alternative methods that have been recently applied include the 

salt-stripping method (offline) (Kosse et al., 2017), the gas stripping device (online) (Mampaey 

et al., 2015) and the extraction of N2O from the liquid phase with a subsequent analysis in the 

gaseous phase by means of photoacoustic (PA) spectroscopy (Thaler et al., 2017).  
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▪ Uncertainties of N2O sampling location 

The spatial variability of nitrogen species encountered in reactors with plug-flow pattern, 

mandate a fundamentally different approach of monitoring protocols compared to completely 

mixed reactors due to the spatial variability of concentrations observed. For example, 

Aboobakar et al., (2013), separated 8 equally distributed different zones the aerated region of 

the reactor and used a gas hood to monitor the emissions in each zone for 1 week whereas 

Rodriguez-Caballero et al., (2014) based the location of the hoods on the separately controlled 

air diffusers in the reactor. Overall, the spatial and temporal variability of the N2O 

concentrations that have been reported in plug-flow reactors (i.e. Pan et al., 2016), have shown 

that the extrapolation of reactor EFs from single-spot readings is accompanied by high 

uncertainties (Aboobakar et al., 2013). To mitigate sampling location uncertainties, Pan et al. 

(2016), used a Programmable Logic Controller (PLC) to simultaneously monitor the gaseous 

N2O emissions from three different chambers located in the beginning middle and end of each 

aerobic zone in a step-feed plug-flow reactor.  

▪ Uncertainties of sampling strategy 

This section focuses on the sampling method (continuous and discontinuous). The main 

characteristics of the sampling strategies are shown in Appendix A (Table A.3 and A.4). In the 

discontinuous N2O monitoring studies, the gaseous N2O fluxes have been grab-sampled (i.e. 

via gas-bags, closed chambers etc.) and subsequently quantified using analytical methods in 

the lab (offline monitoring) or intermittently sampled (i.e. with floating chambers for 1-2 

days/month) but quantified continuously on-site (i.e. via GHG analysers) (online monitoring). 

In continuous monitoring campaigns N2O fluxes have been collected continuously (i.e. via 

chambers) and quantified online, on-site (i.e. via GHG analysers). 

Figure 2.5 illustrates the boxplot of the average EF of mainstream processes for cases of 

continuous gaseous monitoring using a gas analyser versus the boxplot for studies with 

intermittent sampling campaigns. Only medium-term and long-term studies have been 

considered in the analysis (Appendix A – Table A.1). Mainstream processes monitored 

discontinuously exhibited an average EF of 0.44% of the N-load (median EF was 0.2% of the 

N-load), whereas processes monitored continuously with gas analysers had an average EF 

equal to 1.2% of the N-load (median EF is 1.1%). The majority of the process monitored 



30 

 

intermittently (once or twice per month) have collected grab-samples of N2O fluxes (Appendix 

A, Table A.4). Offline grab sampling is often characterised by time limitations; usually the 

sampling occurs during WWTP operating times and provides discrete measurements (e.g. 

Wang et al., 2011) that are unable to capture the whole spectrum of diurnal variabilities 

(Daelman et al., 2015; Wang et al., 2016a). Additionally, the temporal variability of N2O 

emissions is highly dynamic (Daelman et al., 2015) and strongly affected by operational 

conditions. Therefore, low-frequency, long-term sampling might not capture adequately the 

whole range of N2O emissions induced by short-term changes in operational conditions and 

pollutant concentrations. Overall, the differences can be attributed to the case-specific nature 

of the EF, as well as to the restrictions concerning the duration and frequency of the 

discontinuous campaigns (difficulty in performing grab-samples for longer periods - whole 

days, night time, weekends, etc.). 

 
Figure 2.5: Boxplots of the average EF with respect to the method of gaseous sampling for 

medium-term and long-term studies (C: discontinuous monitoring, C: continuous 

monitoring). The rectangles represent the interquartile range. The median is represented by 

the black horizontal line dividing the box in two parts. The dots represent values exceeding 

1.5 times the interquartile range. The upper and lower whiskers represent values higher or 

lower the interquartile range, respectively (within 1.5 times the interquartile range above and 

below the 75th and 25th percentile, respectively). 

2.2.3 Towards benchmarking of EFs: progress and limitations 

The amount of quantified emissions is highly affected by a variety of parameters (e.g. process 

type, WWTP characteristics, monitoring strategy, duration of monitoring campaign, etc.). 
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Therefore, estimating the N2O EFs in WWTPs with either offline or online monitoring 

campaigns remains challenging. In this section, efforts have been focused on the classification 

of EFs for different groups of processes based on the NH4
+ removal efficiency and the influent 

flow-rate. Additionally, an N2O monitoring framework for the development of comparable EFs 

for the wastewater sector is also discussed. 

Figure 2.6 shows the EF (with respect to the influent N-content) for mainstream processes and 

the achieved NH4
+ removal efficiency (%). The different processes are represented by different 

colours. A detailed list of the examined studies is provided in the Appendix A (Table A.4). 

Triangles show that seasonal effects have been investigated in the respective process, whereas 

circles represent short-term studies that have not investigated seasonality. The size of the data 

points represents the size of the WWTP. No specific trend was identified between the observed 

EFs and NH4
+ removal for the different mainstream processes. The N2O emissions for most of 

the processes in smaller WWTPs (influent flow-rate<200,000 m3/d) were less than 0.5% of the 

N-load, independently on the process type and nitrification efficiency. In addition, most of the 

processes with N2O emissions less than 0.1% of the N-load referred to studies performing 

short-term and medium-term N2O monitoring campaigns.  

 
Figure 2.6: EF of the mainstream technologies with respect to the achieved NH4

+ removal. 

The different colours represent different processes, whereas the different shapes show if 
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seasonal effects have been investigated. The size of the data points depicts the size of the 

WWTP in terms of influent flow-rate. 

In-depth comparisons require more details on configurations, control strategies and operational 

conditions. Currently, there are still no specific guidelines to standardise the reporting of 

operational, process and monitoring strategy information from existing studies. The Appendix 

A summarises process-based information from past full-scale N2O monitoring campaigns. 

Overall, ~70% of the mainstream studies have reported the EFs in terms of N-load. 

Additionally, influent and effluent NH4
+ concentrations are available for ~35% of the systems 

analysed. Information on the water temperature during the monitoring campaign has not been 

provided for half of the studies. Limited studies provided information on the control strategy 

of the system (i.e. DO set-point) and other operational parameters of the processes (i.e. HRT, 

SRT). Given the variability of EFs amongst similar process groups (Figs. 2-6), the 

identification of EF patterns needs to consider process-specific operational and environmental 

information.  

The monitoring strategies require sampling protocols that are case-specific (e.g. the choice of 

appropriate sampling locations). Specific protocols for the design of monitoring strategies can 

be found in the study of van Loosdrecht et al. (2016). Elemental mass balances can also be 

used to confirm the validity of the measurements (Castro-Barros et al., 2015; Mampaey et al., 

2016) independently of the applied monitoring protocol. Grab-sampling the gaseous fluxes 

often lacks the acquisition of weekend or night-time samples, thus failing to depict the diurnal 

variability of the emissions. Moreover, short-term monitoring studies are frequently unable to 

accurately capture the temporal N2O dynamics (Daelman et al., 2015; Kosonen et al., 2016). 

Daelman et al. (2013a) concluded that the accurate quantification of the average N2O emissions 

requires long-term online or grab-sampling monitoring campaigns that consider the seasonal 

variations of temperature.  

The analysis of historical process and plant data can be also useful, linking the emissions with 

specific and reoccurring operational and environmental conditions (i.e. dry vs wet weather, 

temperature) for short-term and long-term monitoring campaigns. Relationships established 

during short-term monitoring campaigns can be linked with the periodic operational and 

environmental process conditions and cannot be generalised to understand the long-term N2O 

dynamics (Vasilaki et al., 2018). The latter is important due to the restrictions on the duration 

of the monitoring campaigns due to the entailed costs. It is also essential to identify and report 
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process perturbations that can affect the N2O emissions even on a long-term basis (Vasilaki et 

al, 2018).  

The current analysis shows that N2O fluxes must be reported together with the configuration 

type, the seasonal operating conditions (e.g. pH, temperature, influent TN, effluent TN, PE, 

wastewater volume, COD, mixed liquor suspended solids (MLSS), SRT, HRT, recycle ratios, 

etc.).  

2.3 N2O monitoring campaigns and N2O dynamics 

Several methods that have been applied in N2O monitoring campaigns can increase the 

understanding of the N2O generation in full-scale processes. These include: i) techniques for 

the translation of WWTP operational and N2O data into information (e.g. graphical 

representation of variables, feature extraction techniques, multivariate analysis, etc.), ii) 

mechanistic models simulating the N2O dynamics, and iii) techniques for unveiling the relative 

contribution of different pathways to the emissions (e.g. isotopic analysis, real-time polymerase 

chain reaction (qPCR) etc.). 

The effect of several parameters that are significant for N2O generation (i.e. DO, COD/N, pH, 

temperature) has been extensively investigated (Kampschreur et al., 2009b; Law et al., 2012; 

Massara et al., 2017) based on lab-scale, pilot scale and full-scale mainstream and sidestream 

processes. This section aims to complement these studies; the main findings of the full-scale 

technologies are categorized for different process groups focusing on the techniques that have 

been applied and their contribution to the understanding of the behaviour of N2O emissions. 

2.3.1 Overview of the techniques 

▪ Techniques translating WWTP operational and N2O data into information 

More than 40 physical, physico-chemical and biochemical variables (e.g. temperature, flow-

rates, reduction-oxidation (redox) potential, DO, N-compounds and organic matter 

concentrations, alkalinity, etc.) can be monitored online to evaluate process performance 

(Vanrolleghem and Lee, 2003). Online monitored variables when combined with laboratory 

analyses can provide useful insight into the N2O patterns and behaviour. Techniques that have 

been applied to translate WWTP data into information in full-scale N2O monitoring campaigns 
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include: i) graphical representations and simple feature extraction methods and ii) statistical 

analysis and data mining methods. 

In most of the studies, the online and laboratory data utilisation has been limited to the 

investigation and graphical representation of the significant parameters’ profiles (i.e. DO, NO2
-

, NH4
+, aeration flow-rate) in combination with the response of the N2O emission behaviour. 

Additionally, descriptive statistics (i.e. central tendency, dispersion, position, etc.) of the 

process variables and N2O emissions is commonly analysed and reported.  

Correlation analysis and linear multivariate regression models are the main statistical 

techniques that have been used to reveal the N2O emissions’ dependencies with operational 

variables in full-scale systems (i.e. Brotto et al. 2015; Bollon et al. 2016a; Aboobakar et al. 

2013). Dimensionality reduction techniques (e.g. principal component analysis (PCA), 

independent component analysis (ICA)), clustering (e.g. hierarchical, k-means), linear and 

non-linear supervised learning techniques (e.g. partial least squares (PLS), artificial neural 

networks (ANN)) and support vector machines (SVM)) are also powerful tools utilised to 

transform the WWTP data into knowledge (Haimi et al., 2013; Corominas et al., 2018). 

However, advanced information extraction methods have rarely been used to analyse data from 

N2O monitoring campaigns. Recently, Sun et al. (2017) constructed a back-propagation ANN 

to simulate N2O emissions in an anaerobic-oxic (A/O) process; thus demonstrating the 

feasibility and simplicity of predicting N2O emissions with data-driven models. 

▪ Experimental studies in full-scale systems – modification of operational conditions 

Several N2O monitoring campaigns in full-scale sidestream processes have tested different 

operational conditions to investigate their impact on the emissions (Bollon et al., 2016b; 

Castro-Barros et al., 2015; Mampaey et al., 2016). The majority of the studies have focused on 

inducing changes in the duration and flow-rate of aeration compared to the baseline control 

strategy of the examined reactors. 

2.3.2 Techniques unveiling the relative contribution of different pathways to 

the emissions 

Isotopic and molecular biology analysis are emerging techniques that can provide insights into 

the N2O generation pathways. Molecular biology methods (e.g. quantitative reverse 
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transcription polymerase chain reaction RT-qPCR, FISH, etc.) can quantify the 

microbiological structure driving the N-cycle and the bacterial population able to reduce N2O 

at WWTPs under various environmental and operational conditions (Castellano-Hinojosa et 

al., 2018; Song et al., 2014). Isotope techniques have only recently been implemented at full-

scale systems to distinguish the respective contribution among the N2O pathways and increase 

the understanding of the pathways that are responsible for N2O formation (Townsend-Small et 

al., 2011; Tumendelger et al., 2014). A recent critical evaluation of natural abundance and 

labelled isotopes for N2O studies can be found in the study of Duan et al. (2017). 

• Mechanistic models 

The mechanistic models are a popular tool for the prediction of the N2O generation and 

emission during the BNR in WWTPs. Based on different assumptions, a variety of one- and 

multiple-pathway models have been suggested. Their structure is based either on the widely 

accepted ASM layout (as suggested by Henze et al. 1987, 2000), or on the more recent electron 

carrier concept that describes the N2O production via the mechanism of the relevant complex 

oxidation-reduction reactions taking place during wastewater treatment (e.g. Ni et al., 

2014). All models, though, consider the effect of changing operational parameters (e.g. DO, 

NO2
- levels, aeration regime, etc.) on the N2O generation. A comprehensive evaluation of the 

different modelling approaches, underlying assumptions, kinetics, stoichiometric parameters, 

calibration and validation procedures of several single-pathway and two-pathway AOB 

models, heterotrophic denitrification pathway models, and integrated N2O models describing 

the three major microbiological pathways is provided by Ni and Yuan (2015). The authors have 

provided guidelines for the selection of modelling approach under different DO and NO2
-
 

concentrations based on the structural assumptions of the models. The debate on the model that 

best describes and decouples the major N2O formation pathways is still ongoing with several 

extensions and variations of the original approaches developed recently (Ding et al., 2017; 

Domingo-Félez and Smets, 2016; Massara et al., 2018). 

2.3.3 Process-based insights based on the applied techniques 

Robust documentation of the dominant pathways among the different process configurations 

is still missing (Ma et al., 2017). This section discusses correlations between N2O emissions 

and operational variables and dominant N2O pathways that have been identified for different 



36 

 

full-scale process groups. Table 2.1 provides a summary of the dominant N2O pathways that 

have been reported for different wastewater treatment processes based on the techniques that 

have been applied in the monitoring campaigns. Studies that have not discussed possible N2O 

pathways have not been considered. 
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Table 2.1: Main findings of past studies that result in the identification of the most contributive N2O production pathway (where possible). a: 

Visualization of significant profiles & descriptive analysis, b: Modified operation mode, c: Statistical analysis and data mining, d: Mechanistic 

model development, e: Isotopic analysis, f: real-time qPCR 

Source 
Process 

NH2OH oxidation Nitrifier denitrification 
Heterotrophic 

denitrification 

 

Castro-

Barros et 

al., 2015a, b 

One-stage PNA 

granular         

Sidestream 

N2O emissions elevated 

during shifts from low to high 

aeration (NH4
+ accumulation, 

high AOR) → main pathway 

Not a main pathway 

N2O emissions elevated 

during shifts from low to 

high aeration (NH4
+ 

accumulation, high AOR) 

→ potential contributor 

 

Mampaey 

et al., 

2016a, b 

One-stage SHARON 

granular 

Reactor                                       

Sidestream 

Not a main pathway 

Presence of NH2OH in anoxic 

periods; lower DO resulting in 

increased N2O emissions  

N2O formation during 

anoxic periods under the 

presence of NO2
- & small 

amounts of organic 

substrate 

Kampschre

ur et al., 

2008a 

Two-reactor partial-

nitritation-anammox 

process                                     

Sidestream 

Excluded during anoxic 

conditions in the nitritation 

reactor (despite significant 

N2O formation) 

• Anammox reactor: absence 

of O2 

• Nitritation reactor: emissions 

not affected by the influent 

composition (therefore C/N 

ratio) 

Not a main pathway 

Stenström 

et al., 2014a 

Nitrification-

denitrification SBR, 

Sidestream 

Not discussed 

Considerable N2O formation 

under DO=0.5 mg/L & NO2
- 

accumulation (>20 mg/L) 

N2O accumulation during 

denitrification (under 

conditions of low COD:N 

and high NO2
-); quickly 

stripped off to the 

atmosphere as soon as 

aeration resumed 
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Wang et al., 

2016ba, c, f 

A2/O with plug-flow 

pattern 

Not a dominant pathway (low 

NH4
+ concentrations) 

• Coexistence of NO2
-, NH4

+ & 

O2-limiting conditions 

• Correlation between NO2
- 

and N2O emissions 

• Strong responses between 

NO and N2O emissions and 

the relative abundance of 

AOB. 

Not a dominant pathway 

(no peaks observed after 

anoxic zones) 

Wang et al., 

2011a 

A2/O 

 
Not a main pathway 

• Rapidly increased N2O 

emissions due to DO 

limitation (DO<2.5 mg/L); 

maximum N2O emission at 

DO=0.75 mg/L 

• Increase in NO2
- 

concentration (from 0.2 to 

0.6 mg/L) during nitrification 

leading to increase in N2O 

fluxes 

Not a main pathway 

Toyoda et 

al., 2011a, f 
A2/O 

SP Isotopic analysis: 

• ~50% contribution in the 

beginning of aerobic tank 

SP Isotopic analysis: 

• ~50% contribution in the 

beginning of aerobic tank 

• Dominant pathway from 

middle to the end of aerobic 

tank 

N2O was produced during 

denitrification 

Aboobakar 

et al., 

2013a, c 

A/O plug-flow reactor Not dominant pathway 
Considered dominant in zones 

with DO<1.5 mg/L 

Considered dominant in 

zones with depleted NH4
+, 

DO fluctuations, NO3
- 

availability & lack of NO2
- 

Sun et al., 

2017a 
A/O 

Higher DO: certain NO2
- 

amount potentially utilised to 

Low-DO condition (i.e. <1 

mg/L) usually observed at the 

beginning of the oxic zone 

Not a main pathway 
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oxidize NH3 to NH2OH, thus 

leading to the N2O production 

Kosonen et 

al., 2016a, c 

& 

Blomberg 

et al., 2018d 

A/O bioreactor 

Only this AOB pathway 

modelled due to the existing 

DO & NO2
- conditions, N2O 

production mainly in the 

aerated zones, N2O 

consumption in the anoxic 

zones→ main pathway 

• Increasing the number of 

nitrifying zones resulting in 

higher overall N2O emissions 

(N2O production possibly via 

nitrifier denitrification)  

• Given that anoxic-aerobic 

volume controlled by the 

NH4
+ concentration, unclear 

if increased emissions caused 

by increased NH4
+ 

concentration or increased 

number of nitrifying zones 

Not main pathway 

Pan et al., 

2016 & 

Ni et al. 

2015 a, d 

2 step-feeding, 

anoxic/oxic/anoxic/ox

ic plug-flow reactor 

N2O emissions increasing 

with the AOR increase (2nd 

step of the plug-flow reactor) 

N2O emissions increasing with 

the AOR increase (2nd step of 

the plug-flow reactor) 

Not a main pathway 

Rodriguez-

Caballero et 

al., 2014a, b 

Anoxic/oxic/short 

anoxic/oxic plug-flow 

reactor 

Not a main pathway 

• N2O peaks when 

transitioning from anoxic to 

aerobic conditions; O2 

limitation considered as 

enhancing the activation of 

the nitrifier denitrification 

pathway  

• N2O emissions increasing 

with potential shock loads; 

the AOB likely to activate 

their denitrification pathway 

after shock loads of toxic 

compounds 

Not a main pathway 
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Castellano-

Hinojosa et 

al., 2018c, e 

Two sequential 

bioreactors (anoxic 

and aerated) 

Not a main pathway 

• Strong positive correlation 

between AOB abundance & 

N2O emission; hence, more 

possible pathway under 

anoxic conditions  

• 0.5<DO<1 mg/L: enough O2 

provided to the AOB for the 

oxygenation of NH3 to 

NH2OH but not for aerobic 

respiration; NO2
- potentially 

used as alternative electron 

acceptor to complete 

nitrification 

Not a main pathway 

Tumendelg

er et al., 

2014a, f 

CAS 

SP Isotopic analysis: 

• Up to 90% contribution at 

DO ~2.5 mg/L 

• ~50% contribution at DO 

~1.5 mg/L 

SP Isotopic analysis: 

• Dominated at DO <1.5 mg/L 

• ~50% contribution at DO 

~1.5 mg/L 

 

Not discussed 

Daelman et 

al., 2015a, c 
Carrousel reactor 

Carrousel: emissions 

coinciding with aerated 

periods (AOR governed by 

DO); the relationship 

between the AOR & the N2O 

production usually explained 

by referring to the NH2OH 

pathway; however, not 

considered dominant  

• Carrousel: emissions 

correlated with the NO2
-

concentration peaks 

• Prevalence of low-DO zones 

Carrousel: reactor lacking 

sufficient anoxic space to 

allow the completion of 

denitrification 

Ni et al., 

2013d 

OD with surface 

aerators 

Main pathway since high 

NH4
+ concentrations were 

observed without 

Not a main pathway Not a main pathway 
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simultaneous NO2
- increase 

in the aerated zones/phases 

Ni et al., 

2013d 

Feeding and aeration 

(90 min)/ settling (35 

min) / decanting (55 

min) SBR 

Main pathway since high 

NH4
+ concentrations were 

observed without 

simultaneous NO2
- increase 

in the aerated zones/phases 

Not a main pathway Not a main pathway 

Sun et al., 

2013a, c 

Feeding (synchronous 

aeration)/aeration/settl

ing/decanting SBR (1 

hour each) 

Not a main pathway 

• Low DO during nitrification 

significantly affecting the 

N2O production → main 

pathway 

Correlation between N2O 

emission and influent 

COD/N →  contributor 

Rodriguez-

Caballero et 

al., 2015a, b 

Reaction phase (~130 

min) /settling 

(~65min) and 

decanting (~65 min) 

SBR (anoxic/aerobic 

alternations – 3 cycle 

types) 

Not a main pathway 

• Certain NO2
- accumulation 

under aerobic conditions 

• N2O generation continuing 

after aeration stop 

N2O generation continuing 

after aeration stop 

Wang et al., 

2016a a, c 

Full-scale biological 

aerated filter (BAF) 

for secondary 

nitrification 

Low influent NH3 

concentration (<6 mg/L) → 

not a main pathway 

• Significant linear correlation 

between N2O & NO EFs in 

different seasons 

• Nitrifier denitrification 

suggested as possible 

pathway in accordance with 

the fact that the influent NO2
- 

found as key factor regarding 

the N2O & NO production 

• Significant linear 

correlation between N2O 

& NO EFs in different 

seasons 

• Minor possibility of 

heterotrophic 

denitrification 

contribution during the 

denitrification of NO to 

N2O  
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Bollon et 

al., 2016a 

Nitrifying biofiltration 

(Biostyr® filters) 
Not discussed Not discussed 

• Rapid increase in the net 

N2O production rate at 

BOD:N< 3 

• Intensity increased with 

the duration of carbon-

limiting conditions 
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Overall, the majority of the studies investigating N2O dominant pathways in mainstream full-

scale systems with descriptive statistics and visual inspection (i.e. via univariate/bivariate 

graphs) of significant variables (e.g. NH4
+, DO concentrations, influent flow-rate and N2O 

emissions) have not considered NH2OH to be a significant pathway for N2O generation, 

regardless the configuration (Table 2.1).  

Specifically, in 1-step feed A/O and A2/O configurations and processes with anoxic/aerobic 

alternations and plug-flow pattern, studies have observed i) spatial N2O peaks in the transitions 

from anoxic to aerobic zones (i.e. Rodriguez-Caballero et al., 2014; Sun et al., 2017) under low 

DO concentrations (<1 mg/L), ii) temporal increase in N2O emissions that coincide with 

elevation of NO2
- and NH4

+ concentrations (i.e. peak loads) under O2-limiting conditions (J. 

Wang et al., 2011; Wang et al., 2016b) and iii) N2O emission peaks coinciding with elevated 

NO2
-concentrations in aerobic zones (Sun et al., 2017). Therefore, the nitrifier denitrification 

pathway has been suggested to be dominant. This is also supported by Wang et al. (2016b) who 

studied the relative abundancy of the AOB and the denitrifying bacteria under different seasonal 

conditions for an A2/O process with a plug-flow pattern (DO 0.6 – 6.8 mg/L and N-

concentration up to 30 mg/L) to provide insights on the N2O generation pathways. The authors 

quantified the expression of functional genes harboring the NH3 monooxygenase (amoA) (i.e. 

enzyme catalyzing the first step of nitrification) for the AOB, as well as of the nosZ harboring 

the N2O reductase (i.e. enzyme catalyzing the reduction of N2O to N2) for the denitrifiers by 

RT-qPCR. Wang et al. (2016b), applied also correlation analysis; the N2O emissions (ranging 

from 0.01 to 3.4% of the TN-load) were mainly dependent both on the NO2
- concentrations and 

the relative AOB abundances, hence indicating that nitrifier-denitrification was the dominant 

pathway in the aerobic zones of the reactor. On the contrary, the obtained results revealed that 

the emissions were not affected by the relative abundancies of the denitrifiers. However, it must 

be noted that the functional gene levels are not always representative of the activity of the 

corresponding enzyme (Henderson et al. 2010). Similarly, Castellano-Hinojosa et al. (2018) 

quantified the 16SrRNA, amoA and nosZ genes of the total bacterial and archaeal population in 

three full-scale predenitrification-nitrification systems. They employed multivariate analysis 

(i.e. non-metric multidimensional scaling (MDS) and similarity analysis based on Euclidean 

distance, to identify the environmental variables that are best linked to the patterns of 

community structure via BIO-ENV procedure) to link the bacterial structure with the N2O 

emissions and environmental/operational variables. They found a strong positive correlation 

between the AOB and the emissions in the anoxic compartments, where the N2O release was 
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higher. Therefore, the authors suggested nitrifier denitrification as the dominant pathway. On 

the other hand, the emissions were negatively correlated with the AOA abundance and the N2O 

reducers. It was concluded that the elevated NO2
- concentrations, the low temperatures and short 

SRTs mainly influenced the abundance of the bacterial community encoding the nosZ gene and 

contributed to the N2O accumulation. 

NH2OH oxidation has not been considered as a dominant N2O pathway in the majority of A2/O 

and A/O process groups. However, Toyoda et al. (2011), applied site-preference (SP) isotopic 

analysis in a A2/O configuration and found that NH2OH oxidation and nitrifier denitrification 

pathways contributed almost equally to the N2O formation in the beginning of the aerobic tank. 

The DO concentrations in the reactor, though, were not reported. Additionally, Blomberg et al. 

(2018) developed an ASM3-type NH2OH-heterotrophic denitrification N2O model with a KLa-

based approach for N2O stripping (KLaN2O: mass transfer coefficient for N2O). The model was 

developed for the full-scale underground WWTP of Viikinmäki (Kosonen et al., 2016) that is 

divided into six zones (i.e. one anoxic pre-denitrifying zone, two alternating switch zones, three 

aerated nitrifying zones). High DO concentrations in the aerated zones (i.e. 1.5-3.8 mg/L) and 

low NO2
- concentrations (i.e. 0.1 and 0.7 mg/L), were observed and the model adequately fitted 

the observed dissolved N2O profiles. However, under the applied stripping modelling, the 

model overestimated the EF; showing that the stripping modelling approach must be improved.  

Ni et al. (2015) considered all N2O production pathways in a two-step plug-flow type reactor 

(anoxic/aerobic/anoxic/aerobic), in an attempt to explain the difference between the EFs of each 

step (1st step: 0.7% of influent-N, 2nd step: 3.5% of influent-N) using real data obtained from 

the study of Pan et al. (2016), for a full-scale step-feed plug-flow reactor. The N2O production 

was mainly attributed to the heterotrophic denitrification taking place in the anoxic zone of the 

2nd step that was receiving 70% less biomass compared to the 1st step (Table 2.1). This model 

has been successfully applied for the explanation of the observed EF difference and 

identification of dominant pathways since it (i) includes all the possible production pathways, 

(ii) has considered the design and operating features of the WWTP, and (iii) was 

calibrated/validated using data from the plant operation.  

It must be noted that, in an anoxic-aerobic plug-flow reactor, the application of zone-based 

stepwise multiple regression showed that the effect of the N-load, DO and temperature in N2O 

emissions varied within the reactor (Abookabar, 2013). Therefore, the dominant pathways can 
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potentially vary in the aforementioned studies based on the location of the sampling between 

the different studies.  

In OD reactors N2O fluxes have been mainly linked with i) stripping of dissolved N2O that is 

generated in anoxic zones (Sun et al., 2015; Yan et al., 2014) and ii) NO2
- accumulation in low 

DO zones, indicating nitrifier denitrification and heterotrophic denitrification (Daelman et al., 

2015) as dominant pathways. For instance, in an OD reactor, strong positive correlation 

(Pearson’s coefficient) was identified between daily N2O emissions and daily NO2
- peaks (0.7) 

(487 days monitoring campaign) (Daelman et al., 2015). The authors proposed to use NO2
- 

peaks as a diagnostic method for the prediction of N2O peaks. In the same system Vasilaki et 

al. (2018) applied changepoint detection techniques combined with hierarchical k-means 

clustering and PCA, to reveal the N2O emission patterns and generation pathways and identified 

changes in the N2O fluxes. The study concluded that the N2O dependencies with other 

operational variables (i.e. NH4
+, NO3

-, DO) are dynamic and affected by the seasonal variations. 

The preferred N2O pathways were also found to be dependent on time and operational 

conditions. 

Additionally, a full-scale OD was modelled by Ni et al. (2013) considering NH2OH oxidation 

pathway (via the electron carriers approach and assuming the NH2OH/NO model and no 

inhibition of AOB NO reduction by DO) and heterotrophic denitrification pathway (based on 

Hiatt and Grady (2008) and electron competition between denitrification steps). Even though, 

the operational control of the OD is not explicitly described (i.e. aeration/DO set points), more 

than 90% of the N2O emissions were observed in aerated zones with DO > 2 mg/L. The model 

was calibrated using 3-days data from an intensive monitoring campaign and validated based 

on 1-day data with different influent conditions. The developed model linked the higher N2O 

generation with NH4-N concentration peaks (up to ~9 mg/L in the calibration and ~4 mg/L in 

the validation dataset) within the aerated zones (OD) and the NH2OH oxidation pathway. 

However, in the study of Ni et al. (2013), the respective contribution among the two AOB 

pathways was not explored whereas short-term data were used to validate the model. The AOB 

denitrification model developed by Mampaey et al., (2013) was applied using the same dataset 

from the OD, for calibration and validation (Spérandio et al., 2016). The model could 

adequately follow the trends of N2O behavior after calibration of the anoxic reduction function 

(high value of 0.63 was required). NO2
- accumulation and the resulting nitrifier dentification 
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contribution to the emissions cannot be excluded in full-scale WWTPs. Future enhanced 

versions of models must consider this fact.  

Overall, as shown in section 2.2, N2O fluxes in CAS systems are generally low. Tumendelger 

et al. (2014) applied SP isotopic analysis and observed that the NH2OH oxidation pathway was 

responsible for up to 90% of the N2O formation under high DO (~2.5 mg/L at the middle and 

end of the aerobic tank) in a conventional AS system (>44.2% of NH4
+ was nitrified and 

removed in gaseous form probably due to unintentional zones with low DO). Nitrifier 

denitrification and NH2OH oxidation were almost equally contributing to DO levels around 1.5 

mg L1, whereas nitrifier denitrification dominated at DOs below 1.5 mg/L.  

In sidestream reactors, elevated N2O emissions during shifts from low to high aeration (NH4
+ 

accumulation, high AOR), have been attributed to NH2OH pathway (Castro-Barros et al., 2015). 

Aeration intensity and profiles have been determined as significant control parameters for the 

N2O generation (Harris et al., 2015; Rathnayake et al., 2015). The N2O dynamics under different 

aeration intensities is likely to depend on the reactor configuration. For example, Mampaey et 

al. (2016) and Stenström et al. (2014) observed higher emissions when lower DO was applied 

in a partial nitritation-anammox system and a sidestream nitrification-denitrification SBR, 

respectively. On the other hand, (Kampschreur et al., 2009a) could not identify a relationship 

between the N2O increase and the higher aeration flowrate during a prolonged aeration 

experiment in a single-stage nitritation-anammox reactor. Hence, the influence of the aeration 

regime on the N2O generation is variable, depending on the reactor configuration. In Anammox 

reactors, N2O formation during anoxic periods has been mainly attributed to the nitrifier 

denitrification pathway and partially to heterotrophic denitrification (e.g. under conditions of 

limited substrate provision; Castro-Barros et al., 2015; Mampaey et al., 2016). However, a 

recent study performed by Ma et al. (2017) demonstrated that N2O formation via NH2OH 

oxidation can also occur at low DO (~1 mg/L) probably catalysed by cytochrome P460. This 

finding contradicts previous experimental and model-based works according to which the 

NH2OH oxidation pathway dominates solely at higher DO concentrations (e.g. Brotto et al., 

2015) and is linked with the AOR (Peng et al., 2014). 

Studies investigating dominant N2O pathways for several groups of full-scale processes are still 

missing (Table 2.1) and further research is required for a robust mapping of the dominant 

pathways in different process groups. As a general remark, in most processes with elevated N2O 

emissions (>0.85% of the N-load), independently of the configuration, elevated NO2
- 
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concentrations were also observed (Daelman et al., 2015; Foley et al., 2010; Rodriguez-

Caballero et al., 2015; Wang et al., 2016b) 

2.3.4 Limitations and future research 

Several authors have underlined the difficulties in determining the respective contribution of 

each N2O generation pathway during full-scale monitoring campaigns (Aboobakar et al., 2013; 

Wang et al., 2016b). None of the techniques analysed, in the previous sections can be applied 

standalone to explain the ambiguities surrounding the mechanisms and operational conditions 

that enhance the N2O formation during wastewater treatment. This section, summarises the 

main limitations of the techniques applied to explain N2O fluxes behavior in wastewater 

systems and describes how these techniques combined, can maximise the outcome of future 

monitoring campaigns. 

Two major drawbacks have been identified when studies rely exclusively on simple descriptive 

statistics and graphical representations of operational variables to extract insights on N2O 

emissions behaviour. Firstly, this approach, considers independently several parameters that 

affect the N2O generation. Thus, it becomes difficult to quantify the combined effect of several 

variables in full-scale systems via simple univariate or bi-variate graphical representations. For 

instance, Castro-Barros et al. (2015) observed higher N2O emissions and formation in the 

transition from the anoxic to the aerated periods in a one-stage granular partial nitritation-

anammox reactor. However, this increase cannot be solely attributed to the DO change, since 

the AOR, the NH4
+ and the NO2

- concentrations were also elevated during the transition. 

Secondly, graphs representing the behaviour of process variables in relation to N2O emissions 

usually cover only a limited period (often shorter than the monitoring campaign duration) or 

visualize average data in the majority of the reported studies. There are limitations in the 

effective visualization and dependencies extraction in long-term temporal multivariate datasets 

(i.e. overcrowded and cluttered visualization) (Shurkhovetskyy et al., 2018). For example, 

Aboobakar et al. (2013) monitored the N2O emissions of a PF reactor for 56 days; they reported 

the diurnal profile of the normalised average emissions, the average ammonia diurnal profile 

and the average daily DO concentration, over the duration of the monitoring campaign.  

The N2O emission behaviour is characterised by temporal variations. Additionally, for a specific 

process, the dependencies of the emissions with operational variables are also expected to 

fluctuate under different environmental/operational conditions based on the preferred N2O 
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production pathway. Vasilaki et al. (2018) showed that the dependencies between N2O 

emissions and operational variables fluctuated in a Carrousel reactor that was monitored for 15 

months. Therefore, employment of advanced visualization techniques capturing the dynamic 

behaviour of the operational variables from the whole duration of the monitoring campaigns 

(e.g. data abstraction, principal component-based analysis, clustering - Shurkhovetskyy et al., 

2018; Aigner et al., 2008) can facilitate an accurate and deep understanding of the long-term 

N2O behaviour in both sidestream and mainstream treatment processes. There is an 

interchangeable link among operational/environmental conditions, N2O production pathways 

and emission rates. The combination of data mining methods can also be applied to identify 

distinct and different patterns and operational conditions in order to determine the contribution 

among the N2O production pathways. It can reveal the links and relationships among the 

conditions triggering the N2O emissions, the dominant pathways and the emission rates. 

However, few data-driven monitoring and control approaches have been validated in full-scale 

applications in the wastewater sector (Haimi et al., 2013). Additionally, there is still little 

guidance for the selection of the most appropriate techniques for particular wastewater 

applications (Hadjimichael et al., 2016). Multivariate statistical analysis techniques have only 

recently been applied to translate data from the monitoring campaigns into useful information 

regarding the N2O production (Vasilaki et al., 2018). Hence, structured approaches and data-

driven extraction techniques need to be developed to process the incoming data from WWTPs 

(Corominas et al., 2018) and acquire information concerning the N2O emission patterns. 

Given that previously unreported pathways (Harris et al., 2015), or alternative conditions under 

which the already known pathways are activated have been recently identified in literature, 

isotopic and molecular biology analysis can be applied to support insights into the N2O 

generation pathways. In a recent review on the isotopic methods for the identification of the 

respective contributions of the different N2O pathways, Duan et al. (2017) concluded, though, 

that there are still uncertainties regarding the accuracy of the SP methods (i.e. not standard SP 

signature values, unknown N2O production pathways, etc.). Therefore, the authors suggest to 

complement the isotopic methods with other approaches, such as the mRNA-based transcription 

analysis (Ishii et al., 2014). 

Mechanistic models considering all the possible N2O production pathways are powerful tools 

to describe the operation of full-scale WWTPs, N2O emissions generation pathways and guide 

towards mitigation measures. However, there are still, several challenges in the practical 
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application, calibration and validation of mechanistic N2O models in full-scale systems. 

Parameter uncertainty still plays a significant role in explicitly differentiating the contribution 

of different N2O pathways via modelling studies; for instance, different AOB pathway models 

(i.e. Spérandio et al., 2016) and models with different contributions of denitrification N2O-

producing pathways (i.e. Domingo-Félez et al., 2017) have been adequately fitted to describe 

N2O emissions behaviour in the same systems. Inclusion of all major N2O production pathways 

results in complex and overparameterized models impairing reliable calibration and validation. 

Additionally, short-term calibration and validation of models under specific operational 

conditions (i.e. dry weather) limits their accuracy when the system varies significantly (Guo 

and Vanrolleghem, 2014). 

Quantifying the contribution of the N2O production pathways in addition to the triggering 

mechanisms in biological processes remains a challenge and still requires extensive research 

(Guo et al., 2017). As a general remark, standardisation of monitoring and reporting, long-term 

N2O monitoring campaigns along with combined multivariate analyses of the provided data and 

mechanistic model development are required to increase the understanding and effectively 

control the N2O emissions at WWTPs. 

2.4 Monitoring campaigns and mitigation strategies 

Mitigation measures have been developed and proposed mainly as outcome of studies that 

targeted at the: i) testing of different aeration/feeding control strategies in full-scale sidestream 

technologies (e.g. Castro-Barros et al., 2015; Mampaey et al., 2016; Rodriguez-Caballero et al., 

2015), ii) development of mechanistic models simulating changing operational conditions (e.g. 

Ni et al., 2015), and iii) establishment of non-linear regression models (e.g. ANNs) to predict 

the behaviour of N2O emissions (e.g. Sun et al., 2017). 

2.4.1 Mitigation measures and full-scale monitoring campaigns 

Table 2.2 summarises the main N2O mitigation strategies that have been proposed for full-scale 

systems along with the methodological approaches that facilitated the identification of these 

measures. As shown in Table 2.2, there is no standardised methodology for the establishment 

of N2O mitigation strategies in full-scale systems.  
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Several studies have modified the aeration intensity, DO and cycle duration to investigate the 

effect on N2O emissions within full-scale systems (Castro-Barros et al., 2015; Kampschreur et 

al., 2009a; Mampaey et al., 2016; Rodriguez-Caballero et al., 2015). For instance, Mampaey et 

al. (2016) achieved a reduction in the N2O emissions by 56% when the cycles in a one-stage 

granular SHARON reactor were shortened by 1 h. Rodriguez-Caballero et al. (2015) tested 

different operational conditions in a full-scale SBR. They have suggested an optimum control 

strategy for the minimisation of N2O emissions based on the application of short aerobic-anoxic 

cycles (20-min aerobic phase and short duration of anoxic stage). Therefore, testing different 

operational modes is regarded as one of the most effective ways to identify measures for the 

emission mitigation (Table 2.2).  

Ni et al. (2015) developed a mechanistic model utilizing the data from a two-step PF reactor 

(Pan et al., 2016) showing that the biomass specific N-loading rate was responsible for the 

elevated N2O emissions observed in the 2nd step of the process. Different operational conditions 

were tested with the model demonstrating that lower N2O emissions (<1% of the N-load) can 

be achieved if 30% of the total return activated sludge (RAS) stream is recirculated to the 2nd 

step of the PF reactor (Table 2.2). However, it is unknown whether the suggested mitigation 

strategy was actually demonstrated in the system. Ahn et al. (2010b) identified dependencies 

between the WWTP operating conditions and the N2O emissions via multiple linear regression. 

According to their findings, intermittent aeration or over-aeration must be avoided in aerobic 

reactors. Castellano-Hinojosa et al. (2018) linked the population of AOB, AOA and N2O-

reducers with the changes in the operational and environmental variables in four conventional 

AS systems with pre-denitrification zones. They observed that N2O emissions mainly occurred 

due to incomplete denitrification, thus underlining the importance of ensuring the completion 

of the process for the emissions mitigation. Overall, the main techniques for mitigating the N2O 

emissions in wastewater treatment processes include: i) the application of the optimal aeration 

intensity and DO concentration, ii) preventing NH4
+ concentration peaks (e.g. via equalization 

tanks), iii) the avoidance of NO2
- accumulation through proper control, and iv) the supply of 

additional carbon source (when required) to ensure complete denitrification in the anoxic 

reactors (Table 2.2).  

However, studies applying and evaluating mitigation measures for long-term applications are 

still missing. Additionally, there is a gap between the data coming from the monitoring 

campaigns and their processing in order to establish a mitigation strategy. Moreover, several 
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monitoring campaigns do not conclude on the development of mitigation strategies (Filali et al., 

2013; Stenström et al., 2014; Yan et al., 2014). The long-term implementation and evaluation 

of the proposed mitigation strategies is still an issue. Therefore, the establishment of 

standardised methodological approaches for the identification of N2O mitigation strategies is 

required.
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Table 2.2: Methods and main findings of studies resulting in mitigation measures. 

Source Process Method Main findings Mitigation Measures 

Castro-

Barros et 

al., 2015 

One-stage 

PNA granular         

Sidestream 

• Calculation of dissolved N2O 

based on Mampaey et al. (2016) 

• Modified operation mode: 

Prolonged anoxic & aeration 

periods 

• Visualization of significant 

profiles (i.e. DO) & descriptive 

analysis 

• Smoother aeration transitions 

during normal reactor operation 

connected with lower N2O 

emissions; comparison with 

experiments 

• Prolonged anoxic periods leading to 

increased N2O emissions 

• Optimise the aeration regime  

• Ensure smooth shifts in the aeration 

pattern 

• Optimise for short aeration intervals   

Mampae

y et al., 

2016 

One-stage 

SHARON 

granular 

Reactor                                       

Sidestream 

• Modified operation mode: 

prolonged anoxic & aeration 

periods, lower DO experiments, 

shorter SBR cycles 

• Calculation of dissolved N2O 

based on Mampaey et al. (2016) 

• Visualization of significant 

profiles (i.e. DO) & descriptive 

analysis 

• Nitritation reactor: N2O formation 

higher during anoxic periods 

• Splitting the anoxic period: average 

anoxic N2O formation rate 

decreased 

• Shorter cycles reducing the N2O EF 

by 56% at the expense of higher 

NO3
- concentrations 

• Preferably operate under shorter 

cycles  

• Apply continuous aeration in 

nitritation reactor; this requiring 

optimisation 

• Alternatively operate under lower 

DO setpoint 

Kampsch

reur et 

al., 2009 

One-stage 

PNA granular 

• Modify operation: varying 

aeration rate 

• Visualization of significant 

profiles & descriptive analysis 

• Over-aeration significantly 

impacting on N2O emissions 
• Ensure sufficient aeration control  
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Kampsch

reur et 

al., 2008 

Two-reactor 

partial-

nitritation-

anammox 

process                                     

Sidestream 

• Visualization of significant 

profiles (N-compounds) & 

descriptive analysis 

• Nitritation reactor: N2O 

accumulation during the non-

aerated phase 

• Anammox reactor: NO2
- 

accumulation potentially increasing 

N2O emissions 

• Avoid anoxic phases in nitritation 

reactor (i.e. smaller reactors to 

ensure sufficient HRT) 

• Control the aeration in the 

nitritation reactor 

• Operate a one-reactor nitritation-

anammox system; potentially 

emitting less N2O due to limited 

NO2
-accumulation 

Ahn et 

al., 2010  

Multiple 

processes 

(i.e. MLE, 

step-feed 

BNR, OD) 

• Multiple linear regression for 

several processes 

• Investigate possible links between 

WWTP operating conditions & N2O 

emission fluxes 

• Aerobic zones: N2O fluxes 

correlated with location-specific 

pH, AS mixed liquor temperature, 

DO, NH4
+ & NO2

- concentrations & 

interactive combinations  

• Anoxic zones: N2O fluxes 

correlated with location-specific 

sCOD, pH, AS mixed-liquor 

temperature, DO, NO2
- & NO3

- 

concentrations & interactive 

combinations 

• BNR processes: Avoid high NH4
+ & 

NO2
- concentrations, DO & 

transients  

• Aerobic processes: avoid 

incomplete/intermittent nitrification 

& over-aeration  

• Rely on more uniform spatial DO 

profiles to promote SND 

• Minimise peak N-flow (flow 

equalisation) 

Ni et al., 

2013 

OD with 

surface 

aerators 

& 

Feeding and 

aeration (90 

min)/ settling 

(35 min) / 

• Mechanistic model 

development 

• Modelling of two full-scale 

municipal WWTPs (i.e. an OD & 

an SBR) 

• OD: decrease in the NH4
+ 

concentration without simultaneous 

NO2
- increase in the aerated zones 

• Use the developed model to 

accurately simulate the emissions 

from the surface aerator zone in OD 

WWTPs, thus potentially correcting 

the N2O emission underestimation 

in full-scale WWTPs where the 

floating chamber method is not 

valid 
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decanting (55 

min)          

SBR 

• SBR: NH4
+ accumulation leading to 

a high AOR during the aerobic SBR 

phases &, finally, to the increased 

production of intermediates (e.g. 

NH2OH) 

Li et al., 

2016  

Reversed 

A2/O and OD 
• Observations & literature 

• N2O generated & emitted more in 

summer than in winter 

• Microbial population & aeration 

strategy as key factors of N2O 

generation & emission 

• Avoid incomplete/intermittent 

nitrification & over-aeration during 

the aerobic processes to achieve 

lower N2O emissions 

• Apply uniform spatial DO profiles 

to promote SND that probably leads 

to less N2O emissions  

• Perform flow equalization to control 

the peaking factor of the influent N-

loading to the AS  

• Ensure a sufficiently long SRT to 

prevent NO2
- accumulation during 

nitrification 

• Avoid the COD limitation of the 

denitrification process by 

minimizing the pre-sedimentation of 

organic carbon in the influent & 

dosing additional organic carbon  

Pan et 

al., 2016 

& 

Ni et al., 

2015 

2 step-

feeding, 

anoxic/aerobi

c/anoxic/aero

bic plug-flow 

reactor 

• Mechanistic model 

development  

• Step-feeding resulting in 

incomplete denitrification & 

affecting the AOR in nitrification, 

hence increasing the total N2O 

emission 

• Decrease the N2O EF to the lowest 

value of <1% if 30% of the total 

RAS returns to the 2nd step 



55 

 

Wang et 

al., 

2016b  

A2/O with 

plug-flow 

pattern 

• Investigation of AOB 

abundances 

• N2O emitted mainly from the oxic 

zone, with the emitting levels 

increasing greatly from the 

beginning of the oxic zone towards 

the zone end 

• NO2
- accumulation directly 

triggering N2O production 

• Both diurnal & seasonal N2O 

emission levels fluctuating strongly  

• Other factors influencing the N2O 

emission: low DO/temperature 

• Increase DO availability for both 

AOB & NOB  

• Improve the AOB living conditions 

• Apply a step-stage aeration mode 

with varying aeration intensities 

(location-specific emission patterns 

for a plug-flow process)  

• Ensure a better mixing via a higher 

horizontal flow-rate combined with 

an appropriate vertical airflow flux; 

the large cross-section widths 

reduced using partition walls to 

elevate flow velocities under a 

constant A2/O tank working volume 

Sun et 

al., 2013 

Feeding 

(synchronous 

aeration)/aera

tion/settling/d

ecanting (1 

hour each)     

SBR  

• Visualization of significant 

profiles (DO & N2O) & 

descriptive analysis 

• Multiple linear regression 

analysis to investigate 

relationship of N2O emissions 

& environmental factors 

• Bimonthly sampling to examine 

changes in the relationship 

between N2O emissions 

&environmental factors (long-

term: 12 months)  

• N2O flux from different treatment 

units/periods following a 

descending order: feeding period, 

aeration period, settling period, 

swirl grit tank, decanting period & 

wastewater distribution tank 

• Feeding & aeration periods 

accounting for >99% of N2O 

emissions 

• Low DO during nitrification 

majorly influencing N2O production 

• Increase the aeration rate during the 

feeding period & decrease it to a 

proper level for nitrification in the 

aerobic stage 

• Supply external carbon source 

during denitrification/change the 

operational SBR mode (from 

feeding under synchronous aeration 

to feeding with anoxic stirring) to 

ensure enough COD 

provision/better utilisation of 

influent COD for denitrification  
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Rodrigue

z-

Caballer

o et al., 

2015 

Reaction 

phase (~130 

min) /settling 

(~65min) and 

decanting 

(~65 min) 

SBR 

(anoxic/aerob

ic 

alternations – 

3 cycle types) 

SBR 

• During the experimental 

campaign, 3 different cycle 

configurations implemented as 

part of the normal SBR 

operation 

• Testing of a modified cycle 

configuration for the N2O 

mitigation 

• Observe dissolved & gaseous 

N2O profiles vs time 

• N2O emissions accounting for 

>60% of the total carbon footprint 

of the WWTP 

• Cycles with long aerated phases 

showing the largest N2O emissions, 

with a consequent increase in the 

carbon footprint 

• Transient NH4
+ & NO2

- 

concentrations & transition from 

anoxic to aerobic possibly involved 

in the increased N2O production 

• Apply intermittent aeration to 

reduce the NO2
- accumulation 

• Adopt a cycle configuration with 

short aerated periods  

• Allow the system to consume N2O 

through denitrification  

Spinelli 

et al., 

2018 

MLE 

• Event-based sensitivity analysis 

• Box-plots of diurnal behaviour 

of significant variables & N2O  

• Lower COD:N resulting in higher 

N2O emissions due to disturbed 

denitrification 

• Daily N2O peaks occurring under 

conditions of higher aeration flow-

rate (more intense stripping) 

• Equalization of the influent flow-

rate 

Townsen

d-Small 

et al., 

2011 

MLE • Isotopic composition of N2O 

• Both nitrification & denitrification 

contributing to the N2O emissions 

within the same WWTP 

• BNR significantly increasing urban 

N2O emissions 

• Apply engineering processes for the 

selection of bacteria capable of 

reducing NO3
- without releasing 

significant N2O amounts  

Castellan

o-

Hinojosa 

et al., 

2018 

Two 

sequential 

bioreactors 

(anoxic and 

oxic) 

 

• Simultaneously link the 

abundance of AOB, AOA & 

N2O-reducers with the changes 

of the 

operational/environmental 

variables  

• N2O emissions strongly correlated 

with increased abundances of AOB 

& lower counts of N2O-reducers 

• Unlikely significant contribution of 

AOA to N2O generation since their 

abundance correlated negatively to 

N2O emissions 

• Avoid NO2
- accumulation, low 

temperatures & excess DO in the 

anoxic bioreactors to enable 

complete heterotrophic 

denitrification & hinder nitrifier 

denitrification  
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• AOB abundance favoured by higher 

NO3
- & NO2

-concentrations in the 

AS 

Sun et 

al., 2017 

Biological 

tank with an 

anoxic & an 

oxic zone 

A/O 

• Construction & performance 

evaluation of BP-ANN model 

• DO having a significant influence 

on the N2O production  

• BP-ANN model suitable for the 

prediction of N2O emissions in 

other WWTPs with different 

configurations (e.g. A2/O, SBR & 

nitrification-anammox), if 

influent/environmental parameters 

& N2O emission data can be 

investigated through full-, pilot- or 

lab-scale experiments 

• Apply proper control of DO during 

both nitrification & denitrification  

• Apply the BP-ANN model as a 

convenient & effective method for 

the prediction of N2O emissions in 

an A/O WWTP 

Blomber

g et al., 

2018 

based on 

Kosonen 

et al., 

2016 

A/O 

bioreactor 
• Mechanistic model 

development 

• Model describing the full-scale 

underground WWTP of Viikinmäki 

• AOB pathways: only NH2OH 

oxidation included due to the 

dynamic & relatively high DO 

concentrations (1.5-3.8 mg/L) in the 

aerated zones & the low NO2
- 

concentrations (0.1 & 0.7 mg/L) 

• N2O production mainly in the 

aerated zones, minor N2O 

consumption & minor stripping 

effect in the anoxic zones 

• Applied stripping model: EF 

overestimation  

• Improve the stripping modelling 

approach 

• Consider the nitrifier denitrification 

contribution in future model 

versions 

Chen et 

al., 2016 
CAS 

• Fugacity model 

• Lab-scale in situ experiments 

• Compared to other parameters (e.g. 

sludge concentration/retention 
• Reduce the aeration rate 
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time), the adjustment of the aeration 

rate effectively mitigated the GHG 

emission in the AS without 

significantly affecting the treated 

water quality 

• N2O as main contributor to the total 

GHG emission (i.e. 57-91% of total 

GHG emission) 

• Lowering the aeration rate in the 

AS by 75% enabled decreasing the 

mass flux of N2O by up to 53% 

• Most important benefit of changing 

the aeration rate: lower energy 

consumption during the WWTP 

operation (fractional contribution of 

pumping to the total emission from 

the WWTP=46-93% within the 

range of the aeration rate tested) 

Ribeiro 

et al., 

2017 

Extended 

aeration CAS 
• Different aeration rates tested 

• Nitrification as the main driving 

force behind N2O emission peaks 

• Air flow-rate variations possibly 

influencing the N2O emissions; high 

N2O emissions under conditions of 

over-aeration or incomplete 

nitrification along with NO2
- 

accumulation 

• Add an anoxic zone & recirculation 

to a non-BNR system for 

nitrification; otherwise, high N2O 

emissions expected in case of 

increased DO  

• Control the DO; dynamic changes in 

DO concentrations reported as being 

responsible for N2O emission peaks 

in SND BNR systems 

• Control the TN (denitrification) 

• Avoid the concurrence of decreased 

DO & NO2
- accumulation 
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2.4.2 N2O mitigation strategies: progress and limitations 

Statistical and/or mechanistic modelling as well as observatory analysis of the N2O emissions’ 

behaviour have been commonly used either as standalone or in combined analyses for the 

development of mitigation strategies. However, the suggested mitigation schemes have not yet 

reached commercial applications at full-scale wastewater treatment processes. There is a gap 

between the identification of appropriate N2O mitigation measures and their integration into the 

control of WWTPs. Future studies shall focus on the development, implementation and 

integration of the mitigation strategies into the existing control strategy of wastewater treatment 

processes. Special attention must be paid to trade-offs between GHG emissions, energy 

consumption, system performance and compliance with the legislative requirements in order to 

support evidence-based multi-objective optimisation of the WWTPs operation.  

The investigation of direct GHG emissions at full-scale wastewater systems is important for the 

minimisation of the environmental footprint of WWTPs and the integration of the sustainability 

dimension into wastewater treatment process control. 

2.4.3 Integrating the N2O emission monitoring into the WWTP operation 

Multivariable and multi-objective approaches have been proposed for the optimisation of the 

WWTPs performance to enable the correlation of energy consumption or operational costs with 

system performance (Qiao and Zhang, 2018; Zhang et al., 2014). Sweetapple et al. (2014) used 

a modified version of the benchmark simulation model 2 (BSM2) (Jeppsson et al., 2006) to 

identify control strategies for the simultaneous minimisation of GHG emissions, operational 

costs and pollutant loads. The BSM2 models have also been combined with LCA to evaluate 

the sustainability of different operating strategies ( Flores-Alsina et al., 2010; Arnell et al., 

2017). However, studies utilizing long-term real-field WWTP data are still scarce.  

Figure 2.7 summarises the research priorities in terms of real-field N2O monitoring campaigns 

that can act as foundation for the integration of N2O emissions into WWTP monitoring and 

control. Long-term monitoring campaigns that capture the seasonal variability, studies on the 

uncertainties of the sampling strategies and reporting of operational, environmental and 

sampling data can ensure the robustness and comparability of the monitoring results. The 

development of methodological approaches for the translation of WWTP data into information 

can facilitate the understanding of the N2O emission behavior and relationship with different 
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operational conditions. Combination of mechanistic models and/or data mining techniques with 

methods for the N2O quantification can validate the models and provide insights into the 

dominant pathways under changing operational conditions. Finally, research studies 

implementing and translating the N2O mitigation measures into control strategies are essential.  

 

Figure 2.7: Monitoring N2O emissions in full-scale wastewater treatment systems - research 

priorities 

2.5 Summary of main findings 

A number of full-scale N2O monitoring campaigns in WWTP were studied.  The processes were 

classified so that the ranges of N2O emission factors, dominant N2O pathways and triggering 

operational conditions and the mitigation measures for different process groups could be set. 

The key conclusions of the current review are: 

• There is a wide range of EFs within similar groups of wastewater treatment processes. 

The emission factor ranges between 2% and 5.6% of the influent N-load in mainstream 

SBR, while OD reactor types, exhibit have a low EF, ~0.14% of the N-load. Long-term 

continuous or discontinuous monitoring campaigns are characterised by higher EF 

compared to short-term campaigns.  The studies investigating seasonal behaviour of 

N2O emissions, have an average EF equal to 1.7% of the N-load, whereas monitoring 
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campaigns lasting less than a month have an average EF equal to 0.7%. Long-term 

campaigns show a high variability of the N2O emissions. There is no specific EF 

correlation with the NH4
+ removal in the mainstream processes or in specific groups of 

processes. Most of the processes in smaller WWTPs (i.e. flow-rate<200,000 m3/d) had 

EFs less than 0.5% of the N-load, independently of the process type and nitrification 

efficiency. This study concluded that efficient operational strategies can mitigate the 

generated N2O for different configurations and groups of processes. 

• It is difficult to compare the results of the N2O monitoring campaigns because of: i) the 

differences in the duration of the monitoring campaigns (e.g. short-term campaigns 

ignoring seasonal variations), ii) the uncertainty in the gaseous sampling methods and 

analytical measurements, and iii) the insufficient reporting regarding the reactor control 

strategy, operational and environmental conditions, etc. 

• Simple feature extraction and graphical representations of selected process variables and 

N2O emissions are employed to explain the N2O triggering mechanisms. Given that a 

combination of several parameters affects the N2O generation, multivariate statistical 

analysis techniques can be a useful alternative for analyzing data and understanding the 

N2O emission behavior. The combined application of mechanistic models and statistical 

techniques can lead to better design of mitigation strategies. 

• Isotopic and molecular biology analyses are emerging techniques that can qualitatively 

and quantitatively assess the N2O generation pathways. Data mining methods can be 

deployed to identify patterns of operational conditions and N2O emissions. This can be 

complemented with techniques for the determination of the N2O production pathways. 

• Studies testing and validating the long-term full-scale N2O mitigation measures are still 

missing.  

• Future research should focus on: i) long-term N2O monitoring campaigns, ii) the 

uncertainties of different sampling protocols, iii) the application of data mining 

approaches, machine learning and mechanistic models for the development of effective 
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and adaptive models to be integrated into WWTP operation and control and iv) the 

development, implementation and integration of the mitigation strategies into the 

existing control strategies of WWTPs.   
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3. Relating N2O emissions during biological nitrogen removal 

with operating conditions using multivariate statistical 

techniques  

3.1 Introduction 

The demand to increase efficiency and reduce the environmental footprint of the municipal 

wastewater treatment plants (WWTPs) in terms of, greenhouse gases (GHG) and energy 

consumption reduction, is posing new challenges for the water industry (Flores-Alsina et al., 

2014). The climate change pressures, prompt the quantification and minimisation of GHG 

emissions generated in WWTPs (Haas et al., 2014). Three main sources of GHG emissions 

prevail in WWTPs (Monteith et al., 2005; Mannina et al., 2016): (i) the direct emissions mainly 

linked to biological processes, (ii) the indirect internal emissions generated by the use of 

imported energy to the plants, and (iii) the indirect external emissions associated with the 

sources controlled outside the WWTPs (e.g. chemicals production, disposal of sewage sludge, 

transportation). The GHGs emitted into the atmosphere from biological wastewater treatment 

processes are carbon dioxide (CO2), methane (CH4) and Nitrous Oxide (N2O) (Kampschreur et 

al., 2009).  

With the potential contribution of 265-298 times more than CO2 for a 100-year time horizon  to 

global warming (IPCC, 2019), N2O is a potent GHG and the most significant contributor to 

ozone depletion (Ravishankara et al., 2009). WWTPs are significant generators of N2O and are 

responsible for 6% of the global anthropogenic N2O emissions (Palut and Canziani, 2007). N2O 

is generated mainly during the autotrophic nitrification and heterotrophic denitrification 

(Kampschreur et al., 2008a) and can contribute up to 78% (Daelman et al., 2013b) of the 

operating carbon footprint of a wastewater treatment facility. Recent studies have focused on 

the understanding, quantification, control and minimisation of N2O emissions (Aboobakar et 

al., 2013; Mampaey et al., 2016; Pan et al., 2016). However, several studies have resulted in 

contradicting findings on the influence of operating and environmental variables on N2O 

generation (Liu et al., 2016; Massara et al., 2017). Results from real-field N2O monitoring 

campaigns cannot fully explain long-term causes of N2O emissions and the combined effect of 

operating, environmental and external factors that influence the biological systems (Jönsson et 

al., 2015).  Long-term full-scale monitoring campaigns have shown that N2O fluxes are highly 
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dynamic with significant diurnal fluctuations and seasonal variations; however, the dynamics 

could not be fully explained (Daelman et al., 2015; Kosonen et al., 2016).  

In an effort to identify interconnections between operating and environmental variables as well 

as N2O formation, statistical techniques have been used for the analysis of data from full-scale 

monitoring campaigns. Aboobakar et al., 2013 applied linear multiple regression analysis to 

investigate dependencies between variables monitored online in a plug-flow reactor 

implementing biological nitrogen removal and N2O emissions. Their study showed a variable 

impact of nitrogen load, temperature and dissolved oxygen (DO) on the N2O emissions in each 

reactor compartment, while the effect of DO was more intense in oxygen abundant zones. Multi-

regression analysis of one year of data coming  from a full-scale SBR (Sun et al., 2013) indicated 

negative correlation between N2O emissions and temperature, while COD/N ratio lower than 6 

resulted in higher emissions. However in the same study, bi-monthly grab-sampling provided 

limited data-points for a comprehensive analysis of the dynamic behavior of N2O emissions and 

operating variables. Brotto et al., (2015) used Spearman’s rank correlation to explain the 

behavior of N2O emissions in an activated sludge system. The analysis showed negative 

correlation between N2O emissions and pH but positive correlation between N2O fluxes and 

temperature. However, most of the studies have not considered continuous long-term 

operational data, while further analysis is required to gain a better understanding on the 

dynamics and trade-offs between N2O generation and the online monitored and controlled 

process variables.  

Multivariate analysis has been proven to be a suitable method for the identification of patterns 

and hidden relationships within WWTP data (Rosén and Lennox, 2001) and can be applied to 

provide insights on the combined effect of operational variables on N2O emissions in full-scale 

systems. Chemometric techniques have been applied to the wastewater treatment sector for 40 

years (Rosén and Olsson, 1998), enabling the visualization and interpretation of the multi-

dimensional interrelations of the operational variables monitored in biological processes 

(Platikanov et al., 2014). Their application can (i) improve the efficiency of process monitoring 

(Mirin and Wahab, 2014) and provide further insights of the biological process (Moon et al., 

2009), (ii) identify and isolate process faults  (Haimi et al., 2016; Liu et al., 2014; Maere et al., 

2012; Rosen and Yuan, 2001), sensor faults (Lee et al., 2004), and iii) predict significant 

operating variables in the biological systems that affect performance (Rustum et al., 2008). 

Furthermore, the gradual implementation of online sensors to monitor important parameters in 



65 

 

the biological treatment train of WWTPs results in the production of time series which require 

the application of specific statistical tools for their interpretation. The most widely applied 

approaches include methods aiming to reduce the dimensionality of large data-sets (i.e., 

principal component analysis (PCA), partial least squares (PLS)) and data clustering techniques 

(i.e., hierarchical clustering, k-means clustering) (Haimi et al., 2013). However, there are 

limited studies investigating the behavior of N2O emissions with the application of multivariate 

statistical techniques, especially utilizing online operational data in long-term monitoring 

studies.  

The aim of this work is to investigate whether widely applied multivariate statistical techniques 

can be applied to the online data collected from real-field N2O monitoring campaigns in order 

to gain a better understanding on the dynamic behaviour of N2O emissions and explain the 

combined effect of the operating variables monitored in wastewater treatment processed on N2O 

emissions. Hourly data from the operating variables monitored online and N2O emissions data 

in a full-scale Carrousel reactor from the long-term monitoring campaign published by Daelman 

et al. (2015) were used for the analysis. A statistical methodological approach was developed 

applying changepoint detection techniques to identify changes in the N2O fluxes behaviour 

combined with hierarchical k-means clustering and PCA, to provide insights on N2O emissions 

patterns and generation pathways. 

3.2 Process description and data origin  

This work was based on the data obtained by Daelman et al. (2015) for the Kralingseveer 

WWTP, consisting of a plug-flow reactor followed by two Carrousel reactors in parallel (Figure 

1). The plant treats 80.000 m3 d−1 of domestic wastewater from a combined sewer system. The 

Carrousel reactors are characterised by alternating anoxic/oxic zones; aeration is performed 

through surface aerators which are manipulated by the loop controlling the ammonium 

concentration in the effluent. Aerator 1 operates under on/off pattern (when ammonium is 

higher than 1.2 mg/l), while aerators 2 and 3 operate always and peak when ammonium is higher 

than 0.6 and 0.9 mg/l, respectively. The average efficiency of the system in terms of total 

nitrogen (TN) removal was 81 ±10% and in terms of COD removal equal to 87 ±5% during the 

monitoring period. Ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N) and DO were 

monitored in the middle of the second oxic zone in the plug flow reactor (location 1, Figure 

3.1).  
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Figure 3.1: Layout of Kralingseveer WWTP with Plug-flow and Carrousel reactors, adapted 

from Daelman et al., (2015). 

The Carrousel reactors are equipped with NO3-N, NH4-N, total suspended solids (TSS), 

temperature probes, and 3 DO probes (DO1, DO2, DO3) (locations 2, 3, 4, Figure 3.1). The 

Northern Carrousel reactor is also equipped with a nitrite probe. All the reactors are covered, 

and the off-gas is collected in ducts and pumped to a Servomex gas analyser, where N2O is 

measured. Table B.1 lists all the variables monitored online (Appendix B). The data matrix 

developed consists of the variables monitored in the Carrousel reactor (DO, NH4-N C, NO3-N 

C, NO2-N C, N2O C), the influent flow-rate, as well as the NH4-N and NO3-N concentrations 

from the plug-flow reactor. 24 h composite samples of influent and effluent quality with ~6 

days frequency, were also available and considered in the analysis. Figure 3.1, summarises the 

methodological framework applied in the database. 

3.3 Methodological Framework for data analysis 

The monitoring period was divided into 10 distinct sub-periods based on the profile of N2O 

fluxes in the Carrousel reactor. Spearman’s correlation analysis, k-means clustering, 

hierarchical clustering, and Principal component analysis were applied to the database. The 

application of clustering algorithms facilitated the identification of operational modes that have 

historically resulted in specific ranges of N2O emissions. The PCA reduced the dimensionality 

of the data-set transforming the sensor signals into useful knowledge that can be easily 
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interpreted. The methodological framework is extensively described in the sub-sections which 

follow.  

 
Figure 3.2: Methodology followed in the current study for data processing and visualization 

The data-driven approach enabled the utilisation of the information and patterns embedded in 

the real-time monitored variables (from the system sensors) in the biological processes and 

GHG measurements. Multivariate statistical analysis is an alternative to univariate analysis that 

is commonly applied for the analysis of WWTP data. It enables the identification of patterns 

and interrelations in data-sets by examining multiple variables simultaneously (Olsson et al., 

2014). R software was used for the statistical analysis (R Core Team, 2017). The complete list 

of packages used is provided in the Appendix B (Table B.2). 

3.3.1 Preliminary data processing  

The preliminary data analysis includes: (i) data synchronisation under the same time-stamp, and 

ii) removal of duplicate and unreliable measurements (multiple readings at the same time stamp 

for the same sensor). Additionally, the data were aggregated into hourly averages in order to 

compensate for the missing data due to variation in sampling frequency between the different 

variables monitored.  
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3.3.2 Binary segmentation changepoint detection 

Given a series of data, change point analysis investigates abrupt changes in a data-series when 

specific properties change (i.e., mean and variance) (Kawahara and Sugiyama, 2012). The 

Binary Segmentation (Scott and Knott, 1974) is a widely applied and computationally efficient 

changepoint detection algorithm (Killick et al., 2012). The algorithm employs initially single 

changepoint detection method to the complete data-set as described in (Killick and Eckley, 

2014). If a changepoint is identified the procedure is repeated to the two new segments formed; 

before and after the changepoint. The process continues splitting the data until there are no more 

changepoints identified. The computational cost of the algorithm is of the order of O(nlog n) 

with n being the number of data in the data-set and therefore it is applicable in large data-sets. 

A distribution-free test statistic was applied based on the work of Chen and Gupta, (1997). The 

penalty for the changepoints identification was equal to log(n). The algorithm requires 

independent data points. Therefore, first difference transformation of the N2O timeseries was 

performed and changes in variance were identified by the Binary segmentation algorithm. 

3.3.3 Application of Spearman’s rank correlation 

Spearman's rank correlation coefficient (Spearman, 1904) was used to detect bivariate temporal 

monotonic trends among the system variables for  the different sub-periods; it serves as a 

measure of the association strength. This method is based on the rank of the values and therefore 

is less sensitive to outliers than Pearson’s correlation. P values lower than .01 were considered 

to be significant. 

3.3.4 Application of Hierarchical K-means clustering  

Clustering techniques are widely applied in data mining in order to identify and group the 

underling patterns that exist in high dimensional data sets (Jain, 2010).  K-means clustering 

(Hartigan and Wong, 1979) is a recognised clustering algorithm (Haimi at al., 2013). K-means 

clustering was applied in order to categorize the data in groups of similar observations and 

investigate the patterns of N2O emission fluxes and Euclidean distance is used as a distance 

function. K-means algorithm begins with the selection of k random centroids of the same 

dimension with the original data. All the data are compared and assigned to the nearest centroid. 

During each iteration, the nearest data to each centroid are re-defined and centroids are 
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recalculated in a way that squared distances of all points within a cluster are minimised. 

However, the randomly selected initial centroids can result into locally optimised clustering 

results (Abu-Jamous et al., 2015). Therefore, hierarchical k-means clustering that was proposed 

by Arai and Barakbah, (2007), was applied to the dataset. In this method agglomerative 

hierarchical clustering (Kaufman and Rousseeuw, 1990) is applied for the selection of the 

centroids; Ward's method is used in order to divide the dataset in clusters (Ward Jr, 1963).  The 

data are normalized before the analysis and the number of clusters is selected in order to 

maximise the average silhouette value (Rousseeuw, 1987).  

The profile of the N2O emissions was highly variable during the monitoring campaign. Binary 

segmentation enabled the identification of the sub-periods that are characterised by different 

N2O emissions’ profile. Hierarchical k-means clustering was applied to the Carrousel reactor 

data matrix considering the different sub-periods in order to investigate whether different 

temporal patterns of the operating variables were responsible for the different behaviour of N2O 

emissions during the monitoring campaign. Additionally, hierarchical k-means clustering 

enabled the i) detection of frequency and persistence of extreme ranges of operating variables, 

and ii) comparison of the operational modes between the plug-low and Carrousel reactor. 

Ammonium and nitrate probes in the plug-flow were included in the analysis, since they can 

provide indirect feedback in terms of the Carrousel reactor influent and additional information 

for the operational behaviour of the system. However, the analysis was repeated excluding plug-

flow variables (NH4-N and NO3-N). As shown in Figure 3.2 graphical comparison of the 

clustered data-points vs time and boxplots of the variables in each identified cluster are 

displayed in the results’ section. 

3.3.5 Application of Principal component analysis 

Principal component analysis (PCA) (Jolliffe, 2002) was applied to the dataset in an effort to 

reduce the dimensionality of the data by eliminating a small proportion of variance in the data. 

PCA transforms the original correlated measured variables to uncorrelated variables (Principal 

components) explaining the maximum observed variability. The principal components are 

linear combinations of the data variables. The loadings of the variables in each principal 

component can map their relationship with the respective principal component. The scores of 

the principal components map the different samples in the new dimensional space of the 

principal components facilitating the investigation of the different relationships between the 
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variables. The data matrices (X) consisting of 𝐽 columns (variables) and 𝐼 data rows (number of 

observations) were normalized with mean equal to 0 and standard deviation equal to 1. Each 

column of  X,  𝑥𝑗 = (𝑥1, … 𝑥𝑖)𝑇 represents a vector in the I-dimensional space. In PCA eigenvalue 

decomposition is used to factorize the data matrix X (I x J) and to map the data matrix to a reduced 

dimensional space: 

 𝑋 = 𝑇𝑃𝑇 + 𝐸 (3.1) 

where, 𝑇: matrix (𝐼 𝑥 𝑆) representing the score of the principal components, 𝑆: the number of 

principal components (PCs) selected, 𝑃: matrix (𝐽 𝑥 𝑆)  representing the loadings and 𝐸: matrix 

of residuals. 

The biplot of the first 2 PCs is used in order to visualize the combined behavior of significant 

variables that affect the system. The biplot enables the simultaneous visualization of i) the 

variables’ loadings in the first two principal components, ii) the scores of the first two principal 

components, and iii) the different clusters. The temporal variations of the PC scores, that enable 

the identification of occasions in which the behavior of the system changes, are also displayed 

in the results section. PCA was applied to the data matrix of the Carrousel reactor excluding 

N2O emissions timeseries in order to i) identify the most significant variables that affect the 

system, (ii) analyse the structure of the sensor data, iii) investigate if changes in the relationship 

of the system coincide with changes in the N2O emissions profile, and iv) validate the results 

from hierarchical clustering. N2O emissions timeseries were excluded from the PCA in order to 

investigate the relationship between the PC scores and N2O emissions and examine which PCs 

are more significantly linked to the behaviour of N2O emissions. 

3.4 Results and discussion 

3.4.1 N2O emissions profile and main dependencies 

The profile of all the variables monitored was fluctuating during the monitoring period which 

can justify the different profiles of N2O emissions that resulted from the Binary Segmentation 

algorithm. Overall, high ranges of emissions were reported when nitrate concentration in the 

plug-flow reactor was low whereas periods with lower ammonium concentrations in the plug-

flow reactor are linked with lower N2O emissions. 
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Table 3.1 shows the average values and standard deviations of the variables monitored online 

and offline in the Northern Carrousel and plug-flow reactors. N2O fluxes peaked in March 2011 

followed by a period characterised by very low N2O emissions. Gradual decrease was observed 

until November 2011 and negligible emissions again until January 2011 (Figure 3.3).  

Table 3.1:Variables monitored in the Northern Carrousel reactor (average ± std) (C: Carrousel 

reactor, N: Northern, PF: plug-flow reactor) 

Online variables 
Averag

e 
Std 

Offline variables Averag

e 

Std 

N2O (kg/h) 1.4 2.1 
COD influent (mg COD/ 

L) 

238.8 79.5 

NH4-N C (mg/L) 1.63 2.2 TKN influent (mg/L)  42.1 10.0 

NO3-N C (mg/L) 5.8 4 TP influent (mg/ L) 7.0 2.1 

NO2-N C (mg/L) 1.2 1.1 Flow-rate (m3/ d) 85,898 41,786 

DO1 (mg/L) 0.6 0.9 COD effluent (mg/ L) 36.9 6.9 

DO2 (mg/L) 0.8 0.9 TKN efffluent (mg/ L) 2.8 1.2 

DO3 (mg/L) 1.9 0.6 TP effluent (mg/ L) 1.1 0.6 

Temperature (°C) 16 3.5 pH effluent 8.0 0.2 

N2O PF (kg/h) 0.71 1.21    

NH4-N PF (mg/L) 12.41 5.35    

NO3-N PF (mg/L) 2.38 2.2    

Influent Flow-rate 

(m3/h) 
3973 2375 

   

DO PF (mg/L) 2.61 0.65    

The application of Binary Segmentation algorithm to the N2O emissions of the Northern 

Carrousel reactor identified 9 changepoints that correspond to 10 sub-periods with distinct 

variance of the N2O timeseries first difference. The changepoints detected are displayed by the 

vertical dotted lines in Figure 3.3 (bottom). The analysis identified abrupt temporal changes in 

the emission dynamics that indicate changes in the underlying mechanisms or environmental 

conditions responsible for the N2O formation.  
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Figure 3.3  (top): N2O emissions profile in the Northern Carrousel reactor (grey area: periods 

with missing N2O data) (bottom): First difference of the N2O emissions timeseries (blue line) 

showing the sub-periods identified by the application of binary segmentation (grey area: 

periods with missing N2O data, blue dotted lines: changepoints identified by the algorithm, 

red horizontal lines: standard deviation in each sub-period) 

The average COD concentration in the influent of the plug-flow reactor (effluent of primary 

sedimentation) is 239 ± 80 mg COD / L during the 15-month monitoring period. The average 

influent and effluent concentrations of COD, TKN, BOD and TP for each sub-period are given 

in the Appendix B (Table B.3). A slight increase of COD concentration (by 27% compared to 

average) is observed in sub-period 5 that can be attributed to the reduction of precipitation 

events and to the lower average influent flow-rate during this sub-period. Laboratory analyses 

did not show significant seasonal changes in the plug-flow COD loading (19,934 ± 13310 kg 

COD / day). The COD loading in sub-period 4 (16,160 ± 2546 kg COD / day) is by 17% less 

compared to the respective one in sub-period 1. TKN and TP loadings are also reduced by 11% 
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and 12% in sub-period 4 compared to sub-period 1 respectively. The COD:TKN:TP ratio 

remains almost stable ranging between 1:0.17:0.02 (sub-period 2) and 1:0.20:0.03 (sub-period 

4).  

Figure 3.4 shows the different COD to TKN ratios measured for all the sub-periods. There were 

cases with lower than average COD/TKN in the influent of the plug-flow reactor that coincided 

with increased N2O emissions, particularly in sub-periods 4 and 5. However, low ranges of 

COD/TKN (<5) in sub-periods 1, 2, 7 and 6 coincided with low N2O emissions. Although the 

COD/N ratio of the stream entering the Carrousel tank was not measured in this study, the 

laboratory analyses indicate that limitation of COD cannot be considered the sole contributor 

of N2O emissions via heterotrophic denitrification in sub-periods 4 and 5.  

 
Figure 3.4: COD/TKN (offline data) for each sub-period 

The COD removal efficiency remained relatively steady during the monitoring campaign 

ranging from 79 % (sub-period 8) to 91% (sub-period 5). The range of TN and TP removal 

efficiencies was from 73 % (sub-periods 1 and 9) to 92% (sub-period 5) and from 67% (sub-

period 7) to 87% (sub-period 4). The pH of the effluent is steady (~ 8) and does not show 

seasonal variability that could influence the generation of N2O emissions. A significant 

variation is observed for all variables monitored by looking at the complete database. Table 3.2  

summarises the average values and standard deviations of the variables considered in the 

analysis for the target periods. In the Carrousel reactor, the nitrite concentration is relatively 

high in sub-period 4 (average = 2.6 mg/l) and in the first part of sub-period 10 (average = 2.1 

mg/l). The average temperature in both cases is ~13 °C. In biological reactors operating in 

continuous mode, appreciable (> 2 mgN/L) nitrite concentrations are usually not observed since 
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nitrite is directly oxidized by nitrite oxidizing bacteria into nitrate.  However, in certain cases,  

high nitrite concentrations in biological processes have been observed which have been linked 

with low temperatures that affect N2O reductase during denitrification enhancing N2O 

production (Holtan-Hartwig et al., 2002; Adouani et al., 2015).  

Analysing the whole profile, the emissions tend to be low at higher temperatures (sub-periods 

6, 7, and 8). Higher emissions are also observed, though, at temperature higher than 18 °C and 

low nitrite concentrations (i.e., sub-period 5). According to Ahn et al. (2010b) N2O emissions 

can be significant at higher temperatures due to the higher enzymatic activities of the 

bioprocesses producing N2O. In the Carrousel reactor during sub-periods 4 and 5, the 

temperature increases from 11.8 to 20 °C. Low N2O emissions are also observed when 

ammonium concentration is lower than 13 mg/l and nitrate is higher than 2.5 mg/l. in the plug-

flow reactor. The probe is located in the middle of the second oxic zone; thus, lower ammonium 

concentrations in the plug-flow reactor can indicate less ammonium loads in the Carrousel 

reactor. 

The analysis of the variables’ ranges for the N2O emission profiles provides limited insight on 

the dependencies between the system variables which will be further analysed in the following 

sections.  
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Table 3.2: Average values and standard deviations of the main variables for the 10 sub-periods (C: =Carrousel reactor, N: Northern, PF: plug-

flow reactor). 

Var. 
N2O                         

(kg/h)  

NO3-N C 

(mg/l) 

NO3-N PF 

(mg/l) 

NH4-N C 

(mg/l) 

NH4-N PF 

(mg/l) 

NO2-N C* 

(mg/l) 

Temperature 

(°C) 

DO1 

(mg/l) 

DO2  

(mg/l) 

DO3  

(mg/l) 

 Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

1 0 0.1 6.1 3.1 1.8 1.6 1.8 2.67 11.4 4.1     15.7 1.4 0.62 0.7 0.62 0.5 1.5 0.4 

2 0.6 0.6 7.2 3.1 2.5 2 1.5 1.7 13 4     11.2 1.0 0.77 1 1.31 0.8 2 0.4 

3 2.7 1.4 6.1 3.2 1.6 2.1 1.6 2.1 15.2 4.5     11.5 0.7 0.67 0.8 1.49 1 2.07 0.4 

4 5.6 
2. 

6 
3 0.1 0.5 0.7 1.3 1.6 15 4.8 2.6 1.9 12.9 1.1 0.64 0.9 1.95 0.9 1.9 0.4 

5 2.6 2.2 4.3 4.2 3.1 1.9 1.3 2 11.5 5.2 0.8 1 18.2 1.7 0.34 0.7 0.39 0.8 1.94 0.5 

6 0.8 1.4 3.3 3.2 2.3 1.9 2 3.1 14.7 6.1 0.5 0.5 20 1.0 0.42 0.7 0.26 0.5 2.27 0.5 

7 0.2 0.3 7.2 5 2.8 2.4 2 3.1 9.8 5.2 0.6 0.4 20 0.7 0.42 0.6 0.29 0.4 2.64 0.5 

8 0.1 0.2 10.1 5.7 5.2 2.6 1.4 1 9.6 5.5 0.8 0.5 19.6 0.5 0.27 0.5 0.2 0.5 2.71 0.6 

9 0.1 0.2 7.9 3.6 2.8 2.8 2 2 13.2 5.4 1.9 0.8 12.9 2.1 1.12 1.2 1.07 1 1.58 0.4 

10 1.3 1.1 6.3 3.5 1.4 0.9 1.6 3.7 16.4 4.3 2.1 0.9 13 0.7 0.58 1.0 1.04 1 1.52 0.3 

*NO2-N concentration was monitored between 11/03/2011 and 19/01/2012 
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3.4.2 Spearman’s rank correlation analysis  

This section includes the results from the Spearman’s rank correlation for the Carrousel 

reactor. The application of Spearman’s rank correlation coefficient in the data obtained 

during the whole monitoring period could not identify significant correlations between the 

N2O emissions and the operating variables. The lack of monotonic univariate dependencies 

can be attributed to i) the temporal fluctuations of the influent characteristics, ii) the 

continuous variability in the operating conditions of the reactors, and iii) the seasonal 

variations of the environmental conditions in wastewater treatment processes. Considering 

the sub-periods, fluctuating correlation coefficients between N2O emissions and Carrousel 

reactor variables were identified (Appendix B, Figures B.1-B.2). The findings are in line 

with the study of (Kosonen et al., 2016). The authors compared the results from two 

monitoring periods at the same biological system and identified different relationships 

between N2O emissions and BOD7(ATU) loads. 

The correlation between nitrite and N2O emissions ranges from 0.78 (sub-period 7) to 0.51 

(sub-period 9). As a general remark, nitrite is correlated with N2O emissions in sub-periods 

4, 6 and 7, while lower correlation was observed during sub-periods 5 (Figure 3.5), 8 and 

9. N2O emissions and NO3-N concentration in the Carrousel reactor exhibited positive 

correlation - higher than 0.7 for sub-periods 2 (Figure 3.5), 4 and 10 (the temperature was 

lower than 13 °C in all cases). Both NO3-N and N2O follow similar diurnal patterns, 

whereas peaks in nitrate concentration coincide with peaks in N2O emissions (Daelman et 

al., 2015). The accumulation of nitrate is potentially linked with higher nitrification than 

denitrification rates. This is in line with Daelman et al. (2015),  considering that the nitrate 

utilisation rate in these sub-periods is affected by the low temperatures (Elefsiniotis and 

Li, 2006). Additionally, when N2O is positively correlated with DO1 (> 0.5), medium to 

significant correlation with ammonium concentration in the Carrousel reactor is also 

observed (sub-periods 1, 6 and 7). Stripping of the already formed N2O can be a potential 

explanation.  The surface aerator in the location of DO1 probe operates based on the loop 
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controlling the ammonium concentration in the effluent; thus, peaks trigger the surface 

aerators to start. 

The correlation coefficient between any two of the system variables did not remain stable 

in the examined sub-periods. Figure 3.5 shows an example of a correlogram for sub-periods 

2 and 5. These sub-periods are characterised by low and high ranges of N2O emissions and 

temperature respectively (Table 3.2). In sub-period 2, the average NO3-N concentration in 

the plug-flow reactor is equal to 2.5 mg/l (Table 3.2) and correlates negatively with the 

influent flow-rate (~ -0.63) (Figure 3.5). In sub-period 5 the behavior of nitrate 

concentration (average equal to 2.1 mg/l) is mainly correlated negatively with ammonium 

concentration in the same reactor. The ammonium concentration in the Carrousel reactor 

is positively correlated with DO1 only in sub-period 2. NH4-N concentration in the plug-

flow reactor is correlated with the influent flow-rate only in sub-periods 4 and 5. However, 

the profiles of these two variables show that in the majority of sub-periods, abrupt and 

rapid increase of influent flow-rate (i.e., precipitation events) coincide with increase of the 

NH4-N. However, the NH4-N concentration tends to dissipate more rapidly in the system 

than the influent flow-rate. For example, in sub-period 3 the correlation coefficient between 

NH4-N in the plug-flow reactor and influent flow-rate is 0.26. However, when days with 

significant precipitation events (and thus high influent flow-rate) are omitted, the 

correlation coefficient is equal to 0.58. The latter shows that, in this example, the lack of 

correlation between these two variables is most likely to be an indication that the 

interrelationships are not monotonic, and that the method is not appropriate to identify 

complex relationships within the data. In order to verify that increased influent flow-rate is 

linked with precipitation events, daily precipitation data were extracted from the Royal 

Netherlands meteorological institute. Spearman’s correlation coefficient between two days 

moving average of influent flow-rate and daily precipitation in Netherlands was equal to 

0.69. Therefore, there is a direct link between higher than average flow-rates and 

precipitation events (the timeseries are shown in Figure B.3, Appendix B). The 

correlograms for all the monitoring sub-period are provided in the Appendix B (Figures 

B.1-B.2). 
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Spearman’s rank correlation indicated structural changes in the dependencies between the 

system variables. Therefore, the fluctuating structural dependencies have a different impact 

on the generation of N2O emissions. Previous studies have shown that various monitored 

variables in the biological system (NH4-N, NO3-N, NO2-N, Temperature, TSS) can affect 

N2O emissions generation. However, further analysis is required to investigate their 

combined effect in N2O formation in full-scale complex systems.  

 
Figure 3.5:  Spearman’s rank correlation coefficient for sensor signals in Northern 

Carrousel reactor. (Left): Sub-period 2. (Right): Sub-period 5. (Red: negative correlation, 

blue: positive correlation, the coloured part of the circles is proportional to the correlation 

coefficient, only results with p-value < 0.01 are shown) 

3.4.3 Hierarchical k-means clustering 

The application of hierarchical k-means clustering enabled the categorization of the 

different ranges of the operating variables and N2O emissions within each sub-period.  

Hierarchical k-means clustering analysis was repeated excluding NH4-N and NO3-N 

concentrations in the plug-flow reactor in order to evaluate the effect of these parameters 

on the clusters identified. The results showed that the majority of the data points were 

allocated to the same clusters for each sub-period even when the NH4-N and NO3-N 



79 

 

concentrations in the plug-flow reactor were excluded. In the majority of the sub-periods 

(i.e. sub-periods 1-6) more than 85% of the data points were assigned to the same cluster. 

It can be concluded that specific patterns and ranges of NH4-N and NO3-N monitored in 

plug-flow reactor, systematically resulted in specific responses to the Carrousel reactor. 

The latter is supported by the Spearman’s rank correlation analysis, where high correlations 

were observed between the variables in the two reactors for several sub-periods. For 

example, the correlation coefficient between NH4-N in the plug-flow and Carrousel 

reactors is higher than 0.7 for sub-periods 1 to 7. The similarity of the clusters for all the 

sub-periods is shown in Table S4 in the Supporting Material. 

The range of N2O emissions is differentiated in the majority of the clusters. In all the 

examined sub-periods, two major clusters were identified since these are characterised by 

significant differences in the NH4-N and NO3-N concentrations in the plug-flow reactor. 

In the majority of the sub-periods they represent the diurnal variability of the system 

nutrient concentrations and influent flow-rate. Additionally, clustering distinguished 

occasions with high influent flow-rate and ammonium concentration in the Carrousel 

reactor, which can be an indication of precipitation events. In sub-periods characterised by 

low average N2O emissions (i.e., 1, 2, 7, 8 and 9), clusters with increased N2O emissions 

(yet relatively low) are mainly linked to higher loading rates due to the expected diurnal 

variability or to precipitation events. However, N2O emissions higher than 3.8 kg/h are 

observed when the average NO3-N concentration is consistently lower than 1 mg/l in the 

plug-flow reactor and NO3-N concentration is lower than 4 mg/l in the Carrousel reactor. 

Table 3.3 compares the clustered average values for all the variables in sub-periods 2 

(average N2O emissions equal to 0.6 kg/h - Table 3.2) and 4 (average N2O emissions equal 

to 5.6 kg/h – Table 3.2). Sub-period 4 is characterised by very low NO3-N concentration 

in the middle of the oxic zone in the plug-flow reactor. The latter indicates slower oxidation 

of ammonia to nitrate or insufficient DO in the plug-flow nitrification lane. This can lead 

to higher NH4-N loading in the Carrousel reactor. On the other hand, higher nitrification 

rates in the plug-flow reactor (i.e. sub-period 2) resulted in lower N2O emissions in the 
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Carrousel reactor. The average values of all the variables in each cluster during all the sub-

periods are given as Appendix B (Table B.5). 

In clusters 2 and 16 the averages of operating variables are similar yet the N2O emissions 

are different (0.01 and 0.51). Similarly, in clusters 1 and 4 and 7, the averages of operating 

variables are similar yet the N2O emissions are different (0.09,0.87 and 3.22 respectively). 

A corollary to this also exists. In clusters 1 and 2 the averages of operating variables are 

different but the N2O emissions are similar (0.09 and 0.01). Similarly, in clusters 5 and 6 

the averages of operating variables are different but the N2O emissions are similar (0.21 

and 0.24). Such observations indicate the underlying complexities of the 

interdependencies. Additionally, it can be concluded that the range of N2O emissions can 

partially depend on the preceding operational mode of the system. Figure 3.6 shows an 

example of the variables monitored online for two separate occasions in sub-periods 2 and 

3 (from 00:00 am until 8:00 am) and the respective N2O emissions. All the variables show 

a similar behaviour (in terms of range and trends). N2O emissions profiles have also the 

same trend, however, their range strongly depends on the initial N2O fluxes emitted at 

00:00 am. The influent flow-rates, NH4-N and NO3-N concentrations in the plug-flow 

reactor are also similar in these two occasions. For the time-periods shown, the average 

N2O fluxes are equal to 0.44 and 2.01 kg/h for occasion 1 and 2 respectively. 

Table 3.3: Operating variables (average) for all clusters defined by hierarchical clustering 

in the Carrousel reactor (P: Sub-period, Cl: Clusters) 

P Cl 
N2O 

C 

NH4-

N PF 

NO3-

N   

PF 

Influent 
NH4-

N C 

NO3-

N   C 
DO1 DO2 DO3 

NO2-

N 

  kg/h mg/l mg/l m3/h mg/l mg/l mg/l mg/l mg/l mg/l 

1 

1 0.09 14.13 1.48 3883 1.47 8.66 1.04 0.78 1.72  

2 0.01 8.55 2.41 3824 0.87 4.26 0.13 0.47 1.25  

3 0.05 14.74 0.30 8892 7.91 4.63 1.37 0.77 1.58  

2 

4 0.87 15.30 2.05 3827 1.51 8.61 0.94 1.53 2.22  

5 0.21 9.13 3.69 3419 0.74 5.28 0.03 0.62 1.41  

6 0.24 12.51 0.81 11132 4.52 5.42 2.27 2.31 2.22  

3 
7 3.22 16.85 1.52 3383 1.36 7.36 0.87 1.88 2.35  

8 1.72 10.96 1.91 3672 0.82 4.29 0.05 0.85 1.56  
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9 2.40 21.40 0.12 7935 7.52 4.15 2.10 1.28 2.10  

4 

10 6.60 17.30 0.32 3207 1.26 3.79 2.14 0.95 2.41 4.10 

11 3.83 10.82 0.77 2747 0.79 1.80 1.51 0.05 1.20 1.40 

12 6.89 25.45 0.48 6375 10.86 3.62 1.98 2.12 2.34 4.28 

6 
15 2.54 17.66 0.75 5922 5.00 5.07 1.30 0.73 2.34 1.08 

16 0.51 8.20 2.84 3811 0.98 2.64 0.10 0.10 2.21 0.35 

*NO2-N concentration was monitored between 11/03/2011 and 19/01/2012 

 

 
Figure 3.6: Variables monitored online for two separate occasions in sub-periods 2 and 3 

(from 00:00 am until 8:00 am), (Bottom): The respective N2O emissions profiles 

3.4.4 Principal component analysis in the Carrousel reactor 

PCA was applied in order to transform the original correlated measured variables to 

uncorrelated variables (Principal components) in order to explain the maximum observed 

variability. In sub-periods with low emissions (1, 2, 7, 8, and 9) the PCA analysis showed 
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that N2O emissions’ peaks are related with NH4-N and influent flow-rate peaks in the 

Carrousel reactor and with the effect of the diurnal variability of these variables’ loading 

rates.  

The current section discusses the PCA results for sub-period 2, as an example. The results 

for all the sub-periods are given in the Appendix B (Tables B.6-B.13, Figures B.4-B.28). 

The application of PCA reduced the dimensionality of the data with 4 principal components 

(PCs) explaining ~86% of the total variance (PC1 = 39%, PC2 = 26%, PC3 = 12%, and 

PC4 = 9%). Loadings for the system variables in the 4 PCs are shown in Table 3.4. The 

loadings of each component are an indication of the variation in the variables explained by 

a specific component. Influent flow-rate, ammonium in the Carrousel reactor (NH4-N C) 

and the three DO (DO1, DO2 and DO3) concentrations have the highest negative loadings 

in PC1. This means that the first principal component increases with the increase of these 

variables. Nitrate concentration (NO3-N PF) in the plug-flow reactor has a relatively high 

positive loading in PC1 (0.36). Therefore, PC1 describes how the Carrousel reactor 

responds to the behavior of the upstream plug-flow reactor processes and conditions, the 

variation of the influent flow-rate and variations in ammonium and DO concentrations in 

the Carrousel reactor. The latter can be indirectly connected with the control strategy of the 

Carrousel reactor, since the aerators operate based on the loop controlling the ammonium 

concentration in the effluent. PC2 links ammonium concentration in the plug-flow reactor, 

nitrate concentration in the Carrousel reactor, and temperature (loadings higher than 0.47). 

In PC3 ammonium concentration in the Carrousel reactor has high negative loading, while 

DO2 and DO3 levels have positive loadings that was not expected considering the control 

strategy of the system. Investigation of the variables’ profiles, though, showed an 

increasing trend of DO2 and DO3, whereas the ammonium profile does not present a 

similar trend. Overall, in sub-period 2 the average DO concentration recorded in the 

Carrousel reactor from the 3 DO probes is increased compared to sub-period 1.  

Table 3.4: PCA loadings sub-period 2, Carrousel reactor 

Variable PC1 PC2 PC3 PC4 

NH4-N PF -0.28 0.47 -0.24 0.29 

NO3-N PF  0.36 0.21 0.14 -0.67 
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Influent -0.38 -0.31 -0.09 -0.37 

NH4-N C -0.34 0.03 -0.59 -0.29 

NO3-N   C  -0.04 0.58 0.21 -0.31 

DO1 -0.43 0.06 -0.15 -0.18 

DO2 -0.40 0.08 0.48 -0.17 

DO3 -0.37 0.21 0.40 0.28 

Temperature 0.22 0.49 -0.33 0.11 

 

The biplot of the first 2 PCs is used in order to visualize the combined behavior of 

significant variables that affect the system. Data points assigned to cluster 6 (Figure 3.7), 

have negative scores in PC2 and PC1. Therefore, ammonium concentration in the 

Carrousel reactor and influent flow-rate are higher than average, while the nitrate in the 

system is lower than average. Figure 3.8 shows the profile of N2O emissions and NH4-N 

in the Carrousel reactor for sub-period 2. The coloured points in the diagram represent the 

identified clusters. Peaks in emissions coincide with peaks in the NH4-N C profile, whereas 

peaks in NH4-N C coincide with precipitation events (cluster 6). 

 
Figure 3.7: (left) Biplot of the first 2 PCs, sub-period 2. The coloured data-points 

represent the scores of the first two principal components. Groups 4, 5, and 6 represent 

sub-period 2, clusters. (right) Variable correlation plot. The arrows represent the direction 

and strength of the variables monitored in the system as projected into the 2-d plane. The 

contrib. legend represents the contribution (%) of the variables to the first two PCs. The 

arrows for each variable point to the direction of increase for that variable. The length of 

the arrow shows the quality of representation of the variables on the biplot (variable 
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coordinates = loading x component std). The percentage given on each axis label 

represents the value of the total variance explained by that axis. 

The scores of the data-points in cluster 5 are mainly positive in PC1 and negative in PC2.  

PC2 increases with the increase of NH4-N concentration in the plug-flow reactor (Table 

3.4). Given that PC2 has average equal to 0 (data are standardised), data-points with 

negative scores in PC2 represent occasions with lower than average NH4-N concentration 

in the plug-flow reactor. This is supported by the correlation plot where the arrow of NH4-

N concentration in the plug-flow reactor points to the direction of increasing 

concentrations of NH4-N in the plug-flow.  

Therefore, data-points belonging to cluster 5 are characterised by higher than average 

ammonium concentration in the plug-flow reactor. Similarly, NO3-N concentration in the 

plug-flow reactor has relatively significant positive loading in PC1 (0.36 – Table 3.4). The 

latter indicates that NH4-N and the three DO probes in the Carrousel reactor (that have 

negative loadings in PC1 – Table 3.5) tend to decrease when NO3-N concentration in the 

plug-flow increases. Given that all data-points in cluster 5 have positive scores in PC1, it 

can be concluded that are characterised by lower than average NH4-N concentration in the 

Carrousel reactor and higher than average NO3-N concentration in the plug-flow reactor. 

According to the clustering results the latter can be an indication of the high nitrogen 

loadings of the normal diurnal variability in the reactor. This finding is supported from the 

results presented in Figure 3.8, where the data-points of cluster 5 correspond to the daily 

low range of ammonium concentrations in both reactors.  

 



85 

 

 
Figure 3.8: Profile of (a) N2O emissions, (b) NH4-N concentration in the Carrousel 

reactor and (c) NH4-N concentration in the plug-flow reactor for sub-period 2; coloured 

points indicate the respective clusters 

Figure 3.9 summarises scores of the PC2 and the respective clusters (coloured points in the 

diagram) indicating strong diurnal cyclic fluctuations of the water quality during this sub-

period. It also shows that after each precipitation event, a sudden temperature drop occurs; 

the system is disturbed and cannot recover immediately. Spearman’s rank correlation 

coefficient between PC2 and N2O emissions is equal to 0.72 with the NO3-N drops, directly 

resulting in reduced N2O fluxes.  
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Figure 3.9: PC2 scores for sub-period 2 

In sub-period 4, mechanisms triggering high N2O emissions in the Carrousel reactor prevail 

(average = 5.6 kg/h). The PCA loadings are similar to sub-period 2, while the clustering 

results indicate 3 clusters; clusters 10 and 11 are affected by the diurnal variability and 

cluster 12 is affected by the precipitation events (Table 3.3). Again the 3 DO sensor data 

in the Carrousel reactor have significant negative loadings in PC1. However, ammonium 

concentration in the Carrousel reactor is not identified as a significant variable affecting 

the system in the first two PCs. This can be attributed to the fact that less NH4-N 

concentration peaks are observed in the effluent of the Carrousel reactor (17 data points 

belong to cluster 12). The correlation coefficient of PC1 with NH4-N in the Carrousel 

reactor was -0.75. Therefore, PCA analysis shows that PC1 is a good indicator of the 

ammonium concentration in the Carrousel reactor.  The DO concentrations in this sub-

period especially for cluster 10 (with average NH4-N concentration in the Carrousel reactor 

equal to 1.26 mg/L) is the highest observed in all the clusters with similar NH4-N 

concentrations in the Carrousel effluent. The alternation of aerobic and anaerobic 

conditions observed in this reactor, combined with high NH4-N and DO concentrations has 

been identified as a significant cause of nitrification sourced emissions (Yu et al., 2010). 

In PC2, the NO3-N concentration and temperature have significant positive loadings (Table 

3.5). The score plot of PC2 (Figure 3.10 (a)), has an increasing trend and therefore, shows 

that nitrate and temperature increase. The latter is validated in the profiles of NO3-N 

concentrations in the Carrousel reactor (Figure 3.10 (b)) and NO3-N concentration in the 

plug-flow reactor and temperature (Appendix B Figure B.29). In the beginning of the sub-
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period very low concentrations of nitrate are observed in the system and they gradually 

increase especially after the 28th of March. The Spearman’s correlation coefficient between 

N2O emissions and PC2 scores relatively high and equal to 0.62. However, contrary to sub-

period 2, the clustering analysis showed that there is no nitrate accumulation (Table 3.3). 

The average nitrate concentration in the plug-flow reactor is equal to 0.2 mg/l until the 28th 

of March and increases up to 1.6 mg/l until the end of the sub-period. Therefore, the 

observations in section 3.4.3 are supported by the PCA results (low nitrate in the plug flow 

resulted in increased loadings in the subsequent Carrousel reactor and the denitrification 

activity in the Carrousel reactor can be disturbed by the low temperature resulting in nitrite 

accumulation). PCA also showed that the metabolism of bacteria requires time to recover 

from the disruption and emissions start decreasing in sub-period 5. 

Table 3.5: PCA loadings sub-period 4, Carrousel reactor 
 

PC1 PC2 PC3 PC4 

NH4-N PF -0.48 0.04 -0.11 0.25 

NO3-N PF  0.26 0.56 -0.04 -0.35 

Influent -0.33 -0.07 -0.52 -0.17 

NH4-N C -0.28 0.14 -0.50 -0.46 

NO3-N   C  -0.17 0.59 0.32 0.04 

DO1 -0.37 0.24 -0.13 0.59 

DO2 -0.40 0.08 0.41 -0.14 

DO3 -0.37 0.01 0.33 -0.40 

Temperature 0.23 0.51 -0.27 0.19 
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Figure 3.10 (a) PC2 scores for sub-period 4 and (b) NO3-N concentration in the Carrousel 

reactor for sub-period 4. 

3.4.5 N2O emissions generation pathways 

The results from the application of multivariate statistical techniques can be used for the 

identification and explanation of potential pathways for N2O emissions generation. In line 

with Daelman et al. (2015) findings, both AOB pathways can be considered responsible 

for the N2O emissions observed in the Carrousel rector. The combination of nitrite 

accumulation and low oxygen concentrations can be linked with the nitrifier denitrification 

pathway whereas higher AOR (ammonia oxidation rate), correlation of NH4-N 

concentration in the Carrousel reactor with N2O emissions and higher DO concentrations 

can be linked with the hydroxylamine oxidation pathway (Law et al., 2012). N2O 

generation via heterotrophic denitrification can be also significant especially in periods 

with nitrate accumulation, suggesting insufficient anoxic conditions (Daelman et. al., 2015) 
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In the current study, the combination of hierarchical k-means clustering and PCA linked 

the different emissions ranges with all the monitored variables in the reactor (i.e. Figure 

3.7) and enabled the identification of a set of variables that are connected with N2O 

emissions in each sub-period (i.e. Figure 3.8). Therefore, the analysis facilitated the 

identification of the dominating pathways for N2O emissions during the 15-month 

monitoring campaign.   

In sub-periods with lower average N2O emissions fluxes (1, 6, and 7) emission peaks 

coincide with ammonium peaks in the effluent of the plug-flow reactor and therefore in the 

Carrousel reactor. Wunderlin et al., (2012) demonstrated that N2O can be partly produced 

by hydroxylamine oxidation, with excess ammonia, low nitrite concentration and high 

ammonia oxidation rate. In that case, average emission fluxes range between 0.05 kg/h 

(sub-period 1) to 2.54 kg/h (sub-period 6) and tend to be higher at higher temperatures and 

DO levels. The high DO concentrations coincide with peaks in nitrite and nitrate 

concentrations indicating insufficient denitrification zones in the reactor. AOB can use 

nitrite instead of oxygen as electron acceptor (Kampschreur et al., 2009)  especially in 

oxygen limiting conditions (low DO zones exist even when all aerators are under 

operation); thus nitrifier denitrification by AOB can potentially contribute in N2O 

emissions. In line with the results of the current work,  Burgess et al., (2002) found strong 

dependency between nitrite accumulation and N2O emissions especially at sudden increase 

of ammonia loading. 

Overall, N2O emissions increase significantly and peak at low nitrate concentrations in 

both reactors (i.e., sub-periods 3 and 4) and high nitrite concentrations (i.e., sub-period 4). 

Under aerobic conditions, nitrite accumulates in the system when the ammonia oxidation 

rate to nitrite exceeds the nitrite oxidation rate to nitrate (Guisasola et al., 2005) inducing 

the nitrifier denitrification pathway. Sub-optimum DO, COD and pH can also result in 

nitrite accumulation during denitrification (Schulthess et al., 1994; Yang et al., 2012). In a 

pilot Carrousel reactor (Zheng et al., 2015) observed a synergistic N2O generation between 

nitrifier denitrification and heterotrophic denitrification, in which the nitrite built-up during 

denitrification boosted nitrifier denitrification pathway. The latter is in line with the N2O 
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profiles observed in this study in sub-periods with high emissions. Low nitrate 

concentrations together with high TSS resulted in low N2O emissions. The latter can be 

explained by the higher efficiency in NO3-N removal. The combined results of PCA and 

hierarchical k-means clustering can guide through the most significant N2O production 

pathways in different sub-periods (Appendix B). 

3.5 Summary of main findings 

• This study applies a data-driven approach to analyse long-term N2O emission 

dynamics and generation mechanisms utilizing high temporal resolution data, i.e. 

hourly process variables’ data, through the application of statistical-based methods. 

The data-set was acquired from a 15-month N2O monitoring campaign and was 

divided into 10 sub-periods based on the N2O emissions profile.  

• Spearman’s rank correlation showed significant univariate correlations of N2O with 

ammonium, nitrate and nitrite. The correlations fluctuate between the 10 sub-

periods. However, it was observed that low correlation coefficients can indicate 

non-monotonic interrelationships that Spearman’s rank correlation cannot identify.  

• Hierarchical k-means clustering was applied and provided information on the 

existence of reoccurring patterns and their effect on N2O emissions. N2O emission 

peaks were linked with the diurnal behaviour of the nutrients’ concentrations and 

with rain weather events, whereas low nitrate concentrations in the preceding plug 

flow reactor (<1 mg/l) resulted in increased loadings in the subsequent Carrousel 

and high N2O emissions.  

• The PCA validated the findings from the clustering analysis and showed that 

ammonium, nitrate, nitrite, influent flow-rate and temperature, explained more than 

65% of the variance in the system for the majority of the sub-periods. The first 

principal component provided the control strategy of the reactor. 

• The proposed methodological approach can detect and visualize disturbances in the 

system (i.e., precipitation events, high NH4-N concentrations, etc.) and their effect 
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on N2O emissions. Additionally, the ranges of operating variables that have 

historically resulted in low or high ranges of N2O emissions can be identified. 

Therefore, multivariate analysis can be used to assist researchers and operators to 

understand and control the emissions using long term historical data. 
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4. Data-driven versus conventional N2O EF quantification 

methods in wastewater; how can we quantify reliable 

annual EFs? 

4.1  Introduction 

Nitrous oxide (N2O) emitted during biological nutrients removal, can significantly 

contribute to the total carbon footprint of Wastewater Treatment Plants (WWTPs). The 

recent roadmap to carbon neutrality in urban water published by Water and Wastewater 

Utilities for Climate Mitigation (WaCCliM) project and the International Water 

Association (IWA) (Ballard et al., 2018), states that direct N2O should be considered for 

the carbon footprint assessment and reporting.  

N2O fluxes in wastewater processes are characterised by significant spatial and temporal 

variability due to the different interacting biological processes that consume or produce 

N2O and the variation of operational and environmental conditions  (Daelman et al., 2015; 

Gruber et al., 2019). A recent analysis of N2O emission factors (EF) for over 70 full-scale 

wastewater treatment processes revealed that the sampling frequency and sampling techniques 

applied in N2O monitoring campaigns, can significantly affect the quantified EFs (Vasilaki et 

al., 2019). For instance, most of the monitoring campaigns lasting less than one month have 

reported EFs less than 0.3 % of the N-load. On the other hand, studies lasting over a year result 

in a median EF equal to 1.7 % of the N-load. The IPCC guidelines for the estimation of N2O 

in WWTPs were updated in 2019; the suggesting an EF of 1.6 % for of the total N-load (IPCC, 

2019). However, uncertainties remain; the use of measured emissions data is suggested for 

the estimation of country-specific EF in large WWTPs (IPCC, 2019). The development of 

process-based reliable N2O EFs requires long-term monitoring campaigns of over 1-year 

(Gruber et al., 2019; Vasilaki et al., 2019). 

Long-term N2O sampling (continuous or via grab-samples) is still rarely performed in 

WWTPs. High cost and complexities of long-term online monitoring are the main limiting 
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factor. There is still lack of a holistic low-cost, practical approach for the quantification of 

N2O EFs. Therefore, new approaches are required for the quantification of EFs, minimizing 

sampling rate and advising on the duration and frequency of sampling campaigns.  

A large amount of raw, heterogeneous operational data is available from WWTP operations 

(Olsson et al., 2014). Several studies have demonstrated that utilisation of historical data 

(i.e. DO, mixed liquor suspended solids (MLSS), NH4
+ concentrations) from WWTPs can 

feed statistical methods and predict the profile of target process variables or key 

performance indicators that cannot be monitored online; an overview can be found in the 

study of Haimi et al., (2013). Additionally, data-driven techniques have been extensively 

used to capture the non-linearities and complex structures of wastewater treatment 

processes towards their optimisation, monitoring and better control (Haimi et al., 2013; 

Corominas et al., 2018; Newhart et al., 2019). Vasilaki et al. (2018) showed that variables 

monitored online can be utilised to provide insights on the long-term behaviour and abrupt 

changes of N2O dynamics with the application of clustering and dimensionality reduction 

techniques. However, advanced information extraction methods have rarely been used to 

analyse data from N2O monitoring campaigns. Recently, Sun et al., 2017 developed a back-

propagation artificial neural network (ANN) to simulate N2O emissions in an anaerobic-

oxic (A/O) process. The authors demonstrated the feasibility and simplicity of predicting 

N2O emissions with the use of data-driven models.  

Univariate and multivariate changepoint detection techniques have been widely used to 

detect changes in underlying distribution of sequences and regime shifts in several 

applications including investigation of distributional changes in financial markets (Allen 

et al., 2018) and climate change investigation studies (Kotta et al., 2018). Li et al. (2015), 

recently, applied a non-parametric multivariate changepoint detection algorithm (e-

divisive; (James and Matteson, 2013)) to detect changes in water quality variables in a 

shallow lake (total nitrogen, total phosphorus and Chlorophyll) and linked the changepoints 

(CPs) with changes in the dynamics and patterns of sediment release.  

In this work, the most prevalent sampling approaches in wastewater industry are presented 

and compared. A data-driven sampling approach and two conventional monitoring 
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approaches have been compared and assessed. The result of the comparison proposes the 

most accurate and efficient amongst the three methods. Specifically, an approach that uses 

CPs to analyze the behaviour of online monitored variables linked with N2O generation 

(i.e. DO, NH4
+), is proposed, to detect i) periods (between the CP intervals) with steady 

N2O emissions profile and ii) changes in the temporal range and dynamics of N2O 

emissions. Multivariate changepoint detection was applied to identify structural changes in 

the variables monitored online (i.e. NH4
+, DO, flow-rate, NO3

-) in a full-scale Carrousel 

reactor. Subsequently, the CPs were linked with changes in the N2O emissions behaviour 

and range during a 15-month monitoring campaign (Daelman et al., 2015).  A classification 

model was developed to predict the range of N2O emission loads (i.e. low, medium, high) 

based on the CP intervals. This approach can support operators to minimise GHG sampling 

requirements, without compromising long-term EF estimates. The accurate quantification 

of annual N2O EF requires samples collection between all CP intervals and a few sampling 

days can be sufficient to estimate a representative EF for different CP intervals. The 

classification model can support the estimation of the N2O emission range for new 

incoming data in the WWTP. 

4.2 Process description and the source of data  

N2O measurements and the extensive data-set of the operational variables from the studies 

of Daelman et al. (2015) and Vasilaki et al. (2018) were used in the analysis. The dataset 

belongs to one of the longest N2O monitoring campaigns undertaken in the wastewater 

sector (15 months). A plug-flow reactor linked with two subsequent parallel Carrousel 

reactors was monitored. A full description of the WWTP can be found in the study of 

Daelman et al. (2015). 
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Figure 4.1: Flow-chart of the secondary treatment at Kralingseveer WWTP and sensors 

location 

The analysis and the development of the methodological approach was based on data 

obtained from the Carrousel reactor 1 (Figure 4.1). The data matrix used in the analysis, 

the location of the sensors in the system and the details of the operational control are 

provided in the study of Vasilaki et al., (2018). The system includes the following probes: 

DO (DO1, DO2, DO3) in the beginning, middle and end of the Carrousel reactor, 

ammonium nitrogen (NH4-N) and nitrate nitrogen (NO3-N) in the effluent of the Carrousel 

reactor, NH4-N from the middle of the second oxic zone in the plug flow reactor, 

temperature and influent flow-rate .  

The behaviour of N2O emissions at Carrousel reactor 1 showed a high level of volatility 

during the 15-month monitoring campaign and characterised by significant diurnal and 

seasonal variations (see supplementary material). The daily emission loads ranged from < 

0.004 kg N2O / day to >150 kg N2O / day.  Daelman et al. (2013) simulated different 
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sampling strategies, based on data collected from the same plug-flow – Carrousel reactor 

linking EFs with different sampling strategies. The authors simulated the sampling 

strategies using a long-term dataset.  They reported that short-term campaigns (grab 

sample, 24 h and 7-day sampling), cannot accurately estimate annual EFs, while there is a 

high probability to underestimate actual emissions. The relative error of the estimated 

annual N2O emissions ranged between -22 % and 35 % (95 % of the cases) by simulating 

a 50-days N2O sampling campaign (random 24h periods on working days were selected). 

The authors found that long-term offline/online sampling capturing seasonality and 

temperature effects is needed for reliable EF assessment. Reliable estimation of N2O 

emissions, can provide guidance on N2O mitigation measures and support WWTPs towards 

their carbon neutrality goals. However, there is high cost and resources related to long-

term, of N2O online monitoring. Therefore, minimizing the sampling requirements can help 

water utilities to integrate N2O monitoring in practice. 

The behavior of N2O emissions at Carrousel reactor 1 showed high level of volatility during 

the 15-month monitoring campaign and characterised by significant diurnal and seasonal 

variations. Figure 4.2, shows the daily emission loads ranging from < 0.004 kg N2O / day 

to >150 kg N2O / day. Vasilaki et al. (2018) applied a changepoint detection technique on 

the N2O emissions hourly timeseries in Carrousel reactor 1, combined with hierarchical k-

means clustering to investigate the N2O emission patterns and identify links with the 

variables monitored online. The study concluded that i) the dependencies between N2O and 

other operational variables (i.e. NH4
+, NO3

-, DO) varied in different sub-periods, ii) the 

system disturbances are mainly linked with events of elevated influent flow-rates, iii) 

specific ranges of operating variables have historically resulted in low or high ranges of 

N2O in the different sub-periods. These findings have been used to develop the 

methodological framework of section 4.3. 
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Figure 4.2: Daily N2O emission loads; grey areas represent missing data 

4.3 Methodological framework and data analytics 

Figure 4.3 summarises the methodology applied in the current study. Pre-processed data 

obtained from the work of Vasilaki et. al. (2018) were used in the analysis. Previous 

examination showed that disturbances (i.e. precipitation events) significantly affect the 

NH4-N effluent concentrations. Thus, the first step of the analysis was to isolate and 

categorize abnormal diurnal behavior of the influent flow-rate that affected system 

performance. Subsequently, sensor data were used to segment the behavior of the system 

into sub-periods with different behavior and operational variables ranges (i.e. NH4-N, DO). 

The aim was to investigate whether changes in the N2O emissions coincide with the 

changes in the range of operational variables. For this purpose, multivariate changepoint 

detection techniques were applied to categorize one-year historical sensor data into sub-

periods exhibiting different behavior. The sequential segmentation of the operational 

variables enabled the quantification of N2O EF over 1 year using a small number of random 

samples between segments Average estimated N2O emissions were then compared with 

the respective EFs conventional monitoring techniques (equivalent sampling duration), 

following the methodology applied in the study of Daelman et. al. (2013a). Finally, features 

were extracted representing the diurnal behavior of the operational variables and 

classification models were trained to predict the range of N2O emissions. The analysis was 

based on the N2O emission ranges between the changepoint segments. 
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Figure 4.3: Methodology used for the optimisation of duration of monitoring campaign 

and sampling frequency. The analysis is based on historical data and the development of 

SVM and RF classifiers to predict N2O emissions range 

4.3.1 Identification and isolation of influent-flow-rate increase 

A variation in the behavior of the online monitored variables was observed during the 

campaign. Previous analysis (Vasilaki et al., 2018) showed that abrupt and rapid increases 

in the influent flow-rate were linked with precipitation events and often resulted into peaks 

in ammonium concentration in the effluent of the Carrousel reactor. The following steps 

were performed in order to detect and isolate diurnal influent flow-rate patterns that 

affected the performance of the system (Figure 4.3): i) features were extracted representing 

the diurnal behavior of influent flow-rate and ammonium concentration, ii) the selected 

features were transformed into a lower dimension space using principal component 
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analysis (PCA) and iii) DBSCAN was applied to detect days that did not exhibit the 

expected dynamics and range of the target variables. 

PCA (Jolliffe, 2002) was applied to reduce feature dimensionality by eliminating a small 

proportion of variance in the data. The principal components are linear combinations of the 

data variables. The loadings of the variables in each principal component can map their 

relationship with the respective principal component. The scores of the principal 

components map the different samples in the new dimensional space of the principal 

components facilitating the investigation of the different relationships between the 

variables. The data matrices (X) consisting of J columns (variables) and I data rows 

(number of observations) were normalized with mean equal to 0 and standard deviation 

equal to 1. A detailed description of the methodology can be found in the study of Vasilaki 

et al., (2018) 

Subsequently, density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

(Ester et al., 1996) was applied to the features and clusters with regions of high and low 

density were detected. DBSCAN has been applied to identify outliers in various studies 

considering monthly temperature data (Çelik et al., 2011), building energy data (Jalori and 

Reddy, 2015) and multivariate sensor data (i.e. precipitation, humidity) (Saeedi Emadi and 

Mazinani, 2018). For instance, Jalori and Reddy, (2015) created 25-dimensional vectors of 

hourly building energy consumption (representing different daily energy consumption 

profiles) and used DBSCAN to isolate abnormal and group typical daily energy profiles. 

In this study, DBSCAN was applied to the first three PCs extracted from the selected 

feature vector (explaining ~90% of the total variance) to isolate data at a distance greater 

than a pre-defined distance. The method relies on a density-based concept for separating 

data in high-density areas of the space (clusters) from data in low-density areas (events 

with high-influent flow-rates affecting the system performance). In DBSCAN two 

parameters are defined; the neighbourhood distance epsilon (eps) that defines the distance 

threshold in the data space and minimum number of points (MinPts). DBSCAN classifies 

the data-points into three groups: core points (data-points with at least MinPts neighbours 

within the eps distance), border points (data points that are neighbours of at least one core 
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point) and noise points (neither a core nor a border point). Data-points with distance lower 

than the eps distance from a core point are assigned to core point’s cluster (direct density 

reachable points). Additionally, if one of the direct density reachable points is a core point, 

again its neighbouring data-points are assigned to the same cluster (density reachable 

points). Noise points are not density reachable the core points. In the analysis, MinPts was 

selected twice the number of variables as suggested by Jörg et al. (1998). Additionally, the eps 

distance was defined based on the ‘knee’ in the plot of the descending k-nearest-neighbour 

distances calculated for the data-points. DBSCAN was executed in the R package dbscan 

(Hahsler et al., 2017). 

4.3.2 Changepoint detection 

In this study, following a similar approach to Li et al., (2015), the aim was to investigate 

whether distributional changes and level shifts of variables conventionally monitored in 

wastewater systems can be used to detect changes in the range and formation N2O 

emissions. Identifying changes in the online data collected from wastewater treatment 

processes is not straightforward; the time-series consist of a combination of seasonal, 

gradual and abrupt changes. For this purpose, the e-divisive algorithm was used from the 

R package ecp (James and Matteson, 2013). E-divisive changepoint detection algorithm is 

a non-parametric method that slices the timeseries by detecting changes in the 

characteristic functions of the underlying distributions (that define a probability 

distribution) between segments. The method assumes that the α absolute moment (for α ∈ 

(0, 2]) exists and that observations are independent. E-divisive is an iterative procedure 

where in each iteration one single changepoint that divides the timeseries into two segments 

that maximise the difference between the characteristic functions of the segments is 

detected. Subsequently, the statistical significance of the changepoint is evaluated based 

on a permutation test (James and Matteson, 2013). The procedure is repeated until the 

statistically significant CPs have been identified. In the implementation, 21 days (3 weeks) 

were selected as the minimum distance between possible CPs, in order to account for 
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seasonal variability. The confidence was defined equal to 95% in order to control the false 

positive rate of CPs. 

4.3.3 N2O EF estimation based on changepoint detection 

Different realistic N2O sampling scenarios were tested following the methodology 

described in Daelman et al. (2013a), to evaluate whether changepoint detection applied to 

historical data can reduce the required number of samples for the determination of N2O 

EFs. For this purpose, the daily emission load was calculated (kgN2O/day), for the first 

year of the monitoring campaign in the Northern Carrousel reactor (N2O emissions dataset 

- DatN2O).  

Three different scenarios were considered; i) random 3-day monitoring between the CP 

intervals (total samples equal to 36 days/year) (sampling strategy 1 -ST1), ii) monitoring 

N2O emissions for 3 random days each month for 1 year to account for seasonal variability 

of N2O emissions (36 days/year) (sampling strategy 2 -ST2), iii) random monitoring for 36 

days/year (sampling strategy 3 -ST3).   

In all sampling strategies, it is assumed that emissions were monitored continuously for 24 

h (starting from 00:01 a.m. of the chosen day). Emissions averaged over the 24 h periods, 

represent the daily average N2O emitted (kg N2O-N / d). In ST1, DatN2O dataset was used 

to extract randomly 3 days from each CP interval (total 36 days). In ST2, 3 days were 

extracted randomly from each month (total 36 days), whereas in ST3 36 days were 

randomly selected over the whole DatN2O dataset (total 36 days). Subsequently, the 

average N2O emissions over these 36 days in all scenarios were estimated and were 

considered to represent the annual EF estimates. This procedure was repeated 10,000 times. 

Therefore, for each scenario, 10000 average annual N2O emission loads were simulated, 

and a frequency histogram with the potential annual N2O emission estimates was 

developed and compared with the observed average N2O emissions.  
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4.3.4 Feature extraction 

The data included in the analysis are characterised by 24-hour cyclical behavior, therefore 

24 hours were selected as time interval. A 24-dimension vector was developed for each 

variable monitored in the system (representing hourly average). Subsequently, features 

were extracted, and a feature vector was developed, representing the behavior of the 

system; in total >100 features were extracted that can be grouped into three main categories 

(Figure 4.4). The first category consists of first-order statistical features including measures 

of central tendency (i.e. mean), measures of variability (i.e. standard deviation), measures 

of shape (kurtosis, skewness) and basic statistical functions such as daily maximum, 

minimum and interquartile range (IQR). First-order features are calculated using the real 

values of the timeseries and provide information on the diurnal behaviour of the variables. 

For instance, skewness is a measure of the data asymmetry around the mean and kurtosis 

is an indicator of the sharpness of the probability distribution compared to a normal 

distribution. The second category consists of second-order features calculated based on the 

differences between neighbouring values. The 24-dimension vectors ( 𝑦(𝑡) ) were 

transformed based on the Equation (4.1) (Nanopoulos et al., 2001): 

 𝑦 ′(𝑡)  =  𝑦(𝑡 +  𝐷)  −  𝑦(𝑡);  1 ≤ 𝐷 ≤  𝑛 –  𝐷, (4.1) 

Where 𝐷 is the temporal distance between neighbouring points that are compared (𝐷 =

 1). Subsequently, the mean and standard deviation were calculated from 𝑦 ′(𝑡). 

The third group of the features was developed based on specific diurnal sub-events. It 

captures the behavior of operational variables under specific conditions. The intensity and 

presence of these events and patterns can provide information on the temporal behavior of 

the system. In the system, aerator 1 operates under on/off pattern (when ammonium is 

higher than 1.2 mg/l), while aerators 2 and 3 operate always and peak when ammonium is 

higher than 0.6 and 0.9 mg/l, respectively. Therefore, one subset of this group of features 

aimed at capturing the behavior of DO and nitrate concentrations when ammonium 

concentrations in the Carrousel reactor effluent was higher than 1.2 mg/L and lower than 

0.6 mg/L. Additionally, the concentration of ammonium and nitrate in the plug-flow reactor 
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and the flow-rates provide an indication of the loads entering the Carrousel reactor. 

Subsequently, the second subset of features belonging to this group, aimed at capturing the 

diurnal duration of low (<10 mg/L) or high (>18 mg/L) ammonium concentration in the 

plug-flow reactor and the respective behavior of nitrate concentration. Calculated y΄(t) 

values were also used to calculate a subset of features belonging to group 3.  For instance, 

there are periods with a strong relationship between N2O concentration and nitrate 

concentration in the Carrousel effluent. Therefore, the diurnal duration and strength of 

increasing/decreasing nitrate concentrations were calculated and linked with and the 

response of other variables in the system. A detailed list of the features tested is provided 

in the Appendix C (Table C.1). 

Finally, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(CEEMDAN) (Torres et al., 2011) was applied, to deconstruct the Temperature and NH4-

N concentration in the plug-flow reactor, into Intrinsic Mode Functions (lMFs) 

representing different oscillatory components. These variables were selected to investigate 

seasonal and cyclical components. CEEMDAN is an extension to Empirical Mode 

Decomposition (EMD) (Huang et al., 1998) and to the ensemble empirical mode 

decomposition (EEMD) (Wu et al., 2009). Based on EMD, the IMFs are constructed 

following two conditions: i) the number of extrema and zero crossings is either equal or 

differs by one at maximum and ii) the average value of envelope from local maxima and 

minima is equal to zero everywhere. EMD has been criticized for the “mode mixing 

problem” that occurs when similar oscillations are observed in more than one modes or 

when oscillations with dissimilar amplitude in the same mode (Wu and Huang, 2009). 

EEMD (Wu et al., 2009), constructs the IMFs by averaging the IMFs (constructed via 

EMD) over an ensemble of iterations; in each iteration the signal is augmented by the 

addition of different realisations of Gaussian noise with limited variance. However, there 

are still some limits with the application of EEMD (i.e. the noise added to the constructed 

signal). In CEEMDAN the noise is included to the remaining of the previous trial 

(Colominas et al., 2012; Torres et al., 2011). In each trial, the modes are constructed (from 

the original signal and white noise) independently from other realisations; the residues 
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from each iteration are different. Results from CEEMDAN decomposition are provided in 

the Appendix C (Figures C.1-C.2). 

In this study CEEMDAN was used to extract the trend of the variables monitored in the 

system. Trend and variability of the variables are defined based on the study of Wu et al. 

(2007) following the methodology applied in Antico et al., (2014). Specifically, the 

variability consists of the modes with oscillatory characteristics less than 3 months; the 

trend is extracted by subtracting all the variability modes with oscillatory periods less than 

90 days from the original variable. The frequency matching the peak of the raw 

periodogram is used to define the oscillatory period. The behaviour of wastewater 

treatment plant processes is affected by environmental factors (i.e. temperature); the exact 

seasonal trend is strongly linked with the local environmental conditions and on many 

occasions cannot be extrinsically derived. CEEMDAN is an adaptive approach based on 

information extracted from the raw data (Antico et al., 2014) and it can be useful to extract 

trends when analyzing wastewater treatment processes data. In the algorithm, the noise 

level was set to 0.02, the realisations to 1000 and the maximum sifting iterations to 1000. 

Subsequently, the aggregated daily mean of ammonium concentration and temperature 

were added to the set of features. 

 
Figure 4.4: Feature extraction 
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4.3.5 Feature Selection 

The objective of the feature selection step is to isolate feature-subsets, that can distinguish 

days belonging to different ranges of N2O emissions. The supervised feature selection 

methodologies for classification tasks can be categorized into three groups: i) filter, ii) 

wrapper and iii) embedded (Kohavi and John, 1997; Saeys et al., 2007). Filtering models 

rank the features based on metrics of basic properties of the training dataset, such as 

distance and correlation (Tang et al., 2014) (i.e. Fisher score (Duda et al., 2001) or 

approaches based on mutual information (Peng et al., 2005)). Filtering approaches rank 

features separately from the classification algorithm, whereas wrapper approaches, use the 

predictive accuracy of a classification algorithm to evaluate feature importance (Liu and 

Motoda, 1998; Saeys et al., 2007). Classification algorithms with integrated feature 

exclusion during the training procedure, belong to the embedded feature selection methods 

(i.e. (Cawley et al., 2007). 

Feature selection has been widely applied in environmental modelling, i.e. for groundwater 

quality monitoring (Rodriguez-Galiano et al., 2018; Tesoriero et al., 2017; Wheeler et al., 

2015) and in renewable energy prediction problems (Salcedo-Sanz et al., 2018). In the 

wastewater sector, Tomperi et al., (2017) recently used five different features (i.e. based 

on forward selection, stepwise regression and genetic algorithms) together with a 

multivariable linear regression (MLR), to optimise the prediction of quality wastewater 

parameters from process measurements and high-resolution optical monitoring. 

In this study, a recursive feature elimination (RFE) approach (Guyon et al., 2002) that 

implements backward elimination of features, wrapped with a standard random forest 

classification algorithm is applied to the feature vector for the selection of features. 

Random forest classification (Breiman, 2001) is a nonparametric machine learning method 

where multitude of decision trees are constructed from a random subset of the features and 

trained in a bootstrap sample of the training set (consisting of around 2/3 of the data 

producing uncorrelated predictions); the final class prediction consists of the repeated 

outputs of these trees. It is one of the most powerful methods for feature selection and 
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classification. The prediction of the decision trees in the samples that were not included in 

the bootstrap sample (out-of-bag (OOB) samples) are compared with the prediction of the 

decision trees after permutation of the values of individual features. Significant features 

will alter the prediction results when shuffled, whereas non-significant features do not 

affect the tree outcome. The features’ score in this study is derived based on the 

contribution of a specific feature in the misclassification rate of the forest when their values 

are permuted. Consider that 𝑡 is the tree of each forest, 𝑂𝑂𝐵𝑡𝑖 is the sample and 𝑒𝑟𝑟𝑂𝑂𝐵𝑡 

is the misclassification rate for a specific tree 𝑡, 𝑂𝑂𝐵�̃�
𝑗
is the permuted 𝑂𝑂𝐵 after random 

permutation of the values of a feature 𝑋𝑗  , 𝑒𝑟𝑟𝑂𝑂𝐵�̃�
𝑗
 is the misclassification error of the 

tree in the perturbed sample 𝑛𝑡𝑟𝑒𝑒 is the total number of trees in the Random Forest, the 

raw feature 𝑋𝑗importance score over all the sum of all trees 𝑡, is given by Equation (4.2): 

 𝑉𝐼(𝑋𝑗)  =  
1

𝑛𝑡𝑟𝑒𝑒 
∑ (𝑒𝑟𝑟𝑂𝑂𝐵𝑡 −   𝑒𝑟𝑟𝑂𝑂𝐵�̃�

𝑗
 )

𝑡
𝑡

 (4.2) 

The Z-score of the raw feature importance score (assuming normality), is calculated by 

dividing the raw importance score 𝑉𝐼(𝑋𝑗)  with the standard error of the raw feature 

importance score 𝜎
𝑗

√𝑛𝑡𝑟𝑒𝑒
⁄  where 𝜎𝑗  is the standard error of the decrease in the number 

of correct class predictions due to permutation of  feature 𝑋𝑗  based on Equation (4.2): 

 𝐶(𝑋𝑗) =
𝑉𝐼(𝑋𝑗)

𝜎𝑗

√𝑛𝑡𝑟𝑒𝑒
⁄

  (4.3) 

RFE algorithms belong to a cluster of methods where the least significant features are 

iteratively stripped towards minimizing a pre-defined stripping criterion (Kursa, 2014). It 

initiates with a random forest built utilizing all predictive features. During each iteration, 

features’ importance is ranked based on Equation (4.3), the least important feature is 

eliminated, and the model is refitted and evaluated. Features with the strongest 

classification performance are used in the final model. The procedure is recursive because 

feature importance  varies under different feature subsets over the stepwise feature 

elimination procedure (Granitto et al., 2006) The algorithm was implemented in caret 

package (Kuhn, 2008) in R software. 
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To evaluate the stability of the feature selection approach the following ensembled feature 

selection methodology was applied (shown in Figure 4.5), adapted from Abeel et al., 

(2010). Initially, the complete dataset was randomly split into two sets; the training and the 

test set (75/25) and RFE-RF was used for feature selection. In order to generate ensembles 

of feature rankings from the training set, a repeated 10-fold cross validation was performed 

with repetitions equal to 3. Feature rankings for the training set were estimated based on 

the complete linear aggregation method (Abeel et al., 2010). Considering an ensemble with 

s feature selectors 𝐸 =  {𝐹1, 𝐹2, … , 𝐹𝑠}; each 𝐹𝑖 gives a feature ranking equal to 𝑓𝑖  =

 (𝑓𝑖
1, 𝑓𝑖

2, … , 𝑓𝑖
𝑁) where 𝑁  is the number of features and the different feature rankings 

acquired for the training set by the repeated k-fold cross validation are aggregated into one 

feature ranking, calculated based on Equation (4.4): 

 
𝑓 =  (∑ 𝑤𝑖

𝑠

𝑖=1

𝑓𝑖
1, . . . , ∑ 𝑤𝑖

𝑠

𝑖=1

𝑓𝑖
𝑁  )  (4.4) 

where, 𝑤𝑖  is a weighting function. In the complete linear aggregation method, the 

aggregated feature ranking 𝑓 was calculated as the sum of all feature ranks acquired over 

the repeated k-fold cross validation samples. Therefore, 𝑤𝑖 was set equal to 1.  

The procedure was repeated 50 times for different splits of training and test sets.  In order 

to acquire unbiased performance estimates the following procedure was followed. During 

each train and test data set splits, the final feature selection was based on the feature subset 

that minimised the prediction error. The number of features selected ranges from 5 to 12 

and a RF classification model was trained consisting of 1000 trees. The prediction accuracy 

was tested on the validation set. Additionally, the selected features were used to build and 

compare an SVM classification model using the same training and test sets. This procedure 

was repeated 50 times for the different training and test dataset splits. 
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Figure 4.5: Procedure followed to evaluate the stability of the feature selection and 

performance of the SVM and random forest classifiers 

4.3.6 Support Vector Machine classification 

SVMs were initially developed by Cortes and Vapnik, (1995) for binary classification. 

Briefly, the SVM method is outlined first for the binary linearly separable classification 

case. In the binary classification model two classes exist and an object (i.e. set of features 

extracted from sensor measurements) belongs to one of these classes. Considering a 𝑑-

dimensional 𝑁 set of vectors 𝑥𝑖, with  𝑥𝑖 ∈ ℝ𝑑 where 𝑖 =  1, . . . , 𝑁. Each set is identified 

to belong to class 𝑦𝑖  with 𝑦𝑖  =  1 for one class and 𝑦𝑖  =  −1 for the other class, 𝑦𝑖 ∈

{−1,1}. If the two classes are linearly separable, then a family of linear separators exists, 

also called separating hyperplane. The hyperplane is defined as:  

 w𝑇𝑥 +  𝑤0 =  0  (4.5) 

where 𝑤 is the weight vector with dimensions equal to the dimensions of 𝑥𝑖 and  𝑤0 ∈ ℝ 

is the bias (a scalar). The weight vector 𝑤  and the bias  𝑤0 , determine the separating 

hyperplane location. The equation of the hyperplane defines the function 𝑓(𝑥) =

sign(w𝑇𝑥 +  𝑤0), which represents the output of the algorithm for a new point 𝑥𝑖. Support 

vectors are defined as the new points 𝑥𝑖 that satisfy the constraint 𝑓(𝑥𝑖) = +1 for 𝑦𝑖  =  1 
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and 𝑓(𝑥𝑖) = −1 for 𝑦𝑖  =  −1. Other 𝑥𝑖 points not defined as support vectors are equal to  

𝑓(𝑥𝑖) > +1 for 𝑦𝑖  =  1 or 𝑓(𝑥𝑖) < −1  for 𝑦𝑖  =  −1. Therefore, the constraints for all 𝑥𝑖 

points can be defined as (Ekici, 2009): 

 𝑦𝑖𝑓(𝑥𝑖) = 𝑦𝑖(𝑤𝑇𝑥𝑖 +  𝑤0)  ≥ 1, 𝑖 = 1, 2, . . . , 𝑁  (4.6) 

Assuming that a separating hyperplane exists, natural classifiers are constructed assigning 

the test observations to a class based on their location in the hyperplane. The margin of a 

separating hyperplane is the minimum distance of any data point 𝑥𝑖 to the hyperplane and 

can be expressed as 2 ‖𝑤‖⁄ . The support vectors are the observations with the minimum 

distance to the decision boundary. Support vector machines select the ‘maximum margin 

hyperplane’; the separating hyperplane that has the farthest minimum distance to the 

observations 𝑥𝑖. Classes with large margins are clearly separable and provide a ‘safety’ for 

the generalisation of the algorithm when applied to new points. In practical applications, 

the overlapping of a number of data belonging to the two classes, is common. Therefore, 

soft margins are introduced (C regularization parameter, 𝜉𝑖 the slack variable) to allow a 

number of misclassifications to identify feasible solutions when the training dataset is not 

strictly linearly separable. This is equivalent to: 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

1 

2
‖𝑤‖2 +  𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

   (4.7) 

                                                  subject to 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) ≥ 1 − 𝜉𝑖, 𝑖 = 1,2, … , 𝑁 

𝑎𝑛𝑑 𝜉𝑖 ≥ 0, 𝑖 = 1,2, . . . , 𝑁  

Where the regularization parameter 𝐶 is a positive constant and  𝜉i represents the distance 

of data 𝑥𝑖 from the decision boundary. 

The solution of this problem is the saddle point of the Lagrangian: 
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L𝑝  =  

1 

2
‖𝑤‖2  +  C ∑ 𝜉𝑖

𝑁

𝑖=1

− ∑ 𝛼𝑖

𝑁

𝑖=1

(𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0)  −  1 + 𝜉𝑖)   

− ∑ 𝛽𝑖𝜉𝑖

𝑁

𝑖=1

 

(4.8) 

Where the coefficients 𝛼𝑖 and 𝛽𝑖 are the Langrage multipliers (constraint to be ≥0). The 

minimisation of the Lagrange function derivates based on 𝑤, 𝑤0  and 𝜉  will lead to an 

optimum solution of Equation (4.8). After substitution and simplification, the final form of 

the linear classifier is:  

 
 f(x)  =  sign (∑ 𝛼𝑖

𝑁𝑆𝑉

𝑖=1

𝑦𝑖(𝑥𝑖
𝑇 ∙ 𝑥) + 𝑤0) (4.9) 

Where: 𝑁𝑆𝑉 is the number of support vectors. This last equation allows classifying a new 

vector x unknown in the training database. 

In cases where linear separation is not possible, the 𝑑 -dimensional input vector 𝑥  is 

mapped to the 𝑑ℎ −dimensional feature space, where the linear separation of the input data 

is feasible, via a function 𝜙(𝑥) ∶  ℝ𝑑  → ℝ𝑑ℎ. Subsequently, Equation (4.9) is defined as: 

 
 f(x)  =  sign (∑ 𝛼𝑖

𝑁𝑆𝑉

𝑖=1

𝑦𝑖(𝜑(𝑥𝑖)
𝑇 ∙ 𝜑(𝑥)) + 𝑤0) (4.10) 

An appropriate kernel function K(·,·) can be selected for the mapping. When the Mercer’s 

condition is satisfied, then K(𝑥, 𝑥𝑖) = 𝜑(𝑥𝑖)
𝑇 ∙ 𝜑(𝑥) and an explicit construction of φ(x) 

mapping is not required (and thus to calculate the data coordinates) since solely the inner 

product of the data point mappings in the feature space K(·,·) is only required for the 

optimisation. This is commonly called the ‘kernel trick’ and enables SVMs to operate even 

in possibly infinite feature space (where data are mapped), without in practice executing 

calculations there (Luts et al., 2010). There are several kernel functions used (linear, 

polynomial, sigmoid and radial basis function (RBF)). One of the most widely used kernel 

functions is the RBF (Singh et al., 2011) that is expressed as:  
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 K(𝑥, 𝑥𝑖) =  𝑒𝑥𝑝(−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

 ) (4.11) 

Where, 𝛾, determines the kernel amplitude and is connected to the model’s generalisation 

capabilities. 

One versus one approach was applied to classify into more than two classes. K SVMs are 

fitted, each time comparing one of all the K classes to the remaining K − 1 classes. All 

SVMs were trained using RBF kernel. SVM models were trained using repeated 10-fold 

cross validation (3 repetitions) to select the cost and 𝛾  parameters.  The dataset was 

randomly divided into test and train, with 75% of the available data used for training the 

SVM model and 35% used for testing. 

4.3.1 Model performance evaluation 

The performance of the classification SVM models were evaluated based on the accuracy, 

kappa shown below: 

 
 Accuracy =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 (4.12) 

 

 

  Kappa =

=

(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 
(

((𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁))
(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)

+
((𝑇𝑁 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃))

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
)

(1 − 
(

((𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁))
(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)

+
((𝑇𝑁 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃))

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
)

 
(4.13 ) 

Where: TP is the number of true positives, FP false positives, FN false negatives, and TN 

true negatives. 
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4.4 Results and discussion 

4.4.1 Detection of abnormal events 

DBSCAN was applied to detect events that affect influent flow-rate and NH4-N 

concentration in the effluent of Carrousel reactor as described in section 4.3.1. Table 4.1 

shows the features that were considered in DBSCAN; these were selected in order to 

represent the diurnal behaviour of the target variables. The eps parameter was determined 

based on the “knee” of k-nearest neighbours of the data plotted in increasing order 

(Appendix C, Figure C.3). Based on this procedure MinPts and eps were set equal to 6 and 

0.4 respectively.  

Table 4.1: Features selection 

Features selected 

Average influent flow-rate 

Average NH4-N concentration in the Carrousel effluent 

Maximum daily influent flow-rate 

Maximum NH4-N concentration in the Carrousel effluent 

Average daily standard deviation of the first derivative of influent flow-rate 

Average daily standard deviation of the first derivative of NH4-N concentration in the 

Carrousel effluent 

Kurtosis influent flow-rate 

Kurtosis NH4-N concentration in the Carrousel effluent 

 

The behavior of the influent flow-rate and effluent NH4-N concentration, in the days 

isolated by DBSCAN are shown in Figure 4.6. In total 155 days were isolated and are 

mainly characterised by events with elevated influent flow-rate or/and peaks of the NH4-N 

concentration in the Carrousel effluent. Subsequent inspection showed that these events 

varied in intensity and duration; therefore, they were categorized into three major groups. 

Group 1 consists of system disturbances with duration equal or less than 24 h. Days 

belonging to group 1 are characterised by elevated influent flow-rate (days with 

precipitation) and peaks in the effluent NH4-N concentration during the same day and thus, 

low removal efficiency of NH4-N. In group 1, the system resumes to normal NH4-N 

removal efficiency after 24h. Group 2 consists of system disturbances lasting more than 



113 

 

24h. Multiple days with precipitation, at close temporal proximity, that affect the system 

performance for several days were assigned to this group. Finally, elevated influent flow-

rate events lasting less than 24h, affected significantly the behavior of NH4-N concentration 

in the Carrousel effluent for several days. These occasions were assigned to group 3. In 

total, 54 different events were detected (155 days) that belong to one of the three groups. 

 

 
Figure 4.6: Influent flow-rate (top) and NH4-N concentration in the Carrousel effluent 

(bottom) profiles (blue lines) and events (light blue points) isolated by DBSCAN 

Figure 4.7 shows examples of the events belonging in groups 1, 2 and 3 and the behavior 

of N2O emissions. Blue lines represent the events detected by DBSCAN and red lines 

represent the normal operational conditions. Overall, ~30% of the events belong to group 

1. The average daily influent flow-rate is ~4000 m3/h; therefore, days in group 1 have 

moderate increase of the influent flow-rate (flow-rate peaks <7000 m3/h and NH4-N 

concentration in the Carrousel peaks< 6 mg/L). Figure 4.7 (a-d) shows an event with the 
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highest influent flow-rate peak; N2O emissions are not significantly affected. Overall, the 

behavior of N2O emissions of 1-day events at temperatures between 12-16 °C is not 

significantly affected compared to the average behavior of emissions the day prior to the 

event (Figure 4.7 (d)). However, significant peaks, of N2O emissions, coinciding with 

group 1 events, are observed at higher temperatures. Days belonging to group 2 are 

characterised by influent flow-rate peaks above 8000 m3/h, whereas NH4-N concentration 

peaks are higher than 9 mg/L in the effluent of the Carrousel reactor (Figure 4.7  (e-h)). 

Again, the behavior of N2O emissions varies.  However, emissions tend to drop after the 

peak of the influent flow-rate (NH4-N concentrations in the plug-flow<8 mg/L). Finally, 

most peaks of N2O emissions between June and September 2019 belong to group 3 (Figure 

4.7  (e-h)).  

The categorization of the system operational behavior based on historical reoccurring 

disturbances can help operators to identify events that can significantly impact the 

performance of the system and apply mitigation strategies (i.e. regulate the anaerobic 

supernatant stream to the mainstream line to reduce the system loads). 
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Figure 4.7: Flow-rate, NH4-N concentrations in the plug-flow and Carrousel effluent and 

N2O emissions’ profiles for days detected by DBSCAN belonging to events group 1 (a-

d), group 2 (e-h) and group 3 (i-l) 

4.4.2 Changepoint detection 

Changepoint detection was applied in order to identify the changes in the profiles of the 

operational variables that affect the performance of the Carrousel reactor. Daily averages 

of i) NH4-N load (kg/h) in the plug-flow reactor (as an indication of the influent ammonium 

in the Carrousel reactor), ii) NH4-N load (kg/h) in the effluent of the Carrousel reactor, iii) 

DO1 and DO2 concentrations were used. Daily averages of these variables were considered 

in order to avoid the diurnal cyclic characteristics of the variables. The volumetric flow-
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rate of the plug-flow and Carrousel reactors were calculated based on Daelman et al., 

(2015). 

 

 

 

 
Figure 4.8: CPs intervals for a) NH4-N load (kg/h), b) NO3-N load (kg/h), c) DO1 and 

DO2 average concentration, d)N2O-N emissions behavior between CP intervals 

The minimum transition interval was equal to 21 days (~3 weeks) on the assumption that 

biological processes can be affected by seasonality. The multivariate changepoint detection 
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analysis identified 12 statistically significant CPs (with significance level <<0.05) for the 

first year of the monitoring campaign. Figure 4.8 shows the identified CPs and the 

respective profile of N2O emissions for each period interval between CPs. On many 

occasions, CPs coincide with the changes of the N2O emissions profile during the 

monitoring period. For instance, the highest drop in the average N2O emissions between 

adjoining periods (CPs 6 and 7) coincide with a drop in the ammonium load in the plug-

flow reactor and an increase in the average nitrate-nitrogen load in the plug-flow reactor. 

Similarly, the drop of N2O emissions between CPs 2 and 3, coincides with an increase in 

the DO1 concentration in the Carrousel reactor.   

4.4.3 Accuracy of the monitoring strategy based on system CPs 

As shown in section 4.4.2, the behavior and range of N2O emissions changes between the 

detected CP intervals. Quantification of reliable N2O EFs in wastewater treatment 

processes is still not straightforward; monitoring campaign duration and strategy can 

significantly impact the reliability of the results. Seasonal effects have also significant 

impact on N2O emissions (Vasilaki et al., 2019). Daelman et al., (2013a) simulated 

different sampling strategies, based on the data collected from the same plug-flow – 

Carrousel system linking EFs estimates with different sampling strategies. The authors 

found that long-term offline/online sampling capturing seasonality and temperature effects, 

is significant for reliable EF assessment. The aim of this analysis is to simulate a 

knowledge-based N2O sampling campaign between CPs and evaluate EF estimates 

following a similar approach to  the study of Daelman et al. (2013a). Additionally, the 

knowledge-based sampling campaign is compared with two alternative monitoring 

strategies: i) random 24-h monitoring and ii) random 24-h monitoring for specific days at 

each month capturing the seasonal variability.  

Figure 4.9 (a) shows the relative frequency histogram of the estimated annual N2O load 

(kg/day) when 24h sampling for 36 random days is applied, during the first year of the 

monitoring campaign (n=10000 repetitions). The red vertical line represents the measured 

average annual N2O load (equal to 39~ kg/day).  In total 43% of the simulations resulted 
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to an EF ranging between 35 and 43 kg/day (less than 10% error from the actual annual 

N2O load quantified by the monitoring campaign). Additionally, the probability to 

underestimate the N2O load by more than 10% is equal to ~30%. Figure 4.9 (b), shows the 

histogram of the estimated annual N2O load (kg/day) when 24h sampling for three random 

days between the CPs (12 CP intervals) was assumed (n=10000 repetitions). Overall, the 

likelihood to estimate an average N2O load between 35 and 43 kg N2O/day was equal to 

~80%, with >99% of the simulated N2O estimates ranging between 32 and 46 kg/day. In 

this case, the probability to underestimate the emissions by more than 10% was 

approximately 5%. Finally, when random sampling for 3 days per month was tested (Figure 

4.9 (c)), the probability to estimate an N2O load ranging between 35 and 43 kg/day, was 

equal to ~70%, whereas the probability to underestimate the emissions by more than 10%, 

was approximately 25%. 

The behaviour of the operational variables needs to be considered together with seasonal 

effects when sampling campaigns are planned. In the investigated system, limited sampling 

days between the CPs could give a realistic quantification of the actual EF during a whole 

year. The proposed approach can be applied to identify N2O emissions “hotspot” periods 

and guide towards the identification of the operational periods that require intensive 

investigation of N2O pathways and mitigation measures. 
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Figure 4.9: Relative frequency histogram of the estimated average annual N2O load for 

(a) a simulated monitoring campaign with duration equal to 36 random days, (b) a 

simulated monitoring campaign with 3 random days between CP intervals and (c) a 

simulated monitoring campaign with 3 random days between different months for 1 year 

4.4.4 Feature selection and classification results 

A classification algorithm was constructed to predict low, medium or high N2O emissions 

based on the operational behaviour of the system. The categorization of the different 
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classes was based i) on the CP analysis, ii) on the seasonal effects. Therefore, two periods 

(from the CP intervals) characterised by similar N2O ranges but not sequential, were 

assigned in two different classes. Table 4.2 shows the average N2O emissions in each class 

and the changepoint intervals for each class (the changepoint intervals are shown in Figure 

4.8). However, five only classes were considered in the feature selection and construction 

of the classification algorithms. 

Table 4.2: Classes considered in the classification based on the CP intervals 

Class 
N2O emissions 

(kg/d) 

Changepoint 

intervals 

N2O emissions 

level 

1 8.3 (±8.3) 1, 2, 3 Low 

2 68.3 (±23.2) 4, 5 Medium 

3 141.7 (±31.6) 6 High 

4 58.9 (±25.0) 7, 8, 9 Medium 

5 7.2 (±7.9) 10, 11, 12 Low 

Feature selection is a significant step of several high-dimensional classification 

applications (Tang et al., 2014). However, many studies have shown that selected features 

depend significantly on the training sample, and thus, a feature selection algorithm can be 

unstable (He and Yu, 2010; Kalousis et al., 2007). Therefore, in many cases  feature 

selection stability needs to be considered together with model prediction accuracy in the 

evaluation of the classification/regression performance (Pes et al., 2017; Saeys et al., 2008).  

Figure 4.10, shows the most common features for feature subset sizes equal to 6 and 10 for 

the resampling perturbations. Overall, 4 features coincided in all subsets with feature size 

equal to 6 and 8 features coincided in almost all subsets with feature size equal to 10. The 

selected features are divided between feature group 1 (i.e. first-order statistical features - 

maximum DO2, minimum influent flow-rate), feature group 3 (that capture the behavior 

of operational variables under specific conditions) and feature group 4 (i.e. trend extracted 

by CEEMDAN). For instance, the features describing the behavior DO2 concentration for 

NH4-N higher than 1.2 mg/L in the Carrousel effluent were selected in all feature subsets. 

The trends of NH4-N concentration in the plug-flow reactor and temperature extracted by 
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CEEMDAN, were also included in all feature subsets. Finally, the complete description of 

the features is provided in the Appendix C (Table C.1).  

 
Figure 4.10: Features selected for subset sizes equal to (a) 6 and (b) 10. Details for the 

selected features are provided in the supplementary material Appendix C (Table C.1). 

(max: maximum, min:minimum, IQR: interquantile range, DO2/DO1/NO3-N high NH4-
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N C: average DO2/DO1/NO3-N concentration in the Carrousel for the hours NH4-N 

concentration in the Carrousel effluent>1.2 mg/L) 

The results of the SVM and RF classification models from the different resampling 

perturbations for both the train and test data sets are shown in Table 4.3.  Feature subsets 

that minimise the classification error were selected in each resampling. The results show 

similar behavior both for the RF and SVM classifiers, whereas classification accuracy in 

the test dataset is high even for small feature subsets (> 97%). In 58% of the resampling 

perturbations the size of the best feature subset was equal to 6 (with the variables selected 

shown in Figure 4.10). In total, 8 variables were selected for 14% of the resampling 

perturbations, 10 for 20% of the resampling perturbations whereas all the features were 

selected for 4% of the resamples.  

Table 4.3: Evaluation of SVM and RF classifiers for different feature subset sizes 

Feature 

subset size 
Model Dataset 

Accuracy 

(%) 

Kappa 

(%) 

6 

RF 
Train 97.4 (± 1) 96.6 (± 1) 

Test 97.4 (± 2) 96.7 (± 4) 

SVM 
Train 98.9 (± 1) 98.6 (± 1) 

Test 95.1 (± 3) 93.7 (± 4) 

8 

RF 
Train 97.3 (± 2) 96.6 (± 2) 

Test 98.2 (± 2) 97.7 (± 2) 

SVM 
Train 98.7 (± 1) 98.4 (± 2) 

Test 95.9 (± 2) 94.8 (± 2) 

10 

RF 
Train 97.4 (± 3) 96.6 (± 3) 

Test 98.3 (± 1) 97.7 (± 2) 

SVM 
Train 99.0 (± 1) 98.8 (± 2) 

Test 96.3 (± 3) 95.2 (± 4) 

Subsequently, data from the last period of the monitoring campaign were tested to assess 

the predictive capabilities of the models in previously unseen operational periods. In total 

~30 days were tested (precipitation events were not considered). Figure 4.11 displays the 

predicted classes (SVM classification) for different best feature subset sizes (majority rule 

for the different resampling perturbations) and the daily N2O emissions. In the first 20 days 

all models have predicted low emission-risk classes. Class 1 represents operational 

conditions from the beginning of the monitoring campaign, whereas class 5 represents 
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conditions from the end of the monitoring campaign (after ~1 year). The investigated 

period is ~ 1 year after the start of the monitoring campaign and the observed N2O 

emissions are again low. Therefore, the alternation of the predicted classes between class 

1 and 5 can be expected, mainly due to the impact of seasonal effects on the influent 

concentration and on N2O generation. Finally, the model with best feature subset size equal 

to 10 was the only one able to detect the change in the N2O range after the first 20 days.  

Additional data are required to investigate the generalisation capabilities of the SVM 

classifier. The methodological approach followed is able to predict the range of N2O 

emissions, as long as the system operates within the predefined and investigated range. 

 
Figure 4.11: Daily N2O emissions and predicted classes (SVM classification) for the last 

period of the monitoring campaign (data not used during changepoint detection) 

Under the investigated conditions, the accuracy of the classifier with feature subset size 

equal to 10, was satisfactory, even when data, from the second year of the campaign that 

were not used during training (30 days) were tested. Therefore, the SVM classifier can be 

used (with caution) to detect periods with operational behaviour that has been historically 

linked with elevated emissions.  

The development of mitigation measures in the predicted high-risk N2O emission periods, 

can be supported with the integration of mechanistic models or practical, simplified 

theoretical approaches. The latter will facilitate the identification potential triggering 

mechanisms linked with the period-specific operational conditions. For example, a 

simplified N2O risk-based model, was developed by Porro et al. (2014) considering 
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thresholds of ASM state variables linked with the generation of N2O emissions (i.e. DO, 

nitrite, COD:N) based on the treatment step (nitrification, nitrification, transition zones).  

Additional, long-term monitoring campaigns, in continuous wastewater systems are 

required, to validate the proposed strategy and standardise the selection of operational 

variables that need to be considered during changepoint detection and classification. 

Finally, the development of a novelty detection approach needs also to be integrated in the 

procedure, that will detect new, unobserved operational states and provide feedback to the 

algorithms on re-calibration requirements. 

4.5 Summary of main findings 

This study shows that information hidden in conventional variables monitored in 

wastewater can be mined to reduce N2O sampling frequency without compromising the 

quantification of annual N2O EFs and ultimately predict the risk of elevated emissions.   

The main findings of this chapter are summarized below: 

• The isolation and categorization of re-occurring system disturbances (i.e. 

precipitation events) showed that environmental conditions and events with 

increased flow-rate affect the system response in terms of N2O emissions and NH4-

N removal efficiencies.  

• The application of changepoint detection in the process operational variables 

provided insights on structural changepoints of the N2O emissions profile. In total, 

12 statistically significant CPs were detected for the first year of the monitoring 

campaign. Abrupt decreases of the N2O emission profile were linked with drops in 

the ammonium load, increase in the nitrate-nitrogen load of the plug-flow reactor 

and increase in the DO1 concentration of the Carrousel reactor 
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• Limited 24-h N2O samples between the CP intervals are sufficient to estimate the 

average N2O EF for the whole year, while conventional strategies resulted in lower 

accuracy of the N2O EF.  

• An SVM classification model was constructed to predict operational periods linked 

with specific N2O emission ranges. The results indicate that analysis of historical 

data and investigation of seasonal effects can be of paramount importance in the 

planning of monitoring campaigns. The proposed approach can be applied when 

long-term online sampling is not technically and economically feasible. The 

proposed solution is capable of pinpointing the N2O emissions “hotspot” periods 

and guiding towards the identification of operational periods that require extensive 

investigation of N2O pathways and mitigation measures. 
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5. A knowledge discovery framework to predict the N2O 

emissions in the wastewater sector 

5.1 Introduction 

In recent years the sustainability and operational efficiency of wastewater treatment plants 

(WWTPs) have come to the fore (Liu et al., 2018). Several biological technologies such as 

partial-nitritation – anammox (anaerobic ammonium oxidation) have emerged, towards the 

efficient, low-cost treatment of high-strength municipal wastewater streams (Lackner et 

al., 2014; Zhou et al., 2018). The anaerobic supernatant is a by-product of dewatering of 

the anaerobic digestion effluent and represents less than 1-2% of the total influent flow in 

the WWTP. It contains 10–30% of the N load and 20–30% of the P load (Janus and van 

der Roest, 1997; van Loosdrecht and Salem, 2006). Sidestream treatment of the anaerobic 

supernatant can contribute to the reduction of energy consumption for N-removal, decrease 

of nitrogen loads in the secondary treatment, and the minimisation of risks related to 

exceeding effluent regulatory requirements of nitrogen concentrations in the water line of 

WWTPs (Eskicioglu et al., 2018). However, the performance and environmental 

evaluation of different sidestream technologies is still under investigation (Eskicioglu et 

al., 2018; Rodriguez-Garcia et al., 2014). 

SCENA (Short-Cut Enhanced Nutrient Abatement) is a new sidestream process, that 

combines the conversion of  NH4
+ to NO2

- under aerobic conditions (nitritation) with the 

subsequent reduction of NO2
- to nitrogen gas and enhanced biological phosphorus uptake 

by polyphosphate-accumulating organisms (DPAOs) in a sequencing batch reactor (SBR) 

(Frison et al., 2015). External volatile fatty acids (VFAs), are produced via acidogenic 

fermentation of the primary and secondary sludge on-site and dosed into the SBR. In a 

recent study, Longo et al. (2016), quantified the environmental and cost benefits and 

impacts of the integration of the SCENA process in a full-scale WWTP. They reported 

major energy savings for aeration after the integration of sidestream SCENA process. The 

direct N2O emissions were equal to 1.42% of the influent N-load. Short-term monitoring 
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campaigns were implemented, while the effect of operational conditions on N2O generation 

was not investigated.   

N2O is a potent cause of global warming, its global warming potential is 265 - 298 times 

more than that of CO2 (IPCC, 2013). The emission of N2O in full-scale sidestream partial-

nitritation/partial-nitritation–anammox or nitrification-denitrification systems range from 

0.17% to 5.1% of the influent N-load (average equal to ∼2.1% of the N-load is emitted 

(Vasilaki et al., 2019). Schaubroeck et al. (2015) showed that N2O emissions from a full-

scale sidestream DEMON process in Austria were significantly higher than the direct N2O 

emissions from the mainstream treatment in a full-scale WWTP. On average, 0.256 g N2O 

were emitted compared to 0.005 g emitted in the secondary treatment per m3 treated 

wastewater. The increased direct  N2O emissions can be mainly attributed to low DO 

concentrations, higher ammonia oxidation rates (AOR) and NO2
− build-up (Desloover et 

al., 2011; Kampschreur et al., 2008b); conditions that also prevail in the SCENA process. 

The variability of EF reported in sidestream technologies can be partially attributed to both 

complex relationships between emitted N2O and operational conditions and different 

configurations (i.e. SBR, continuous systems), loads (i.e. NH4
+ concentrations), feeding 

strategies and operational control (i.e. DO set-points). Additionally, different interactions 

between operational variables trigger a different response of N2O generation. For instance, 

in a recent modelling study of a granular one-stage partial-nitritation-anammox reactor, 

Wan et al. (2019) showed that higher temperatures resulted in increased N2O emissions in 

the presence of COD (chemical oxygen demand) and in decreased N2O emissions in the 

absence of COD (due to increased anammox activity and reduction of NO2
- accumulation 

in higher temperature). Additionally, the long-term temporal variations of direct  N2O 

emissions were not adequately assessed in sidestream technologies; the majority of the 

monitoring campaigns in sidestream reactors lasted less than 5 days  (Vasilaki et al., 2019). 

The digitalisation of water services and the data-driven knowledge discovery from 

wastewater treatment plant may increase the resilience of water utilities under climate 

change and other water-related challenges (Sarni et al., 2019). Recent studies have 

provided extensive overviews of the use of data-driven techniques in the wastewater sector 
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for different applications including the development of soft-sensors, fault prediction and 

multi-objective optimisation of control of water utilities (Corominas et al., 2018; Haimi et 

al., 2013; Newhart et al., 2019). Data-mining and extraction of the information hidden in 

the raw sensor signals can facilitate the identification of patterns and hidden structures and 

reveal significant information on the behaviour of N2O emissions in continuous wastewater 

treatment processes (Vasilaki et al., 2018). The SBR in the SCENA process is multiphase 

(i.e. anaerobic, aerobic, anoxic conditions) applying different operational variables 

(unsynchronised data), non-linear and subject to different disturbances, such as influent 

compositions and fermentation liquid characteristics. Moreover, SBR process data are 

based on a 3d-structure that consists of the number of i) cycles, ii) variables and iii) 

sampling points within each cycle. Therefore, the identification of process abnormalities 

and patterns can be complicated.  N2O emissions could be affected by both within-cycle 

and between-cycle batch dynamics. 

In this study, sensor and laboratory analyses data from a full-scale SCENA SBR were 

analysed to provide insights on the N2O emissions behaviour and generation. A structured 

approach was followed for knowledge discovery from the available dataset using a 

combination of abnormal events detection, classification and regression techniques. The 

objectives of the study were to i) investigate whether the sensors integrated in the system 

(i.e. conductivity, pH) can provide actionable information on the dynamics of N2O 

emissions, ii) detect hotspots for the accumulation and emission of N2O and iii) develop 

data-driven regression and classification models to predict the dissolved N2O behaviour 

and concentration for the different phases (anaerobic, aerobic, anoxic) of the SBR.   

5.2 Process description and data origin 

The Carbonera plant is designed to treat domestic wastewater of a population equivalent 

of 40,000 (dry weather flow equal to 10,000 m3/d). After screening and degritting and 

primary sedimentation, the effluent from the primary clarifier is sent to a Schreiber reactor 

(single basin – working volume 4671 m3). The Schreiber process consists of a continuously 

sequencing reactor (CSR) favouring simultaneous nitrification-denitrification via time-
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based intermittent aeration. Schreiber reactor effluent is pumped to two secondary clarifiers 

(2260 m3 each) and subsequently to the tertiary treatment unit for disinfection by peracetic 

acid and filtration before final discharge in the Melma River (sensitive water body). 

Waste activated sludge (WAS) generated by the biological treatment is recycled to the 

primary sedimentation unit and mixed with primary sludge. Daily, ~70-100 m3/d of mixed 

sludge are pumped from the primary settler to a dynamic thickener with a flowrate of 20 

m3/h after polyelectrolyte dosage (0.8% of active compound solution). The final 

concentration of the thickened mixed sludge is around 5% total solids (TS). About 75% of 

the mixed thickened sludge is fed to an anaerobic digestion unit (1800 m3 working volume). 

Digestate is dewatered by a centrifuge with the addition of polyelectrolyte (Hidrofloc CL 

1908, Hidrodepur, Italy); the solid fraction is mechanically composted (mixing and 

aeration for 20 days) and used as agricultural fertilizer. The anaerobic supernatant is sent 

to the equalization tank (of 90 m3) in the SCENA system for the biological N and P 

removal. 

The remaining portion of mixed sludge (25%) is fed to a sequencing batch fermentation 

reactor (SBFR) with hydraulic retention time (HRT) equal to 5 days (working volume equal 

to 50 m3). The SBFR is operated under mesophilic condition (37°C) for the fermentation 

of thickened sewage sludge and the on-site production of carbon source enriched of VFAs 

(mainly acetic and propionic acids). Daily, around 10 m3 of fermentation sludge are 

extracted and replaced with fresh thickened sludge. The solid/liquid separation of the 

fermented sewage sludge is carried out by a screw-press (SCAE) (after polyelectrolyte 

(Hidrofloc CL 1908, Hidrodepur, Italy) dosage), generating ~2-4  m3/h of fermentation 

liquid rich of volatile fatty acids (in total, ~ 11.5  m3/d). The latter is collected in a storage 

tank of 20 m3 and automatically dosed during the anaerobic and anoxic phases of a short-

cut sequencing batch reactor (SBR) based on pH and conductivity sensors. The solid 

fermented fraction (13-15% total solids based) is mixed with the thickened mixed sludge 

and fed to the anaerobic digestor. 

The anaerobic supernatant is treated in an SBR with a maximal working volume of 70 m3 

(3-4 cycles daily). The SBR is fed with ~7-9 m3 of anaerobic supernatant in each cycle that 
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is treated via nitrite enhanced phosphorus removal associated with nitritation-denitritation 

(SCENA process). Information about the SBR configuration and data used in the analysis 

are shown in Figure 5.1. The typical SBR cycle consists of feeding (6-8 min), anaerobic 

conditions (30 min), aerobic conditions (200-240 min), anoxic (~60-140 min), settling (30 

min) and discharge (8 min). The sensors integrated in the SBR include: pH, Dissolved 

Oxygen (DO), conductivity, Oxidation Reduction Potential (ORP), mixed liquor 

suspended Solids (MLSS) and temperature. Conductivity and pH are used to control the 

length of the aerobic and anoxic phases and the carbon source dosage. Additionally, 

variable frequency driver is used to control the air flow-rate of the blowers, maintaining 

the dissolved oxygen during aerobic phase in the range of 1.0 to 1.5 mg/L. The aeration 

system consists of volumetric blowers (nominal power 11 kW) and n 80 diffusers 

(INVENT), providing ~500 m3/h of compressed air at 400 mbar of pressure (design oxygen 

transfer efficiency up to 15%).  The treated supernatant is recirculated back to the WWTP 

headworks.  

 
Figure 5.1: Schematic representation of a complete cycle in the SCENA process and 

datasets used in the analysis 
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5.2.1  N2O monitoring 

A monitoring campaign was conducted in the sidestream line at Carbonera WWTP 

treatment plant for approximately 4 months (January 2019 – April 2019). Dissolved N2O 

concentrations were measured using a polarographic Clark-type electrode (Unisense, 

Aarhus, Denmark). The N2O data were recorded and processed 24 h per day by the modular 

multichannel measuring device for liquid analysis (Unisense Environment, Denmark).  

The calibration was performed bimonthly or when the average wastewater temperature 

changed by more than 3 degrees. After installing the N2O wastewater sensor or replacing 

the sensor head, the sensor was stabilised overnight as recommended by Unisense for zero 

drift. For the calibration of the probes a stable bucket was filled with 4 L of secondary 

effluent. The temperature was measured, and the sensor was placed in the bucket until it 

stabilised. Two-point calibration mode for the N2O sensor was applied. The zero-level 

calibration was done with secondary effluent gas-sparged with argon, in order to remove 

the dissolved nitrogenous gas.  For the second point calibration 8 mL of N2O calibration 

solution were used. The solution was injected to the secondary effluent. 

To supplement the long-term monitoring campaign with Unisense probes, N2O emissions 

in the headspace of the SBR reactor, were also continuously monitored with MIR9000CLD 

analyser (Environment Italia S.p.A.) during March – April 2019. The analyser measured 

N2O through infrared spectroscopy (IRS). Weekly calibration using standard gas cylinders 

was performed. The gas flow was pumped, transported by a heating tube at 120 °C, filtered 

for dust removal and cooled at 4 °C. During aerobic phases, the outgoing gas flow-rate was 

assumed the same as the incoming gas flow-rate, neglecting the consumption and 

production of gasses in the reactor. The complete methodology is described in Spinelli et 

al., (2018) 

5.2.2 Complementary monitoring/analyses 

Liquid composite samples of the influent and effluent of the SCENA reactor were collected 

2-4 days per week. The influent and effluent samples were analysed in terms of pH, COD, 
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ammonia-nitrogen (NH4-N), soluble COD (sCOD) and nitrite-nitrogen (NO2-N), nitrate-

nitrogen (NO3-N) and orthophosphate as phosphorus (PO4-P) according to standard 

methods (APHA, 2005). Additionally, pH, conductivity, ORP, MLSS, temperature and 

energy consumption were monitored online in the SBR. 

5.2.3  N2O emissions calculation 

▪ Gas analyser 

The gases emitted during the aerated phases of the SBR reactor were calculated based on 

Equation (5.1): 

 
𝐺𝑎𝑠 𝑒𝑚𝑖𝑡𝑡𝑒𝑑(𝑎𝑒𝑟𝑎𝑡𝑒𝑑) = [∑(𝑐𝑔𝑎𝑠 × 𝑄𝑎𝑒𝑟 × 𝛥𝑡] 

 

(5.1) 

Where: 

• Gas emitted(aerated): GHG gas (N2O) emitted during aerated operational times (N mg) 

• cgas: cgas N2O= N2O (ppmv N2O) × 1/0.08205 atm L mol−1 K−1 × (28/T(K)) × 10-6 

• Qaer: gas flow coming out of the reactor during aerated zones (L m−1) 

• Δt – time interval by which the off-gas concentration was recorded (m) 

 

▪ Conversion of N2O and into CO2 equivalents 

CO2 equivalents for the N2O ( 𝐶𝑂2𝑒𝑞(𝑁2𝑂)
)  emissions assessed for the system were 

calculated based on Equation (5.2) in respect to the NH4-N removed: 

 
𝐶𝑂2𝑒𝑞(𝑁2𝑂)

=
𝑁2𝑂𝑒𝑚𝑖𝑡𝑡𝑒𝑑 (𝑘𝑔) ×  265 

𝑁𝐻4 − 𝑁𝑟𝑒𝑚𝑜𝑣𝑒𝑑(𝑘𝑔)
 

 

(5.2) 

CO2 equivalents for the electricity consumption (𝐶𝑂2𝑒𝑞(𝑒𝑙𝑒𝑐)
) emissions assessed for the 

system were calculated based on Equation (5.3) in respect to the NH4-N removed. The 

emission conversion factor for the electricity grid mix in Italy from Ecoinvent 3 database 

has been used: 
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𝐶𝑂2𝑒𝑞(𝑁2𝑂)

=
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑒𝑑
 (𝑘𝑊ℎ) ×  0.503

𝑁𝐻4 − 𝑁𝑟𝑒𝑚𝑜𝑣𝑒𝑑(𝑘𝑔)
 (5.3) 

5.3 Data analysis 

5.3.1 Methodological Framework 

Figure 5.2 summarises the methodological framework followed in this study. Phase one 

includes preliminary analysis of the collected data. Features extraction and density-based 

clustering was applied (Ester et al., 1996),  to isolate  abnormal cycles. The methodology 

and results of abnormal cycles’ isolation are given in the supplementary material (section 

S4). In phase two, the behaviour of N2O emissions and dissolved N2O concentration during 

normal operation was investigated; efforts were focused to identify dependencies with the 

operational dataset and laboratory analyses. Finally, in phase three, classification and 

regression models were trained to predict the behaviour of aerobic dissolved N2O 

concentration in the different cycles. Support vector machine classification (SVM) and 

regression (SVR) models were constructed (Cortes and Vapnik, 1995).  

The first step for the prediction of the average aerobic dissolved N2O concentration 

included the training of an SVM classifier (ANOXSVM) to predict whether dissolved N2O 

will be consumed during the anoxic phase. This was significant, given that accumulated 

dissolved N2O in the beginning of the aerobic phase, will be stripped during aeration. All 

cycles were divided in two classes: class anoxA (dissolved N2O < 0.6 mg/L) and class 

anoxB (dissolved N2O > 0.6 mg/L). The dissolved N2O concentration threshold was set 

equal to 0.6 mg/L, since in ~88% of these cases, N2O was consumed by the end of 

subsequent anaerobic phase. In cycles belonging to class anoxA, no N2O carryover was 

assumed. It is important to note that the term anaerobic phase, is used to describe the first 

operational phase of the SBR (Figure 5.1) within each cycle and is not necessarily 

representative of the actual conditions in the reactor.  
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Subsequently, an SVM classifier (ANSVM) was trained to predict if dissolved N2O will 

be consumed in the subsequent anaerobic phase. The threshold of N2O at the end of the 

anaerobic phase was set equal to 2.6 mg/L (sensor calibration limit).  Therefore, anaerobic 

phases with accumulated N2O were classified in two groups: class anaerA (N2O 

concentration < 2.6 mg/L) and anaerB  (N2O concentration > 2.6 mg/L) . Cycles belonging 

to anaerA class, were used to train an SVR model (ANSVR) to predict the dissolved N2O 

concentration at the end of the anaerobic phase.  

Finally, an SVR model was trained to predict the average N2O concentration during the 

aerobic phase (AERSVR), utilizing the ANSVR model predictions for cycles with initial 

aerobic N2O less than 2.6 mg/L. Finally, the aerobic SVR model was also tested to cycles 

belonging in class anaerB  (N2O concentration > 2.6 mg/L). In anaerB cycles, initial aerobic 

N2O accumulation exceeds the calibration limit of the sensor. Additionally, aerobic N2O 

accumulation starts before completion of the stripping of pre-existing dissolved N2O. In 

these cases, the average dissolved N2O concentration of the cycle, was calculated 

considering the period from the first minimum of dissolved N2O concentration until the 

end of aeration (or after 30 min if a local minimum did not exist). Additionally, initial N2O 

accumulation was assumed to be equal to 0.6 mg/L (average minimum after initial N2O 

stripping observed in these cycles). 

 In practice, the methodology followed was not linear as it is illustrated in Figure 5.2; it 

involves several backward and forward loops between the different steps. The feedback 

loops were necessary to leverage the knowledge discovered and adjust the data-preparation 

(i.e. new features extraction, different pre-processing) and mining phases. 

Details of the specific methods applied are provided in the relevant sections. In practice, 

the methodology followed was not linear as it is illustrated in Figure 5.2; it involved several 

backward and forward loops between the different steps. The feedback loops were 

necessary to leverage the knowledge discovered and adjust the data-preparation (i.e. new 

features extraction, different pre-processing) and mining phases. 
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Figure 5.2: Methodological Framework followed in the study 

5.3.2 Abnormal cycles detection 

Sensor data collected from the SCENA process consisted of a three-dimensional data 

matrix, X (I × J𝑥 × K),  where I is total number of cycles, J𝑥  represent the total process 

variables and 𝐾  is the number of sampling time intervals in a cycle (equal to 1 

min). Variable-wise unfolding was applied keeping the variables’ dimension and merging 

the other two dimensions (Wold et al., 1998). Subsequently the data were z-normalised 

(zero mean and unit variance) preserving the variable trajectory information in the data. 

Each phase (i.e. anaerobic vs aerobic vs anoxic) is characterised by its own underlying 

dynamics of the variables monitored (i.e. ORP, pH, conductivity) and the system can 

exhibit different performance between different phases. Therefore, appropriate features 

were extracted from the variables monitored for each phase and cycle, capturing 

information on the performance of the cycle/phase.  Feature extraction, compressed data 

dimension to a finite number of descriptive features able to describe whether the variables 
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monitored, exhibited the expected dynamics and range during each phase of the cycles 

analysed, with respect to pre-determined patterns and normal ranges. The features selected 

for each phase are shown in Table 5.1. The selection of features was based on the profiles 

of the variables monitored in cycles with abnormal effluent PO4-P, NO2-N and NH4-N 

concentrations based on the available laboratory measurements. 

Table 5.1:  Features used for outliers detection 

Anaerobic Aerobic Anoxic 

Minimum pH Maximum pH Minimum conductivity rate 

ORP change Conductivity kurtosis Maximum pH 

Conductivity change Minimum rate conductivity Mean conductivity 

Time ORP min/Total phase 

time 

Mean ORP Mean pH 

 Time minimum rate 

ORP/Total phase time 

pH rate at end of phase 

  ORP kurtosis 

Subsequently density-based spatial clustering of applications with noise (DBSCAN), 

(Ester et al., 1996) was applied to the phase-based datasets as described in section 4.3.1. 

The aim was to detect cycles with behaviour deviating from the expected observed under 

normal operational conditions. Laboratory analyses were used to provide insights on 

possible data patterns indicating poor performance. 

5.3.3 Support Vector Machines classification and Support vector regression 

Support vector machines (SVMs) are a range of  supervised non-parametric classification 

and regression algorithms that have various applications in several fields including remote-

sensing (Mountrakis et al., 2011), hydrology (Raghavendra and Deka, 2014), 

bioinformatics (Byvatov and Schneider, 2003) and wastewater (Corominas et al., 2018). 

For instance, in wastewater, support vector regression (SVR) has been successfully applied 

to data generated from mechanistic modelling of biological processes (Fang et al., 2011; 

Xie et al., 2011) or to experimental data (Seshan et al., 2014)  to predict reactors’ 

performance.  
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As shown in Figure 5.2, SVM classification was applied in the analysis to predict the 

behavior of dissolved concentration in different phases of the SBR operation. SVM aims 

to define an optimum separating hyperplane in the feature space that maximises the margin 

between two different classes; a complete description of the method is provided in section 

4.3.6. Binary classification was performed in this study. The algorithm was implemented 

with the kernlab package (Karatzoglou et al., 2004) in R software. Repeated 10-fold cross 

validation (3 repetitions) was applied to select the cost and 𝛾 parameters over a grid-search 

in the caret package (Kuhn, 2008) in R software. The dataset was randomly divided into 

test and train, with 70% of the available data used for training the SVM model and 30% 

used for testing. Over-sampling was applied for the minority classes within the 10-fold 

cross validation loop (before training) 

SVMs have been also used to regression tasks with continuous output variables 

(Mountrakis et al., 2011). In the SVR case, the aim of the method is to identify the 

hyperplane that has the minimum distance to all data points. 

Considering a train dataset (𝑥𝑖, 𝑦𝑖), 𝑥𝑖 is a 𝑛-dimensional 𝑀 set of vectors, with  𝑥𝑖 ∈ ℝ𝑛 

where 𝑖 =  1, . . . , 𝑀 and 𝑦𝑖 the target property of each 𝑥𝑖 case, with  𝑦𝑖 ∈ {−1,1}  During 

the training phase, the aim of the algorithm is to define the function 𝑓(𝑥) = (w𝑥 +  𝑤0), 

with 𝑤, 𝑥 ∈ ℝ𝑛 and  𝑤0 ∈ ℝ that deviates from the target variable 𝑦𝑖  by ε at maximum, 

which can be expressed as [𝑦𝑖 − 𝑓(𝑥𝑖)] < 𝜀 , with ε being  the insensitive loss function. 

Therefore, the following quadratic programming problem needs to be solved (Singh et al., 

2011): 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

1 

2
‖𝑤‖2 +  𝐶 ∑(𝜉𝑖

𝑀

𝑖=1

+ 𝜉𝑖
∗) (5.4) 

Subject to 𝑦𝑖−𝑤𝑇𝑥𝑖 − 𝑤0 ≥ 𝜀 + 𝜉𝑖 

and 𝑤. 𝑥 + 𝑤0 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗, 𝑖 = 1,2, … , 𝑁 𝑎𝑛𝑑 𝜉𝑖𝜉𝑖

∗ ≥ 0  
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The optimum regression function after the introduction of kernel function and 

transformation of Equation  (5.4) in a similar way as shown in section 4.3.6, can be 

expressed as: 

 
 f(x)  =  (∑(𝛼𝑖

𝑀𝑆𝑉

𝑖=1

− 𝑎𝑖
∗)K(𝑥, 𝑥𝑖) + 𝑤0) (5.5) 

Where: 𝛼𝑖  𝑎𝑖
∗  the Lagrange multipliers with  C ≥ 𝛼𝑖, 𝑎𝑖

∗ ≥ 0, 𝑖 = 1,2, . . . , 𝑀 and K(𝑥, 𝑥𝑖) 

the kernel function. In this case, data points with non-zero 𝛼𝑖  𝑎𝑖
∗  represent the support 

vectors. 

Local models were developed based on observations from each phase of the SBR reactor 

instead of the dataset from the duration of the whole cycle. The underlying characteristics 

and dependencies of the operational variables vary between anoxic, aerobic and anaerobic 

conditions. Additionally, the performance of the system under the different phases within 

the cycle can also vary. There are significant benefits in the development of local phase-

based models. The behaviour of dissolved N2O and triggering operational conditions vary 

between the different phases; local models enable to investigate the phase-based 

dependency structures that would not be possible using the whole cycle dataset. 

5.3.4 Model performance evaluation 

The performance of the classification SVM models were evaluated based on the accuracy, 

and kappa as described in section 4.3.1 and from the sensitivity and specificity as expressed 

below.  

 
 Sensitivity =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.6) 

 
 Specificity =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5.7) 

Where: TP is the number of true positives, FP false positives, FN false negatives, and TN 

true negatives. 
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Similarly, the regression models were evaluated considering the root mean squared error 

(RMSE) and R-squared (R2) that are expressed as: 

 

 RMSE =  √
∑ (𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑖)2𝑀

𝑖=1

𝑁
 (5.8) 

 

 

 R =
∑ 𝑦𝑝𝑟𝑒𝑑,𝑖𝑦𝑖 −

1
𝑀

∑ 𝑦𝑖
𝑀
𝑖=1 ∑ 𝑦𝑝𝑟𝑒𝑑,𝑖

𝑀
𝑖=1
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Where: 𝑦𝑖  the measured target variable, 𝑦𝑝𝑟𝑒𝑑,𝑖  the predicted value, M the number of 

observations and 𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 =  𝑅2. 

5.4 Results and discussion 

5.4.1 SCENA performance 

The SBR treats up to 43 kg of N/day of anaerobic supernatant, which results in a volumetric 

nitrogen loading rate up to 0.62 kgN/m3 day. The performance of the SBR reactor in terms 

of NH4-N removal, was stable during the monitoring campaign. Deviations in the profile 

of the N2O emissions, electricity consumption, operational variables and pollutant removal 

efficiencies, were mainly due to i) limitation of anaerobic supernatant during weekends 

and extension of aerobic phase length in the SBR and ii) low availability of carbon source. 

During system’s normal operation (January 2019 - April 2019), the average removal 

efficiency of NH4-N, TN and PO4-P was 78%, ~77% and 78% respectively. Influent and 

effluent concentrations of the SCENA system for the duration of the monitoring campaign 

are provided in  
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Table 5.2. 
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Table 5.2: Influent and effluent concentrations of the SCENA system 

 Parameter unit mean Sd 

SBR 

Influent 

NH4-N mg/L 992.5 90 

PO4-P mg/L 30.8 6.9 

pH  8.2 0.2 

sCOD mg/L 1111.7 562 

Flow-rate  m3/d 30 (8.4 per cycle) 2.2 

Air flow-rate  m3/h 450 (170 - 520) 78 

Dimensions mxmxm 8 x 3.5 x 2.5  

SBR 

Effluent 

NH4-N mg/L 214.7 80.93 

 NO2-N mg/L 3.23 9.7 

NO3-N mg/L 0.28 0.34 

PO4-P mg/L 6.78 2.22 

pH  8.04 0.3 

SBR 

Reactor 

MLSS g/L 5.05 0.87 

HRT d 2.39  

SRT d 13-15  

pH  7.7 0.5 

T °C 30.02 1.56 
    

Fermentat

ion Liquid 

NH4-N mg/L 715 72.6 

PO4-P mg/L 86 12 

pH  5.6 0.6 

T °C 36 5.1 

sCOD mg/L 13082 2228 

ferm_Hac mg/L 3250 546 

ferm_HPr mg/L 2281 588 

ferm_Hbut mg/L 1347 196 

Flow-rate to 

SBR  m3/cycle 

7.45 (~2.41 per 

cycle) 3.0 

5.4.2  N2O Emission factor 

Over the period monitored with the gas analyser (March – April 2019), on average ~0.8 kg 

of N2O-N was emitted in each cycle, equivalent to 7.6% of the NH4-N load in the SBR.  In 

terms of the NH4-N oxidized the N2O EF was equal to 11% (±4). Given that the N2O 

concentration during the anoxic phases exceeded the calibration limit of the sensor, only 

the emissions during the aerobic phase were considered.  N2O emissions exhibited 

significant variability ranging from 0.14 kg  N2O-N/cycle (1.3% of NH4-N load) to ~2 kg  
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N2O-N/cycle (19% of NH4-N load) as shown in Figure 5.3 (a). Emission peaks higher than 

1.5 kg N2O-N/cycle and the increasing trend observed close to the end of the monitoring 

campaign coincide with peaks in the conductivity change in the aerobic phase of the cycles 

(Figure 5.3 (b)). Laboratory analyses performed approximately four times per week, did 

not demonstrate any significant changes in the influent COD, NH4-N loads and removal 

efficiencies linked with the increasing trend of the emissions observed in Figure 5.3 (a). 

Given the wide range of the N2O emissions observed in the system, in the following 

sections, efforts were focused to identify triggering operational conditions. 

 
Figure 5.3:  (a) N2O emissions and (b) aerobic phase conductivity decrease, during 

monitoring campaign (gas analyser, March-April) 
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5.4.3 Energy consumption vs N2O emissions 

The operational carbon footprint of the sidestream line was estimated considering the direct 

GHG emissions (from N2O) and the electricity consumption. The electricity consumption 

was relatively steady over the monitoring period; on average ~5.4 kWh was consumed in 

the SBR for the removal of 1 kg of NH4-N from the anaerobic supernatant. The average 

energy consumption of the SBR was equal to 49 (± 3.0) kWh per cycle and represented 

~77% of the total electricity consumption of the SCENA system. On average ~48.7 kg of 

CO2eq are generated for the removal of 1 kg of NH4-N due to the direct N2O emissions and 

electricity consumption in the system. The contribution of the total N2O emissions to the 

operational carbon footprint of the SCENA process ranged from 66.7% to 96.8% when all 

the equipment electricity consumption (i.e. fermenter, dynamic thickener) were considered 

(average equal to ~88%). Given the variability of the  N2O emissions observed in the 

system (Figure 5.3) the kg of  CO2eq emitted per kg of NH4-N removed ranged between 9.5 

kg  CO2eq to 117.7 kg  CO2eq.  

Figure 5.4 (a), shows the average operational carbon footprint (considering direct  N2O 

emissions and electricity consumption) of the SCENA system for two cases with different 

ranges of  N2O emissions. In the first case (26/03), a considerable amount of N2O was 

emitted, equal to ~10.5% of the influent NH4-N load. In the second case the emissions were 

significantly lower, equal to ~4% of the influent NH4-N load. Both cases are characterised 

by similar influent NH4-N concentrations, phase duration, temperature and ammonia 

removal efficiencies (~79%). The DO concentration is equal to ~1 mg/L. In case 1, the 

operational carbon footprint of the process is ~136% higher compared to case 2. This 

example shows that under similar conditions (considering laboratory analyses, average pH 

and DO), dissolved N2O concentrations can vary significantly in the studied system. 

Investigation of the behaviour of conductivity during the two aerobic phases, showed 

higher conductivity and pH decrease in case one (~ 510 μS/cm and ~1 respectively) 

compared to case two (~350 μS/cm and 0.7 respectively) (Figure 5.4  (b) and (c)). 
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Additionally, the initial aerobic ORP in case 2, was higher (-43 mV) compared to case 1 (-

274 mV) (Figure 5.4 (b)).  

 
Figure 5.4: (a) Example of the effect of N2O emissions in the operational carbon footprint 

for two cases, (b) aerobic profiles of conductivity, ORP and (c) DO and pH for the two 

cases shown in (a) 

 

Operating 
Conditions 

Unit 26/03 11/04 

Influent NH4-N  mg/L 1186.3 1154.13 

DO mg/L 1.0 1.0 

Anaerobic/Aerobic/ 
Anoxic duration 

h 0.5/3.6/1.5 0.5/3.7/1.5 

Effluent NH4-N mg/L 211.1 185.9 

Effluent NO2-N mg/L ~0 1.6 

Temperature °C 31.7 32.1 
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Therefore, efforts to understand the N2O triggering operational conditions and mitigate 

GHG emissions, should consider the dynamic in-cycle behaviour of the variables 

monitored in the system. The relationship between the operational variables (i.e. DO, NH4-

N concentration, ORP, conductivity) will be discussed in the following sections.  

5.4.4 Variability of N2O emissions during normal operation  

N2O was emitted during aeration phase in all cycles and correlated significantly with the 

dissolved N2O accumulation.  One representative cycle profile for the dissolved N2O 

concentration and N2O emissions in cycles starting without dissolved N2O accumulation 

from the previous cycle is shown in Figure 5.5, together with the DO, NH4-N, conductivity, 

ORP and pH. 

ORP at the beginning of the aerobic phase shows a correlation with the DO, whereas N2O 

accumulation is minimum. Dissolved N2O increases in the first 60-70 min of aeration (a 

small change in the pH slope can be seen coinciding with the peak of accumulated N2O) 

indicating that the generated N2O is higher than the stripped N2O. N2O accumulation shows 

a decreasing trend after ~90 minutes of aeration. Subsequently dissolved N2O 

concentration increases when aeration stops, and the anoxic phase starts. This shows that 

production of N2O continues under decreasing DO and until DO depletion. The calibration 

range of the dissolved N2O probe is between 0 - 2.6 mg/L. Therefore, the accumulation of 

dissolved N2O can be higher than the peak shown in Figure 5.5. During the anoxic phase, 

pH increases rapidly during the dosage of fermentation liquid, followed by a slow decrease 

upon the end of carbon dosage phase. A sudden change in the ORP signal slope (“nitrite 

knee”) indicates the depletion of nitrite whereas TN still exists in the form of N2O. 

Accumulated N2O is subsequently depleted rapidly after NO2
-N depletion. 
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Figure 5.5: Representative cycle profile for the (a) dissolved N2O concentration, N2O 

emissions, conductivity, DO, (b) ORP and pH, and (c) NH4-N, NO2-N and PO4-P 

concentrations  

5.4.5 Outliers Analysis 

In total 96 cycles were characterised by abnormal duration of the anaerobic, aerobic or 

anoxic phases mainly attributed to limitations in the anaerobic supernatant or fermentation 
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liquid. Phase duration abnormalities include: i) absence of one or more phases (total: 21 

cycles), ii) duration of anaerobic phase less than 15 min and anoxic phase less than 45 min 

(total: 33 cycles), iii) duration of aerobic phase more than 360 min (total 42 cycles). The 

normal operation ranged mainly between 30-45 min, 60-150 min and 200-240 for the 

anaerobic, anoxic and aerobic phases 

The laboratory analyses were performed 2-4 times per week; therefore, the isolation of 

cycles with poor performance was not feasible based only on laboratory measurements. 

Features representing the behaviour of variables monitored in the system for each phase 

were extracted and DBSCAN was applied to detect cycles deviating from normal 

operational conditions.  In total, 66 cycles with abnormal behaviour in one or more phases 

of the cycle were detected (representing ~20% of the cycles analysed). Figure 5.6 - Figure 

5.8, show the most frequent profiles of ORP, pH and conductivity identified as abnormal 

by DBSCAN, in each phase of the cycle and the representative behaviour of the variables 

during normal operation. NH4-N, NO2-N or PO4-N effluent concentrations of the system 

are also reported for the examples presented.  

The behaviour of the operational variables in the anaerobic phase events detected by 

DBSCAN can be categorized in two groups; representative examples of these groups are 

shown in Figure 5.6 (a) and (b). Figure 5.6 (c) shows typical profiles of the variables 

monitored during normal SBR operation. In total, 16 cycles were identified with the 

behaviour of anaerobic phase shown in Figure 5.6 (a and b). Specifically, 7 cycles were 

detected with behaviour of the operational variables similar to Figure 5.6 (a) and 9 cycles 

with behaviour of the operational variables similar to Figure 5.6 (b).  

The example shown in Figure 5.6 (a) shows an anaerobic phase where the effluent PO4-P 

concentration was equal to 19.72 mg/L (influent: 18.06 mg/L, effluent concentration is 

higher than the influent due to the PO4-P content of the fermentation liquid that was dosed 

during the anoxic phase). After 15 min of anaerobic conditions the ORP stabilises and then 

slightly increases. Similarly, the ORP behaviour in Figure 5.6 (b), deviates significantly 

from behaviour during normal operation; the ORP increases during the anaerobic phase. 
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Figure 5.6: Profiles of ORP, pH and conductivity during anaerobic phase in  (a-b) cycles 

with poor performance detected by DBSCAN, (c) normal operation 

Examples of ORP, pH and conductivity profiles in abnormal anoxic phases are shown in 

Figure 5.7 (a and b) and normal profiles are shown in Figure 5.7 (c) . In total, 29 cycles 

detected by DBSCAN were characterised by the profiles shown in Figure 5.7 (a). 

Laboratory analyses were available for ~30% of these cycles and showed an average 

effluent NO2-N concentration at the end of the cycle equal to 176.2 mg/L indicating 

incomplete denitritation. pH increases during the anoxic phase whereas conductivity 

increases for ~30 min (fermentation liquid feeding) and then decreases. During normal 

operation, pH increases rapidly during fermentation liquid feeding and stabilises after the 

nitrite “knee” (Figure 5.7 c). Figure 5.7 (b) is typical for cycles without fermentation liquid 

dosage in the anoxic phase. In total, 5 cycles showed this profile and were isolated. 
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Figure 5.7: Profiles of ORP, pH and conductivity during anoxic phase in  (a-b) cycles 

with poor performance detected by DBSCAN, (c) normal operation 

Typical behaviour of the ORP, conductivity and pH during normal aerobic operation is 

shown in Figure 5.8 (c); the ORP increases rapidly during the first minutes of aeration and 

then at a reduced rate, pH decreases at almost a constant rate and conductivity decreases. 

The majority of the cycles isolated by DBSCAN can be categorized in two groups; Figure 

5.8 (a) and (b) show the typical aerobic behaviour of operational variables for these two 

groups. The profiles shown in Figure 5.8 (a) are mainly characterised by very slow decrease 

rate of the conductivity after the first 30 min of the aerobic phase and relatively steady pH. 

Lower than average (<60%) NH4-N removal efficiencies were linked with the conductivity 

behaviour shown in Figure 5.9 (a). The average dissolved N2O concentration is equal to 

0.85 mg/L for aerobic phases belonging to this group. Conductivity behaviour similar to 

Figure 5.8 (a) was detected for 25 cycles.  
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Similarly, the OPR profile in Figure 5.8 (b) (8 cycles total), deviates significantly from the 

ORP profile during normal aerobic operation (Figure 5.8 c). However, there were not 

available laboratory measurements to link the observed behaviour with operational 

efficiency. All aerobic cycles belonging to this group, are characterised by elevated 

dissolved N2O concentration (>2.5 mg/L) at the beginning of the aerobic phase whereas 

the average aerobic dissolved N2O concentration is ~1.45 mg/L. 

 
Figure 5.8: Profiles of ORP, pH and conductivity during aerobic phase in  (a-b) cycles 

with poor performance detected by DBSCAN, (c) normal operation 

The analysis showed that feature extraction combined with density-based clustering can be 

applied to the historical sensor data and detect cycles with abnormal SBR operation. In this 

study ~80% of the abnormal events detected by DBSCAN were linked with outliers in the 
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NH4-N, NO2-N and PO4-P based on the laboratory measurements. Moreover, more than 

95% of the events were characterised by significant deviations in the range and behaviour 

of the variables monitored in the system compared to normal reactor operation. 

5.4.6  The pattern of N2O emissions  

Offline data from laboratory studies and the ranges of the operational variables were 

analysed in order to investigate significant changes that contribute to high accumulation of 

dissolved N2O concentration and high N2O emissions. 

Figure 5.9 (a) shows the daily average dissolved N2O concentration (coloured points) 

during aerobic phase versus conductivity at the end of aerobic phase and the effluent NH4-

N concentration. Conductivity is significantly related and can be linked with the NH4-N 

concentration in the reactor (spearman correlation coefficient equal to 0.97). High average 

aerobic dissolved N2O concentration (>1.5 mg/L) was mainly observed with NH4-N 

concentrations lower than 150 mg/L and higher than 300 mg/L in the effluent of the SBR. 

Additionally, the spearman correlation coefficient between dissolved N2O and average 

aerobic conductivity decrease rate (μS/cm/min) was equal to -0.7 and N2O concentration 

peaks were observed for conductivity decrease rate > 1.8 μS/cm/min. The latter indicates 

that higher emissions occur under high ammonia removal efficiency that can be linked with 

higher ammonia oxidation rates (AOR) (i.e. due to pH values observed  ~ 8) triggering the 

NH2OH oxidation pathway or higher than average  NO2
-N accumulation (triggering 

nitrifier denitrification pathway). Domingo-Félez et al., (2014) found that N2O production 

rates were positively correlated with the extant nitrification rate in a single-stage 

nitritation/Anammox reactor. Similarly, Law et al. (2011) identified a linear relationship 

between AOR and  N2O emissions in a partial nitritation SBR reactor treating the reject 

water from anaerobic digestion. Law et al. (2011) suggested that is attributed to higher 

accumulation of the ammonium oxidation intermediates (hydroxylamine (NH2OH) and 

nitrosyl radical (NOH)) leading to faster  N2O formation or to the increased use of electrons 

reducing nitrite to nitric oxide (nitrifier denitrification pathway) under low DO 

concentrations. High nitrite accumulation has been also linked with elevated N2O 
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emissions and the nitrifier denitrification pathway, especially under low DO concentrations 

(Tallec et al., 2006; Kampschreur et al., 2008b; Desloover et al., 2011; Peng et al., 2015; 

Massara et al., 2017; Law et al., 2012). For instance, Peng et al. (2017) and Kampschreur 

et al. (2009), in a nitritation-denitritation SBR and a full-scale single stage nitritation-

Anammox reactor respectively, identified linear relationship between nitrite accumulation 

and  N2O emissions at DO levels below 1.5 mg/L. Similarly, Tallec et al (2006) in a 

nitrifying activated sludge observed eightfold increase of N2O emissions with the addition 

of nitrite pulses (10 mg/L) at DO equal to 1 mg/L. Therefore, both hydroxylamine 

oxidation and the nitrifier denitrification are possible during aeration in the investigated 

SBR. 

The average dissolved N2O concentration during the aerobic phase of different cycles 

varied significantly in relation to the average DO concentration. Figure 5.9 (b), shows that 

the dissolved N2O concentration peaks coincided with average DO concentrations less than 

0.9 to 1 mg/L. The spearman correlation coefficient between dissolved N2O and DO 

concentrations was equal to -0.7. The coloured points in the Figure, represent the ORP at 

the end of the aerobic phase; ORP is higher than 40 mV in the majority of the cycles with 

average aerobic dissolved N2O concentration less than 1 mg/L. Only cycles without  

dissolved  N2O accumulation from the previous anoxic phase are shown in the graph. 

Stenström et al. (2014) showed decreasing DO concentrations lower than 1–1.5 mg/L are 

linked with higher nitrite accumulation and are positively correlated with N2O emissions 

during nitrification in a full-scale predenitrification-nitrification SBR treating anaerobic 

supernatant. Similarly, Pijuan et al., (2014) reported an increase of  N2O emissions in a 

nitritation reactor with the reduction of DO from 4 to <1 mg/L. During the monitoring 

period, blowers operated at maximum flow-rate. Therefore, the presence of residual 

biodegradable COD concentration in the aerobic, is expected to decrease DO 

concentration. Similarly, higher influent NH4
+ loads or higher ammonia oxidation rates 

(that can also result in increased NO2
- accumulation) can impact the DO concentration in 

the system. The dissolved N2O concentration can be affected by a combination of variables; 
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therefore, it cannot be deduced that the decreased DO is the sole contributing factor 

triggering the increased N2O generation observed. 

 
Figure 5.9: (a) Daily average conductivity at the end of the aerobic phase versis effluent 

NH4-N concentration (coloured points: average dissolved  N2O accumulated in the 

aerobic phase), (b) Aerobic average accumulated dissolved  N2O in respect to DO 

concentration; only cycles without initial  N2O accumulation from the previous anoxic 

cycle are shown (coloured points: ORP at the end of the aerobic phase) 

5.4.7 Impact of accumulated N2O in the end of anoxic and anaerobic phase 

Several parameters have been reported to affect the N2O accumulation under anoxic 

conditions, such as the inhibition of the nitrous oxide reductase (Nos) by free nitrous acid 

(FNA) or high accumulation of NO2
-, the electron competition between electron acceptors 

and the type of carbon source (Itokawa et al., 2001; Pan et al., 2013; Zhou et al., 2008; Zhu 

and Chen, 2011). Additionally, low values of COD/N can result in incomplete denitritation 
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and therefore, N2O accumulation via the heterotrophic denitrification pathway during the 

anoxic phase of the SBR. Accumulated N2O in the end of the anoxic phase is stripped in 

the subsequent cycle, increasing the N2O emissions.  Caranto et al. (2016) have recently 

showed that N2O can be the main product of anaerobic NH2OH oxidation catalysed by the 

cytochrome P460 in N. europaea. The latter can be an evidence of the biological N2O 

generation under limited DO and high NH3 concentrations, both conditions occurring in 

the target system in the during the transition from aerobic to anoxic phases when N2O 

accumulation rapidly increases. 

In this study, the average soluble COD concentration in the fermentation liquid was equal 

to 13082 mg COD/L over the monitoring period (  
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Table 5.2). Overall, in >27% of the examined cycles the  N2O was completely consumed 

by the end of the anoxic phase. Zhu and Chen, (2011), showed that the use of sludge 

fermentation liquid as carbon source in an anaerobic-aerobic system treating high-strength 

stream, can reduce the N2O production by up to 68.7% compared to alternative carbon 

sources (i.e. acetic acid). On the other hand, Li et al., (2013a) in a process utilizing PHA 

as internal carbon source, observed higher N2O production and reduction rates at higher 

influent COD concentrations linked with higher anaerobic PHA synthesis (ranging from 

100 to 500 mg/L). The higher N2O production rates were attributed to the accumulated 

NO2
- inhibiting the N2O reduction. 

The dissolved N2O concentration in the anoxic phase exceeded the calibration limit of the 

sensors; only cycles in which “nitrite knee” was observed and N2O reduced to values lower 

than 2.6 mg/L could be investigated. Therefore, the effect on NO2
- in anoxic N2O 

generation could not be studied. However, studies have shown that elevated NO2
- 

concentrations during denitrification can reduce the denitrification rate and increase the 

N2O accumulation (Schulthess et al., 1995). The electron competition between nitrite 

reductase NIR, nitric oxide reductase (NOR) and nitrous oxide reductace (NOS) is 

intensified under high NO2
- concentrations; NOS is less competitive under limitation of 

electron donor and this will result in N2O accumulation (Pan et al., 2013; Ren et al., 2019). 

Based on the profiles shown in Figure 5.5,  N2O was always consumed after the depletion 

of NO2
- during denitritation; specifically, dissolved  N2O concentration decreased after the 

“nitrite knee”. Gabarró et al. (2014), studied a partial-nitritation reactor treating landfill 

leachate, and operated under alternating aerobic/anoxic conditions to allow heterotrophic 

denitritation. The authors demonstrated that significant N2O accumulation was observed 

during anoxic periods.  NO2
- denitrification rate was higher under both biodegradable COD 

limiting conditions and after acetate addition compared to N2O reduction; N2O reduction 

rate was maximum after NO2
- removal (similar to what was observed in this study). In 

denitrifying phosphorus removal processes, Li et al. (2013) showed that the N2O 

accumulation can be higher compared to conventional denitrification; the authors 

suggested that in the electron competition between denitrifying enzymes and PHA,  N2O 
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reductase is less competitive. On the other hand, Ribera-Guardia et al. (2016) investigated 

the electron competition during denitrification (PHA as the sole carbon source) of enriched 

dPAO and dGAO biomass and found that higher  N2O accumulation in the latter culture. 

Additionally, the last step of denitrification was inhibited in dGAO cultures ( N2O 

accumulation up to ~84% of the N-reduced), under high levels of NO2
- (~ 15 mgN/gVSS) 

whereas N2O consumption in dPAO biomass was not affected. Wang et al., (2015) 

demonstrated that during denitrifying phosphorus removal, mitigation of NO2
- 

accumulation is possible via continuous dosage of phosphate and nitrate. Wang et al., 

(2011), showed that optimisation of the synthesis of PHA during the anaerobic phase can 

mitigate the N2O production during the anoxic phase leading to complete denitrification. 

In the system, N2O emissions and dissolved N2O concentration in the aerobic phase is 

strongly related with incomplete denitritation in the previous cycle. In ~26% of the cycles 

with incomplete denitritation, the N2O concentration did not decrease below ~2 mg/L in 

the anaerobic phase  and therefore the stripping of accumulated N2O in the subsequent 

aerobic phase was substantial. Figure 5.10 (a) shows representative profiles of the 

dissolved N2O concentration and the N2O emissions based on different initial 

concentrations of N2O in the beginning of the aerobic phase. The profiles of the ORP, DO 

and pH are comparable in the preseted cycles (Figure 5.10 (b)). In cycle B ~0.56 kgN of 

N2O were emitted during the aerobic phase, wheareas in cycle A N2O emissions are equal 

to 0.33 kgN (given the duration of these cycles is not equal only 220 min were considered). 

The initial dissolved N2O concentration in cycles A and B is equal to 0.27 and >2.6 mg/L 

respectively. The N2O emissions increased significantly due to the accumulated N2O at the 

beginning of the previous anoxic phase that was stripped at the beginning of aeration. 
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Figure 5.10: Representative profiles of ORP and DO (top) and dissolved  N2O 

concentration (bottom) based on different initial concentrations of  N2O in the beginning 

of the aerobic phase 

Overall, in ~72% of the cycles, the dissolved N2O concentration at the beginning of the 

anaerobic phase was higher than 0.3 mg/L. In cycles with dissolved N2O concentration 

higher than 0.3 mg/L at the beginning of the anaerobic phase, the change in dissolved N2O 

concentration during the anaerobic phase was highly correlated with the ORP at the 

beginning of the anaerobic phase. Additionally, the spearman correlation coefficient 

between the magnitude of the ORP reduction and magnitude of the dissolved N2O 

reduction was equal to 0.7. Figure 5.11 shows the boxplots of dissolved N2O reduction in 

relation to initial anaerobic ORP and ORP change for two cases: i) negligible dissolved 

N2O change mainly due to influent dilution or anaerobic dissolved N2O concentration > 

2.6 mg/L, and ii) occasions with N2O reduction during the anaerobic phase. In Figure 5.11 

(a) only occassions with ORP decrease higher than -50 mV are shown. The presence of 

nitrites in the bulk liquid during the (anaerobic) phase affected the ORP. NO2-N depletion 

in the bulk liquid resulted in a sharp “nitrite knee” in the ORP profile (similar to the one 
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observed during the anoxic phase. Therefore, higher ORP change was expected in cycles 

with NO2-N depletion and N2O consumption during the anaerobic phase. 

 
Figure 5.11: : Box-plots of the (a) initial anaerobic ORP and (b) the ORP change during 

the anaerobic phase for cycles with and without  N2O consumption (Class 0: no 

significant N2O consumption or anaerobic N2O concentration > 2.6 mg/L; Class 1:  

significant N2O consumption) 

Anaerobic phase term, is used to describe the first operational phase of the SBR (Figure 

5.1) within each cycle and might not represent the actual conditions in the reactor. For 

instance, ORP ~ -80 mV in the anaerobic phase of the SBR indicates anoxic conditions, 

due to residual NO2
-N concentration from the previous anoxic phase of the reactor.  

5.4.8 Prediction and control of N2O accumulation in the anoxic and 

anaerobic phases 

As shown in section 5.4.7, the behaviour of ORP was significantly related with the 

behaviour of NO2
- and consequentially of the dissolved N2O concentration during the 

anaerobic phase. Therefore, in the ANSVM model, features related with the ORP profile 

were mainly used (Table 5.3). The classification results are shown in in the following 

section. Similarly, there was a strong link with the ORP behaviour and the “nitrite knee” 

with the N2O accumulation during the anoxic phase. The features considered are shown in 

Table 5.3. Similarly, there was a strong link with the ORP behaviour and the nitrite “knee” 
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with the N2O accumulation during the anoxic phase. The features considered in 

ANOXSVM model are shown in Table 5.3. 

Table 5.3: Features used in the classification algorithm to predict the accumulation of 

dissolved N2O at the end of the anoxic and anaerobic phases 

Anaerobic Anoxic Anaerobic regression 

ORP phase initial Last ORP value ORP phase initial 

ORP change ORP change ORP change 

First local maximum ORP first 

derivative 
Mean pH  

Local minimum of ORP first 

derivative after first local 

maximum ORP first derivative 

Difference between first 

local maximum (after carbon 

dosage) and subsequent 

local minimum of the ORP 

first derivative 

pH phase initial 

Duration between first local 

maximum and subsequent local 

minimum of the ORP first 

derivative 

Duration of carbon dosage 
Time of ORP first derivative 

minimum/duration of phase 

pH phase initial 

Duration between first local 

maximum (after carbon 

dosage) and subsequent 

local minimum of the ORP 

first derivative 

 

Difference between first 

local maximum and 

subsequent local minimum 

of the ORP first derivative   

Time local minimum ORP first 

derivative/Phase duration 
Last ORP first derivate  

The classification matrices for train and test datasets of the ANSVM and ANOXSVM 

models are presented in Table 5.4. The average classification accuracy for the ANOXSVM 

model, was equal to 99% and 97% for the test and validation datasets. Similar results were 

obtained for the anaerobic phase with 95% and 98% accuracy in the train and test datasets 

respectively. 

Jaramillo et al. (2018) developed an SVM classifier to estimate online the end of partial 

nitrification in a laboratory aerobic-anoxic SBR based on features extracted from pH and 

DO sensors over time-windows, resulting in 7.52% reduction in the operational time. In 

this study, the main focus was to estimate offline the behaviour of N2O emissions based on 

historical batch data. The results from this study indicate that ORP and pH sensor data can 

be used to detect the consumption of N2O during the nitritation/nitrification in SBR 
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reactors. The results show that knowledge-based feature-extraction and SVM classification 

could help in explaining the behaviour of the system and potentially optimise the control 

to consider the consumption of accumulated N2O (i.e. in this system the denitritation can 

be stopped after the local maximum of the ORP rate after the “nitrite knee” in all the cycles 

investigated.) 

Table 5.4: SVM classification results anaerobic phase 

Phase Dataset Misclassified Sensitivity  Specificity  Accuracy 

(%) 

Kappa  Class 

Anoxic 

phase 

cycle N 

Train anoxA:  1 

anoxB: 0 

1 0.99 99 0.97 anoxA: Final 

dissolved N2O 

concentration 

end of anoxic < 

0.6 mg/L 

 

anoxB: Final 

dissolved N2O 

concentration 

end of anoxic > 

0.6 mg/L 

Test anoxA:  1 

anoxB: 0 

1 0.98 98 0.92 

Anaerobic 

phase 

cycle N+1 

Train anaerA:2 

anaerB: 1 

0.98 0.97 97 0.94 anaerA:  N2O 

end of 

anaerobic > 2.6 

mg/L 

 

anaerB:  N2O 

end of 

anaerobic < 2.6 

mg/L 

  Test anaerA:  1 

anaerB: 0 

1 
 

0.97 98 0.95 

     

 

Figure 5.12 (a) and (b) illustrates the predicted and measured N2O concentration at the end 

of the anaerobic phase (ANSVR model). The SVR parameters were optimised based on 

the root mean square error using the train dataset. RMSE of the SVR model was equal to 

0.11 and 0.1 mg N2O-N/L for the train and test datasets respectively (R-squared equal to 

0.85 and 0.75 respectively).  As shown in Figure 5.12 (b) the simulation results follow the 

behaviour of the actual dissolved N2O concentrations observed. One of the major factors 

affecting the performance is the limited number of data points, but the prediction is still 

accurate. 
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 Figure 5.12: a) Predicted vs measured dissolved N2O concentration in the end of the 

anaerobic phase (ANSVR) for the test and train datasets and (b) comparison of predicted 

and measured dissolved N2O concentration for the test dataset 

5.4.9 Prediction of the N2O concentration in aerobic phase 

The input features are shown in Table 5.5 and were selected based on the identified 

influential variables. The N2O predicted values of the ANSVR model were used (anaerP). 

The procedure followed for the selection of model parameters was similar to the respective 

one followed for the anaerobic phase. Additionally, ANSVR test dataset cycles, were 

identified and used in AERSVR test dataset A. The model was also applied in anaerB 

cycles (test dataset B). 
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Table 5.5: Features selected in the SVR model for the aerobic phase 

Aerobic Features 

Average conductivity rate 

ORP end of aeration 

ORP increase during aeration 

Conductivity at the beginning of aeration 

Average DO  

pH at the beginning of aeration 

Conductivity increase (based on the conductivity at the end of the 

aerobic phase of the previous cycle) 

Initial aerobic N2O concentration (based on ANSVR predictions) 

Figure 5.13 (a), shows the predicted and measured average aerobic N2O concentration for 

the trained and test datasets. RMSE of the SVR model was equal to 0.06 and 0.11 mg N2O-

N /L for the train dataset and test dataset A respectively, whereas the R-squared was equal 

to 0.94 and 0.82 (Figure 10 (a) and (b)).  

  
Figure 5.13: (a) Predicted vs measured dissolved N2O concentration (AERSVR) in the 

aerobic phase for the train dataset, the test dataset A and the test dataset B and (b) 

comparison of predicted and measured dissolved N2O concentration for the test dataset B 

The RMSE of the predicted values for the test dataset B, was equal to 0.29 mg N2O-N/L 

and the R-squared was equal to 0.72 (Figure 10 (a)). The AERSVR model underpredicted 

the average dissolved N2O concentration of test B dataset. This is expected given that in 

test B dataset cycles, the initial aerobic N2O accumulation exceeds the sensor calibration 
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limit. Therefore, on many occasions the initial aerobic N2O accumulation was also 

underestimated (section 5.3.1 - anaerB cycles). An example is shown if Figure 5.14. In 

cycle A, the average dissolved N2O concentration (calculated as discussed in section 2.2.1 

for anaerB cycles) is equal to 1.33 mg/L. The AERSVR model predicted 0.87 mg/L 

underestimating the actual concentration (considering initial accumulation equal to 0.6 

mg/L). In cycle B, the AERSVR model predicted N2O concentration equal to 0.61 mg/L 

(considering initial accumulation equal to 0.6); the observed average dissolved N2O 

concentration (after the local minimum), was equal to 0.6 mg/L.  

 

Figure 5.14: An example of dissolved N2O profiles for cycles belonging to anaerB cycles 

(test dataset B). The red points represent the first point considered for the calculation of 

the average aerobic N2O accumulation (as described in section 5.3.1). Data points in the 

beginning of aeration exceeding sensor calibration limits are not shown. 

The results show that under the investigated operational conditions, the framework shown 

in Figure 5.2Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε. can provide a 

good estimation of the real dissolved N2O behaviour and concentration observed during 

the different phases of SBR operation. Instabilities in the performance of machine learning 

models due to changes in the operational conditions in wastewater bioreactors have been 

reported in the literature (Shi and Xu, 2018). Therefore, long-term datasets and 

investigation of different patterns and dependencies should be investigated before model 

construction. 
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5.4.10  Mitigation measures 

During aerobic phases, elevated average dissolved N2O concentration was linked with DO 

less than 1 mg/L and increased conductivity decrease rates (conductivity values represent 

NH4-N concentration values in the reactor). Therefore, cycles with increased conductivity 

decrease rate indicate higher NH4-N removal efficiency and NO2
-N accumulation. 

Dissolved N2O concentrations lower than 0.6 mg/L were identified in cycles with average 

DO concentration equal to ~1.36 mg/L, and conductivity decrease rate > 1.8 μS/cm/min. 

Increasing the reactor DO concentration to values higher than 1.3 mg/L can result in 

decreased aerobic N2O generation (Law et al., 2012). However, with the current anaerobic 

supernatant feeding strategy, blowers operate at maximum flowrate, so it is not possible to 

increase the aeration in the system.  

On the other hand, the implementation of a step-feeding strategy could foster the reduction 

of N2O emissions thanks to the lower NH4-N and free ammonia (FA) concentration at the 

beginning of the cycle, which has been recognized as a triggering factor for N2O production 

(Desloover et al., 2012). Conductivity at the end of the cycle can act as surrogate to estimate 

the effluent NH4-N concentration of the reactor and optimize the anaerobic supernatant 

feeding load. Consequently, the aerobic initial NH4-N concentration could be controlled to 

avoid either FA accumulation or high AOR with subsequent N2O generation.  

Additionally, frequent alternation of aerobic/anoxic phases can be introduced in order to 

avoid high nitrite accumulation. The impact of nitrite concentration on N2O production can 

be also minimized by ensuring adequate DO levels within the reactor to inhibit the nitrifiers 

denitrification pathway (Blum et al., 2018; Law et al., 2013). Rodriguez-Caballero et al. 

(2015) reported that in a full-scale SBR treating municipal wastewater, intermittent 

aeration (alternation between 20–30 min oxic and anoxic) led to a minimization of N2O 

compared to long oxic periods that enhanced N2O emission. The authors related this 

behaviour to the presence of shorter aeration times with subsequently lower nitrite 

accumulation and N2O production.  
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In addition, Su et al. (2019) reported that slightly acidic or neutral pH in nitritation reactors 

(at values that do not inhibit microbial activity) can decrease N2O generation  by up to 

seven times. Based on the pH profiles observed in this study, regulation of aerobic 

(alkalinity consumption) phase duration can be also considered to control the pH at lower 

levels. 

The developed models can be used to estimate rapidly and precisely the hard-to-measure 

N2O concentrations during aeration and detect N2O accumulation in non-aerated phases. 

Additionally, it can alert operators about cycles with anoxic and anaerobic N2O 

accumulation and elevated aerobic N2O concentrations, that require modifications to the 

system operation. The ANOXSVM model can predict if N2O is consumed in anoxic phases 

or if anoxic duration should be extended. Thus, additional provision of fermentation liquid 

can be performed to promote N2O consumption through denitritation, when after 70-90 

minutes the anoxic SVM model still indicates incomplete denitritation.  

This study provides evidence on the relationship of DO, ORP and conductivity and pH 

with the dissolved N2O concentration (in terms of correlation coefficients, behaviour and 

thresholds that indicate specific ranges of N2O accumulation). These findings together with 

the models developed in this study, can be the basis for the development of intelligent 

control algorithms to integrate emissions control in sidestream SBR reactors performing 

nitritation/partial nitritation or other systems similar to SCENA. Moreover, features based 

on ORP, pH, DO and conductivity measurements in wastewater SBR processes, that can 

be used to predict dissolved N2O concentrations have been identified. The developed 

framework can be also tested in continuous processes for the data-driven prediction of N2O 

emissions. 

5.5 Summary of main findings 

In this study the behavior of N2O emissions in a full-scale SBR reactor treating the 

anaerobic supernatant was investigated. Knowledge discovery and data-mining techniques 
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were employed to extract useful information on N2O dynamics in the system and predict 

the behaviour of dissolved N2O concentration. 

• The N2O emissions in SCENA process varies from 1.3% to 19% of NH4-N load, 

therefore they can contribute considerably to the operational carbon footprint of the 

process (~90% on average).  

• Average aerobic dissolved N2O concentration could significantly under similar 

influent loads, DO, pH and removal efficiencies. Extracting information from the 

dynamic in-cycle behaviour of the variables monitored in the system is a significant 

step towards understanding N2O behaviour.  

• Aerobic dissolved N2O concentration peaks (>1 mg/L), were observed in cycles 

with average DO concentrations less than 0.9-1 mg/L and ORP concentration at the 

end of the aerobic phase less than 40 mV. Conductivity was correlated with the 

reactor NH4-N concentration (0.97). N2O peaks were also observed in cycles with 

elevated decrease of conductivity during aeration. Step-feeding, control of initial 

NH4-N concentrations and control of pH via the regulation of aerobic phase 

duration can mitigate the N2O peaks observed in this study. 

• The accumulation of N2O at the end of the SBR anoxic phase was stripped in the 

subsequent aerobic phase and had a significant impact on the amount of N2O 

emitted. The accumulated N2O was consumed rapidly after nitrite ‘knee’ that was 

linked with the nitrite depletion. The ANOXSVM model can be used to detect if 

anoxic duration should be extended or additional fermentation liquid provided to 

enhance N2O consumption in anoxic phases.  

• This study shows that low-cost sensors, conventionally used to monitor SBR 

systems (i.e. pH, DO, ORP), have good capabilities to predict the dissolved N2O 

behaviour and concentrations when couple with knowledge discovery techniques. 

The AERSVR model, showed reliable estimations of the aerobic N2O concentration 

and can provide guidance to WWTPs operators, on whether N2O levels are 

acceptable or mitigation actions are required. 
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6. Conclusions and Recommendations for future research 

The data generated from sensors and laboratory measurements can provide valuable 

information for understanding, control and mitigation of direct N2O emissions generated 

at wastewater treatment plants (WWTPs). This thesis demonstrated that the application of 

standardised data-mining frameworks to data obtained from wastewater treatment plants 

coupled with expert knowledge, can extract this information and translate it to actionable 

insights, supporting strategic plans for sustainable WWTP operation. 

The examined techniques for outliers detection, clustering, classification and regression 

were able to i) detect and isolate re-occurring process disturbances ii) provide insights in 

the long-term dynamic behaviour of N2O emissions, iii) link  the behaviour of operational 

variables with specific ranges of N2O emissions, iv) predict N2O emission fluxes and risks 

for elevated N2O emissions and v) provide feedback to the design of N2O monitoring 

campaigns for the reliable estimation of N2O emission factors. 

Process-based N2O EF benchmarking is challenging due to i) differences in the N2O 

generation triggered by the site-specific operational characteristics, environmental 

conditions and control parameters and ii) the sensitivity of the quantified EF to differences 

in monitoring strategies and duration of monitoring campaigns. The analysis of the N2O 

emission factors (EF), quantified in over 70 full-scale wastewater treatment processes 

revealed that the frequency and sampling techniques applied in N2O monitoring 

campaigns, can impact significantly the quantified EFs (Chapter 2). EF boxplots were 

developed for different groups of process that can be used to compare new processes in 

terms of their EF magnitude. On average 0.87% of the N-load is emitted in the form of 

N2O in the investigated mainstream processes. However, when considering the duration of 

the monitoring campaign, studies lasting over a year result in a median EF equal to 1.7 % 

of the N-load. On the other hand, most of the monitoring campaigns lasting less than one 

month have reported EFs less than 0.3 % of the N-load. Therefore, short-term monitoring 

periods may fail to capture underlying seasonal variations in the N2O formation (or be 

affected by short-term process perturbations), and, consequently, result into unreliable EFs.  
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Similarly, the analysis showed that studies monitoring N2O emissions in mainstream 

wastewater processes continuously (i.e. online via gas analysers), have quantified higher 

N2O EFs than studies monitoring N2O emissions discontinuously (i.e. offline via grab-

samples). The average EF of mainstream wastewater processes monitored continuously 

and discontinuously is 1.2% and 0.44% of the N-load respectively. Low-frequency 

sampling campaigns have a high risk to not capture sufficiently short-term changes in 

pollutant concentrations, operational conditions and system disturbances impacting N2O 

generation.   

An N2O EF database has been developed in this work, including information on 

configurations, control strategies, operational conditions, monitoring strategies, generation 

mechanisms and mitigation measures (subject to the information reported in the studies) 

for different processes and process-groups.  

Two major drawbacks were identified in the conventional techniques used for N2O data 

management and analysis. Firstly, the application of simple descriptive statistics, simple 

univariate and bi-variate graphical representations of operational variables, cannot 

adequately assess the combined effect of operational variables on N2O generation. 

Secondly, visualizations of multivariate long-term timeseries can become overcrowded and 

cluttered, hindering significant events and short-term dependencies and limiting the 

knowledge that can be extracted from the wastewater sensor signals. The development of 

structured approaches that utilise readily available wastewater data (i.e. from sensors and 

actuators) to extract information concerning the N2O emission patterns, combined with 

advanced visualization and dimensionality reduction techniques, can facilitate the 

interpretation of the long-term N2O emissions behaviour.  

Therefore, efforts were focused towards the development of a methodological framework 

for knowledge discovery from wastewater treatment datasets that can be applied and 

supplement current data management and analysis practices. Data-driven pattern 

recognition and modelling techniques were used to extract insights on the long-term N2O 

triggering operational conditions and dependencies with environmental and operational 

conditions from different full-scale biological processes.  
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Multivariate statistical techniques were used to extract information from the long-term N2O 

monitoring campaign of a full-scale Carrousel reactor (Chapter 3). The analysis showed 

that data-mining techniques can be used to assist researchers and operators to detect, 

understand and visualize the temporal behaviour and characteristics of the operational and 

environmental variables monitored online and their impact on N2O formation. 

Additionally, the segmentation of the system based on differences in the behaviour of N2O 

emissions enabled the detection of strong and varying local dependencies with the 

operational variables that were not visible when the complete timeseries were considered. 

The investigation of dependencies between N2O emissions and operational variables in 

biological processes needs to account for i) the temporal variability of operational and 

environmental conditions that result into changes of the N2O triggering mechanisms, ii) 

system disturbances that can influence short-term (i.e. 1 day) or even for longer periods 

(i.e. one week) both the system performance and the N2O generation and ii) the combined 

effect of the operational variables on N2O emissions.  

Specifically, in the investigated system, fluctuating dependencies of the N2O emissions 

with the operational variables were quantified, for temporal segments characterised by 

different range and pattern of N2O emissions. Therefore, abrupt structural changes in the 

profile of N2O emissions can be a sign of changes in the underlying mechanisms or 

environmental conditions triggering the N2O generation.  Hierarchical k-means clustering 

and principal component analysis (PCA) applied in the different segments, provided 

insights on the combined operational conditions linked with specific ranges of N2O 

emissions and isolated sets of variables that relate to N2O emissions. Additionally, the 

behaviour and ranges of the operational variables in the clusters can guide towards the 

identification of possible N2O triggering mechanisms. For instance, clusters characterised 

with high dissolved oxygen (DO) and peaks in nitrite and nitrate concentrations indicated 

insufficient denitrification zones in the reactor.  

Additionally, findings of this research showed that discretisation of the operational 

behavior of biological processes (based on the patterns of the variables monitored online 

and seasonal effects), can be used to predict the range of N2O emissions. Additionally, the 
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frequency and duration of the sampling requirements, for a reliable estimation of N2O EF, 

can be reduced (Chapter 4). 

Specifically, the investigated Carrousel reactor, structural changes in the profiles of 

operational variables were linked with changes in the N2O emissions range. Simulation 

results showed that even three-day sampling campaigns between the detected changepoints 

have a high probability (~80%) to result to an EF quantification with less than 10% error. 

Conventionally applied monitoring strategies with equivalent duration (i.e. random 

sampling, monthly sampling) have significantly higher probabilities to result in high errors 

in the EF quantification and are more likely to underestimate the EF in the investigated 

system.   

Events with abnormal diurnal behaviour of the influent flow-rate and effluent NH4-N 

concentrations (linked with precipitation events and poor system performance) were 

isolated and categorized based on duration/intensity using a combination of feature 

extraction and density-based clustering. This can facilitate the investigation of N2O 

emission behaviour under different system disturbances. In the investigated reactor, the 

N2O response for the observed system disturbances varied mainly based on the 

temperature, the magnitude of influent flow-rate peaks and duration of the events, the NH4-

N concentration and the local N2O emission patterns. 

Finally, the analysis showed that support vector machine (SVM) classification models can 

be trained to detect operational behaviour of the system. The classification model, 

constructed in this work, predicted the state of the system (based on the segments identified 

by the changepoint detection method). Since the different segments were characterised by 

relatively stationary N2O fluxes, the SVM predicted classes provided a good approximation 

of the expected range of N2O emission loads.   

The results indicate that analysis of historical data and investigation of seasonal effects can 

be of paramount importance in the planning of monitoring campaigns sampling frequency 

and duration. The proposed approach can be applied when long-term online sampling is 

not feasible (due to budget or equipment limitations) to identify N2O emissions “hotspot” 
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periods and guide towards the identification of the operational periods requiring extensive 

investigation of N2O pathways and mitigation measures. 

The developed framework for knowledge discovery was applied to a full-scale sidestream 

SBR, treating the anaerobic supernatant (SCENA) (Chapter 5). Overall, considerable direct 

N2O emissions, were quantified in the SCENA process (7.6% of the NH4-N load). 

Therefore, understanding and control of N2O emissions is significant in order to improve 

the sustainability of the process. Conductivity, oxidation reduction potential, pH and DO 

can provide useful insights on the N2O emissions behaviour, as long as i) the different cycle 

phases are analysed separately, ii) cycles with poor performance are detected and isolated 

and iii) different operational conditions especially in the aerobic phase are identified and 

clustered together. SVM classification and regression models were trained to predict 

whether dissolved N2O will be consumed during the anoxic and anaerobic phases and the 

average dissolved N2O concentration during aeration. The applied methodology can 

provide a good estimation of the real dissolved N2O behaviour and concentration during 

the different phases of SBR operation.  

The analysis showed that, investigation of different patterns and dependencies is a 

significant step before the development of machine learning regression models. 

Introduction of periods characterised by significant changes in the operational conditions 

can deteriorate model performance. 
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6.1 Recommendations for future work 

In this thesis, efforts were focused to investigate how data mining techniques for detection 

of abnormal events, pattern recognition, classification and regression can be used to extract 

information hidden in the raw sensor signals and provide insights on the long-term N2O 

emissions’ dynamics in different wastewater treatment processes with different control 

strategies. Main aspect of the analysis was to investigate the nature of actionable 

information that can be extracted when these techniques are used. The results showed that 

a structured framework for knowledge discovery from wastewater databases supported by 

a combination of domain knowledge and data-mining techniques can be used to support 

WWTP operation and facilitate the integration of sustainability metrics in the decision 

making. 

The current thesis showed that information extracted from several conventional wastewater 

sensors can provide valuable insights on the long-term N2O behaviour. Further research is 

required investigating the optimal sensor location and the optimal combination of variables 

monitored, for N2O emissions’ control for different wastewater configurations. Wastewater 

processes are characterised by non-stationarity, high dynamics and variations at different 

scales in time. Here, the development of novel methods and standardised frameworks that 

inherently consider these features while still being practicable is due.  

Future research can also explore the possibility of coupling sophisticated statistical tools 

(e.g. multivariate statistics, machine learning algorithms) with multiple-pathway 

mechanistic models for full-scale applications, to facilitate the fast and adaptable online 

implementation of model predictive control and forecasting decision support tools. For 

instance, machine learning models trained at the residuals of mechanistic models can 

enhance the generalisation capabilities of these models. On the other hand, computationally 

universal mechanistic models can be used to simulate variables not conventionally 

monitored in WWTPs (i.e. NO2
-, NO). Simulations of key variables coupled with the raw 

sensor signals can be used in the knowledge discovery process to enhance the reliability of 

the findings and improve the generalisation capabilities of the data-driven models. The 
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development of layer based on machine learning techniques can be integrated in a universal 

complex N2O model to facilitate individual process parameters calibration. Multivariate 

statistics and pattern recognition algorithms can be applied to the variables monitored 

online in WWTPs to differentiate operational conditions and guide towards different 

calibration requirements within the same process. Finally, multivariate statistics can be 

applied to identify and isolate complex relationships between system variables and guide 

towards process-specific simplified modelling approaches. Such integrated, practical tools 

can help plant operators to design effective mitigation strategies. 

Additionally, several aspects need to be considered before the integration of data-mining 

techniques into the data management practices of water utilities.  

Water utilities have been dominated by traditional operations focusing on long-term 

investments and continuity. Historically, water utilities have separate departments doing 

separate jobs. Data analysis and algorithmic calculations on all data of all departments are 

not performed; standardised approaches are missing. The techniques developed in the 

current thesis need to be advanced to practical tools and interfaces that can provide the 

desired information at a simple and intuitive way. For instance, segmentation, clustering, 

classification and regression techniques integrated into SCADA systems can be used to 

benchmark and predict key performance indicators (KPIs) (performance, cost, 

environmental aspects) under different operational conditions (i.e. based on seasonal 

influent composition variations, different process rates affected by environmental 

conditions, system shocks etc). User-friendly dashboards, communicating the results in a 

simple and informative will help operators to detect operational modes in which the system 

is underperforming, analyse risks and prioritise optimisation needs providing a platform 

for continuous internal multivariate benchmarking of WWTP performance. 
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Table A.2: Conversion of N2O EF to % of TN-load 

Paper Process 

TN 

(mg/l) 

influent 

TN 

removal 

efficiency                                               

(%) 

EF                           

(mgN2O/L 

wastewater) 

EF TN 

removed                       

(%) 

EF TN 

Effluent                    

(%) 

EF TN 

influent 

(%) 

Yan et al., 

2014 
A2/O 

69.55 85 0.06 
0.08 

  0.068 

Ren et al., 

2013 
A2/O 

  81   
0.13 

  0.104 

Weissenbacher 

et al., 2010 
Anammox 

  
87 

  
  

1.3 0.169 

Ren et al., 

2013 
OD 

  70   
0.14 

  0.098 

Yan et al., 

2014 
OD 

73.40 
53 

0.2 
0.36 

  0.191 

Ren et al., 

2013 
r- A2/O 

  
80 

  
0.11 

  0.091 

Yan et al., 

2014 
r- A2/O 

69.55 
48 

0.07 
0.23 

  0.110 
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Table A.3: Performance, operational & monitoring strategy and monitoring period of sidestream configurations with respect to the N2O EF. 

Studies with (*) have been considered in the development of Fig 2.2 and 2.3 with EFs under normal operating conditions. All studies have been 

considered in Fig. 2.1. Additionally, details are provided in the supplementary excel file   

Configuration 

N2O 

EF 
Performance & Operational Strategy Monitoring period & strategy 

Source Process 

EF 

(with 

respect 

to TN 

inf.) 

N-load 

(kg d−1) 

NH4
+
 ef

f. (mg L-

1) 

NO2
− e

ff. (mg 

L-1) 

Operational strategy Period C/GS Monitoring strategy 

Castro-Barros 

et al., 2015* 

One-stage 

PNA 

granulara 

2% 1,053g 24.5-16.6 
 

4.7-6.6 

• Continuous intermittent aeration 

• Fresh air controlled by NH4
+
 & 

NO2
-
 concentration 

3.08b C 

• Summer campaign 

• Off-gas equal to 

blower flow-rate 

• Covered 

Mampaey et 

al., 2016* 

 

One-stage 

SHARON 

granular 

reactor 

3.8% 894 nm nm 

• Aerobic retention time=1.35 d 

• 2-h cycles intermittent aeration; 

aerated period (DO setpoint=2 mg L-

1); non-aerated period based on 

varying influent flow-rates 

9.5d C 
• Summer campaign 

• Off-gas equal to 

blower flow-rate 

• Covered 

 

 

1.8% 1,193 nm nm 

• Short cycles (1 h) 

• NO3
-
 concentration increased from 8 

to 15 g N m-3 
1e C 

1.5% 965 nm nm 
• Continuous aerobic conditions (DO 

setpoint=2 mg L-1) 1f C 

3.9% 914 nm nm • DO concentration=1 g O2 m-3 <1h C 

18.5% 323 nm nm • DO concentration=0.6 g O2 m-3 <1h C 

Kampschreur 

et al., 2009 * 
1.23% 1,200 g 1-2 6-8 • DO setpoint=5 mg L-1 20 h GS 

https://www-sciencedirect-com.ezproxy.brunel.ac.uk/topics/earth-and-planetary-sciences/oxic-conditions


209 

 

One-stage 

PNA 

granular a 

~1.23%j nm nm nm 

• A factor 1.5 aeration rate increase 

(from 2,000 to 3,000 N m-3 h-1) 

leading directly to a factor 1.5 

increase in NO emission  

<1 GS 

• Continuous off-gas 

collection (at 1 L 

min-1) during the 

measurement 

campaign 

• Off-gas equal to 

blower flow-rate 

~0 nm nm nm • DO<0.5 mg L-1 <1 GS 

>1.23%
k 

nm nm nm 
• NO2

-
 accumulation up to 23 mg 

NO2-N L-1 
<1 GS 

Ahn et al., 

2010* 

Nitritation 

reactor 

0.24-

0.54l 
8,650m 710n 

 

nm 
• No details provided 

1 C 

• SEIFC 

• Flow-rate assessed 

5 times d-1 

Kampschreur 

et al., 2008* 

Two-

reactor 

nitritation-

anammox 

process 

(anammox 

reactor) 

0.6 

980o 78.1-115 4.9-7.2 

• Off-gas recycled to the bottom of the 

reactor 

• Designed for a conversion of 500 kg 

N d-1 

3.13 GS 

• Off-gas equal to 

blower flow-rate 

• Covered  
Two-

reactor 

nitritation-

anammox 

process 

(nitritation 

SHARON 

reactor) 

1.7 

• DO=2.5 mg L-1 

• Discontinuous aeration to maintain 

(solid) aerobic retention time=1.4 d 

• Aeration cycles of 2 h 
3.13 GS 

Weissenbach

er et al., 

2010* 

Single 

deammonif

ication 

reactor  

0.17 
2

89 
136 1.75 

• pH-controlled aerobic/anoxic 

sequence of 6 h 

• DO=0.3 mg L-1 

• Continuous influent flow-rate=2.5 L 

s-1 

• Settling & discharge phase of 2 h  

• HRT=3.3 d 

ns GS 

• Cylinder used for 

gas collection 

• 15-min GS 

• Off-gas equal to 

blower flow-rate 
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Joss et al., 

2009 

Nitritation-

anammox 

(continuous 

aeration) 

0.4 %p 625 30 
 

<0.2 

• DO<1 mg L-1 

• The simultaneous anammox activity 

during aeration already depleting 

most of the NO2
-
  

• Better monitoring of the process for 

avoidance of NO2
-
 accumulation 

ns C 
• Off-gas equal to 

blower flow-rate 

• Covered 
Nitritation-

anammox 

(intermitten

t aeration) 

0.6%p 625 30 
 

<0.2 

• 45 min aeration & 15 min stirring 

• Both control strategies performing 

comparably in terms of NO2
-
 

oxidizing activity 

ns C 

Gustavsson 

and la Cour 

Jansen, 2011 

Nitritation 

SBR 
3.8%g 4,000 52.9 

600-

850 

• 6-h SBR cycle 

• Simultaneous filling (174 m3 h-1), a 

settling & a decantation phase 

• pH controlled to 6.8 by addition of 

NaOH  

• DO setpoint=1.3 mg L-1 

• Aerobic HRT=1.4 d 

• Total HRT=2.3 d 

5c C 

• Off-gas collected 

by a long vertical 

pipe the end of 

which placed just 

below the water 

surface at the 

lowest water level 

• Non-covered 

Stenström et 

al., 2014* 

Nitrificatio

n-

denitrificati

on SBR 

5.1%   84q 30-90 10–

25 

• 8-h SBR cycle 

• Anoxic feeding with ethanol 

dosage/oxic/settling phase 

• HRT= 5.0 ± 0.5 d. 

• SRT=15 ± 3 d 

• DO=2 mgL-1 

2 C 

• Flow-rate assessed 

by mass flow-meter 

and rotameter 

a. Effluent form potato-processing UASB plant & AD reject water from municipal WWTP 
b. Normal operation, summer period; the total monitoring campaign lasted 7 days 
c. Winter campaign: 19th to 20th January (4 cycles) & 14th to 16th February (8 cycles) 
d. 114 cycles considered as standard operation, accounting for 228 h & a total of 21 d 
e. 21 cycles 
f. 2.8 h of continuous aerobic conditions (DO setpoint=2 mg L-1), equivalent to the duration of 11 cycles 
g. NH4-N load 
h. Result of 2 cycles  
i. Conversion capacity 

https://www-sciencedirect-com.ezproxy.brunel.ac.uk/topics/earth-and-planetary-sciences/oxic-conditions
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j. No significant change in the N2O emissions probably caused by a slower response of the N2O off-gas concentration due to mass transfer limitation combined with 

higher N2O solubility  
k. NO2

-
 accumulation when high oxygen concentration applied after oxygen limitation; the latter leading to higher nitrification rates compared to the anammox conversion 

rates 
l. Influent TKN 
m. TKN  
n. TN load (g N m3) 
o. Kj-N 
p. N2O EF with respect to the N-load removed 
q. Per cycle 
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Table A.4: Performance, operational & monitoring strategy and monitoring period of mainstream configurations with respect to the N2O EF. (P: 

monitoring period, C: Continuous, GS: Grab-samples, nm: not mentioned/specified). Studies with (*) have been considered in the development 

of Fig 2.2-2.5 and with average EFs under normal operating conditions. Specific details on the studies considered in each Fig. All studies have 

been considered in Fig. 2.1. Additionally, details are provided in the supplementary excel file   

Source Process Control 
P.E. 

(103) 

Q 

(ML 

d-1) 

Inf. 

N-

cont

ent 

(mg 

L-1) 

Eff. 

NH4
+
 

(mg L-

1) 

Eff. 

NO

3
- 

(mg 

L-1) 

P 

(d) 
Monitoring 

EF with 

respect 

to inf. 

TN  

C/

GS 

Aboobakar 

et al., 

2013*  

Plug-flow 

• Small anoxic zone followed 

by aerated zones (3 passes) 

• DO control=1.5 mg L-1 

• SRT=10 d 

• HRT=8 h 

• T=16-19 ℃ 

210 4.4 15.3 0.25 12 56 

• 7 days per pass 

• 8 equally distributed 

sampling points 

• Floating chamber 

• Off-gas equal to blower 

flow-rate 

0.04% C 

Pan et al., 

2016* 

Plug-flow 

step-feed 

• SRT=12 d (aerobic = 8 d) 

• HRT=12 h 

• 2 steps (anoxic/aerobic) 

• Influent in both anoxic 

zones 

• RAS sent to path 1 

• DO control=1 mg L-1 

nm 50 47.4 0.3 12.1 49 

• N2O monitored: beginning, 

middle, end of oxic zones 

• Floating chamber: modified 

from plastic commercial 

hopper tank 

• Oxygen meter to calculate 

Qgas 

1.9%a; 

0.7%a; 

3.5%a 

C 

Rodriguez-

Caballero 

et al., 

2014* 

Plug-flow 

• Anoxic/aerobic/short 

anoxic/aerobic 

• DO oxic 1=2.1 mg L-1 c 

• DO oxic 2=1.4 mg L-1 c 

• DO oxic 3=0.7 mg L-1 c 

• HRT≈0.6 d 

• SRT≈10 d 

• T=25 ℃ 

112 21.8 47.9 5.1b nm 70d 

• 4 days per sampling location 

(SL) 

• SLs separated based on 

different air diffusers & flow 

turbulence 

• Off-gas equal to blower 

flow-rate 

0.12%b C 
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• Commercial flux chamber 

(AC'SCENT® Flux Hood) 

Ahn et al., 

2010* 
Plug-flow 

• 4 passes 

• DO=3.1 mg L-1 e 

• T=11 ℃ 
nm 15 

22b 12.2b nm 1 • SEIFC  

• Air flow-rate: 5 times per 

day 

0.4%b 

C • 4 passes 

• DO = 0.9 mg L-1 e 

• T=23 ℃ 

26.4
b 

10.7b nm 1 0.4%b 

Ahn et al., 

2010* 
Plug-flow 

• 2 passes 

• DO=1.7 mg L-1 e  

• T=11 ℃ 
nm 8.7 

15.9
b 

10.1b nm 1 • SEIFC 

• Air flow-rate: 5 times per 

day 

0.6%b 

C  • 2 passes 

• DO=0.9 mg L-1 e  

• T=22 ℃ 
22b 13.3b nm 1 0.1%b 

Wang et 

al., 2016b* 
A2/O 

• Plug-flow pattern 

• HRT=7.7-10.3 h 

• T=13-34 ℃ 

• Diurnal DO=0.6-6.8 mg L-1 

• No automatic DO control 

200 48 
10-

30 
2-10 nm 365 

• Monitoring frequency: once 

per month 

• Investigation of seasonal 

effects  

• Location: oxic starting point 

• Chamber: closed floating 

equipped with liquid level 

meter, temperature meter, 

pressure bag & fan 

0.1-3.4%                                                                                C 

Ren et al., 

2013* 
A-A2/O • T=12.5-23.5 ℃ 260 100 73.9 2.1 0.4 61 

• SEIFC & gas bag 

• Off-gas equal to blower 

flow-rate 

• N2O calculated based on 

gas bag concentration 

change 

• Gas samples collected every 

10 min for a total of 30 min 

• March to June 

0.104%f GS 
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Yan et al., 

2014* 
A2/O 

• HRT=15 h 

• SRT = 14 d 

• Temperature/DO not 

specified 

nm 230 

38.8

-

91.3 

nsj nsj 9 

• Gas bag 

• 9-month (from March to 

November) once per month 

• Investigation of seasonal 

effects  

• Various sampling locationsi  

0.1%k GS 

Hwang et 

al., 2016 
A2/O • T=15-35 ℃ 3,220 1,710 

12–

1,55

0l 

nm nm 10 

• Modified forced-draught 

chamber & gas bag 

• Gas flow-rate measured 
0.16%m GS 

Foley et al., 

2010 
A2/O 

• Four-stage bioreactor 

(similar to A2/O 

configuration) with 

diffused aeration & 

supplemental COD dosing 

by primary sludge 

nm 25 
55-

85p 

2.9-

3.1p 
nm 2 

• Floating gas hood & gas 

bags 

• 2-4 h of intensive sampling 
1.4%y GS 

Wang et 

al., 2011 

A2/O 

+ 

WWTP 

• High density settler tanks 

and high efficiency fiber 

filter beds after final 

settling tanks 

• T=12-24 ℃ 

1,500 300 37.5 < 10p nm 90 

• Sampling 3 times per week 

9:00 am – 05:00 pm 

• Emission isolation gas hood 

and gas-bag  

• Sampling positions 

determined by DO change 

and water surface area 

0.1-

0.13%v 
GS 

Toyoda et 

al., 2011 
A2O 

• HRT = 21.6 

• T = 19.7 160 75 nm nm nm 1 

• Gas samples were collected 

at exhaust duct over the oxic 

tank via stainless steel and 

glass bottles 

• Concentration and 

isotopomer ratios of N2O in 

the water and gas samples 

measured on an isotope-ratio 

monitoring mass 

spectrometer 

nm - 

Li et al., 

2016* 

Reversed 

A2/O 
• Fine bubble aeration nm 250 34 8 nm nm 

• Sampling bag collected 

every 2-3 d 6-10%b GS 
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• Temperature/DO not 

specified 

• Pre-experiment to select 

sampling points 

representative to reactor 

zones (3 oxic zones, 1 

anoxic & 1 anaerobic) 

• Hand-crafted SEIFC 

• Summer (May-August) and 

winter (November-January) 

• Investigation of seasonal 

effects  

Ren et al., 

2013* 

Reversed 

A2/O 
• T=12.5-23.5 ℃ 160 50 

104.

1 
2.4 4.3 61 

• SEIFC & gas bag 

• Off-gas equal to blower 

flow-rate 

• N2O calculated based on 

gas bag concentration 

change 

• Gas samples collected every 

10 min for a total of 30 min 

• March to June (frequency 

not clear) 

0.091%h GS 

Yan et al., 

2014* 

Reversed 

A2/O 

• HRT=15 h 

• SRT=8 d 

• Temperature/DO not 

specified 

nm 230 

38.8

-

91.3 

nmj nm j 90 

• Gas bag 

• 9-month (from March to 

November); once per month 

• Investigation of seasonal 

effects  

• Various sampling locationsi 

0.11%n GS 

Daelman et 

al., 2015* 

Plug-flow 

& 2 

carrousels 

• DO, NO3
-
, NH4

+
 & TSS 

data available from 

SCADA system at 10-min 

intervals 

• Average influent COD=328 

mg L-1 (87% average 

removal efficiency) 

• MLSS controlled by 

operators depending on 

360 

Infl. 

flow-

rate 

availa

ble 

from 

SCA

DA 

42 8 nm 487 

• Covered system 

• Off-gas continuously 

pumped to a Servomex 

infrared gas analyzer to 

measure N2O 

• 16-month monitoring period 

(October 2010-January 

2012; 1-month interruption 

 2.8% C 
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temperature; SRT resulting 

from the amount of wasted 

sludge to maintain the 

target MLSS 

syste

m at 

10-

min 

interv

als  

in October 2011 due to 

technical failure) 

Brotto et 

al., 2015* 

Non-BNR 

AS 

• Average HRT=10 h 

(range:7-13 h) 

• SRT=3 d  

• Continuous aeration system 

with no intentional anoxic 

zones 

• DO ranging from <1 to >7 

mg L-1 

• T=26-31 ℃ 

50 14.7 31 16.2 0.9 183 

• Sampling from 7 distinct 

points  

• January to July (once per 

month) 

• Gas sampling: upturned 

funnel device 

• Investigation of seasonal 

effects  

• Off-gas equal to blower 

flow-rate 

0.02%-

0.3%  
GS 

Ribeiro et 

al., 2017 

Extended 

aeration 

non-BNR 

AS  

• Located at research 

institution 

• Raw wastewater flow 

linked to institution’s work 

regime (not continuous) 

• HRT=8 h  

• SRT=25 d 

2.5 1.1 nm nm nm 3 • Floating chamber ns C 

Filali et al., 

2013* 
AS 

• Annular type reactor with a 

central anaerobic zone & 

an alternate aeration mode 

in the outer ring 

• Conventional aeration 

control system (O2/ORP) 

230 nm nm nm nm 1 

• Floating chamber 

• 2 sampling locations 

representative of the 

measured gas/liquid mass 

transfer parameters 

0.004%b C 

Chen et al., 

2016* 
AS 

• Influent wastewater mainly 

produced from various 

metal-processing, metal 

surface & chemical 

industries 

nm 18 

15.5

-

16.3 

nm nm 14 

• 7 d, 4 times per d, twice 

(winter/summer) 

• Samples collected by a QT-

2B air sampler (1m above 

reactor surface) 

0.0872%
w; 

0.017s 

GS 
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• T=30.5 ℃ (winter) & 30.8 

℃(summer) 

• HRT=5 h 

Bellandi et 

al., 2018 
AS 

• No pre-denitrification 

• Aerated tank equipped with 

EPDM membrane disk 

diffusers 

• 1st half of aerated tank: 

56.6% of diffusers; 2nd 

half: 43.4% of diffusers  

• Fixed air flowrate adjusted 

once per day according to 

manual DO measurement 

& AS characteristics 

• No online monitoring/ 

logging 

300 nm 50 nm nm 1 

• 3 floating hoods distributed 

along the length of 1 of 

aeration tanks 
0.06r C 

Mello et 

al., 2013 * 
AS  

• Intermittent aeration (60 

min aerated & 30 min non-

aerated) 

• Air flow-rate=640 m3 h-1 

2 0.6 27.5 13.4 0.9 6 

• Duration monitoring: 90 min 

per d 

• Sampling method: upturned 

30-cm diameter plastic 

funnel 

0.1% GS 

Tumendelg

er et al., 

2014* 

AS 

• DO controlled at 1.5, 2.0 

and 2.5 mg L–1 

• HRT = 11.1 – 11.5 h 

• SRT = 11.5–13.5 days 

• T = 17.1–18.3 ℃ 

447 14 nm 1.3 
59 -

76 
3 

• Aerobic tanks separated into 

three zones further 

partitioned into three 

sections 

• Sampling between 9:00 am 

– 05:00 pm 

• Gas samples collected from 

the exhaust duct 

• Dissolved N2O measured 

via isotope ratio mass 

spectrometer 

0.03-

0.14% 
- 
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Castellano-

Hinojosa et 

al., 2018 

Sequential 

AS  

• pre-

denitrification/nitrification 

• 4 full-scale municipal 

WWTPs 

10-425 2-488 

41.1

-

93.6 

14-

52.3 
nm 10 

• Biweekly 5-month campaign 

(December-April) 

• 50mL of freshly collected 

AS placed in 125-mL glass 

bottles: closed with serum 

rubber caps to allow 

injection & withdrawal of 

gas samples, & incubated at 

25 ℃ during 3 h to achieve 

maximum N2O emission 

• Varian 4900 Gas 

Chromatograph with a 

PoraPlot Qcolumn equipped 

with an electron capture 

detector with N2 as carrier 

gas 

Average 

N2O 

emission 

in AS 

samples: 

varying 

from 

0.1± 0.05 

to 6.5± 

8.9 mg 

N2O h-1 

L-1 AS 

C 

Ahn et al., 

2010* 

Step-feed 

non-BNR 
• T=17 ℃ nm 322.8 

26.6
b 

13.6b nm 1 

• Covered  

• Air flow-rate: 5 times per 

day 
0.2b C 

Ahn et al., 

2010* 

Step-feed 

non-BNR 
• T=26 ℃ nm 422.8 

21.1
b 

9.9b nm 1 

• Covered 

• Air flow-rate: 5 times per 

day 
1.8b C 

Ahn et al., 

2010* 

Modified 

Ludzack-

Ettinger 

• T=26 ℃ 

• DO=3.2 mg L-1 e nm 18.2 
37.4

b 
10.4b nm 1 

• SEIFC  

• Air flow-rate: 5 times per 

day 
0.07b C 

Ahn et al., 

2010* 

Modified 

Ludzack-

Ettinger 

• T=26 ℃ nm 18.6b 37b 8 nm 1 

• SEIFC  

• Air flow-rate: 5 times per 

day 
0.06b C 

Spinelli et 

al., 2018* 

Modified 

Ludzack-

Ettinger 

• Fine-bubble diffusers 

• Air supply: 1,870-9,210 m3 

h-1 

• Blowers automatically 

controlled 

80 30 25.1 0.2 12 46 

• Aerobic basin: sampling 

point placed at the head of 

aerobic reactor for 46 d & at 

the end for 7 d 

• Fixed & floating chambers 

tested 

0.001-

0.005% 
C 
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• DO: 3 different operating 

settings: 0.4, 1 & 3 mg L-1 

• DO=4 mg L-1 (measured) 

• SRT=10 d 

• T=17.7 ℃ 

• Off-gas equal to blower 

flow-rate 

• Calibration tests to select 

sampling methodology 

(based on types/dimensions 

of applied chambers) 

Bellandi et 

al., 2018 

Modified 

Ludzack-

Ettinger 

• Fine-bubble diffusers 

• Decreasing aerator density 

towards tank outlet: 44%, 

30.5% & 25.5% of aerators 

in each section 

• NH4
+
-DO cascade control 

• Limited NH4
+
 

concentration at plant 

entrance due to constant 

groundwater infiltration in 

the sewer 

600 200 <5 nm nm 1 

• 5 floating hoods distributed 

along the length of 1 of the 

aeration tanks 
0.01r C 

Townsend-

Small et 

al., 2011 

Modified 

Ludzack-

Ettinger 

• Anoxic zone representing≈ 

33% of total reactor 

• Methanol addition 

• Mean cell retention time 

(MCRT)=8.5 d 

5,700 35s <10s nm nm nm 

• Air samples above the 

treatment tanks collected in 

pre-evacuated stainless-steel 

canisters using a vacuum 

pump through a magnesium 

perchlorate water trap (5 cm 

above the wastewater 

surface)  

• Samples collected at mid-

day on weekdays 

(wastewater & N-loading 

average levels) 

0.86t GS 

Caivano et 

al., 2017* 

Modified 

Ludzack-

Ettinger 

• Submerged aerators coarse-

bubble diffusers 

• Entire oxidation system 

αSOTE in oxidation 

tank=1.9% 

• DO=0.2 mg L-1 (measured) 

15 3.8 
45-

55.6 

34.5-

43.5 

0.00

3-

0.4 

3 

• Custom-made floating 

chamber & super-inert multi 

foil bags 

• Monitoring of gas flow-rate  

• Sampling over a 

geometrically representative 

0.03b GS 
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area of the whole basin on at 

least 2% of the total tank 

surface (15 different 

locations) 

Foley et al., 

2010 

Modified 

Ludzack-

Ettinger 

• Diffused aeration nm 63 50p 11.8p nm 1 

• Floating gas hood & gas 

bags 

• 2-4 h of intensive sampling 
2.7%y GS 

Foley et al., 

2010* 

Modified 

Ludzack-

Ettinger 

• Diffused aeration nm 49 
69-

103 p 
8-11.8p nm 2 

• Floating gas hood & gas 

bags 

• 2-4 h of intensive sampling 
5.1%y GS 

Foley et al., 

2010* 

Modified 

Ludzack-

Ettinger 

• Diffused aeration nm 20 
66-

85p 

12.4-

15.5p 
nm 2 

• Floating gas hood & gas 

bags 

• 2-4 h of intensive sampling 
9%y GS 

Ahn et al., 

2010* 

Separate-

stage 

BNR 

• T=15 ℃ 

• DO=3.2 mg L-1 nm 104.6 
17.2

b 
3.4b nm 1 

• SEIFC 

• Air flow-rate: 5 times per 

day 
0.03b C 

Ahn et al., 

2010* 

Separate-

stage 

BNR 

• T=23 ℃ 

• DO=4.6 mg L-1 nm 122.8 
18.7

b 
3.5b nm 1 

• SEIFC 

• Air flow-rate: 5 times per 

day 
0.01b C 

Ahn et al., 

2010* 

Step-feed 

BNR 

• T=29 ℃ 

• DO=5.2 mg L-1 nm 131.8 
16.7

b 
22b nm 1 

• SEIFC 

• Air flow-rate: 5 times per 

day 
1.5b C 

Ahn et al., 

2010* 

Step-feed 

BNR 
• T=24 ℃ nm 390 20b 22b nm 1 

• SEIFC 

• Air flow-rate: 5 times per 

day 
0.05b C 

Ahn et al., 

2010* 

Step-feed 

BNR 

• T=19 ℃ 

• DO=1.9 mg L-1 nm 131.2 
23.5

b 
10.6b nm 1 

• SEIFC 

• Air flow-rate: 5 times per 

day 
1.6b C 

Ahn et al., 

2010* 

Step-feed 

BNR 

• T=25 ℃ 

• DO=1.5 mg L-1 nm 136.1 
21.3

b 
6.9b nm 1 

• SEIFC 

• Air flow-rate: 5 times per 

day 
0.62b C 
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Filali et al., 

2013* 
SND BNR 

• Annular type reactor with a 

central anaerobic zone & 

an alternate aeration mode 

in the outer ring 

• Control based on 

continuous monitoring of 

NH4
+
 & O2 concentrations 

• Aeration energy 

consumption by ≈30% for 

this control 

230 nm nm nm nm 1 

• Floating chamber 

• 2 sampling locations 

representative of the 

measured gas/liquid mass 

transfer parameters 

0.004%b C 

Sun et al., 

2017*  
A/O 

• Total HRT=9 h (7.5 h for 

aerobic zone & 1.5 h for 

anoxic zone) 

• SRT = 25 d 

• T= 14.2–25.7 ℃  

1,200 500 

34.2 

(24.

8-

43.7

) 

0.9 

(0.2-

1.7) 

nm 48 

• Twice per month during a 2-

year period 

• Gas bag fixed onto a foam 

board using steel hoops 

• Off-gas equal to blower 

flow-rate 

1.6% GS 

Foley et al., 

2010 

Johannesb

urg 

WWTP 

• Submerged aspirating 

aerators nm 10 
85-

114p 

4.6-

5.4p 
nm 2 

• Floating gas hood & gas 

bags 

• 2-4 h of intensive sampling 
1.5%y  GSS 

Bellandi et 

al., 2018 
UCT 

• 3 concentric rings: 1 

covered anaerobic tank 

(inner ring), 1 covered 

anoxic tank (middle ring) 

& 1 open air aerobic/anoxic 

tank (outer ring) 

• Plate aerators evenly 

distributed 

750 250 nm 0-4 nm 1 

• 3 floating hoods on tank 

surface (anoxic zone before 

entering the aerated 

compartment, beginning & 

end of aerated zone) 

0.1% r C 

Baresel et 

al., 2016*  
UCT 

• Sweden's 3rd largest 

municipal WWTP situated 

underground on Lidingo 

island 

• Serving 11 municipalities 

in Stockholm region 

nm nm nm ≤10 nm 60 

• Measurement campaign 

during 3 months in 1 of 

newer treatment lines 

(block BB11) 

• BB11: 7 zones, 3 aerated in 

the middle 

0.3% C 
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• Varying DO concentrations 

applied in the process 
• N2O-concentration 

measurements using 

Teledyne analytical 

instrument (Model GFC-

7002E) 

• Dissolved N2O: Clark-

type microsensors (by 

Unisense Environment 

A/S) at different locations 

in the basin (both aerated & 

non-aerated zones)  

Ahn et al., 

2010* 

4-stage 

Bardenph

o 

• T=14 ℃ 

• DO=4.4 mg L-1 nm 34.5 
24.3

b 
4.8b nm 1 

• SEIFC 

• Air flow-rate: 5 times per 

day 
0.16b C 

Ahn et al., 

2010* 

4-stage 

Bardenph

o 

• T=23 ℃ 

• DO=2.3 mg L-1 nm 36.8 
20.1

b 
2.1b nm 1 

• SEIFC 

• Air flow-rate: 5 times per 

day 
0.6b C 

Sun et al., 

2015* 
OD 

• 4 corridors 

• 3 aeration brushes set at 

equal intervals in each 

corridor 

• DO concentration (1 m 

under water surface) 

dropping below 0.5 mg L-1 

at 10 m behind the aeration 

brush 

500 200 
40-

60 
nm nm 730 

• Bimonthly sampling (48 d) 

• Gas bag  

• 6 gas samples collected 

from each aerated sampling 

point during 2 parallel 

experiments 

0.25% GS 

Li et al., 

2016* 
OD 

• Surface aerators 

• Temperature/DO not 

specified 
nm 

150,0

00 
20 8 nm nm 

• Sampling bag collected 

every 2-3 d 

• Pre-experiment to select 

sampling points 

representative to reactor 

zones (3 oxic zones, 1 

anoxic & 1 anaerobic) 

• Hand-crafted SEIFC 

6-10%b GS 
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• Summer (May-August) and 

winter (November-January) 

• Investigation of seasonal 

effects 

Ren et al., 

2013* 
OD • T=12.5-23.5 ℃ 260 100 47.4 1.7 11.1 nm 

• SEIFC & gas bag 

• Off-gas equal to blower 

flow-rate 

• N2O calculated based on 

gas bag concentration 

change 

• Gas samples collected every 

10 min for a total of 30 min 

• March to June 

0.098%g GS 

Ahn et al., 

2010* 
OD 

• T=19 ℃ 

• DO=0.6 mg L-1 e nm 15.5 
25.2

b 
2.8b nm 1 

• SEIFC 

• Air flow-rate: 5 times per 

day 
0.03b C 

Foley et al., 

2010 
OD 

• Extended aeration with 

diffusers nm 38 
75-

103p 

2.1-

3.3p 
nm 2 

• Floating gas hood & gas 

bags 

• 2-4 h of intensive sampling 
0.8%y  GS 

Yan et al., 

2014* 

OD 

(domestic 

& 

industrial) 

• HRT=10 h 

• SRT=12 d 

• Temperature/DO not 

specified 

nm 70 
43-

87.1 
nmj nmj 90 

• Gas bag 

• 9 months (from March to 

November); once per month 

• Investigation of seasonal 

effects  

• Various sampling locationsi 

0.08%o GS 

Sun et al., 

2013* 
SBR  

• Feeding, aeration, settling, 

decanting (1 h each) 

• 6 continuous 4-hour 

operating cycles in the SBR 

tank per day 

nm 80 
60-

90p 
nm nm 365 

• Bimonthly sampling  

• Gas-bag  

• Seasonality integrated in the 

EF 
5.6% GS 

Rodriguez-

Caballero 

et al., 2015 

SBR 

• Cycle: reaction phase 

(~130 min), settling (~65 

min) & decanting (~65 

min) 

48 nm 38.7 3.3 ~0 33 

• Commercial floating 

chamber (AC'SCENT® Flux 

Hood) 
6.8%q C 
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• NH4
+ setpoint 

automatically regulated  

• Continuous wastewater 

treatment 

• T=15.4 ℃ 

• HRT=10.3 h 

• SRT=26.3 d 

• DO=0-2.5 mg L-1 

• Off-gas equal to blower 

flow-rate 

Foley et al., 

2010 
SBR 

• 4 compartments with 

diffused aeration & bio-

selector zone 
nm 137 

47-

58p 

12.1-

18p 
nm 2 

• Floating gas hood & gas 

bags 

• 2-4 h of intensive sampling 
2.3% y GS 

Townsend-

Small et 

al., 2011  

Packed-

bed 

biofilm 

reactor  

• Designed only for carbon 

oxidation 

• Intense aeration (odor 

management) & warm 

temperatures resulting in 

N-removal 

• No supplemental carbon 

addition for denitrification 

• Fixed-speed centrifugal 

blowers 

nm 87 40s 26s nm nm 

• Air samples collected 

directly from the blowers 

flushing air from the 

trickling filters 

• Samples collected at mid-

day on weekdays (average 

N-loading & wastewater 

levels) 

0.25%t GS 

Quinn 

Brannon et 

al., 2017 

Aerated 

IFAS 

• Combined 

• sewer from domestic & 

industrial sources 

• 10 identical open 

• air tanks, each with the 

following 4 main zones: 

pre-anoxic, aerated IFAS, 

post-anoxic & reaeration 

• Aerated IFAS providing 

• additional surface area for 

biofilm growth 

• T=20.3 ℃ 

• DO=0.3-2.8 mg L-1  

226 145 3.3 nm nm 16 

• Measurements once in June 

& once in October 

• N2O emission 

measurements 

• & water samples collected in 

each of the four zones 

• Water samples collected just 

below the water surface 

within 3 h of the emission 

measurements 

0.02- 

0.04%v 
C 
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Bollon et 

al., 2016a 

full-scale 

nitrifying 

biofiltratio

n 

• Receiving ≈80% of the 

Paris (France) wastewater 

flow 

• 84 Biostyr® filters for 

nitrification  

• Continuous aeration 

through perforated tubes 

located under the support 

material 

• Aeration flow-rate is 

automatically controlled 

outer ammonium 

concentration. 

• Washing procedure 

automatically triggered 

(every 20-30 min lasting 

for 30 min) 

5,000 1,700 

Sum

mer: 

1.5 x 

Wint

er: 

1.2 x 

Summ

er:  

1.2 x 

Winter 

1 x 

nm 21 

• 1 campaign 7 days 1 

campaign 14 days (summer, 

winter)            

• Floating chamber for 

gaseous samples 

• Gas flow measured using a 

precision mass flowmeter 

(Brooks Instrument®, SLA 

5860S, USA) 

• Off-gas directed to infrared 

analyzer (AP2E, ProCeas®, 

France) to measure N2O 

concentration online    

• Seasonal EF investigated 

Summer: 

2.26% 

Winter: 

4.86% 

Average: 

3.56% w 

C 

Bollon et 

al., 2016b 

Full-scale 

post-

denitrifyin

g filter 

• Receiving ≈80% of the 

Paris (France) wastewater 

flow 

• The monitored denitrifying 

biofilters operated 

downstream from the 

biological treatment (post-

denitrification) 

• 84 Biostyr® filters for 

nitrification followed by 18 

Biostyr® & 12 Biofor® 

filters for post-

denitrification with 

methanol as external 

carbon source 

• Biostyr® filters monitored 

because of treating main 

part of NO3
- load  

5,000 1,700 

Sum

mer:

7.1; 

Wint

er: 

6.7 

nm 

NO

3
- 

remo

val 

rate= 

2.24 

kg N 

m-3 

d-1 

(sum

mer)

/ 

2.66 

kg N 

m-3 

d-1 

(win

ter) 

21 

• 1 summer (September 2014) 

& 1 winter campaign (late 

January, early February 

2015) 

• Online dissolved N2O 

measurement with 

microsensors (Unisense A/S, 

Denmark)        

 

Summer: 

1.3±2% 

of NO3
-
 

uptake; 

Winter: 

0.2±0.3

% of 

NO3
-
 

uptake  

C 
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• Temperature=22.5 ℃ 

(summer)/14.7 ℃ (winter) 

Wang et 

al., 2016a* 

Full-scale 

biological 

aerated 

filter 

(BAF) for 

secondary 

nitrificatio

n 

• Municipal WWTP in 

Shanghai (China) 

• Biostyr® & Biofor® filters 

for post-denitrification with 

methanol as external 

carbon source 

• After sedimentation ≈50% 

of treated wastewater 

• enters the BAF for 

secondary nitrification to 

polish effluent 

• 8 BAFs 

• BAF HRT=3 h 

200 24 
0.05

-5.9 
0-1.5 nm 365 

• Investigation of diurnal & 

seasonal variations 

• Seasonal monitoring 

conducted monthly from 

May to April the next year 

(generally from 9 am to 11 

am the following day)  

• Floating hoods 

• Online N2O analyzer 

(AO2020 Uras26, ABB 

Automation GmbH, 

Germany) 

0.02-

0.83% 
C 

Kosonen et 

al., 2016 

27* 

Full-scale 

WWTP 

(BNR) 

• WWTP in Helsinki 

(Finland) 

• Wastewater: 15% industrial 

& 85% domestic 

• DO=3.5 mg L-1 

• HRT=7.5 h 

• Aeration air flow=9-10 m3 

s-1 

840 310 42.1 4.6 nm 365 

• Total N2O emissions 

continuously measured via 

an online Fourier transform 

Infrared (FT-IR) analyzing 

unit situated in the effluent 

air channel 

• Measurement data available 

at 1-min intervals covering 

all WWTP operations 

• Monitoring campaign: 1st 

July 2012-30th June 2013 

1.9% C 

Samuelsso

n et al., 

2018* 

AS 

• 6% from industry 

• high-loaded activated 

sludge; pre-denitrification, 

simultaneous phosphorus 

precipitation, BOD  

• removal 

806 404 22.9z 5.6z  1 

• 1 monitoring hour with 

FTIR 

0.016%  
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Samuelsso

n et al., 

2018* 

Trickling 

filter 

• 6% from industry 

• Nitrification 806 404 22.9z 5.6z  5 

• 5 hours total at different 

dates (1h/d) with FTIR 
0.71%  

Samuelsso

n et al., 

2018* 

MBBR 
• Post-denitrification 

• Methanol addition 806 404 22.9z 5.6z nm 1 

• 1 hour with FTIR 

0.021%  

a. Total: 1.9±0.25% of the influent N-load; 1st step:0.7± 0.1%, 2nd step: 3.5± 0.5% 
b. TKN 
c. Temperature/DO data from online sensors 
d. Online for 48-72 h per week for 10 weeks between June & October 2013 
e. Data from online sensors 
f. 0.13± 0.01%: total N2O emission from BNR process with respect to TN-removed from BNR process; for conversion to TN in the influent see supplementary material 
g. 0.14±0.01%: total N2O emission from BNR process with respect to TN-removed from BNR process; for conversion to TN in the influent see supplementary material  
h. 0.114±0.006%: total N2O emission from BNR process with respect to TN-removed from BNR process; for conversion to TN in the influent see supplementary material 
i. Not specified 
j. Significant variation in the removal efficiencies from <10% to >90% 
k. 0.6-5.9% calculated based on g N2O per kg TN-removed; for conversion to TN in the influent see supplementary material 
l. Range of TN-removed                    
m. % TN-removed. Average: 1.6 g N2O per kg TN-removed          
n. Range:0.6-5.9 g N2O/kg TN-removed; average: 2.3 g N2O/kg TN-removed; for conversion to TN in the influent see supplementary material                 
o. Range: 0.8-8.8 g N2O/kg TN-removed; average: 3.6 g N2O/kg TN-removed; for conversion to TN in the influent see supplementary material 
p. TN 
q. With respect to the influent NH4

+
 load (%) (different configurations) 

r. NH4
+
 influent 

s. TIN 
t. % TIN influent 
u. 0.4% of N-removed released as N2O=0.25% of N2O released per kg N-influent; detailed calculations provided in the supplementary material 
v. % N-removed 
w. % NH4-N removed 
x. Applied and removed N-load respectively (kgN/m3/d) 
y. % N2O–N kgN−1 denitrified 
z. Plant influent/effluent concentrations 
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Appendix B 

Table B.1: List of abbreviations for the sensors of the system 

Abbreviation Unit Description 

N2O PF 𝑘𝑔 𝑁2𝑂 ℎ−1 𝑁2𝑂 emission from plug flow reactor – sampling point 1 

N2O C 𝑘𝑔 𝑁2𝑂 ℎ−1 𝑁2𝑂 emission from northern carrousel reactor 

NH4-N PF 
𝑚𝑔 𝑁𝐻4 − 𝑁 𝑙-

1 
Ammonium concentration in plug flow reactor 

NO3-N PF 
𝑚𝑔  𝑁𝑂3 −

𝑁 𝑙−1 
Nitrate concentration in plug flow reactor 

DO PF 𝑚𝑔 𝑂2 𝑙−1 Dissolved oxygen concentration in plug flow reactor 

Influent 𝑚3ℎ−1 Influent flow-rate 

NH4-N C 
𝑚𝑔 𝑁𝐻4 − 𝑁 𝑙-

1 
Ammonium concentration in northern carrousel reactor 

NO3-N C 
𝑚𝑔  𝑁𝑂3 −

𝑁 𝑙−1 
Nitrate concentration in northern carrousel reactor 

NO2-N C 
𝑚𝑔 𝑁𝑂2

− 𝑁 𝑙−1 
Nitrite concentration in northern carrousel reactor 

DO1 
𝑚𝑔 𝑂2 𝑙−1 Dissolved oxygen concentration of sensor 1 in northern 

carrousel  

DO2 
𝑚𝑔 𝑂2 𝑙−1 Dissolved oxygen concentration of sensor 1 in northern 

carrousel  

DO3 
𝑚𝑔 𝑂2 𝑙−1 Dissolved oxygen concentration of sensor 1 in northern 

carrousel  

T °𝐶 Water temperature in northern carrousel 

TSS 𝑚𝑔 𝑇𝑆𝑆 𝑙-1 Total suspended solids in northern carrousel 
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Table B.2: List with the R packages used in the analysis 

Method Package Source 

Timeseries processing xts (Ryan et al., 2017) 

Data imputation imputeTS (Moritz, 2017) 

Changepoint detetion changepoint (Killick and Eckley, 2014; Killick et al., 2016) 

Correlogram Spearman’s 

correlation 

corrplot (Wei et al., 2017) 

Number of clusters NBclust (Charrad et al., 2014) 

Data visualization 

hierarchical k-means 

clustering and PCA 

ggplot2 (Wickham, 2009; Wickham et al., 2016) 

PCA biplot factoextra (Kassambara and Mundt, 2017) 
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Figure B.1: Spearman’s rank correlation coefficient for sensor signals for sub-periods 1, 3, 4, 6 (Red: 

negative correlation, blue: positive correlation, the colored part of the circles is proportional to the 

correlation coefficient, only results with p-value<0.01 are shown)  
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Figure B.2: Spearman’s rank correlation coefficient for sensor signals for sub-periods 7, 8, 9, 10 (Red: 

negative correlation, blue: positive correlation, the colored part of the circles is proportional to the 

correlation coefficient, only results with p-value<0.01 are shown) 
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Table B.3: Average of offline monitored operating variables for sub-periods 1-9 

 

 

 

 

 

 

 

  Influent COD 
Influent   

BOD5 

Influent 

TKN 
Influent TP 

Effluent 

COD 

Effluent 

BOD5 

Effluent 

TKN 

Effluent 

total P 

Effluent 

pH 

Sub-

period 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)   

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

1 215.4 41.0 67.9 21.8 39.9 5.6 5.9 0.7 35.4 3.9 5.4 1.3 3.3 1.6 1.0 0.5 7.88 0.1 

2 238.9 25.6 77.8 21.4 39.9 3.2 5.7 0.5 36.7 3.8 6.5 2.1 3.2 1.1 1.3 0.3 7.90 0.1 

3 245.1 41.5 76.9 18.5 44.0 5.3 6.1 1.1 39.7 4.1 7.5 1.4 2.8 0.6 1.6 0.4 8.00 0.1 

4 244.8 43.6 70.8 19.4 48.0 5.9 7.1 1.5 45.0 2.4 7.8 0.6 2.4 0.3 0.9 0.3 7.96 0.1 

5 302.7 95.1 78.5 20.4 52.7 4.7 9.5 2.1 43.3 8.5 6.5 2.2 3.0 1.2 1.1 0.9 8.12 0.2 

6 208.3 91.8 65.3 35.2 34.3 9.6 6.9 2.3 32.2 6.5 3.4 2.4 2.5 1.5 1.0 0.6 8.02 0.1 

7 151.0 21.0 41.5 2.5 30.5 6.5 5.4 1.2 33.0 1.0 2.4 0.8 2.8 1.0 1.3 0.2 8.10 0.0 

8 177.7 23.2 54.0 8.3 29.3 3.4 4.9 0.5 29.7 4.6 3.0 0.6 2.3 0.7 0.6 0.1 7.93 0.1 

9 250.5 95.2 80.3 41.7 44.5 12.8 7.6 2.1 35.0 3.5 6.3 1.8 3.2 0.7 1.0 0.3 7.94 0.2 
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Table B.4: Similarity of the clustering results in the Carrousel reactor when NH4-N PF 

and NO3-N PF are not included in the analysis (the percentage represents the data rows 

assigned to the same cluster) 

Sub-period Similarity of 

Clustering results 

1 90% 

2 75% 

3 100% 

4 85% 

5 87.5% 

6 95% 

7 60% 

8 63% 

9 76% 

 

 

 

 

 

  



235 

 

Table B.5: Average of operating variables for all clusters defined by hierarchical k-means 

clustering  

 Cl. 
N2O 

C 

NH4-

N PF 

NO3-

N   

PF 

Influen

t 

NH4-

N C 

NO3-

N   C 
DO1 DO2 DO3 

NO2-

N 
T 

  kg/h mg/l mg/l m3/h mg/l mg/l mg/l mg/l mg/l mg/l °C 

1 

1 0.09 14.13 1.48 3883 1.47 8.66 1.04 0.78 1.72  
15.

7 
2 0.01 8.55 2.41 3824 0.87 4.26 0.13 0.47 1.25  

3 0.05 14.74 0.30 8892 7.91 4.63 1.37 0.77 1.58  

2 

4 0.87 15.30 2.05 3827 1.51 8.61 0.94 1.53 2.22  
11.

2 
5 0.21 9.13 3.69 3419 0.74 5.28 0.03 0.62 1.41  

6 0.24 12.51 0.81 11132 4.52 5.42 2.27 2.31 2.22  

3 

7 3.22 16.85 1.52 3383 1.36 7.36 0.87 1.88 2.35  
11.

5 
8 1.72 10.96 1.91 3672 0.82 4.29 0.05 0.85 1.56  

9 2.40 21.40 0.12 7935 7.52 4.15 2.10 1.28 2.10  

4 

10 6.60 17.30 0.32 3207 1.26 3.79 0.95 2.41 2.14 4.10 
12.

9 
11 3.83 10.82 0.77 2747 0.79 1.80 0.05 1.20 1.51 1.40 

12 6.89 25.45 0.48 6375 10.86 3.62 2.12 2.34 1.98 4.28 

5 
13 2.23 10.33 3.26 2485 0.97 3.59 0.11 0.34 1.96 0.67 18.

2 14 4.95 18.15 1.91 3542 3.20 7.28 1.60 0.69 2.03 2.58 

6 
15 2.54 17.66 0.75 5922 5.00 5.07 1.30 0.73 2.34 1.08 

20 
16 0.51 8.20 2.84 3811 0.98 2.64 0.10 0.10 2.21 0.35 

7 

17 0.66 19.67 0.10 9877 13.40 3.38 1.05 0.37 2.03 0.61 

20 
18 0.52 14.14 1.68 6228 2.00 10.44 1.15 0.41 2.55 1.10 

19 0.02 7.07 1.81 6389 1.01 2.40 0.12 0.17 2.67 0.23 

20 0.13 7.72 5.66 3636 1.03 11.32 0.07 0.34 2.81 0.80 

8 
21 0.14 8.90 5.55 3834 1.01 10.06 0.19 0.17 2.74 0.74 19.

6 22 0.09 16.57 0.57 9410 8.21 7.79 1.28 0.55 2.43 0.96 

9 

23 0.05 17.91 2.98 3047 1.72 10.57 0.77 0.75 1.76 2.32 

 

24 0.00 7.31 8.60 2027 1.06 8.77 0.03 0.12 1.32 1.68 

25 0.04 11.17 1.50 5379 1.27 3.18 0.53 0.62 1.42 1.05 

26 0.65 16.64 1.67 4442 2.37 9.17 1.92 1.58 1.58 2.80 

27 0.07 11.66 1.31 5372 2.20 9.27 2.93 2.50 1.70 1.94 

28 0.05 16.06 0.29 10785 6.97 6.25 1.96 1.78 1.42 1.72 

1

0 

29 0.58 16.32 1.15 4080 1.50 3.68 0.18 0.78 1.62  

13 

30 2.18 19.18 1.13 3695 1.61 9.13 0.79 1.49 1.57  

31 0.60 11.35 2.57 2982 1.36 3.70 0.00 0.02 1.14  

32 2.77 19.16 0.30 8666 2.85 8.05 1.75 1.64 1.45  

33 0.18 9.08 2.65 2911 1.70 12.25 4.49 4.03 2.49  
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Figure B.3: Daily influent flow-rate and daily precipitation data extracted from the Royal 

Netherlands meteorological institute (http://www.sciamachy-

validation.org/climatology/daily_data/selection.cgi station 344 Rotterdam). 
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Sub-period 1 

Table B.6: PCA loadings sub-period 1, Carrousel reactor 

 PC1 PC2 PC3 PC4 

NH4-N PF 0.45 -0.26 0.08 -0.31 

NO3-N PF -0.18 0.45 -0.08 0.46 

Influent 0.35 -0.31 0.26 0.36 

NH4-N C 0.35 -0.27 0.11 0.57 

NO3-N C 0.25 0.46 0.13 -0.12 

DO1 0.44 0.19 -0.10 -0.31 

DO2 0.44 0.27 -0.09 0.00 

DO3 0.19 0.46 0.09 0.27 

Temperature 0.16 0.00 -0.65 -0.02 
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Figure B.3: PC scores for sub-period 1  
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Figure B.4: Profile of N2O emissions; colored points indicate the respective clusters for 

sub-period 1. 

 

 
Figure B.5: Score of the first two principal components sub-period 1 
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Sub-period 3 

Table B.7: PCA loadings sub-period 3, Carrousel reactor 

 PC1 PC2 PC3 PC4 

NH4-N PF -0.53 0.09 -0.23 0.06 

NO3-N PF 0.23 0.46 0.10 -0.56 

Influent -0.23 -0.44 0.27 -0.33 

NH4-N C -0.40 -0.19 -0.21 -0.46 

NO3-N C -0.10 0.58 0.08 -0.32 

DO1 -0.50 -0.01 0.08 -0.16 

DO2 -0.21 0.24 0.60 0.20 

DO3 -0.37 0.27 0.20 0.41 

Temperature -0.12 0.30 -0.64 0.16 
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Figure B.6: PC scores for sub-period 3; colored points indicate the respective clusters for 

sub-period 3. 
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Figure B.7: Profile of N2O emissions; colored points indicate the respective clusters for 

sub-period 3 

 

Figure B.8: Score of the first two principal components sub-period 3 

• PC1 again represents the behavior of the system based on the DO control and the 

diurnal fluctuation of NH4-N PF. 

• PC2 represents how influent flow-rate affects the nitrates in the system (when 

influent flow-rate increases they decrease).  

• PC3 shows an increase of DO with the decrease of temperature (even though 

these variables are not directly related it is possible temperature to affect the 

activities and therefore the consumption of DO) 

• PC2 decreases after 10 of February and remains relatively low. This coincides 

with a significant reduction in the NO3-N PF and NO3-N C. Emissions start 

increasing 5 days later. Around 10 of February a precipitation event is observed 

followed by some days with diluted streams, reduced nitates and increased flow-

rate. After this event the system nitrates do not recover to their previous levels. 
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Sub-period 4 

 

 

 
Figure B.9: PC scores for sub-period 4; colored points indicate the respective clusters for 

sub-period 4. 
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Figure B.10: Profile of N2O emissions; colored points indicate the respective clusters for 

sub-period 4 

 

 
Figure B.11: Score of the first two principal components sub-period 4 
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Sub-period 5 

Table B.8: PCA loadings sub-period 5, Carrousel reactor 

 PC1 PC2 PC3 PC4 

NH4-N PF 0.45 -0.26 0.08 -0.31 

NO3-N PF -0.18 0.45 -0.08 0.46 

Influent 0.35 -0.31 0.26 0.36 

NH4-N C 0.35 -0.27 0.11 0.57 

NO3-N C 0.25 0.46 0.13 -0.12 

NO2-N C 0.44 0.19 -0.10 -0.31 

DO1 0.44 0.27 -0.09 0.00 

DO2 0.19 0.46 0.09 0.27 

DO3 0.16 0.00 -0.65 -0.02 

Temperature 0.06 -0.16 -0.67 0.22 
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Figure B.12: PC scores for sub-period 5; colored points indicate the respective clusters 

for sub-period 5. 
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Figure B.13: Profile of N2O emissions; colored points indicate the respective clusters for 

sub-period 5 

 

Figure B.14: Score of the first two principal components sub-period 5 

• In period 5 a shift is observed in Cluster 14 around 10 of May and again NO3-N PF 

and NO3-N C are lower than the previous period (PC2 cluster 14 becomes negative 

from positive – score plot and bi-plot). However, it never becomes as low as in sub-

period 4. Additionally, the decrease of NO3-N C coincides with an increase in TSS 

in the Carrousel reactor and therefore can represent higher efficiency in NO3-N C 

removal. 

• In this sub-period temperature increases significantly (from 15 Oc to more than 20). 

DO3 at the end of the reactor increases with the temperature.  
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Sub-period 6 

Table B.9: PCA loadings sub-period 6, Carrousel reactor 

 PC1 PC2 PC3 PC4 

NH4-N PF -0.39 -0.19 0.27 -0.35 

NO3-N PF 0.32 -0.36 -0.03 0.23 

Influent -0.23 0.45 -0.11 0.26 

NH4-N C -0.34 0.11 0.49 0.02 

NO3-N C -0.22 -0.43 -0.43 0.32 

NO2-N C -0.38 -0.34 -0.16 0.30 

DO1 -0.46 -0.01 0.13 0.06 

DO2 -0.39 0.11 -0.16 0.11 

DO3 -0.16 -0.11 -0.48 -0.73 

Temperature 0.04 -0.54 0.43 -0.09 
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Figure B.15: PC scores for sub-period 6; colored points indicate the respective clusters 

for sub-period 6. 
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Figure B.16: Profile of N2O emissions; colored points indicate the respective clusters for 

sub-period 6 

 

Figure B.17: Score of the first two principal components sub-period 6 

• In sub-period 6 we clearly see that N2O emission peaks coincide with peaks in NH4-

N C. In total 176 data points have NH4-N C> 4mg/l. Out of them 156 have N2O > 

1 and 20 N2O <1. DO1 also clearly follows the same patterns. Generally, emissions 

decrease again (high are up to 2.5 kg/h) 

• Correlation between PC1 and N2O emissions is equal to -0.64. 
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Sub-period 7 

Table B.10: PCA loadings sub-period 7, Carrousel reactor 

 PC1 PC2 PC3 PC4 

NH4-N PF -0.20 0.47 -0.18 0.16 

NO3-N PF -0.35 -0.37 -0.03 0.00 

Influent 0.37 0.33 0.24 -0.04 

NH4-N C 0.05 0.41 -0.24 0.48 

NO3-N C -0.52 0.03 0.21 -0.24 

NO2-N C -0.47 0.25 0.21 -0.25 

DO1 -0.10 0.50 0.14 -0.22 

DO2 0.02 0.11 0.66 0.18 

DO3 -0.10 -0.20 0.47 0.61 

Temperature -0.43 0.05 -0.31 0.41 
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Figure B.18: PC scores for sub-period 7; colored points indicate the respective clusters 

for sub-period 7. 



253 

 

 
Figure B.19: Profile of N2O emissions; colored points indicate the respective clusters for 

sub-period 7 

 
Figure B.20: Score of the first two principal components sub-period 7 

• Cluster 19 is characterized by very low emissions (2-3 days in total). The cluster 

is characterized by diluted streams (very low concentrations of ammonium and 

nitrates without strong diurnal variability) with relatively high influent flow-rate.  

• It is a small sub-period 

• In sub-period 7 emissions increase with the increase of NO3-N C.  

• PC2 seems to represent ammonium control via DO instead of PC1 in the other 

sub-periods. PC2 is a good indication of the N2O emissions variability and range 

• Variation of Nitrates and influent flow-rate is represented by PC1 
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Sub-period 8 

Table B.11: PCA loadings sub-period 8, Carrousel reactor 

 PC1 PC2 PC3 PC4 

NH4-N PF 0.14 -0.48 0.13 -0.50 

NO3-N PF -0.51 0.03 0.03 0.16 

Influent 0.51 -0.03 0.10 -0.01 

NH4-N C 0.36 -0.29 0.21 0.13 

NO3-N C -0.31 -0.38 -0.14 0.11 

NO2-N C -0.15 -0.47 -0.21 0.09 

DO1 0.26 -0.43 -0.12 0.32 

DO2 0.24 0.09 -0.61 0.48 

DO3 0.02 0.01 -0.69 -0.58 

Temperature -0.30 -0.35 0.03 0.09 
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Figure B.21: PC scores for sub-period 8; colored points indicate the respective clusters 

for sub-period 8. 
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Figure B.22: Profile of N2O emissions; colored points indicate the respective clusters for 

sub-period 8 

 

Figure B.23: Score of the first two principal components sub-period 8 

• In sub-period 8 emissions increase around 22nd of September without a clear 

change in the state of the system and the first 3 PCs. Only PC1 and PC2 

demonstrate throughout the sub-period a decreasing trend indicating that nitrate, 

ammonium and nitrite concentration increase in the system 

• The correlation between PC2 and N2O emissions is -0.56 
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Sub-period 9 

Table B.12: PCA loadings sub-period 9,  Carrousel reactor 

 PC1 PC2 PC3 PC4 

NH4-N PF -0.10 0.34 -0.58 0.38 

NO3-N PF 0.43 0.08 0.24 -0.32 

Influent -0.38 -0.23 -0.24 -0.06 

NH4-N C -0.29 0.04 -0.39 -0.23 

NO3-N C 0.03 0.56 0.14 -0.26 

NO2-N C -0.04 0.55 -0.14 -0.25 

DO1 -0.43 0.20 0.25 -0.15 

DO2 -0.45 0.16 0.32 -0.05 

DO3 -0.07 0.25 0.37 0.73 

Temperature 0.41 0.28 -0.23 0.11 
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Figure B.24: PC scores for sub-period 9; colored points indicate the respective clusters 

for sub-period 9 
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Figure B.25: Profile of N2O emissions; colored points indicate the respective clusters for 

sub-period 9 

 

Figure B.26: Score of the first two principal components sub-period 9 

• Clusters are not very clear in this subperiod 
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Sub-period 10 

Table B.13: PCA loadings sub-period 10,  Carrousel reactor 

 PC1 PC2 PC3 PC4 PC5 

NH4-N PF -0.29 -0.16 0.62 -0.28 0.03 

NO3-N PF 0.34 0.40 -0.27 0.33 -0.19 

Influent -0.27 -0.49 -0.22 0.21 -0.20 

NH4-N C -0.38 -0.22 0.08 0.49 -0.47 

NO3-N C -0.37 0.39 0.14 0.13 0.29 

DO1 -0.41 0.19 -0.23 0.35 0.26 

DO2 -0.45 0.27 -0.16 -0.13 0.19 

DO3 -0.28 0.33 -0.24 -0.52 -0.64 

Temperature 0.10 0.39 0.58 0.32 -0.31 

 



261 

 

 

 

 
Figure B.27: PC scores for sub-period 10; colored points indicate the respective clusters 

for sub-period 10 
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Figure B.28: Profile of N2O emissions; colored points indicate the respective clusters for 

sub-period 10 

 
Figure B.29: Score of the first two principal components sub-period 10 
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Figure B.30: NO3-N concentration in the plug-flow reactor and temperature concentration 

in the Carrousel reactor in sub-period 4 
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Appendix C 

Table C.1: Features extracted and used in the analysis 

Features Symbol Variables 

Average 𝜇𝑖 

NH4-NPF, NO3-NPF, Influent flow-

rate, NH4-NC, NO3-NC, DO1, DO2, 

DO3 

 Standard deviation 𝜎𝑖 

NH4-NPF, NO3-NPF, Influent flow-

rate, NH4-NC, NO3-NC, DO1, DO2, 

DO3 

Max 𝑚𝑎𝑥𝑖 

NH4-NPF, NO3-NPF, Influent flow-

rate, NH4-NC, NO3-NC, DO1, DO2, 

DO3 

Min 𝑚𝑖𝑛𝑖 

NH4-NPF, NO3-NPF, Influent flow-

rate, NH4-NC, NO3-NC, DO1, DO2, 

DO3 

Skewness 𝑠𝑘𝑖 

NH4-NPF, NO3-NPF, Influent flow-

rate, NH4-NC, NO3-NC, DO1, DO2, 

DO3 

Kurtosis 𝑘𝑖 

NH4-NPF, NO3-NPF, Influent flow-

rate, NH4-NC, NO3-NC, DO1, DO2, 

DO3 
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Interquantile range (IQR) 𝑖𝑞𝑟𝑖 

NH4-NPF, NO3-NPF, Influent flow-

rate, NH4-NC, NO3-NC, DO1, DO2, 

DO3 

Second-order average 𝜇2𝑖 

NH4-NPF, NO3-NPF, Influent flow-

rate, NH4-NC, NO3-NC, DO1, DO2, 

DO3 

Second-order standard deviation 𝜎2𝑖 

NH4-NPF, NO3-NPF, Influent flow-

rate, NH4-NC, NO3-NC, DO1, DO2, 

DO3 

*Average concentration of variables for the periods with 

NH4-N C is higher than 1.2 mg/L 

𝜇𝑖 𝑤ℎ𝑒𝑛 NH4 − NC

>  1.2 mg/L  
NH4-NPF, NO3-NPF, Influent flow-

rate,  NO3-NC, DO1, DO2, DO3 

*Average concentration of variables for the periods with 

NH4-N C is lower than 0.9 mg/L 

𝜇𝑖 𝑤ℎ𝑒𝑛 NH4 − NC

<  0.9 mg/L   
NH4-NPF, NO3-NPF, Influent flow-

rate,  NO3-NC, DO1, DO2, DO3 

**Average concentration of variables for the periods with 

NH4-N PF is lower than 7 mg/L 

𝜇𝑖 𝑤ℎ𝑒𝑛 NH4 − N𝑃𝐹

<  7 mg/L   
NH4-NC, NO3-NPF, Influent flow-rate,  

NO3-NC, DO1, DO2, DO3 

**Average concentration of variables for the periods with 

NH4-N PF is higher than 15 mg/L 

𝜇𝑖  𝑤ℎ𝑒𝑛 NH4 − N𝑃𝐹

>  15 mg/L   
NH4-NC, NO3-NPF, Influent flow-rate,  

NO3-NC, DO1, DO2, DO3 

***(Average NO3-N C concentration for hours NH4-N C 

is decreasing)- (Average of NO3-N C concentration  for 

hours NH4-N C is increasing) 

(𝜇𝑖𝑤ℎ𝑒𝑛
𝑑

𝑑𝑡
(NH4 − NC) < 0)

− (𝜇𝑖𝑤ℎ𝑒𝑛
𝑑

𝑑𝑡
(NH4 − NC)

> 0)  

 

NO3-NC 
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***(Average DO concentration for hours NH4-N C is 

decreasing - Average of DO concentration  for hours NH4-

N C is increasing) 

(𝜇𝑖𝑤ℎ𝑒𝑛
𝑑

𝑑𝑡
(NH4 − NC) < 0)

− (𝜇𝑖𝑤ℎ𝑒𝑛
𝑑

𝑑𝑡
(NH4 − NC)

> 0) 

DO1, DO2, DO3 

Local maxima and minima 𝑙𝑜𝑐_𝑚𝑎𝑥𝑖, 𝑙𝑜𝑐_𝑚𝑖𝑛𝑖 
NH4-NC, NO3-NPF, Influent flow-rate,  

NO3-NC 

CEEMDAN trend Figure C.1 NH4-PF, Temperature 

*Features based operational control of the system. In the system, aerator 1 operates under on/off pattern (when ammonium is higher 

than 1.2 mg/l), while aerators 2 and 3 operate always and peak when ammonium is higher than 0.6 and 0.9 mg/l, respectively. 

**Features based aiming to investigate the range of operational variables at higher and lower than average NH4-N concentrations in 

the plug-flow reactor 

***Features based aiming to investigate the response of operational variables when NH4-N concentration in the Carrousel effluent is 

increasing and decreasing 
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Figure C.1: IMFs from the CEEMDAN analysis and for the NH4-N concentration in the 

plug-flow reactor. In order to extract the long-term trend of the NH4-N concentration in the 

plug-flow reactor IMFs with oscillatory periods more than 90 days were used (IMF 9-10) 
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Figure C.2: IMFs from the CEEMDAN analysis and for the Temperature concentration in 

the plug-flow reactor. In order to extract the long-term trend of the Temperature 

concentration in the plug-flow reactor IMF 8 was used 
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Figure C.3: k-nearest neighbors of the data used in DBSCAN plotted in increasing order. 

The eps parameter was determined based on the “knee” in the plot (horizontal dotted line) 

 

 


