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Abstract

Failure is the state of not achieving a desired or intended goal. Failure analysis

planning in the context of risk assessment is an approach that helps to reduce total

cost, increase production capacity, and produce higher-quality products. One of

the most common issues that businesses confront are defective products. This issue

not only results in monetary loss, but also in a loss of status. Companies must

improve their production quality and reduce the quantity of faulty products in order

to continue operating in a healthy and profitable manner in today’s very competitive

environment. On the other hand, there is the ongoing COVID-19 pandemic, which

has thrown the world’s natural order into disarray, and has been designated a Public

Health Emergency of International Concern by the World Health Organization. The

demand for quality control is rapidly increasing. Failure analysis is thus an useful

tool for identifying common failures, their likely causes, and their impact on the

health system, as well as plotting strategies to limit COVID-19 transmission. It is

now more vital than ever to enhance failure analysis methods.

The traditional FMEA (Failure mode and effects analysis) is one of the most

widely used approaches for identifying and classifying failure modes (FMs) and

failure causes (FCs). It is a risk analysis tool for coping with possible failures and is

widely used in the reliability engineering, safety engineering and quality engineering.

To prioritize risks of different failure modes, FMEA uses the risk priority number

(RPN), which is the product of three risk measures: severity (S), occurrence (O) and

detection (D). Traditional FMEA, on the other hand, has drawbacks, such as the

inability to cope with uncertain failure data, such as expert subjective evaluations,

the failure events’ conditionality, RPN has a high degree of subjectivity, comparing

various RPNs is challenging, potential errors may be ignored in the conventional

FMEA process, etc. To overcome these limitations, I present an integrated Bayesian
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approach to FMEA in this thesis.

In this proposed approach, I worked with experts in quality engineering and

used Bayesian inference to estimate the FMEA risk parameters: S, O and D. The

proposed approach is intended to become more practical and less subjective as more

data is added. Bayesian statistics is a statistical theory that is based on the Bayesian

interpretation of probability, which states that probability expresses a degree of

belief or information (knowledge) about an event. Bayesian statistics addresses the

issues with uncertainties found in frequentist statistics, such as the distribution of

contributing factors, the implications of using specific distributions and specifies that

there is some prior probability. A prior can be derived from previous information,

such as previous experiments, but it can also be derived from a trained subject-matter

expert’s purely subjective assessment. Frequentist statistics (also known as classical

statistics) has several limitations, including a lack of uncertainty information in

predictions, no built-in regularisation, and no consideration of prior knowledge. Due

to the availability of powerful computers and new algorithms, Bayesian methods

have seen increased use within statistics in the twenty-first century, and this thesis

highlights the effective use of Bayesian analyses to address the shortcomings of the

current FMEA with the revamped Bayesian FMEA. As a demonstration of the

approach, three case studies are presented.

The first case study is a Bayesian risk assessment approach of the modified SEIR

(susceptible-exposed-infectious-recovered) model for the transmission dynamics of

COVID-19 with an exponentially distributed. The effective reproduction number

is estimated based on laboratory-confirmed cases and death data using Bayesian

inference and analyse the impact of the community spread of COVID-19 across the

United Kingdom. The value of effective reproduction number models the average

number of infections caused by a case of an infectious disease in a population that

includes not only susceptible people. The FMEA is then applied to evaluate the

effectiveness of the action measures taken to manage the COVID-19 pandemic. In

the FMEA, the focus was on COVID-19 infections and therefore the failure mode

is taken as positive cases. The model is applied to COVID-19 data showing the

effectiveness of interventions adopted to control the epidemic by reducing the effective

reproduction number of COVID-19. The risk measures were estimated from the case
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fatality rate (S), the posterior median of the effective reproduction number (O) and

the current corrective measures used by government policies (D).

The second case study is a Bayesian risk assessment of a coordinate measuring

machine (CMM) process using failure mode, effects and criticality analysis (FMECA)

and an augmented form error model. The form error is defined as the deviation of a

manufactured part from its design or ideal shape, and it is a key characteristic to

evaluate in quality engineering and manufacturing. The form error is presented as

a probabilistic model using symmetric unimodal distributions. Bayesian inference

is then used to identify influence factors associated with the measurement process

due to form error, environmental, human and random effects. A risk assessment is

then performed by combining Bayesian inference, FMECA and conformity testing, to

quantify and minimise the risk of wrong decisions. In the FMECA, the focus was on

CMM measurement process and I identified four major FMs that can occur: probe,

mechanical, environmental and measurement performance failure. Eleven FCs were

also observed, each of which was linked to one of the four FMs. The risk measures

were estimated from the posterior probability of failure causes associated with the

CMM measurement process (O), the severity of a specific consumer’s risk (S) and

the detectability of failures from the posterior standard deviation of the form error

model (D).

The third case study is a Bayesian risk assessment of a CMM measurement

process using an autoregressive (AR) form error model and a combined Fault tree

analysis (FTA) and FMEA approach to predict significant failure modes and causes.

The main idea is to estimate and predict the form error based on CMM data using

Gibbs sampling and analyse the impact of the CMM measurement process on product

conformity testing. The FTA is used to compare the actual and predicted form error

data from the Bayesian AR plot to determine the likelihood of the CMM measurement

process failing using binary data. The acquired binary data is then classified into

four states (true positive, true negative, false positive, and false negative) using

a confusion matrix, which is subsequently utilized to calculate key classification

measures (i.e., error rate, prediction rate, prevalence rate, sensitivity rate, etc). The

classification measures were then used to assess the FMEA risk measures S, O, and

D, which were critical for determining the RPN and making decisions.
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Analytical and numerical methods are used in all case studies to highlight the

practical implications of our findings and are meant to be practical without complex

computing. The proposed methodologies can find applications in numerous disciplines

and wide quality engineering.

Keywords— Bayesian inference, failure analysis, quality engineering, failure mode and

effects analysis
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Chapter 1

Introduction

1.1 Overview and research objectives

Failure is the state of not achieving a desired or intended goal. This term is defined

in manufacturing environments as a component that damages engineering equipment,

manufactured products, affecting operation, production, and performance, as well as the

company’s reputation [1, 2]. Failure analysis planning in the context of risk assessment is an

approach that helps to reduce total cost, increase production capacity, and produce higher-

quality products. One of the most common issues that businesses confront are defective

products. This issue not only results in monetary loss, but also in a loss of status. Companies

must improve their production quality and reduce the quantity of faulty products in order

to continue operating in a healthy and profitable manner in today’s very competitive

environment [3–5]. On the other hand, there is the ongoing COVID-19 pandemic, which

has thrown the world’s natural order into disarray, and has been designated a Public Health

Emergency of International Concern by the World Health Organization (WHO) [6]. The

demand for quality control is rapidly increasing. Failure analysis is thus an useful tool for

identifying common failures, their likely causes, and their impact on the health system, as

well as plotting strategies to limit COVID-19 transmission. It is now more vital than ever

to enhance failure analysis methods.

Some systematic procedures are required to evaluate failures and comment on their

likely implications, such as: the Bowtie (BT), Design Review by Failure Mode (DRBFM),

Hazard Analysis (HA), Fault tree analysis (FTA) and its extension Event Tree Analysis

(ETA), What-if/Checklist, and Failure mode and effects analysis (FMEA) [7]. FMEA is

one of the most widely used approaches for identifying and classifying failure modes (FMs)
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and failure causes (FCs). FMEA was first used by reliability engineers in the late 1950s

to analyse problems that might arise from malfunctioning of military systems [8]. As a

quantitative analysis, a systematic approach to the use of FMEA consists of identifying

ways in which FMs can occur, then identifying FCs, the effects of each FM, evaluating

the corresponding risks, and then taking the necessary steps to minimise the risks and

consequences. By including a criticality analysis, the FMEA can be extended to an FMECA

(Failure mode, effects, and criticality analysis). The strictly qualitative FMEA can be made

more quantitative in this way. The effects of FMs on system/process performance can be

assessed via an FMEA analysis, allowing essential corrective measures to be taken [9]. In

the FMEA/FMECA study, the risk priority number (RPN) is employed as the prioritizing

index. Product failure severity (S), likelihood of failure occurrence (O), and probability of

failure detection (D) are the three risk factors utilized in the calculation of RPN. S, O,

and D parameters are multiplied to get the RPN [10]. Traditional FMEA/FMECA has

drawbacks, such as the inability to cope with uncertainty, subjective expert assessments,

failure event conditionality, and statistical inference of each risk factor, to name a few. As

a result, I have extended this to include Bayesian inference of risk parameters, Bayesian

network to conditionally seek out primary FCs, and prior/posterior updating (e.g., to reflect

actions the government could have taken to better manage the COVID-19 pandemic).

Bayesian inference is a valuable technique that addresses the uncertainties found in

frequentist statistics, such as the distribution of contributing factors, the implications of

using specific distributions, and the specification of some prior probability. A prior can

be derived from previous information, such as previous experiments, but it can also be

derived from the purely subjective assessment of a trained subject-matter expert. Bayesian

inference is widely used in a variety of fields, including: machine learning, quality engineering,

smart systems and more [11–13]. Bayesian inference begins from two indicators: the prior

distribution and the likelihood function derived from the observed data. The prior probability

is a central aspect of Bayesian inference and reflects knowledge on unknown parameters,

which is combined with the likelihood of new data. The posterior distribution is the result

of combining these two indicators. In recent years, Bayesian methods have generated a

lot of attention because they can combine expert knowledge with experimental data easily

while taking into account uncertainty [14–16]. Bayesian inference has become increasingly

essential for the development of more realistic models based on the subjective properties of

posterior distribution for complex phenomena and multi-parameter systems or processes,

due to the rapid advances in computer technology and demand in many areas of science
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and engineering. A deterministic model for the measurement process is not viable due to

the uncertainty of model parameters (such as temperature changes in measured items) and

the complexity of measurement systems in quality engineering applications. Because of

this, a probabilistic model must be derived and it is essential to use a Bayesian approach

to calculate the posterior distribution of the unknown parameters and relate them to the

FMEA/FMECA risk factors S, O and D to make decisions.

However, critical problems arise in the research of advanced computing methods and

tools for failure analysis, for example:

1. What are the best ways to accurately determine FMs/FCs in complex manufacturing,

measurement systems, or epidemics (among other things)?

2. Are there any ways to improve risk assessment methods by using Bayesian inference

together with failure analysis methods?

3. What are the options for assessing the effectiveness of the corrective measures taken

to minimize the risk and to improve product quality or process efficiency?

To answer these questions, a Bayesian risk assessment was proposed using FMEA/FMECA

that monitors the significant failure modes/causes, the relevant failure effects using a rigorous

risk assessment, which accurately identifies steps leading to corrective actions. In this

proposed approach, posterior estimates from Bayesian inference were used to characterize

the unknown parameters from a given model to estimate the FMEA/FMECA risk factors.

To demonstrate the new approach, three case studies were considered in this thesis:

• a Bayesian risk assessment of the COVID-19 pandemic using a modified Susceptible-

Exposed-Infectious-Removed (SEIR) epidemic model and FMEA (subsection 1.4.1),

• a Bayesian risk assessment of the coordinate measuring machine (CMM) measurement

process using an augmented form error model and FMECA (subsection 1.4.2),

• a Bayesian approach to failure prediction using an autoregressive form error model,

Gibbs sampling and an integrated FTA/FMEA (subsection 1.4.3).

These case studies are intended to show the effectiveness of combining Bayesian statistics

with improved failure analysis methods.
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1.2 Contributions

The contributions may be condensed as follows in light of the above-mentioned comments

on the thesis’s goals:

• Bayesian inference, FMEA and a modified SEIR model has been utilised to study the

risks of COVID-19 infections and to evaluate the effectiveness of the action measures

taken to manage the COVID-19 pandemic by combining together. The risk measures,

S and O parameters, were evaluated using the CFR rate and posterior median of the

effective reproduction number, respectively. Parameter D was estimated using the

current detection measures in place.

• Bayesian inference has been used to summarize the process phase, FCs, current

measures, and risk measures, and then gave the subsequent government actions and

re-evaluated risk measures using 8 months’ worth of daily COVID-19 data. Thus, I

have assessed the impact of English government protective measures to COVID-19 by

comparing the empirical and posterior statistics of the effective reproduction number

at different time periods with and without the measures being implemented. The

findings are in line with empirical results.

• By combining Bayesian inference, FMEA, and a compartmental model, the strat-

egy presented here can be applied to future pandemics which best simulates how

individuals in different compartments in a population interact.

• Using an integrated Bayesian FMECA approach and an augmented form error model,

the risks were investigated and significant observable FMs/FCs of the CMM measure-

ment process has been identified in order to effectively assess the corrective/preventive

measures in place. Additional sources of uncertainty (e.g., random, environmental,

human, etc.) were implemented as additive factors, resulting in more reliable product

conformity rates that matched a Pareto-like distribution.

• The FMECA risk parameters, S from the severity of the specific consumer’s risk,

O from the posterior probability of failures associated with the CMM measurement

process under a Bayesian network, and D from the detectability of the posterior

standard deviation of the proposed form error model, were estimated using the

integrated Bayesian approach.

• A Bayesian risk assessment that incorporates a Markov chain Monte Carlo (MCMC)

algorithm (i.e. Gibbs sampling), an autoregressive form error model, and an integrated
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FTA/FMEA has been shown to be particularly effective in predicting failure and

making decisions.

• The risk measures S, O, and D, which were critical for determining the RPN

and making decisions, were assessed using classification measures derived from a

combination of the integrated FTA/FMEA and a confusion matrix.

1.3 Publications and presentations

1.3.1 Publications

I published two substantial articles as a main author and delivered a virtual conference

at the IMEKO World Congress in Japan, both of which received great feedback. A large

proportion of chapter 2 was submitted as a manuscript to the International Journal of

Metrology and Quality Engineering (IJMQE) in December 2020. It was accepted by the

journal to strong positive feedback and very minor revisions. Similarly, parts of chapter 3

was submitted as a conference paper to IMEKO XXIII World congress and eventually

updated as a manuscript to the Measurement: Sensor journal. It was accepted in June

2021 and published in December 2021.

I also collaborated on another colleague’s article, "UML knowledge model for measuring

process including measurement uncertainty," in which I concentrated on the third section of

her paper: "Case study: Gauge block length measurement using a CMM." In this study, I

was involved in investigating and calculating distinct uncertainty components into two types

of CMM evaluations: I Type A (based on a series of observations using a t-distribution); (ii)

Type B (based on a series of observations using a t-distribution) (evaluated using available

information). The standard, combined, and enlarged uncertainty were all evaluated. I also

devised the uncertainty budget and provided the result to the expression of uncertainty.

A full list of publications is found below:

• Koucha, Y., & Yang, Q. (2021). A Bayesian risk assessment of the COVID-19

pandemic using FMEA and a modified SEIR epidemic model. International Journal

of Metrology and Quality Engineering, 12, 14. doi:10.1051/ijmqe/2021012

• Koucha, Y., Forbes, A., & Yang, Q. (2021). A Bayesian conformity and risk

assessment adapted to a form error model. Measurement: Sensors, 18, 100330.

doi:10.1016/j.measen.2021.100330
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• Bharti, P., Yang, Q., Forbes, A. B., & Koucha, Y. (2021). UML knowledge model for

measurement process including uncertainty of measurement. International Journal of

Metrology and Quality Engineering, 12, 26. doi:10.1051/ijmqe/2021024

1.3.2 Presentations

We had a number of weekly meetings during the PhD, and several of them required me

to present a portion of my "work to date." I also gave a number of talks at the NPL and

presented my findings at a number of university-sponsored events. Since the COVID-19

pandemic broke out, I’ve been doing all of my presentations remotely, and I’ve stopped

keeping track of the dates because I’ve been doing them every week. Table 1.1 is a list of

the presentations I gave prior to the COVID-19 pandemic’s outbreak.

Date Presentations delivered Location

05/12/2018 Bayesian Inference on Quality Engineering Brunel University London

08/01/2019 Review of Bayesian computational methods Brunel University London

28/01/2019 Application of Bayes Theorem on time-series models Brunel University London

18/02/2019 Bayesian Inference on Quality Engineering Brunel University London

18/02/2019 BDA & MCMC implementation ideas Brunel University London

28/02/2019 Conformance assessment methods National Physical Laboratory

13/03/2019 Bayesian decision theory to minimise posterior loss Brunel University London

07/05/2019 A Bayesian SPC for decision-making Brunel University London

22/05/2019 Bayesian conformance assessent: Circularity National Physical Laboratory

12/10/2019 Bayesian computational methods Brunel University London

14/11/2019 Bayesian smart building and metrology examples Brunel University London

02/12/2019 Task 6 Project Update Brunel University London

23/01/2020 Bayesian computing methods and tools for quality engineering and smart systems Brunel University London

17/02/2020 Bayesian methods in manufacturing metrology for quality engineering Brunel University London

12/03/2020 Copula in conformance assessment National Physical Laboratory

Table 1.1: Presentations delivered throughout the course of this PhD.

1.4 The three cases studies

1.4.1 A Bayesian risk assessment of the COVID-19 pandemic

using a modified SEIR epidemic model

In the first case studying, a Bayesian risk assessment approach of the modified SEIR

model for the transmission dynamics of COVID-19 with an exponentially distributed

infectious period was considered.
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The main idea was to estimate the effective reproduction number based on laboratory-

confirmed cases and death data using Bayesian inference and analyse the impact of the

community spread of COVID-19 across the United Kingdom. To achieve this objective, an

improved FMEA tool was used to evaluate the effectiveness of the action measures taken

to manage the COVID-19 pandemic. In the FMEA, the focus was on COVID-19 infections

and therefore the FMs were taken to be positive cases.

The model was applied to COVID-19 data showing the effectiveness of interventions

adopted to control the epidemic by reducing the effective reproduction number of COVID-19.

A summary of the first case study is presented in Figure 2.1 (see chapter 2).

1.4.2 A Bayesian risk assessment of the CMM measurement

process using an augmented form error model

In the second case study, a Bayesian risk assessment of a coordinate measuring machine

(CMM) measurement process using an augmented form error model and an integrated

FMECA approach was considered. The form error is defined as the deviation of a manu-

factured part from its design or ideal shape, and it is a key characteristic to evaluate in

quality engineering and manufacturing [17–19]. A CMM was used to obtain measurement

data and the form error was then computed. The proposed model was expressed as an

additive model dependent on a number of factors which allows for a measurement system

analysis approach based on analysis of variance [20–23]. The factors include: (I) uniformly

distributed form error estimates; (II) random errors (associated with the measurement

system); (III) human errors (operational, etc); (IV) environmental errors (temperature,

humidity, dust, etc). These factors were then combined to generate a posterior distribution

using Bayesian inference.

The main idea was to estimate the form error based on CMM data for product conformity

testing using Bayesian inference and analyse the impact of the CMM measurement process.

To achieve this goal, the FMECA was implemented to assess observable failures that may

occur during the CMM measurement process. I’ve identified four significant FMs that

can arise throughout the CMM measurement process based on my observations: probe

failure (FM1), measurement performance failure (FM2), mechanical failure (FM3) and

environmental failure (FM4). Eleven FCs were also observed, each of which was linked to

one of the four FMs. The FCs were item displaced slightly or greatly (FC1/2), dust on time

(FC3), mechanical stress (FC4), wrong probe type used (FC5), valve not set to required

pressure level (FC6), temperature set too high or too low (FC7/8), CMM making noise
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(FC9), probe not fitted properly (FC10) or probe not calibrated (FC11). I chose the names

of these FMs in order to classify the FCs into the appropriate group and build a hypothesis.

The model was applied to CMM form error data (using a touch-trigger probe) to

demonstrate the impact of corrective/preventive measures taken to monitor and minimize

measurement failures. A summary of the second case study is presented in Figure 3.3 (see

chapter 3).

1.4.3 A Bayesian risk assessment of the CMM measurement

process using an autoregressive form error model and

Gibbs sampling

In the third case study, a Bayesian risk assessment of a CMM measurement process

using an autoregressive (AR) form error model and a combined FTA/FMEA approach

to predict significant failures was considered. The AR form error model, which is the

time-series equivalent of the classic form error model, allowed for the forecasting of form

errors. An important parameter used is the AR lag parameter which specifies how many

measured points should be used at an instant.

The main idea was to estimate and predict the form error based on CMM data using

Gibbs sampling (i.e., an example of MCMC that allows one to estimate the joint marginal

distribution using draws from the conditional distribution) and analyse the impact of

the CMM measurement process on product conformity testing. A combined FTA/FMEA

approach to the CMM to predict significant observable failures was considered to achieve

this goal. The FTA was used to compare the actual and predicted form error data from

the Bayesian AR plot to determine the likelihood of the CMM measurement process failing

using binary data. The acquired binary data was then classified into four states (true

positive, true negative, false positive, and false negative) using a confusion matrix, which is

subsequently utilized to calculate key classification measures (i.e., error rate, prediction

rate, prevalence rate, sensitivity rate, etc). The classification measures were then used to

assess the FMEA risk measures S, O, and D, which were critical for determining the RPN

and making decisions.

The model was applied to CMM form error data (using an automatic scanning probe) to

demonstrate the effectiveness of failure prediction and the impact of corrective/preventive

measures taken to monitor and minimize measurement failures. This case study supple-

mented and extended the ideas and methods described in the first and second case studies,

respectively, by: (I) extending the time-series approach of updating daily data from the
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first case study; (II) transforming the augmented form error model from the second case

study into a time-series equivalent (i.e., an autoregressive form error model). As a result,

the FMs/FCs were identical to those in the second case study. The algorithms and coding

was completed on RStudio.

1.5 Background and literature review

In this section, a background and literature review of Bayesian methods and failure analysis

techniques is presented. In the first part of this chapter, I review relevant Bayesian methods

used in this thesis (subsection 1.5.1—1.5.7). In the second part of this chapter, I review

current failure analysis methods for quality engineering (subsection 1.5.8—1.5.10). Both

parts will review the relevant literature and methods necessary for all three case studies.

1.5.1 Bayesian history and analysis

In numerous journals published across the late 18th century to the early 19th century, Pierre-

Simon Laplace (1749–1827), a French scholar pivotal to the development and fundamentals

of engineering, mathematics, statistics, physics and astronomy, worked ambitiously on the

Bayesian interpretation of probability for a brief timeline of events spanning the advent

of Bayesian statistics to modern applications of Bayesian inference. Interestingly, the

methodology used by Laplace to solve statistical problems is said to be analogous to the

Bayesian approach of solving problems, but was not coined as such, that is, until the

1950s. Philosophical, practical and computational considerations were some of the biggest

drawbacks surrounding the use of Bayesian methods among statisticians during the latter

half of twentieth century. Bayesian methods simply required a lot of calculations to actually

solve problems, which paled against the frequentist rendition.

In recent years, Bayesian methods have generated a lot of attention because they can

combine expert knowledge with experimental data easily while taking into account uncer-

tainty [15, 16]. Bayesian inference has become increasingly essential for the development

of more realistic models based on the subjective properties of posterior distribution for

complex phenomena and multi-parameter systems or processes, due to the rapid advances in

computer technology and demand in many areas of science and engineering. A deterministic

model for the measurement process is not viable due to the uncertainty of model parameters

(such as temperature changes, measurement errors, sampling errors, etc) and the complexity

of measurement systems in quality engineering applications. Because of this, a probabilistic

model must be derived and it is essential to use a Bayesian approach to calculate the
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posterior distribution of unknown parameters.

However, with the rise of supercomputers in the contemporary era of Big Data [24] and

new Bayesian techniques1 as well as newer practices such as objective Bayesian analysis

for high-dimensional models and deep learning neural networks in recent papers [25–27];

Bayesian statistics have seen far more use coming into the early-mid 21st century.

I conducted some data analysis on the number of times Bayesian terms appear in a

search query (using Brunel Library’s Summon portal with results that extend beyond

Brunel Library’s collection). In Table 1.2a, the number of published content refers to (but

not limited to): journal articles, publications, conference proceedings, book reviews (usually

a short review of the original work), books, eBooks and more (e.g., video recordings, posters,

student thesis, etc). The number of published items where "Bayesian" content was searched

continues to increase over each period (excluding the cumulative period up to 1985); it has

increased steadily over each period since 1985. From 1985-89 (i.e., 1st January 1985, to 31st

December 1989), there were 14,192 (0.024%) "Bayesian" related publications; this increased

to 377,322 (0.080%) in 2010-14. Most recently, in 2015-18; this percentage reached at an

all time high of 0.094%. In Table 1.2b, the number and percentage of search queries were

compared with additional "Bayesian" related terms as a fraction of the number of content

published with the term "Bayesian" only. The results indicates that Bayesian data analysis

(BDA) is more prevalent in searches than all other items in each period. Interestingly, BDA

has remained constant at two-thirds of all Bayesian related searches throughout each period.

The percentage of published content with Bayesian inference (BI), Bayesian computation

(BC) and Bayesian decision theory (BDT) has each decreased significantly since 1985-89,

from 42.7/35.6/60.4 percentage points to 31.1/17.5/15.3 in 2015-18. The most notable

decrease came from BDT searches, which decreased by almost four times. However, the

percentage of published content for Bayesian Markov chain Monte Carlo (BMCMC) has

generally increased, both in terms of raw numbers and percentages, from 8 publications

(0.1%) in 1985-89 to 34,787 (9.2%) in 2010-14; then fell to 29,971 (8.4%). The percentage

of published content with Bayesian statistical process control (BSPC) has remained low,

with minuscule increases from 1.0% before 1985 to 1.7% in 1990-94; then dropping steadily

to 0.3% in 2015-18. Nonetheless, the number of publications for all search queries has

increased over time, indicating a sustained interest in Bayesian research.

1For instance: Bayesian linear regression, Bayesian estimator and MCMC.
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Before 1985 1985-89 1990-94 1995-99 2000-04 2005-09 2010-14 2015-18

No. of published content

in all fields / disciplines
418,465,841 59,559,312 79,178,723 120,016,512 168,694,592 255,958,958 470,260,799 377,742,130

No. of published content

with the word / term:

"Bayesian" searched

24,326 14,192 21,718 32,971 63,323 167,816 377,322 355,389

% of published content

with the word / term:

"Bayesian" searched

0.006 0.024 0.027 0.027 0.038 0.066 0.080 0.094

(a) Number (and %) of published content available for specified terms.

"Bayesian

data analysis"

"Bayesian

inference"

"Bayesian

computation"

"Bayesian

decision theory"

"Bayesian

MCMC"

"Bayesian

SPC"

Number % Number % Number % Number % Number % Number %

Pre 1985 16,177 66.5 10,379 42.7 8,670 35.6 14,696 60.4 108 0.4 254 1.0

1985-89 9,704 68.4 6,075 42.8 4,904 34.6 7,736 54.5 8 0.1 210 1.5

1990-94 13,931 64.1 8,639 39.8 6,911 31.8 9,984 46.0 60 0.3 369 1.7

1995-99 21,508 65.2 12,112 36.7 9,005 27.3 12,741 38.6 896 2.7 436 1.3

2000-04 42,177 66.6 22,269 35.2 14,557 23.0 18,383 29.0 4,192 6.6 429 0.7

2005-09 114,675 68.3 58,152 34.7 34,953 20.8 37,424 22.3 13,639 8.1 666 0.4

2010-14 258,636 68.5 125,400 33.2 69,778 18.5 66,737 17.7 34,787 9.2 1,017 0.3

2015-18 239,041 67.3 110,646 31.1 62,228 17.5 54,488 15.3 29,971 8.4 897 0.3

(b) Number and % of "Bayesian X" terms expressed over the number of published Bayesian content in sub-table (A).

Table 1.2: The total number and percentage of published content in all fields and items containing selected

"Bayesian" terms, distributed by years. Coverage: Updated as at 14th February 2019. Source: Brunel Library

(Summon) with results beyond Brunel Library’s collection.

1.5.2 Bayesian data analysis

Bayesian data analysis is based on the Bayesian approach to statistical inference. In

summary, there is some data to explain and some candidate explanations. Before obtaining

new information, each candidate explanation has prior credibility of providing the best

explanation. When new data is provided, the superior candidate explanation that best

accounts for the data is chosen, and all other candidate explanations that do not account for

the data are shifted away [28]. Naturally, all Bayesian problems begin with Bayes’ theorem:

π∗(θ|D) =
L(D|θ)π0(θ)

P(D)
, (1.1)

where θ ∈ Θ is an unknown parameter of interest, D is the data observed, π0(θ) is the

prior probability distribution for θ which represents the opinion and state of knowledge

before observing the current data, L(D|θ) is the likelihood distribution of θ associated with

the model for the data as collected, and π∗(θ|D) is the posterior distribution for θ after

computing everything on the right, taking into account the data observed. P(D) is the

marginal likelihood and should be the probability of generating the data, but it is difficult
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Figure 1.1: The % of published content with "Bayesian" terms searched as a fraction of the number of published

content with the term "Bayesian" only, distributed by years. Coverage: Updated as at 14th February 2019.

to calculate on its own, so the alternative way of describing this relationship is to be one of

proportionality:

π∗(θ|D) ∝ L(D|θ)π0(θ). (1.2)

Since the posterior function is a probability, the sum or integral over all possible θ should

be 1, i.e.

P(D) =

∫
Θ
L(D|θ)π0(θ) dθ.

In this case, the value of P(D) is the normalising constant which ensures that the posterior

PDF integrates to unity. If P(D) included additional parameters, then it would compose of

multiple integrals/sums.

Bayes’ theorem is used to update the probability for a hypothesis as prior information

I becomes available. The value of θ is distinguished by a prior density and is independent

of the measuring system but dependent by prior information I, i.e. π0(θ) ≡ π0(θ|I) . The

likelihood function is determined based on the system design, calibration information and

knowledge of relevant quantities of influence, for example: environmental settings and

material types. A Gaussian distribution may describe the likelihood function in many

practical cases. The measuring system is used in several cases to replace precise measurement

information with comparatively minuscule prior measurement knowledge. In this case, only

the likelihood (processing the measurement information) defines the posterior distribution,

that is, π∗(θ|D) ∝ L(D|θ).

The key difference between the classical frequentist approach and the Bayesian approach

is that the parameters of the model are solely dependent on the data, while the Bayesian

approach allows one to integrate other information through the use of a prior. These

differences are summarized in Table 1.3.
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Frequentist Bayesian

Parameters (unknown) Fixed Random

Data (known) Random Fixed

Probability model ℒ 𝒟|𝜃 ℒ 𝒟|𝜃 𝜋0 𝜃

Table 1.3: Differences between frequentist and Bayesian approaches.

The essence of conditional probability in beliefs and hypotheses, is based on a philo-

sophical rendition of probability where probability is understood to represent a certain

"degree of belief" in a given event, i.e. prior knowledge about the event, which updates as

more information is presented rather than depend on a numerical value based on frequency.

This "degree of belief" differs from the frequentist rendering that sees probability as the

mathematical limit of the relative frequency as the sample size increases towards infinity [25].

1.5.2.1 Estimating a quantity

An estimate of a quantity is frequently used to illustrate a measurement result. A best

estimate µ∗ is commonly used to represent that estimate and is assumed to be the poste-

rior distribution’s statistical expectation (mean). Similarly, the corresponding dispersion

parameter σ2
∗ is the square of the standard deviation (uncertainty). If both quantities are

from a continuous distribution, then µ∗ and σ2
∗ can be calculated as follows:

µ∗ =

∫
Θ
θ π∗(θ|D) dθ, σ2

∗ =

∫
Θ
(θ − µ∗)

2 π∗(θ|D) dθ.

1.5.2.2 Credibility intervals

The Bayesian credibility interval (CI) is another useful posterior indicator that shows where

an unobserved parameter value falls in the domain of a posterior probability distribution

given the available information or a predictive posterior distribution (PPD). For two reasons,

CIs differ from classical confidence intervals:

• CIs include problem-specific contextual information from the prior distribution,

whereas confidence intervals are solely based on data;

• CIs and confidence intervals treat nuisance parameters very differently.

The definition of a (1− α) CI for the unknown true value of θ, given D, is

P(θ ∈ [L(D), U(D)]|D) = α,

where α ∈ [0, 1] is the credibility value and [L(D), U(D)] are the lower and upper limits of

the data.
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1.5.3 Selecting suitable prior distributions

Selecting a suitable prior distribution for π0(θ) for the prior beliefs of θ has always been

a major obstacle to widespread acceptance of Bayesian inference. The inclusion of the

prior distribution causes the majority of the disagreement between Bayesian and classical

statistics approaches. Wasserman [29], among many others, past and present, is a frequent

critic on the issues surrounding the choice of selecting priors, by summarising all types of

priors (including informative and non-informative) as weakly informative. Each of these

informative and non-informative prior beliefs can have an effect on the final assessment in

different ways. This set of beliefs can be preferred for a number of reasons:

• Informative and empirical; the data from similar studies are used to support the

previous beliefs based on the data.

• Informative and non-empirical; there is some reason behind giving certain data more

weight than others.

• Informative and domain-knowledge; despite the lack of conclusive evidence, experts

know some facts are more reliable than others.

• Non-informative; data speaks for itself.

Furthermore, it is argued that the prior introduces too much subjectivity into the modeling

process, skewing the results. There are, however, a number of responses to these criticisms:

• Priors can be non-informative (diffuse), meaning they give little or no information

during the estimation process;

• Maximum likelihood (maximum likelihood) estimates are a type of a maximum a

posteriori probability (MAP) estimation that is a subset of the Bayesian framework

in which all prior distributions are uniform;

• Priors are usually asymptotically irrelevant, meaning that as N grows larger, the

prior has less of an impact on the outcome.

• Instead of assuming naivety and testing a null hypothesis that is assumed to be false

anyway, priors allows research to build on previous research.

This leads to the obvious questions here: "What to choose?" and "What class of models?"

Articles within the last decade have proposed prior distributions for classical (non-

hierarchical) logistic and linear regression models [30], normal-gamma regression models [31],
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models used for machine learning [32] and many more; along with newer practices such

as objective Bayesian analysis for high-dimensional models [26] and deep learning neural

networks [27], which are rapidly growing areas of research. The norm in these articles is to

continue using the same (or similar) prior until it goes wrong. While this may seem like a

practical approach, it is an extremely informal way of going through the model selection

process.

Traditionalist would suggest going for the awkward choice, that is, either the non-

informative (or diffuse) prior which will usually provide decent results for any given

parameter value in strongly informative situations, or the informative prior which is usually

the most unrealistic case. The flat (uniform) prior, usually denoted as a beta distribution

with parameters set to 1, i.e.

Beta(1, 1) → π0(θ) ∝ 1, (1.3)

which is a prior distribution that assigns equal probability to all possible parameter values, is

a popular option for a non-informative prior. Instinctively, this makes sense, and flat priors

on the regression parameter are not informative in some cases, such as linear regression.

This essentially spreads the density across the entire real positive line. It does not, of course,

integrate into 1 and is an improper prior. There is also a weakly informative prior, which

possesses some information about a parameter and an aim to regulate inferences logically.

However, in a world where everyday decisions are virtually Bayesian and inference has

becoming increasingly easier for more complex models with various parameters and larger

data-sets, what’s needed is an in-between informative prior. The best prior distributions

are those that accommodate computational restrictions by controlling, conveying, and

standardizing variables.

1.5.4 Bayesian computation

Bayesian methods are well known for being computationally intensive, especially involving

complex models with multiple variables (e.g., failure rate) which can support additional

modelling to combine information; and as such, suitable models have historically allowed

the integration of other sources of information. Moreover, because the marginal distribution

of the data from Bayes’ theorem is often a complicated integral, computing it can be

challenging. Because the parameter is independent of the denominator, equation (1.2) can

be used, which is easier to simulate from, and a Bayesian analysis’ goal is to simulate values

based on the posterior distribution.
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Often, it may take several days to conduct a full analysis on complex models using Bayes’

theorem. The need for advanced algebraic methods and an understanding of probability

theory have also discouraged the use of applying this method. Nevertheless, it is essential

to conduct decision analysis (e.g., minimising expected loss or maximising expected payout)

based on parameter estimation techniques (e.g., MAP or ML solutions).

To tackle problems arising in Bayesian sampling methods, Geman and Geman [33]

introduced what is now call Gibbs sampling, which was the first time that MCMC sampling

methods had been properly applied to Bayesian problems. Therefore, they have created

a technique by which simulating conditional distributions is the same as simulating joint

distributions.

1.5.4.1 MCMC methods

Bayesian data analysis based on MCMC methods has become the choice method for

examining and interpreting data in almost all scientific disciplines. Efficient and effective

methodologies based on Monte Carlo are constantly being researched and discussed [34].

MCMC methods comprise of a general class of algorithms, which samples and estimates by

simulation, to obtain an expectation of a statistic in a complex model from a probability

distribution. Markov processes are the basis for general methods of MCMC simulation used

to simulate sampling from complex probability distributions, which have been widely used in

Bayesian inference, for instance, in hierarchical MCMC for Bayesian system reliability [35].

The last two initials in MCMC stems from the need for the random numbers to drive

the Markov process with Monte Carlo integration. The random samples are statistically

independent in modern Monte Carlo integration, while they are correlated in MCMC.

Bootstrap analysis, Gibbs sampling and MCMC sampling are often used, and although

seemingly simple, are computationally draining and requires several hours on a personal

computer [36, 37]. Other well-known examples of Monte Carlo random walk methods

include the Metropolis–Hastings (MH) algorithm, slice sampling, Multiple-try Metropolis,

Reversible-jump and the Hamiltonian (or Hybrid) Monte Carlo (HMC); see more in [34,

35]. The Gibbs sampler is a special case of the MH algorithm since it takes samples from

the full conditional distributions of parameters. These methods have also paved the way for

the development of techniques for investigating PPDs, which I discuss here as an extension

of the estimation algorithm.
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1.5.5 Posterior predictive distributions

Other statistics, in addition to descriptive statistics, can be generated from an MCMC-

generated sample to make inferences about other important quantities of interest and

to evaluate model fit. One such quantity is the posterior predictive distribution (PPD).

The PPD is the probability distribution of unobserved values based on observed values

that provides some insight into what the next observation might look like given the prior,

whereas Bayes’ theorem in (1.2) computes the posterior. This distribution is defined as a

mixture of the new observation’s PDF and the posterior, and it is given by:

π∗(ynew|D) =

∫
Θ
g(ynew|θ)π∗(θ|D) dθ, (1.4)

where g(ynew|θ) is the PDF of a new observation ynew from the sampling distribution. The

PPD takes into account two types of uncertainty for θ:

• sampling uncertainty about ynew|θ;

• parametric uncertainty about θ.

This makes it a more powerful tool and distinguishes it from classical predictive distributions,

which rely on a single best estimate for θ.

1.5.6 Bayesian hierarchical modeling

Bayesian hierarchical modeling (BHM) is a statistically rigorous way to draw conclusions

based on many observations about unknown parameters. The model is written in several

levels that use the Bayesian approach to estimate the parameters of the posterior distribution.

The sub-models combine to form the Bayesian hierarchical model, and Bayes’ theorem in

(1.2) is applied with the observed data to account for all the present uncertainty. This leads

to the multi-staged posterior distribution, as additional evidence is obtained on the prior

distribution ([38]).

In general, BHM uses two important concepts in the derivation of the posterior distribu-

tion: hyperparameters, which are parameters of the prior distribution, and hyperpriors, the

distribution of hyperparameters. For instance, if the marginal likelihood included multiple

influencing factors (say, temperature θ1, environmental settings θ2 and material types θ3),

then P(D) would compose of multiple integrals. This typically leads unto a multi-stage

BHM with hyperparameters θi ∈ Θ and hyperprior distribution π0(θi) for i = 1, 2, . . . , N ,

where N is the number of factors. Finite exchangeability for all parameters is assumed

under BHM. This means that the joint probability distribution of the observed data D and
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the influencing factors θ = (θ1, θ2, . . . , θN ) does not change when the positions are changed

for different permutations.

1.5.6.1 A two-stage BHM

For a simple case, the two-stage BHM can be described by setting the following inputs:

D|θ1, θ2 ∼ L(D|θ1, θ2), θ1, θ2 ∼ π0(θ1, θ2), θ2 ∼ π0(θ2).

The joint posterior distribution in a two-stage BHM is therefore:

π∗(θ1, θ2|D) ∝ L(D|θ1, θ2)π0(θ1, θ2), P(D) =

∫∫
Θ
L(D|θ1, θ2)π0(θ1, θ2) dθ1dθ2. (1.5)

By the law of conditional probability, the prior of π0(θ1, θ2) can be expressed as π0(θ1|θ2)π0(θ2)

or π0(θ2|θ1)π0(θ1). When either θ1 or θ2 is not required for a specific measurement, marginal-

izing one or the other results in

π∗(θ1|D) =

∫
Θ
π∗(θ1, θ2|D) dθ2, π∗(θ2|D) =

∫
Θ
π∗(θ1, θ2|D) dθ1. (1.6)

1.5.7 Bayesian point estimation

Bayesian point estimation focuses on the summary statistics of its posterior distribution,

namely: the posterior mean, which minimizes the posterior expected loss for a given cost

function, i.e. a squared-error cost function, the posterior median, which minimizes the

posterior risk for the absolute-value cost function, and the posterior mode, which is easy to

obtain via the maximum a posteriori (MAP) estimate. The posterior’s statistics of central

tendency are pivotal in Bayesian decision making.

Significant research has been made in regards to MAP estimation, namely for hidden

Markov models and several useful parametric densities generally used in SMART systems,

i.e. automatic speech recognition and natural language processing; for instance, see [39].

MAP probability usually comes up in Bayesian setting, typically, as a contrast to the ML

estimation. Because, as the name suggests, it works on a posterior distribution, not only

the likelihood. Even for complex problems where ML estimation fails, the MAP estimator

is well-known for its well-defined asymptotic properties. For simpler problems, the ML

estimator is consistent and agrees with the MAP estimator [40].

Recall, that the posterior distribution π∗(θ|D) contains current knowledge about some

unknown quantity θ. This means I can use posterior distribution to obtain point or interval

estimates of θ. A well known method to find point estimates is to choose a value for θ that

maximises the posterior. This method is called the MAP estimation and is used to obtain a

19



point estimate of an unknown quantity on the basis of previous information, which equals

the mode of the posterior distribution (this is the highest point on a PDF, see discrete and

continuous cases in Figure 1.2).

෠𝜃𝑀𝐴𝑃

Discrete distributions Continuous distributions

෠𝜃𝑀𝐴𝑃

Figure 1.2: The MAP estimate of θ|D is the value of θ that maximizes the posterior density π(θ|D), given by

θ̂MAP .

From Bayes’ theorem in (1.2), one could obtain the posterior from likelihood and prior,

without having to be concerned with usually scaling constants, since the primary intent is

optimisation, so proportionality works. Thus, the estimate

θ̂MAP = argmax
θ

π∗(θ|D) = argmax
θ

L(D|θ)π0(θ), (1.7)

is the MAP estimate of θ. The maximising value can be obtained by differentiating with

respect to θ, then solving for θ (and checking the maximisation criteria). Note that (1.7)

coincides with the ML estimate when the prior π0(θ) is a constant (i.e. a uniform density).

Additional Bayesian point estimators, such as the minimum message length (MML)

point estimator, based on Bayesian information theory (the study of quantification, storage,

and communication of information), have been used, but they do not require extensive use

of the posterior distribution. Furthermore, Bayesian point estimation frequently employs

computational methods previously discussed in Section 1.5.4, such as the Markov chain

Monte Carlo method (MCMC).

1.5.8 Overview of current FMEA

The current FMEA (Failure Mode and Effects Analysis) framework is an inductive and

bottom-up reasoning tool for failure analysis and is used in many areas of engineering (i.e.

quality engineering including reliability and safety). This tool was developed by reliability

engineers in the late 1950s to analyse problems that might arise from malfunctioning of

military systems [8]. As a quantitative analysis, a systematic approach to the use of FMEA

consists of identifying ways in which failure can occur ("failure mode"), then identifying the

causes, effects of each failure mode, evaluating the corresponding risks, and then taking the

necessary steps to minimise the risks and consequences. By including a criticality analysis,
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the FMEA can be extended to an FMECA. In the FMECA, the criticality of each failure

mode is calculated using a RPN according to three risk measures:

• Severity ∼ rates the severity of the potential effect of the failure;

• Occurrence ∼ rates the probability that the failure will occur;

• Detection ∼ rates the probability that the problem will be detected before it reaches

the system or user.

Each risk measure (severity, occurrence and detection) is typically quantified using rating

scales (e.g., from 1 to 5, or from 1 to 10), with the higher number representing the higher

risk. On a five-point Occurrence scale, for example, a rating of 5 means that the failure is

most likely to occur, while a rating of 1 indicates that the failure is extremely unlikely to

occur. The company or research team defines the basic rating descriptions and standards

to match the products or processes being assessed. The RPN for each failure mode is

determined by multiplying each risk measure, i.e.

RPN = Severity × Occurrence × Detection. (1.8)

As an example, Table 1.4 shows a sample five-point scale for severity, occurrence and

detection risk measures.

Severity Occurrence Detection

Rating Effect Description Probability Description Probability Description

1 Negligible Very little or no effect on the customer. Remote
Failure is extremely unlikely or non-

existent with very low probability.
Certain

A possible cause/mechanism and failure 

mode would almost certainly be detected 

by Design Control.

2 Minor Very minor effect on the customer. Low Few failures are likely. High

A high chance the Design Control will 

pick up on a possible cause/mechanism 

and failure mode.

3 Moderate
A moderate effect on the customer. 

Requires attention.
Moderate Occasional failure is expected. Moderate

A moderate chance that the Design 

Control will pick up on a possible 

cause/mechanism and failure mode.

4 Critical
A critical effect on the customer.  

Requires significant attention.
High High number of failures. Low

A low chance the Design Control will pick 

up on a possible cause/mechanism and 

failure mode.

5 Catastrophic

A catastrophic effect on the customer 

and occurs without warning. 

Failure mode is noncompliant with 

quality regulations.

Inevitable
Failure is certain to happen 

with very high probability.
Undetectable

A possible cause/mechanism and failure 

mode will almost certainly be undetected 

by Design Control; or there is no 

detection available.

Table 1.4: Rating for severity, occurrence and detection.

Another result useful to FMECA is criticality which is found by multiplying severity by

occurrence, i.e.

Criticality = Severity × Occurrence. (1.9)

Equations (1.8) and (1.9) give relative priority to the failure modes in the order they should

be addressed. The RPN is implemented and explored in greater detail in chapters 2 and 3.
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The outcomes of an FMEA/FMECA are usually reported in a form (examples of forms can

be seen in later case studies, e.g. chapter 2-4). There are standards available that provide

guidance for conducting a proper FMEA/FMECA (e.g., [41]). Consider FMEA/FMECA

as a generic form, regardless of whether or not it includes a criticality analysis. Figure 1.3

depicts a flowchart detailing the FMEA process.

Describe the 
process

Define 
functions of the 

process

Identify failure 
modes

Describe the 
effects of 
failure modes

•Severity rating

Determine the 
causes of 
failure modes

•Occurrence rating

Describe 
detection 
methods

•Detection rating

Compute the 
RPN

Corrective 
strategy

Figure 1.3: Flow chart describing the FMEA procedure.

Despite the significant contribution that conventional FMEA has made to industry

around the world, its flaws have never been overlooked, and it has been criticized for a

variety of reasons. More information on the shortcomings of traditional FMEA will be

addressed in the following section.

1.5.9 Limitations of current FMEA

The method of obtaining RPNs is the most widely criticized shortcoming of FMEA. RPN

is a critical component of FMEA and the primary method for assessing the probability of

failure modes. However, since RPN is the product of risk measures, as seen in (1.8), its

validity and rationality, as well as the result it produces, are frequently challenged [42–46].

Some of the common reasons are:

i If completely different combinations of risk measures are used, the RPN value can be

the same even though the risks are completely different. On a ten-point scale, two

incidents with S, O, and D scores of 10, 2, 2 and 8, 5, 1 have the same RPN values

of 40, despite the fact that they pose completely different risks.

ii The distribution of RPNs from 1 to 1000 is not uniform, which makes understanding

the sense of variations between RPNs difficult.

iii Since risk values are also quantified based on the expertise of the team members

conducting the study, different assessment outcomes can be obtained when the same

failure mode is analyzed by different FMEA teams. This makes the resulting RPN
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difficult to quantify precisely and objectively due to the subjective nature of choosing

risk values from 1 to 10.

iv The number of parameters that can be used in a traditional FMEA is limited.

As a result, it is concluded that RPNs used in conventional FMEA may not provide a

clear risk assessment. Moreover, the RPN’s ability to compare and incorporate risk data is

severely limited.

1.5.10 Improvements to FMEA

Several methods have been taken thus far in order to make FMEA a more effective method

for risk prioritization. Some of the most common approaches to improving conventional

FMEA include incorporating other variables such as costs into the risk assessment process

or combining FMEA with another failure analysis system such as the FTA.

For example, Rhee [47] proposed systematic use of empirical evidence for life cost-

based FMEA. According to this method, the system’s availability can be calculated using

empirical data, which includes downtime and failure frequency. Furthermore, using empirical

evidence, loss time can be calculated, allowing for the calculation of failure cost. Later

on, von Ahsen [48] suggested a cost-oriented approach to develop the FMEA process from

an economic standpoint, which takes into account the failure costs associated with both

externally and internally detected faults to completely cover a financial risk assessment.

A case study with an automobile supplier demonstrated that the new approach is more

beneficial than traditional FMEA.

Outside of traditional FMEA, a combined approach using FMEA and FTA has been

featured. The most widely used tools in the industry, by far, are FMEA and FTA [49]. FTA

is a top-down analysis that visually represents a failure path or failure chain and is based

on the principle of Boolean logic, which allows for the construction of a set of True/False

statements. It employs logic gates and events to model how the component states contribute

to the overall state of the system. The aim of FTA is to efficiently detect causes of failure

and reduce risks before they happen. The following logic gates are widely used in FTA: (1)

OR-gate, (2) AND-gate and (3) inhibit or conditional gate. FTA’s symbols are defined in

depth in [50]. Moreover, a strictly qualitative FTA can be transformed into a quantitative

FTA by incorporating quantitative component reliability data (e.g., failure rates). Using

boolean algebra, such a quantitative FTA can be used to calculate the system’s reliability.

A comprehensive description of mostly quantitative FTAs is also given in Hamda [51].
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Some authors argue that FTA and FMEA should be used together. For example,

Bertsche [52] claims that due to the different starting points of both methods, this can

increase the number of failure modes found (e.g. FMEA from the bottom up vs. FTA from

the top down). Even so, conducting both analyses would be time consuming and could

result in a lack of concentration on the most important components of the system, which is

what a failure analysis is supposed to identify.

To summarize, several different approaches to improving FMEA have been proposed,

and many more in the literature (e.g., identifying the most critical failure causes or by

incorporating a fuzzy belief rule approach with Bayesian networks [53, 54]). Although some

of them have proven to be effective in removing the flaws of conventional FMEA, others

need further investigation.

1.6 Thesis structure

This chapter introduced the research’s purpose, as well as the overall research goal and

related objectives. A background and literature review was provided and is also given in

the introduction portions of subsequent chapters. The thesis is divided into five chapters

and the remaining four are organised as follows.

The first case study is covered in chapter 2, where I use a FMEA and a modified SEIR

epidemic model to perform a Bayesian risk assessment of the ongoing COVID-19 pandemic.

The second case study is covered in chapter 3, in which I present a Bayesian risk assessment

of the CMM measurement process using an augmented form error model and FMECA. The

third case study is covered in chapter 4, where I present a Bayesian risk assessment to failure

prediction using an autoregressive form error model, Gibbs sampling and an integrated

FTA/FMEA. Analytical and numerical methods are used in all studies to emphasize the

practical implications of my findings, and the proposed methodologies can be used in future

COVID-19 like pandemics and wide quality engineering. Finally, in chapter 5, I provide an

overview of the discussion as well as some concluding remarks and suggestions for future

work.
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Chapter 2

A Bayesian Risk Assessment of the

COVID-19 Pandemic using a

Modified SEIR Epidemic Model

2.1 Introduction

2.1.1 Overview

The coronavirus disease 2019 (COVID-19) is an infectious disease and global pandemic

caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and has been

designated a Public Health Emergency of International Concern by the World Health

Organization (WHO) [6]. The 1918-19 H1N1 influenza pandemic was the last time the

world responded to an imminent global disease outbreak on the size of the current COVID-

19 pandemic with no exposure to vaccines. The COVID-19 disease was first detected in

Wuhan, China in 2019, and has since spread worldwide, leading to a coronavirus outbreak

of 2019–20 [55]. The virus is suspected to have an animal origin by spillover infection and

was first transmitted to humans in Wuhan, China, in November or December 2019 and

became a major outbreak by early January 2020. The COVID-19 pandemic hit the United

Kingdom (UK) at the end of January 2020. There is often a delay between the onset of

symptoms and correct diagnosis. The most critical things are the prompt diagnosis and

identification of the infected, and the number of confirmed patients. Common symptoms

include coughing, shortness of breath and fever, while less common symptoms may include

muscle pain, sputum problems, and sore throat. Although most cases have mild symptoms,
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some cases have progressed to extreme pneumonia and multi-organ failure.

Due to the unexpected and ongoing nature of COVID-19, the main interest is to evaluate

using a Bayesian inference approach and a modified SEIR model (susceptible-exposed-

infectious-recovered) for the transmission dynamics of COVID-19. Here, the effective

reproduction number (Rt) is estimated based on laboratory-confirmed cases and death data

using Bayesian inference and analyse the impact of the community spread of COVID-19

across the UK. The value of Rt models the average number of infections caused by a case

of an infectious disease in a population that includes not only susceptible people. A FMEA

(Failure mode and effects analysis) is then applied to evaluate the effectiveness of the action

measures taken to manage the COVID-19 pandemic. As the focus of FMEA is COVID-19

infections, failure modes are taken as positive cases. Therefore, the model is applied to

COVID-19 data to demonstrate the effectiveness of control interventions by reducing the

value of Rt. This study will show that, combined with FMEA and conditional analysis,

Bayesian modelling will help to expand and provide responses to this outbreak. A summary

of this case study is presented in Figure 2.1.

• Apply the SEIQR model for COVID-19 in which the population is divided into 
susceptible (S), exposed (E), infectious (I), quarantined (Q) and recovered (R).

• Boxes and arrows represent different compartments and transition rates used.
• Greek letters are unknown parameters to describe the pandemic.

Derive an 
expression 

for 𝑅𝑇 using 
parameters
of the SEIQR 

model

Apply Bayesian inference to 𝑅𝑇
given the data to predict the 
number of new cases 

Note: 𝑅𝑇 = the effective 
reproduction number

COVID-19 data 
(cases, deaths, etc.)

Combine all steps with FMEA to model and study the risks of 
the COVID-19 transmissions

RPN values are constantly 
updated using Bayesian 
inference in line with the 
action measures taken from 
governmental measures 
carried out in response to 
COVID-19.

Figure 2.1: Summary of the first case study methodology.

2.1.2 Coverage and data sources

Real-time data on the number of laboratory-confirmed cases, recoveries and deaths due

to COVID-19 have been derived from a variety of authoritative sources, such as the

Official Websites of Ministries of Health or other Government Agencies and the Social

Media Pages of Government Authorities. Most of the data can also be accessed via

Worldometer (https://www.worldometers.info/coronavirus/#countries), which is a
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reference website and has been cited in more than 10,000 published books and 6,000

technical journal articles and has been named one of the best free reference websites of the

American Library Association (ALA), the oldest and largest library organisation in the

world. Data on hospitalisation for the average length of stay in hospitals in many countries

around the world can be found in the OECD (https://data.oecd.org/healthcare/

length-of-hospital-stay.htm). Data on infections and testing, hospital resource use,

mask use and social distancing (as well projections and forecasting) is provided by the

Institute for Health Metrics and Evaluation (https://covid19.healthdata.org/). The

data on these websites is collected and analysed regularly around the clock, 24 hours a day

and 7 days a week.

The next step is to follow the standard routine of dynamic modeling by focusing on some

of the most affected countries in Europe (i.e., UK, France, Spain, Netherlands, Germany

and Portugal). It is important to know the daily and total number of lab-confirmed positive

cases, recoveries, and deaths. The latest cases data for the United Kingdom (as of 31

August 2020) is available for selected regions throughout the country, while the latest death

data is limited to the nations of the United Kingdom (i.e. England, Northern Ireland,

Scotland, and Wales). Figure 2.2 presents the number of lab-confirmed daily cases with

COVID-19 for some of the infected countries in Europe, recorded between 1 March and

31 October, inclusive (data source: https://ourworldindata.org/coronavirus/). The

recovery data for Spain and the United Kingdom is unavailable to the public.
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Figure 2.2: A line graph for the number of lab-confirmed daily cases with COVID-19 for some of the infected

countries in Europe. The number of cases are displayed using a logarithmic scale to base 10. Coverage: 1 March to

31 October.
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2.2 Model and methods

2.2.1 A modified SEIR model adapted to COVID-19

The classical SEIR model assumes that births and deaths are not related to factors other than

the disease itself, and is an extension to the classical SIR (susceptible-infectious-recovered)

model [56]. Each compartment in the SEIR model represents:

• S ∼ absolute number of susceptible individuals (those who may potentially contract

the disease). Without further information, this group is represented by the whole

population.

• E ∼ absolute number of exposed individuals (those who have been infected but are

not yet infectious).

• I ∼ absolute number of infective individuals (those capable of transmitting the

disease).

• R ∼ absolute number of recovered individuals (those who have become immune).

The SEIR epidemic model has been widely used in large populations to study the dynamics

of infectious diseases when there is an incubation period during which individuals have

been infected but are not yet infectious themselves. For this period, the individual is in

the exposed state E. This may be called a latent phase, and may be infectious, partially

infectious or not infectious yet. In the classical SEIR model, compartment R also includes

the number of people who died from the disease.

Several authors have developed different models of the classical SEIR taking into account

the complexities of the disease in order to make the model as realistic as possible. To

generalise the SEIR model to describe the COVID-19 pandemic in several countries, I

adopt an additional compartment: Q (quarantined), which adds a passage for the fraction

of infectious individuals into the quarantined compartment. A characteristic feature of

this model is that the total population in a given region N is equal to the sum of all

compartments:

S(t) + E(t) + I(t) +Q(t) +R(t) = N. (2.1)

Equation (2.1) holds if the number of births A are balanced with death rates µ during the

time span of the disease (e.g. A = µN). These quantities are expressed in units of births

and deaths per 1,000 individuals per year, respectively. All individuals in each compartment

are subjected to a natural death. I define the reciprocal µ−1 as the average life expectancy
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of a country’s population in a given year. This value applies to typical human deaths (e.g.

due to natural death, usual influenza, fatalities, etc.) and is not linked to COVID-19.

Initially, assume that the population at time t = 0 only includes susceptibles, so that,

S(0) ≈ N , E(0) ≥ 0, I(0) ≥ 0, Q(0) = 0 and R(0) = 0. There is a disease free equilibrium

(DFE) with

(S(0), E(0), I(0), Q(0), R(0)) = (N, 0, 0, 0, 0). (2.2)

The number of individuals in I tends to zero as t → ∞, which ensures that limt→∞ S(t) =:

S∞ > 0. Individuals in state R have no further role to play in the epidemic, and it is

assumed that infected individuals are mutually independent and shows an exponential

growth, characteristic of any epidemic’s initial stages [57].

2.2.2 Transition rates of vital dynamics

The exponential distribution plays a significant role as the probability distribution that

underlies the time spent in a compartment (or state), which is fundamental for Bayesian

modelling (later sections will explain this). As such, these states can be seen as a flow

diagram in which the boxes and the arrows represent the different compartments and

transition rates of vital dynamics used for COVID-19 (a graphical illustration of the

transmission model for COVID-19 can be seen in Figure 2.3).

S E I Q R
𝜷𝑵−𝟏𝑺𝑰 𝝔𝑰 𝜸𝑸𝝂𝑬

𝝁𝑺 𝝁 + 𝜻 𝑰 𝝁 + 𝜻 𝑸

𝑨

𝝁𝑹𝝁 + 𝜻 𝑬

Figure 2.3: A modified SEIR transmission model in which the boxes and the arrows represent the different

compartments and transition rates used for COVID-19.

The modified SEIR model for COVID-19 described in Figure 2.3 can also be expressed

by the following set of nonlinear ordinary differential equations (ODEs), which evolves

according to:

S′(t) = A− (βN−1I(t) + µ)S(t), (2.3)

E′(t) = βN−1S(t)I(t)− (ν + ζ + µ)E(t), (2.4)

I ′(t) = νE(t)− (ϱ+ ζ + µ)I(t), (2.5)

Q′(t) = ϱI(t)− (γ + ζ + µ)Q(t), (2.6)

R′(t) = γQ(t)− µR(t), (2.7)
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where β is the infection (or contact) rate, ν is the average incubation rate, ϱ is the average

hospitalisation rate, γ is the recovery rate and ζ is death rate due to COVID-19.

The transition between each state can be explained as follows. Transmission of diseases

occur through interactions between susceptible and exposed persons in the home, workplace,

school, hospitals or at random in the neighbourhood, with the latter depending on the

spatial distance between interactions. Any such contact results in the susceptible contracting

the virus and thus becoming exposed and then infected, leading to transition S → E with

probability S(t)/N and population βI(t) which exposes β−1 new individuals per day. When

exposed individuals transition from E → I, the probability is 1 since all exposed individuals

will become infected, the population is E(t) and the latency rate is ν with a mean incubation

period of ν−1.

The infected individuals eventually transition from I → Q which matches the “active

confirmed cases” as documented in many official databases and reports. In fact, an infected

person is not quarantined immediately because the authorities have often been unable to

test enough people while keeping pace with the spread of the disease. The rate at which the

number of infectious individuals move into the Q compartment is given by ϱ, which is the

inverse of the mean time needed to quarantine an infected patient. Recovered individuals do

not return to compartment S as long-term immunity is assumed, but it remains to be seen

if patients recovered from COVID-19 can produce antibodies and gain lifelong immunity.

In most transitions, the duration is typically explained by an exponential distribution.

The need to quarantine is driven by the number of confirmed cases and is necessary to

significantly and effectively reduce the spread of infection. Individuals in compartments E,

I or Q may die from the virus with rate of ζ, respectively.

It’s worth noting that the proposed modified SEIR model excludes the vaccination

effect due to the research’s timeliness: vaccinations began in December 2020, and this study

was completed by then. It would be interesting to change this model to add vaccination

and compare the outcomes to the original version of the model in future research. This

concept can be further expanded in many model realisations with varying post-vaccinated

susceptibility, depending on vaccine efficiency, etc.

2.2.3 Deriving Rt using the Next Generation Method

The next-generation matrix (NGM) approach was introduced in 1990 by Diekmann et

al. [58] and is, in such situations, a general method of deriving Rt, encompassing any

scenario in which the population is divided into independent, disjoint variables. This
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technique assumes that the transmission probabilities between compartments are constant

and that the distribution of the time of residence in each compartment is exponentially

distributed. The NGM approach has been expanded on in numerous articles [59–61].

In this section, the steps required to find the NGM operator in matrix notation are

outlined [62], and this approach is then applied to the proposed modified SEIR model

adapted to COVID-19.

Let F be the matrix of transmissions of new infections in the infectious compartments,

and let V be the matrix of individuals entering and leaving the infectious classes (i.e. matrix

transitions). Assuming that both matrices meet the conditions of Rt for compartmental

models at the DFE from (2.2), with S = N , then I can form a NGM operator from the

ODEs of the infectious classes, given by FV −1 where V −1 is the inverse V . If infected

states are denoted by indices i and j, then entry Fij is the rate at which individuals in state

j transmit to individuals in state i. In other words, Fij is equal to zero if no new cases

generated by a infectious individual in state j can be in infected in state i immediately

after infection. The value of Rt is obtained from the spectral radius (dominant eigenvalue)

of FV −1 [63].

For populations that transmit the virus, an expression for Rt can be derived from two

cases: one with quarantine and one without it.

2.2.3.1 2-dimensional case: ϱ = 0

In this example, I only model the exposed E and infected I classes. Assuming that the

DFE conditions are met at matrices F and V , then the infectious class dynamics for Rt is

given by

Rt =
βν

(ν + ζ + µ)(γ + ζ + µ)
. (2.8)

Proof. From the ODEs of the SEIR model, there are two infectious compartments: exposed

E (state 1) and infected I (state 2). For this 2× 2 system, I find that the appearance of

new infections and individuals entering and leaving the infectious classes depends on:

F =

0 β

0 0

 , V =

ν + ζ + µ 0

−ν γ + ζ + µ

 .
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The inverse of V is simple since I am using a 2× 2 matrix, therefore:

V −1 =
1

(γ + ζ + µ)(ν + ζ + µ)

γ + ζ + µ 0

ν ν + ζ + µ


=

 (ν + ζ + µ)−1 0

ν
[
(ν + ζ + µ)(γ + ζ + µ)

]−1
(γ + ζ + µ)−1

 .

Thus, FV −1 simplifies to:

FV −1 =

 βν
(ν+ζ+µ)(γ+ζ+µ)

β
(γ+ζ+µ)

0 0

 .

The dominant eigenvalue of the above matrix is the largest value between first (top-left)

and fourth (bottom-right) entries. Since the fourth entry is zero, then Rt is obtained from

the first entry, thus the proof is complete.

2.2.3.2 3-dimensional case: ϱ ̸= 0

For the second case, I take into account all three infectious compartments: E, I and Q.

Once again, assuming that the DFE conditions are met at matrices F and V , then the

infectious class dynamics for Rt may also be given by

Rt =
βνϱ

(ν + ζ + µ)(ϱ+ ζ + µ)(γ + ζ + µ)
. (2.9)

Proof. From the ODEs of our SEIR model, I now consider all three infectious compartments:

E, I and Q. Regarding the necessary ODEs for each compartment at the DFE, I obtain:

F =


0 0 β

0 0 0

0 0 0

 , V =


ν + ζ + µ 0 0

−ν ϱ+ ζ + µ 0

0 −ϱ γ + ζ + µ

 .

Hence, the NGM operator for FV −1 under this 3× 3 matrix is given by:

FV −1 =


0 0 β

0 0 0

0 0 0




1
ν+ζ+µ 0 0

ν
(ν+ζ+µ)(ϱ+ζ+µ)

1
ϱ+ζ+µ 0

νϱ
(ν+ζ+µ)(ϱ+ζ+µ)(γ+ζ+µ)

ϱ
(ϱ+ζ+µ)(γ+ζ+µ)

1
γ+ζ+µ



=


βνϱ

(ν+ζ+µ)(ϱ+ζ+µ)(γ+ζ+µ)
βϱ

(ϱ+ζ+µ)(γ+ζ+µ)
β

γ+ζ+µ

0 0 0

0 0 0


The dominant eigenvalue is equal to Rt and is obtained from the first entry. Thus, the

proof is complete.
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Since classical statistics are empirical and see probability as something that has to do

with a limiting frequency based on an observable proportion; it will then be more important

to see how the subjective nature of the Bayesian method is implemented by using a priori

belief to describe a distribution of probabilities on the possible values of the unknown model

parameters of the epidemic. Knowing the value of Rt makes this quantity very important

for estimating the proportion of a population to be quarantined to avoid a further outbreak.

In this case, the main interest will be to estimate some of these unknown parameters, such

as β, γ, and ζ, which will allow for prediction of the outbreak size from Rt and application

of control methods to reduce it. Other transition parameters (i.e. ν, ϱ and µ) will be

estimated empirically from known sources.

2.2.4 The FMEA procedure to the community spread of

COVID-19

The earliest form of risk analysis involved identifying all potential risks without taking into

account the likelihood of them occurring. In the 1940s, structured risk analysis became

popular as a risk assessment tool. Traditional risk analysis (TRA) approaches were plagued

by poorly defined steps, high levels of uncertainty, and decision-making problems in the

process. As a result, in the late 1940s, the US Armed Forces introduced FMEA which is a

significant improvement over TRA and acts as a proactive tool for identifying, evaluating,

and preventing process failures. In the late 1950s, reliability engineers further improved

this method to analyze issues that could arise from military device malfunctions. Today,

there are a wide variety of risk analysis methods from which to choose: FMEA and its

extension FMECA,

In the case of pandemics, I will show that the FMEA can be used to assess the impacts

of various potential failures in order to determine which prevention measures are most

needed. Therefore in this chapter, I extend these ideas to analyse the COVID-19 pandemic

in the United Kingdom.

Figure 2.4 illustrates the setup for the proposed FMEA procedure.

Process: Community spread 
of COVID-19 in the United 

Kingdom.

Current RPN

• Failure modes

• Potential effects

• Causes of failure

• Occurrences

• Severity of consequences

• Detection controls

Revised RPN

• Corrective actions

• Preventive actions

Figure 2.4: FMEA mind map for the COVID-19 pandemic in the United Kingdom.
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The proposed process is given as the community spread of COVID-19 in the United

Kingdom. The failure modes consist of imported infected cases, local infected cases, infected

items and isolated infected sites in different parts of the United Kingdom. Potential effects

include higher mortality rates due to COVID-19, increased isolation effects on the well-being

of individuals, higher reproduction numbers and a negative impact on the economy. The

following is then assessed:

• How severe are the consequences of these failures? I denote these as the severity

rating on a scale from 1 to 10, where 1 is insignificant (or non-existent) and 10 is

catastrophic.

• What is the likelihood of infected cases who tests positive? I denote this as the

occurrence rating on a scale from 1 to 10, where 1 is remote and 10 is inevitable

• What are the chances of detection of infected cases by the available control measures?

I denote this as the detection rating on a scale from 1 to 10, where 1 means a control

measure is highly certain to detect it and 10 means highly impossible (or no control

exists).

The risk priority number (RPN) in (1.8) can then be used to get an overall rating for each

failure mode by combining each of the results above.

Equations (1.8) and (1.9) give relative priority to the failure modes in the order they

should be addressed. A high RPN means that there are a lot of new cases and deaths and

a corrective action may be needed for the occurrence, severity or detection of individual

high ratings. This corrective action should be extended to containment and prevention

methods such as national lockdown, asymptomatic testing, sanitization of cities and towns,

self-isolation and "stay at home" practises, social distancing, regular hand washing at

regular intervals provided by the National Health Service (NHS) or other local health

centres in accordance with government requirements, and so on. Applying these methods

should significantly reduce the previous RPN value to a smaller value closer to 1. If the

RPN reaches 1, then the pandemic has likely ended.

2.3 Bayesian method on infectious periods

This section discusses how the Bayesian approach can be applied to the proposed modified

SEIR model for infectious periods. In many epidemic cases, a distribution from the

exponential family, namely the Poisson and Gamma distributions, fits the shape of the
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pandemic well. The proposed model consists of two layers: the likelihood of the data and

the inference from prior to posterior on Rt. The Bayesian method is therefore engaged in

transforming time series of case numbers into probability distributions.

2.3.1 Dynamic Poisson cases

Suppose I may estimate the infectious period to be exponentially distributed with mean

γ−1 and assume it to be constant throughout the duration of the COVID-19 pandemic. I

may be interested in calculating Rt, which provides a value on each day in the interval

t ∈ [1, T ]. I want to see today’s posterior to be updated from yesterday’s prior. In order to

use the Bayes theorem, I must select a prior distribution. The flat or uniform prior is a very

common choice for a prior distribution. A flat prior assumes that all probabilities on f(Rt)

are equally likely. Since Rt could take any value from 0 to infinity, most of our beliefs

about f(Rt) will come through data observation, i.e. the likelihood L. In this case, the

density function is uniformly distributed and therefore the prior function is proportional to

1 (or proportional to some constant c) which therefore leaves the density function to be

more flexible, and general, without violating any principles of probability.

Suppose now that the rate of j new cases per day can be described by a time-dependent

Poisson distribution with parameter θt ≡ f(Rt). By using Bayes’ theorem from (1.2) and

assuming a flat prior, the posterior probability of θT given seeing j new cases at time T is

updated to

π∗(θT |jT , j,θ) ∝ L(jT , j,θ|θT ) =
T∏
t=1

θjtt e
−θt

jt!
, (2.10)

where j = {j1, j2, . . . , jT−1} and θ = {θ1, . . . , θT−1}. For the sake of brevity, I define D :=

{jT , j,θ}. If θt ≡ θ, then the posterior PDF is CT θ
∑

t jte−Tθ and θT |D ∼ Gamma(
∑

t jt −

1, T ) distributed. Another useful representation of the above can be made by taking the

natural log on both sides of the equation:

lnπ∗(θT |D) ∝
T∑
t=1

{
jt ln(θt)− θt

}
. (2.11)

Equation (2.11) is used in the subsequent sections.

2.3.2 Bayesian inference on Bettencourt & Ribeiro’s θ

Bettencourt & Ribeiro [64] derived a relationship linking θt, γ, jt−1 and Rt together by:

θt = jt−1 exp (γ(Rt − 1)) =: jt−1Ψ1(Rt) (2.12)
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Since the Rt value is dynamic and is more closely linked to recent values than older ones, I

can follow Systrom’s method [65] by considering the last (w+1) days, that is t ∈ [T −w, T ].

From the above, I can derive a posterior distribution for RT . By taking the last (w + 1)

points in (2.11) and adapting Bettencourt & Ribeiro’s θ to that equation, the posterior

probability is therefore

π∗(RT |D) ∝ exp

{∑
t

(
jt
(
ln(jt−1) + γ(Rt − 1)

)
− jt−1 exp (γ(Rt − 1))

)}
,

∝ exp

{∑
t

jt ln(jt−1) +
∑
t

jtγRt −
∑
t

jtγ −
∑
t

jt−1 exp
(
γ(Rt − 1)

)}
.

(2.13)

From (2.13), I find that exp{
∑

t jt ln(jt−1)} and exp{
∑

t jtγ} are independent from RT .

Since I am interested in RT , these terms may be taken out of the equation to become one

with proportionality, i.e.

π∗(RT |D) ∝ exp

{∑
t

jt ln(jt−1)

}
exp

{∑
t

jtγ

}
exp

{
γ
∑
t

jtRt −
∑
t

jt−1 exp
(
γ(Rt − 1)

)}
,

∝ exp

{
γ
∑
t

jtRt −
∑
t

jt−1 exp
(
γ(Rt − 1)

)}
, (2.14)

Now, if I expand the summations in (2.14), I find that each Rt term for t = T −w, . . . , T −1

is independent from RT . Therefore these excess terms can also be removed from the

equation to become one with proportionality, thus reducing the posterior PDF to a more

compact form:

π∗(RT |γ, jT−1, jT ) = C−1
T exp

{
jTγRT − jT−1e

γ(RT−1)
}
, (2.15)

where CT is the constant of integration after integrating the exponential function with

respect to RT . Hence, CT is equal to

CT =

∫ ∞

0
exp

{
γjTRT − jT−1Ψ1(RT )

}
dRT =

Γ(jT , jT−1e
−γ)

γ(jT−1e−γ)jT
,

where Γ(a, b) is the upper incomplete gamma function with Γ(a, b) → 0 if b → ∞.

2.3.3 Updated θ for the COVID-19 pandemic

To find an expression that accounts for the evolution of new infections after each day in

terms of epidemiological observables, I discretize the infectious ODE equations in (2.4),

(2.5) and (2.6), for the change in daily number of cases between t− 1 and t. Note that the

cumulative number of exposures, cases and actively confirmed cases up to time t, CE(t),
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CI(t) and CQ(t), respectively. Epidemic reports most commonly give the frequency of

cumulative infected cases, which are reported daily and given by CI(t) − CI(t − 1) =

∆CI(t) ≈ CI ′(t). The change in daily cumulative exposures and quarantines are also given

by ∆CE(t) ≈ CE′(t) and ∆CQ(t) ≈ CQ′(t). I find that CE(t), CI(t) and CQ(t), between

t− 1 and t, obeys the following equations:

CE′(t) = E(t) ≈ βS(t)I(t)/N, (2.16)

CI ′(t) = I(t) ≈ νE(t), (2.17)

CQ′(t) = Q(t) ≈ ϱI(t). (2.18)

Therefore, by substituting (2.16) into (2.17), the change in the cumulative number of daily

cases updates to:

CI ′(t) ≈ νE(t) ≈ βνS(t)I(t)/N. (2.19)

The RHS of equation (2.19) is exact if S(t)/N is constant in the period [t − 1, t]. Since

S(t)/N ≈ 1 and R0 ≈ Rt, the ODE in (2.5) which models the change in I(t) updates to:

I ′(t) ≈
{
βν − (ϱ+ ζ + µ)

}
I(t),

=
{
(ϱ+ ζ + µ)

(
(ν + ζ + µ)(γ + ζ + µ)Rt/ϱ− 1

)}
I(t),

=
{
ϕ1Rt − ϕ2

}
I(t), (2.20)

where ϕ1 = ϕ2(ν + ζ + µ)(γ + ζ + µ)/ϱ and ϕ2 = ϱ+ ζ + µ. To obtain an equation which

accounts for the change in daily new infections, I must integrate (2.20) between t− 1 and t,

which gives:

I(t) = I(t− 1) exp
{
ϕ1Rt − ϕ2

}
=: I(t− 1)Ψ2(Rt). (2.21)

Now, by rewriting the equation in terms of θt and jt−1, I obtain θt = jt−1Ψ2(Rt). Once

again, by taking the last (w + 1) points in (2.11) and adapting the θ expression into our θt

equation, the posterior probability is therefore:

π∗(RT |D) = C−1
T exp

{
ϕ1jTRT − jT−1Ψ2(RT )

}
, (2.22)

where

CT =
Γ
(
jT , jT−1e

−ϕ2
)

ϕ1 exp {−ϕ2jT + jT ln (jT−1)}
.

2.3.4 Prediction

It may also be useful to have a better representation of the uncertainty in Rt via our

posterior. Suppose I am interested in the next case jT+1. I can use the posterior predictive
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distribution π∗(jT+1|D) which is the distribution of a new case jT+1, marginalized over the

posterior, i.e.

π∗(jT+1|D) =
exp

{
ϕ2jT+1 + jT ln (jT−1)−∆+jT+1 ln (∆

+jT )− ln (jT+1!)
}

Γ (jT , jT−1 exp{−ϕ2}) /Γ (∆+jT+1,∆+jT exp{−ϕ2})
, (2.23)

where ∆+jT = jT + jT−1.

Proof. The posterior predictive distribution of jT+1, given the data of {jT , jT−1, ϕ1, ϕ2},

marginalised over the posterior, is formally solved using:

π∗(jT+1|D) =

∫ ∞

0
p(jT+1|RT , jT , ϕ1, ϕ2)π∗(RT |jT , jT−1, ϕ1, ϕ2) dRT . (2.24)

Recall that the posterior distribution takes the form of that seen in (2.22) and that the

PDF governing the distribution of jT+1|RT , jT , ϕ1, ϕ2 is a time-dependent Poisson with

rate jT exp (ϕ1RT − ϕ2) and has a density function equal to:

p(jT+1|RT , jT , ϕ1, ϕ2) = exp{jT+1 ln (jT ) + jT+1(ϕ1RT − ϕ2)− jTΨ2(RT )− ln (jT+1!)}.

By combining the PDFs into (2.24) and ignoring the non-RT terms, we have:

π∗(jT+1|D) = CT+1

∫ ∞

0
exp

{
ϕ1∆

+jT+1RT −∆+jTΨ2(RT )
}
dRT ,

= CT+1
1

ϕ1
E1−∆+jT+1

[
∆+jT e

−ϕ2

]
,

= CT+1
1

ϕ1

(
∆+jT e

−ϕ2

)−∆+jT+1

Γ
(
∆+jT+1,∆

+jT e
−ϕ2

)
,

where ∆+jT = jT + jT−1 is the one-step summation function, CT+1 is a constant equal to

CT+1 =
ϕ1 exp

{
− ϕ2∆

+jT+1 + jT ln (jT−1) + jT+1 ln (jT )− ln (jT+1!)
}

Γ (jT , jT−1 exp{−ϕ2})
,

and En[x] is an exponential integral function equal to xn−1Γ(1− n, x). Putting everything

together, we obtain the same result in (2.23). Thus, the proof is complete.

The data D is represented by the history of {jT , jT−1, ϕ1, ϕ2}. The posterior predictive

distribution has the same mean as the posterior distribution, but a greater variance which

takes into account the additional “sampling uncertainty” since I am drawing new data

points. Often the π∗(jT+1|D) form can be obtained directly, but it is always simpler to

analyze π∗(jT+1|D) using Markov chain Monte Carlo (MCMC) methods.
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2.4 Analysis, results and discussion

In this section, I will test our Bayesian methods above applied to the coronavirus outbreak

in Europe, namely, a model validation with selected countries (France, Germany, Italy

and Portugal), and a Bayesian analysis according to the pandemic situation in the United

Kingdom, to see what sort of outcomes may be observed. Recall that β is the probability

of transmitting the disease multiplied by the number of contacts per unit time. Essentially,

the reduction of β (and therefore Rt) means that the peak decreases in intensity but shifts

to later periods for Rt greater than 1.

Data from the UK COVID Symptom Study indicates that while most individuals recover

from COVID-19 within two weeks, one in 10 individuals may still have symptoms after

three weeks and some may suffer for months. The current official estimated range for the

recovery period is within 14 days (1/14 ≤ γ ≤ 1), whereas the mean period of incubation

observed appears to be 5-6 days (1/6 ≤ ν ≤ 1/5) [66, 67]. In this case, γ and ν could vary

significantly among patients. For mathematical simplicity, I set the recovery and incubation

rate to be the same and equal to 1/5 (unless stated otherwise).

The results include parameter estimation, model validation, fatality analysis, the

impact of governmental protective measures and outbreak forecasting. Integrals and other

computations were computed in Mathematica and MATLAB, and converted to graphs and

tables in Microsoft Excel.

2.4.1 Parameter analysis and model validation for the COVID-

19 pandemic for Western European countries

Here, by comparing the Bayesian posterior averages with the actual data, I aim to justify

the modified SEIR model using the posterior functions in (2.15) and (2.22) for forecasting

the COVID-19 outbreak across selected countries in Western Europe. Example calculations

for model (2.15) are given. A real-time count of (smoothed) new cases is extracted from

Roser et al. [68] in real-time. Here, I set γ = 1/5 and T = 1, . . . , 4 to represent the period

of 1-4 March 2020. For simplicity, if T = 2, then the posterior PDF in (2.15) reduces

to π∗(R2|γ, j) = C−1
2 exp

{
j2γ(R2 − 1)− j1e

γ(R2−1)
}
, where C2 is a constant. Here, the

value of j1 and j2 represents the number of cases (after data smoothing) in times 1 and 2,

respectively (i.e. the first two days of March). In this example, the focus is on the COVID-19

pandemic in two countries: Germany and Italy. For the case of Italy, it was observed

that j1 = 149.86 and j2 = 222.43, and so C2 = 2.97131 × 10−59. The posterior mean,
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median, mode and variance are therefore found to be E[R2|D] = 2.963, Q0.5[R2|D] = 2.975,

M[R2|D] = 2.967 and V[R2|D] = 0.113, respectively, and the posterior probability that the

epidemic will drop below 1, given the last two days, is 1.86401× 10−8. The empirical Rt is

the result of (2.12) when θt = jt and Rt = γ−1 ln (jt/jt−1) + 1. In this case, the empirical

result of R2 is equal to 2.975, which is strongly consistent with the posterior averages.

Table 2.1 presents the number of new cases in Germany and Italy over four days with

the respective posterior means, medians, modes and other vital statistics. The posterior

averages are in agreement with the empirical result.

Time 𝑡
Today’s 

cases 𝑗𝑡

Yesterday’s 

cases 𝑗𝑡−1

Empirical 

result of ℛ𝑡

Constant on 

integration 𝐶𝑡

Posterior 

Mean of ℛ𝑡

Posterior 

Median of ℛ𝑡

Posterior 

Mode of ℛ𝑡

Posterior 

Var. of ℛ𝑡

Posterior 

SD of ℛ𝑡
ℙ(ℛ𝑡 < 1)

(a) Community spread of COVID-19 in Germany: Early March

1 Mar 2020 13.71 6.00 5.133 3.12 × 10−1 4.948 5.128 5.007 1.870 1.367 0.0040

2 Mar 2020 16.29 13.71 1.859 4.02 × 10−6 1.953 1.869 1.908 1.076 1.037 0.2025

3 Mar 2020 20.29 16.29 2.098 3.50 × 10−7 2.093 2.097 2.078 0.996 0.998 0.1512

4 Mar 2020 25.57 20.29 2.158 7.01 × 10−9 2.124 2.160 2.125 0.857 0.926 0.1225

(b) Community spread of COVID-19 in Italy: Early March

1 Mar 2020 149.86 124.43 1.930 1.07 × 10−53 1.913 1.930 1.919 0.167 0.409 0.0146

2 Mar 2020 222.43 149.86 2.975 2.97 × 10−59 2.963 2.975 2.967 0.113 0.336 1.86 × 10−8

3 Mar 2020 258.14 222.43 1.745 2.99 × 10−96 1.735 1.744 1.738 0.097 0.312 1.04 × 10−2

4 Mar 2020 311.43 258.14 1.938 9.60 × 10−111 1.930 1.938 1.933 0.080 0.284 7.06 × 10−4

Table 2.1: Empirical and posterior summary statistics for the community spread of COVID-19 pandemic using

model (2.15). Coverage: 1-4 March 2020 in Germany and Italy.

The posterior PDF of this distribution, as well as three follow up cases in Italy,

j3 = 258.14, j4 = 311.43, and j5 = 384.14 with respective RT for T = 3, 4 and 5, have been

illustrated in Figure 2.5.
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Figure 2.5: Real-time data for the variation of π∗(RT |D) for RT over 5 days with γ = 1/5. Coverage: Italy from

1-5 March 2020.

The equation derived in (2.21) is an expression accounting for the evolution of new

infections. Example calculations can be seen in Figure 2.6 for the variation of Ψ1(Rt) and

Ψ2(Rt) for Rt with empirically estimated parameters describing COVID-19 outbreak in the

United Kingdom. I find that Ψ2(Rt) is in strong agreement with Ψ1(Rt). These parameter

values are related to different methods and should only be seen as a qualitative benchmark.
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Effective reproduction number, ℛ𝑡

Ψ
𝑘
ℛ
𝑡

Ψ1 ℛ𝑡

Ψ2 ℛ𝑡

(a) 𝛾 = 1 (b) 𝛾 = 1/2 (c) 𝛾 = 1/5

Figure 2.6: The variation of Ψ1(Rt) and Ψ2(Rt) for Rt with empirically estimated parameters describing COVID-

19 outbreak: γ = {1, 1/2, 1/5} (both models), ν = 1/5, ϱ = 1/10, ζ = 0.116 and µ = 9.4/1000. Coverage: 1-11

September 2020 in the United Kingdom.

Example calculations on (2.22) are given in Table 2.2, which presents the number of new

cases in four countries over three different periods. The respective posterior means, medians,

modes, variances and 90% credibility intervals are given. For each period, I set ν = 1/5.2,

ϱ = 1/7, γ = 1/5 and ζ = 0.15. I then matched the empirical mortality rate to each country

(e.g. µ = 9.4/1000 in the United Kingdom) so that ϕ1 ≈ 7(0.293+µ)(0.342+µ)(0.350+µ).

The posterior averages are strongly in line with the empirical outcome. The empirical result

of Rt is the solution of (2.21) and is approximately equal to the posterior mode.

Region Dates (𝑇 − 1, 𝑇) Cases 𝑗𝑇 Cases 𝑗𝑇−1 ෍
𝑖=1

𝑇

𝑗𝑇 Empirical ℛ𝑇 𝔼 ℛ𝑇 ℚ0.5 ℛ𝑇 𝕄 ℛ𝑇 𝕍 ℛ𝑇 90% Credibility

United Kingdom

22-23 Aug 2020 1,022.4 992.3 327,643 1.195 1.198 1.203 1.215 0.130 (0.593, 1.784)

6-7 Sep 2020 1,812.1 1,630.3 352,451 1.483 1.483 1.486 1.493 0.074 (1.029, 1.923)

12-13 Sep 2020 3,001.4 2,760.9 370,930 1.430 1.436 1.438 1.443 0.047 (1.078, 1.788)

France

22-23 Aug 2020 718.9 708.7 280,459 1.186 1.182 1.183 1.182 0.020 (0.951, 1.411)

6-7 Sep 2020 1,294.3 1,261.9 367,174 1.369 1.364 1.368 1.378 0.109 (0.813, 1.898)

12-13 Sep 2020 1,809.6 1,691.1 402,893 1.377 1.375 1.378 1.385 0.078 (0.910, 1.827)

Portugal

22-23 Aug 2020 210.1 204.0 55,597 1.219 1.220 1.223 1.229 0.065 (0.796, 1.634)

6-7 Sep 2020 355.7 356.4 60,507 1.111 1.108 1.109 1.113 0.038 (0.783, 1.426)

12-13 Sep 2020 481.0 479.4 63,983 1.127 1.129 1.130 1.132 0.028 (0.850, 1.403)

Germany

22-23 Aug 2020 1,233.0 1,223.9 234,494 1.138 1.133 1.138 1.147 0.110 (0.579, 1.671)

6-7 Sep 2020 1,202.6 1,173.4 253,626 1.201 1.198 1.203 1.213 0.113 (0.636, 1.743)

12-13 Sep 2020 1,349.0 1,354.7 261,737 1.079 1.091 1.096 1.105 0.100 (0.562, 1.606)

Table 2.2: Posterior summary statistics for the COVID-19 pandemic using model (2.22). Coverage: United Kingdom,

France, Portugal and Germany regions, updated on 14 September 2020.

2.4.2 Assessing the impact of English government protective

measures to COVID-19

The main objective of government protection policies and lockdowns is to reduce the rates of

infection so as to prevent the health care system from being overloaded by too many serious

cases at the same time. In order to research the impact of the protection measures adopted

by the United Kingdom government, I compare the confirmed (relative) infection rate, the

cumulative infections in a population CI(t), the empirical reproduction number Rt, and
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the posterior averages of Rt, at different time periods with and without the measures being

implemented. The NHS is a publicly funded health care system in the United Kingdom.

The primary responsibility for public health and healthcare in the United Kingdom rests

with the Department of Health and Social Care (DHSC). The periodic infection rate in

the United Kingdom and how it varies over the course of time between early March and

late October are shown in Table 2.3. The (relative) infection rate is expressed as the daily

change in infections as a percentage of the value of the indicator in the earlier periods, i.e.

Relative infection rate =
∆I(t)

I(t− 1)
, (2.25)

where ∆I(t) = I(t)− I(t− 1). The comparison of the estimated rates of infection in the

corresponding periods before and after the introduction of preventive measures highlights

the significance and reliability of measures such as social distancing and lockdowns in

managing and slowing down the spread of COVID-19. As of 31 October 2020, there has

been 989,745 and 42,592 confirmed cases of infection and death, respectively.

No measures applied.
First round of lockdown applied 

across the UK.

First round 
of lockdown 

measures 
lifted.

Internationa
l travel 

quarantine 
applied.

Primary age 
children return 
to school post 

lockdown.

Non-essential 
retail 

reopened 
following 

guidelines.

Travel corridors 
opens and pubs, 
restaurants and 
bars reopened.

Time interval 𝒕𝒊, 𝒕𝒋 Mar. 1-7 Mar. 8-22 Mar. 23-31 Apr. 1-15 Apr. 16-30 May 1-10 May 11-21 May 22-31 June 1-14 June 15-30 July 1-23

Daily change in infections 21.7% 16.5% 8.3% -3.4% -0.1% -6.5% -1.9% -4.5% -1.0% -5.5% 1.5%

Infections at 𝑡𝑗−1 28.29 673.57 2,555.57 4,586.00 4,614.57 3,659.00 2,624.14 1,692.00 1,016.43 697.29 632.71

Infections at 𝑡𝑗 34.43 784.57 2,767.00 4,428.29 4,610.14 3,419.86 2,574.14 1,615.57 1,006.71 658.86 642.14

Cumulative infections 271 7,736 29,681 97,052 167,150 206,234 235,727 254,390 270,285 284,888 297,659

Empirical ℛ𝑡 1.983 1.763 1.397 0.825 0.995 0.662 0.904 0.769 0.952 0.717 1.074

Posterior prob of ℛ𝑡 ≤ 1 13.0% 9.8% 9.9% 77.5% 51.4% 89.9% 62.8% 72.1% 53.3% 63.9% 43.6%

Posterior mean of ℛ𝑡 1.984 1.764 1.404 0.813 0.990 0.650 0.894 0.779 0.973 0.846 1.121

Posterior median of ℛ𝑡 1.986 1.773 1.407 0.814 0.991 0.648 0.895 0.768 0.959 0.800 1.098

Posterior mode of ℛ𝑡 2.015 1.793 1.413 0.813 0.989 0.649 0.900 0.760 0.950 0.705 1.077

Mandatory face coverings in shops 
across England.

"Rule of six" applied in 
England. Increased fines 

up to £10,000 added 
shortly afterwards.

Tighter restrictions are 
put in place across the 

UK, with pubs ordered to 
close at 10pm.

A new three-tier system for 
COVID restrictions in England. 

Preparing for 
second round of 
lockdown in Nov 

2020.

Time interval 𝒕𝒊, 𝒕𝒋 July 24-31 Aug. 1-15 Aug. 16-31 Sep. 1-13 Sep. 14-18 Sep. 19-21 Sep 22-30 Oct 1-11 Oct 12-20 Oct 21-29 Oct 30-31

Daily change in infections 1.9% 8.4% 8.3% 8.7% 2.1% 2.3% 5.5% 2.1% 4.1% -1.3% 2.5%

Infections at 𝑡𝑗−1 542.29 970.43 1,164.43 2,760.86 3,285.71 3,597.71 5,769.71 15,504.71 16,956.14 22,147.57 22,124.71

Infections at 𝑡𝑗 552.71 1,051.71 1,260.71 3,001.43 3,353.71 3,679.00 6,086.43 15,832.43 17,646.29 21,863.71 22,678.14

Cumulative infections 302,301 316,367 334,467 365,174 381,614 394,257 446,156 590,844 741,212 942,275 989,745

Empirical ℛ𝑡 1.095 1.402 1.397 1.418 1.102 1.112 1.267 1.105 1.199 0.936 1.124

Posterior prob of ℛ𝑡 ≤ 1 42.1% 21.4% 19.6% 8.0% 36.1% 34.1% 9.8% 40.4% 30.7% 58.2% 36.3%

Posterior mean of ℛ𝑡 1.157 1.400 1.395 1.426 1.099 1.109 1.274 1.099 1.195 0.927 1.118

Posterior median of ℛ𝑡 1.129 1.404 1.400 1.429 1.101 1.111 1.275 1.100 1.198 0.927 1.121

Posterior mode of ℛ𝑡 1.099 1.418 1.413 1.434 1.107 1.116 1.109 1.109 1.207 0.933 1.128

Table 2.3: Comparisons of the daily rate of infection, the overall cumulative infected population, the empiric

reproduction number and the posterior averages to the reproduction number at the end of the various time periods

with and without the United Kingdom protective measures in 2020.

The forecast of the situation in the United Kingdom, based on the Bayesian method

(Figure 2.7), appears reasonably positive, as the (posterior median) Rt values follows a

quartic1 trend. Table 2.3 and Figure 2.7 are in strong agreement with each other and

represents the most probable scenario. According to a statistical study conducted in

1A polynomial of order 4.
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September 2020 [69], the number of positive cases doubles every seven to eight days, with a

total of 3,539 new coronavirus cases were recorded in the United Kingdom on 10 September.

Scientists have estimated the empirical Rt value to be at 1.7 which appears to agree with

our posterior estimates.
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Figure 2.7: The continuous red dotted lines refer to the predicted evolution in 7 days according to the modified

SEIR model. Coverage: United Kingdom region, updated on 31 October 2020.

In countries without public health interventions, such as Sweden, the demand for an

intensive care unit (ICU) is estimated to be much higher than the intensive care capacity

in other western countries, resulting in a much larger, predicted Rt [70]. In the United

Kingdom, the NHS is reported to have used half as many ICU beds as France, Belgium

and other badly-hit European nations during height of pandemic in May 2020. This is

equivalent to 50 infected patients attached to the ventilators for every million people in

mid-April. In Belgium, where there were deaths at a similar rate to the United Kingdom

at the time, the figure was approximately 111 per million people. During the same week,

France treated 104 people per million in intensive care [71]. With 2.7 hospital beds per

1,000 citizens, the United Kingdom has fewer hospital beds than other European nations,

compared with an European Union (EU) average of 5.2 [72].

2.4.3 Fatality analysis

In order to slow down the outbreak and therefore prevent an increase in deaths, social

distances and other preventive measures were implemented in the United Kingdom around

23 March 2020. The daily deaths in the United Kingdom as well as the relative shift in

deaths are shown in Figure 2.8. The relative change in deaths mirrors equation (2.25) and

is given by ∆D(t)/D(t− 1) where ∆D(t) = D(t)−D(t− 1).

Another formula of interest in epidemiology is the naïve case fatality rate (CFR), which

is the proportion of COVID-19 cumulative deaths over the total number of confirmed cases

over a specified time period. This formula provides an overview of the severity of the disease
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Figure 2.8: The daily deaths (top) and the relative shift in deaths (bottom) in the United Kingdom.

and is given as:

CFR = D(t)/I(t). (2.26)

For this study, I apply the formula in (2.26) and present a fatality analysis that is important

for government protection decision-making. Simple calculations using data recorded in the

United Kingdom indicate that on 16 April, the CFR initially increased sharply and peaked

at an all-time high of 21.5%, and has since decreased with varying degrees of drops (with a

few significant increases around June and July). The CFR rate fell below the "safety net"

(2% level) for the first time on 4 August and has since remained below that level. The daily

CFR rate in the United Kingdom is 0.3 percentage points lower than the global average as

of 31 October 2020, at 1.0% and 1.3%, respectively.
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Figure 2.9: Case fatality rate in the United Kingdom and the world calculated using (2.26).

Infection, reproduction and fatality rates (see Table 2.3 and Figure 2.8) depend on the

preventive measures in place, the number of fatalities may rise due to a large number of

infected individuals if the government safety measures are ignored. The rate of infection has

been higher in care homes than in the community and there has been significant regional
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variation in the severity of the outbreak. This, in fact, reduces the number of ICU beds

available as the number of intensive cases rises drastically.

2.4.4 FMEA of the community spread of COVID-19 in the

United Kingdom

The number of COVID-19 cases, fatalities and reproduction numbers have an impact on the

population’s well-being and on the economy as a whole. An FMEA could be used to shed

some light on the direction the government has taken and inform the future decision-making.

Control measures such as national lockdown or self-isolation are effective in reducing the

Likelihood of Detection (i.e. the probability for the failure to reach the individual) and thus

reducing the severity of case fatalities and decreasing the Rate of Occurrence of positive

infections in order to prevent failures. To demonstrate the use of an FMEA, a 10-point

severity, occurrence and detection scale to represent the community spread of COVID-19 in

the United Kingdom is presented in Table 2.4.

Ranking 1 2 3 4 5 6 7 8 9 10

Severity Insignificant Very minor Minor Low Moderate
Moderately 

high
High Very high

Extremely 

high
Critical

Criteria S: Case fatality rate ≈ 0% < 0.1% 0.1-0.3% 0.3-0.5% 0.5-1.0% 1.0-1.5% 1.5-2.0% 2.0-2.5% 2.5-3.0% > 3%

Rate of Occurrence Very remote Remote Very low Low
Moderately 

low
Moderate

Moderately 

high
High Very high

Extremely 

high

Criteria O: Expected number of 

individuals infected from a single 

infectious person (using posterior median 

of the reproduction number)

≈ 0 < 0.1 0.1-0.2 0.2-0.4 0.4-0.7 0.7-1.0 1.0-1.3 1.3-1.6 1.6-2.0 > 2

Likelihood of Detection/Prevention
Failure 

prevented

Not likely to 

detect

No detection 

opportunity

Criteria D: Control measures (affecting 

the whole population) and rate of 

detection/prevention

Vaccine is 

produced 

with 90%+ 

success rate

Nationwide 

lockdown 

applied in full 

force

Nationwide 

lockdown 

gradually 

applied

Self-isolation 

and "stay at 

home" 

practices

Practice 

social 

distancing

Sanitization 

of cities and 

towns

Mandatory 

face 

coverings

Regular 

hand 

washing

Prevention 

measures 

not practiced 

regularly

None

Low levels of 

detection/prevention
Control measures are working

Failure likely to be 

prevented

Table 2.4: A ten point severity, occurrence and detection scale with a list of criterion to reflect the COVID-19

pandemic in the United Kingdom. Updated on 31 October 2020.

Each criterion is ranked from 1 (insignificant / remote / failure prevented) to 10 (critical

/ extremely high / no detection opportunity). For the analysis of the community spread of

COVID-19 in the United Kingdom (from March to October 2020), I matched Criteria S

(CFR rate) to Figure 2.9, Criteria O (posterior median of Rt) to Figure 2.7, and Criteria

D (control methods) to the government policies defined in Table 2.3 for the given time

intervals. The RPN and criticality values are calculated using equations (1.8) and (1.9),

respectively. For the sake of brevity, I scaled criticality by a factor of 10 to match the RPN

value. A graphical summary of our findings on the severity, occurrence and detection of

COVID-19 throughout the United Kingdom (from 1 March to 31 October) is provided in

Figure 2.10.

In our FMEA, I focused on the COVID-19 infections and thus the failure mode is taken
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Figure 2.10: A visual summary of a 10-point FMEA rating (left) and the criticality/RPN (right). Results reflect

the United Kingdom COVID-19 pandemic by following the timeline on Table 2.3 and the evaluation criteria on Table

2.4.

as positive cases. In addition, the process phase, cause of failures, current control measures

and risk measures are summarised in Table 2.5, with the subsequent government responses

and re-evaluated risk measures are presented in Table 2.6.

Process Cause of failure Current measures Sev Occ Det RPN*

First cases 

(22 Jan to 27 Feb)

• Failure to shut down international airlines due to 

imported infections from outside the UK.

• None 1 10 10 100

First deaths and 

early spread 

(28 Feb to 23 Mar)

• No social distancing for more than 15 minutes at 

distances of less than 2 metres.

• Hand washing (not practiced regularly)

• Social distancing (not practiced regularly)

9 9 7 567

First lockdown 

(23 Mar to 4 May)

• Delayed lockdown against the rising pandemic. • All of the above.

• Nationwide lockdown applied in full force.

10 9 3 270

Easing down 

lockdown measures 

and continued 

restrictions 

(5 May to 31 May)

• Failure to practice safety measures once travel 

corridors opens and pubs, shops, restaurants and 

bars had reopened.

• A vast number of sharing of potentially 

contaminated spaces.

• Sanitization of cities and towns

• Self-isolation and "stay at home" practices

• Regular hand washing and social distancing

• Wearing face masks

10 6 2 120

Continued 

restrictions and local 

lockdowns 

(1 June to 5 Sep)

• Failure to follow policies and protocols set by the 

government.

• Self-isolation and "stay at home" practices

• Regular sanitization, social distancing and wearing 

face masks

10 6 4 240

Resurgance 

(6 Sep to 31 Oct)

• Overcrowed restaurants during the month-long 

"Eat Out to Help Out" scheme in August.

• Reopening of schools in England, Wales and 

Northern Ireland for the autumn term.

• Same as the above.

• Curfews set across the country.

• Tighter restrictions are put in place across the UK.

5 8 5 200

Table 2.5: Summary of the process phase, cause of failures, current control and risk measures. The subsequent

government responses and re-evaluated risk measures are discussed in Table 2.6. *Risk measures calculated by

averaging over the first 7 days.

It is estimated that some of the main causes of the failure were government responses,

namely, failure to shut down international airlines due to imported infections from outside

the UK (22 Jan – 27 Feb), no social distancing for more than 15 minutes at distances of

less than 2 metres (28 Feb – 23 Mar), delayed lockdown against the rising pandemic (23

Mar – 4 May), failure to practice safety measures once travel corridors opens and pubs,

shops, restaurants and bars had reopened (5 May – 31 May), failure to follow policies and

protocols set by the government (1 June – 5 Sep) and overcrowded restaurants during the

month-long ’Eat Out to Help Out’ scheme and the re-opening of schools (6 Sep – 31 Oct).

The effect of failure for each process phase is discussed in the following paragraphs.

The failure to shut down international airlines affected the United Kingdom critically in
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the first process phase, as the national risk level for COVID-19 was raised from “very low”

to “low” by Public Health England (PHE) on 22 January. As a result of this failure, British

nationals had to move from Wuhan to quarantine at Arrowe Park Hospital. All airports in

the United Kingdom were required to provide written guidance to unwell travellers. As

no current measures were in place, the first two cases of COVID-19 were confirmed in the

United Kingdom on 31 January.

In the second process phase, failure modes were the first deaths and early spread of

the disease across the country. The effect of these failures has led to the slow spread of

COVID-19 across the country. The number of confirmed cases rose to 23 on 29 February,

after 10,483 people had been tested and two of the most recent cases had recently returned

from Italy, while the third had returned from Asia. Subsequently, the United Kingdom’s

death toll was 55, with the number of cases of COVID-19 passing 1,500 by 16 March. The

increased severity was due to the very high death rates that occurred.

In the third phase, the national lockdown came to full effect across the country and

all non-essential shops, libraries, places of worship, playgrounds and outdoor gyms were

closed by 23 March. The government’s failure to respond strongly to the rising pandemic

had raised the risk level from "moderate" to "high". Too much attention was also given to

hospital deaths, not including those in care homes or the home of a person. The effect of

these previous failures has led to a large increase in deaths, bringing the total number of

deaths to 1,019 by 28 March; 17,089 individuals tested positive. Following the lockdown,

there was a significant increase in anxiety and depression among the UK population and

the number of people infected in the hospital exceeded 10,000 by 31 March. In addition,

less than a week later, the death toll was more than 5,000 and the total number of reported

cases was almost 52,000 on 6 April. An additional 823 deaths were reported on 21 April,

which amounted to a total of 17,337, a sharp increase in previous days, but many of them

were related to deaths that occurred in previous days and weeks, some of which date back

to March.

Following the easing of lockdown measures and continued restrictions in the fourth phase,

the government’s scientific guidance suggested that the Rt number had risen marginally

from 0.5–0.9 at the end of the lockdown to 0.7–1.0 on 15 May, closer to the point at

which infections would begin to escalate exponentially. Fittingly, these values are in line

with our posterior median estimates of 0.66–0.96 and 0.88–0.94, respectively. Restrictions

continued and local lockdowns were introduced in the fifth phase as infection and death

rates continued to rise. Wearing face masks were made compulsory for public transport (15
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June), in shops and supermarkets in Scotland (10 July) and England (24 July) as well as

indoor settings, such as cinemas and places of worship (31 July). These regulations may

have significantly contributed to the reduction of the failure associated with the practise of

safety measures once travel corridors and non-essential venues were reopened. However,

the daily number of new cases exceeded 1,000 on 9 August for the first time since June,

rising from 1,062 to 310,825, but it is not apparent whether the increase is due to higher

infection rates or higher test volumes.

In the last phase, many of the main causes of the failure were government responses

from the fifth phase, namely overcrowded restaurants during the month-long ’Eat Out to

Help Out’ scheme in August and the re-opening of schools in England, Wales and Northern

Ireland for the autumn term. The effect of these failures is likely to have led to a significant

increase in cases since September. I find that an additional 2,988 cases were reported on 6

September, the highest number since 22 May, with an estimated a posterior median of Rt

of 1.32. As government researchers warn that the virus is widespread across the nation, the

Rt number floated between 1.1–1.4 on 18 September, which is consistent with our posterior

median estimate of 1.10–1.30. There were 6,178 new cases on 23 September, the highest

daily reported since 1 May, and the posterior median of Rt was 1.32. Cases continue to

rise and, three weeks later, on 16 October, there were 27,900 new cases in England, a

60% increase over the previous week, while the reported Rt was between 1.3–1.5 and our

posterior median estimate of Rt was between 1.26–1.55. Finally, the United Kingdom

crossed a million cases of COVID-19 on 31 October, taking 21,915 cases to 1,011,6600.

To summarise, the use of the SEIQR (susceptible-exposed-infectious-quarantined-

recovered) model over the SEIR has been justified by comparing the previous posterior

model in (2.15) with the improved model in (2.22) for forecasting the COVID-19 outbreak

across selected countries in Western Europe, by comparing the Bayesian posterior averages

with the actual data. The equations, Ψ1(Rt) and Ψ2(Rt), are functions of the posterior

models in (2.15) and (2.22), respectively. Equation Ψ2(Rt) is in strong agreement with

Ψ1(Rt), which is effectively seen as a qualitative benchmark for describing COVID-19

outbreak in the United Kingdom (see Figure 2.6). I have then shown that the posterior

estimates of the effective reproduction number for the COVID-19 pandemic in the United

Kingdom, under the new model, strongly agrees with the deduced empirical values (as

seen in Figure 2.7). I then used our FMEA of the community spread of COVID-19 in

the United Kingdom and calculated the initial and revised RPN values, where each risk

measure was ranked from 1 (insignificant / remote / failure prevented) to 10 (critical /
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extremely high / no detection opportunity). For the analysis of the community spread of

COVID-19 in the United Kingdom (from March to October 2020), the risk measures (S,

O and D) were matched according to the following. Criteria S (CFR rate) to Figure 2.9,

Criteria O (posterior median of Rt) to Figure 2.7, and Criteria D (control methods) to the

government policies defined in Table 2.3 for the given time intervals. As a result, the initial

and revised RPN values seemed to accurately represent the government’s contribution to

reducing infection rates. For example, in the fourth phase, the government’s scientific

guidance indicated that the reproduction number had risen from 0.5–0.9 at the end of

the lockdown to 0.7–1.0 on 15 May, closer to the point at which infections will begin

to exponentially escalate. Fittingly, these figures corresponded to our posterior median

estimates of 0.66–0.96 and 0.88–0.94 for the SEIQR model, respectively.

2.5 Concluding remarks

In this work, a Bayesian inference for the modified SEIR model with an additional state (self-

quarantined Q) was considered, which characterizes the pandemic of COVID-19, focusing

in particular on Rt in cases where the infectious period is exponentially distributed and

where the posterior densities are extended from a Poisson-gamma mixture. The choice

of exponential infectious period is used because it provides a natural analogue to the

deterministic differential equation models, in which the constant removal rate corresponds

to the exponentially distributed infectious period.

Bayesian inference and FMEA were combined together to study the risks of COVID-19

infections and to evaluate the effectiveness of the action measures taken to manage the

COVID-19 pandemic. The Bayesian model and FMEA are applied to the COVID-19 data

showing the effectiveness of the interventions adopted to control the pandemic by reducing

the Rt of COVID-19. In the FMEA, the focus was on COVID-19 infections and therefore

the failure mode was taken as positive cases. The process phases, cause of failures, current

measures and current risk ratings are discussed, and subsequent government action measures

are presented with re-assessed risk ratings.

The results have shown that the combination of Bayesian inference, compartmental

modelling and FMEA are effective to model and study the risks of the COVID-19 transmis-

sions, able to evaluate quantitatively the action measures and identify the lessons learned

from the impacts of governmental measures and actions carried out in response to the

community spread of COVID-19 in the United Kingdom. Here, the use of the SEIQR model
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over the SEIR was justified for forecasting the COVID-19 outbreak across selected countries

in Western Europe, by comparing the Bayesian posterior averages with the actual data.

The SEIQR model was found to have a high level of agreement with SEIR, which is used

as a qualitative benchmark for describing the COVID-19 outbreak in the United Kingdom.

It was demonstrated that the new model’s posterior estimates of the effective reproduction

number for the COVID-19 pandemic in the United Kingdom closely match the deduced

empirical values. Fittingly, the results have shown that the RPN values (using the posterior

medians) under the SEIQR model corresponded agree with the previous models.

Although the methodology presented here is intended to aid scientific research on

Bayesian inference and risk assessment in the current COVID-19 pandemic using FMEA

and the modified SEIR model, it can also be applied to future pandemics and other quality

engineering applications.
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Process Governmental response and effects Sev Occ Det RPN*

First cases 

(22 Jan to 27 Feb)

• Travelers returned from Hubei, Iran, and certain regions of South Korea to the UK to self-isolate, even if 

they had no symptoms (25 Feb).

• Health Protection Scotland had set up an incident management team with full contact tracing for 

delegates who had tested positive (27 Feb).

1 10 9 90

First deaths and 

early spread 

(28 Feb to 23 Mar)

• Government published its action plan for dealing with COVID-19 (3 Mar).

• PM announced that £46 million had been spent on research into coronavirus vaccines and rapid 

diagnostic tests (6 Mar).

• Chancellor of the Exchequer presented the first budget of the Johnson Government, which included £30 

billion in measures to protect the economy from coronavirus (11 Mar).

• Chief Medical Officers raised the national risk level from "moderate" to "high" (12 Mar).

• Vice-President (US) announced an extension of its travel ban on coronavirus to include the UK (14 

Mar).

• PM advised against "non-essential" travel and communication, working from home and avoiding visits 

as pubs, clubs or theatres (16 Mar). Four days later, all cafes, pubs and restaurants were ordered to 

close, except for take-away food (20 Mar).

• All non-essential shops, libraries, places of worship and outdoor gyms closed, and police were given 

authority (23 Mar).

10 9 3 270

First lockdown 

(23 Mar to 4 May)

• Health Protection Regulations 2020 applied: sweeping restrictions legally enforceable.

• Contactless payment limit for in-store expenditure was increased from £30 to £45 (1 Apr).

• Foreign Secretary announced a three-week extension of the lockdown measures as the number of 

confirmed cases exceeded 100,000 (16 Apr).

• Vaccine development was underway as Matt Hancock announced the Government’s £42.5m clinical 

trial plan to be conducted by Imperial College London and Oxford University (21 Apr).

• A study involving 20,000 households in England, coordinated by the Office for National Statistics, 

tracked the progress of COVID-19 towards a better understanding of infection and immunity (23 Apr).

10 6 2 120

Easing down 

lockdown measures 

and continued 

restrictions 

(5 May to 31 May)

• The Government updated its coronavirus message from "Stay at Home, Protect the NHS, Save Lives" 

to "Stay Alert, Control the Virus, Save Lives" and announced a new "COVID-19 alert level system" 

ranging from green (level one to red (level five) (10 May).

• Loss of smell and loss of taste were added to the list of symptoms of COVID-19 (18 May).

• Following an agreement between the government and the Swiss pharmaceutical company Roche, the 

NHS provided a COVID-19 antibody test to check whether someone had the virus (21 May).

• The Government laid out new quarantine rules for travellers to the UK that required them to self-isolate 

from 8 June for 14 days (22 May).

• Contact tracing systems went live in England (NHS Test and Trace) and Scotland (Test and Protect) 

(28 May).

10 6 4 240

Continued 

restrictions and local 

lockdowns 

(1 June to 5 Sep)

• Wearing face masks were made compulsory on public transport (15 Jun).

• Lowered the COVID-19 Alert Level from Level 4 (severe risk, high transmission) to Level 3 (substantial 

risk, general circulation) (19 Jun).

• Trialed a new coronavirus saliva test (22 Jun).

• Following an increase in COVID-19 cases in Leicester, stricter lockdown measures for the city were 

reintroduced (29 Jun).

• Wearing face masks were made compulsory in shops and supermarkets in Scotland (Jul 10) and 

England (Jul 24) as well as indoor settings, such as cinemas and places of worship (31 Jul).

• Introduced the month-long "Eat Out to Help Out" scheme (3 Aug).

• Increased the number of tests from 28,000 in England to 150,000 by October (19 Aug).

• Reopened schools in England, Wales and Northern Ireland for the autumn term (1 Sep).

4 8 5 160

Resurgance 

(6 Sep to 31 Oct)

• Health Secretary informed the House of Commons that the "sharp rise" in new infections is "concerning" 

and a sign that the disease "remains a threat" (8 Sep).

• The "rule of six" came into force in England (14 Sep). 

• The NHS contact-tracing app covering England and Wales was released (24 Sep).

• Fines of up to £10,000 levied for people in England who failed to self-isolate themselves (28 Sep).

• PM unveiled a new three-tier system of restrictions in England (14 Oct).

• PM announced a second lockdown for England to prevent what he calls the "medical and moral 

disaster" of the NHS from 5 November to 2 December, then England will return to the tier system (31 

Oct). 

5 6 5 150

Table 2.6: Summary of subsequent government responses and re-evaluated risk measures. The initial cause of

failures, current control and risk measures are discussed in Table 2.5. *Risk measures calculated by averaging over

the last 7 days.
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Chapter 3

A Bayesian Risk Assessment of the

CMM Measurement Process using an

Augmented Form Error Model

This chapter is concerned about whether a product meets its specifications based on its

form error. Form error, that is, the departure of a manufactured part for its design or

ideal shape, is a key characteristic to be assessed in quality engineering in manufacturing.

In practice, form errors are usually estimated from coordinate measurements involving

only a finite number of measured points and the form error for the complete workpiece

surface has to be inferred on the basis of these measurements. This chapter presents

a probabilistic form error model based on symmetric unimodal distributions. Bayesian

inference is used to identify influence factors associated with the measurement process,

such as form error, environmental influences, operator errors and random effects. A risk

assessment is then performed by combining Bayesian inference, FMECA (Failure mode,

effects, and criticality analysis) and conformity testing, to quantify and minimise the risk of

wrong decisions. I present an innovative way of applying FMECA by assessing the risks of

a CMM (coordinate measuring machine) process needed for improved product conformity

testing. In the FMECA, I focused on CMM measurement strategy and so critical/security

characteristic deviations, assembly part positioning errors, noise problems, and incorrect

CMM calibration are taken to be significant failure modes that can occur. The model is

applied to CMM form error data. The study will show that the combination of Bayesian

inference, conformity assessment and FMECA is effective in modelling and studying the risks

associated with CMM measurements, leading to the quantitative evaluation of the action
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measures and the identification of improvement measures and actions taken in response

to critical failure nodes of a CMM, and thus improve reliability of future measurements

for product conformity assessment. The methods proposed here are meant to be practical

without complex computing and can be further extended to general measurement processes

and wide quality engineering.

3.1 Introduction

3.1.1 Overview

Form errors are the marginal differences between the measured data and reference nominal

surface. Based on form error data and a product specification, the relationship between

conformity testing and making decisions is established. A CMM is used to obtain measure-

ment data and the form error is then computed. The assessment of form error involves two

computational steps: calculating some measure of the distance of di(xi,a) of a point xi to

the ideal geometry parametrized by parameters a = (a1, . . . , an)
⊤ and then adjusting a so

that some aggregate measure D(a) of distance is minimised; see e.g., [17, 18, 73–80].

For example, a circle can be parametrised by circle centre coordinated (x0, y0)
⊤ and

radius r0. Circularity is a two-dimensional tolerance that governs the overall shape of a

circle ensuring that it is not too oval or oblong (e.g. a rotating shaft or a bearing). This

type of measurement that is very common and is used in all forms of production and it aims

to improve the roundness quality of an item. The (orthogonal, signed) distance d(xi,a)

from a point xi = (xi, yi)
⊤ for a circle specified by a = (x0, y0, r0)

⊤ is given by

d(xi,a) = [(xi − x0)
2 + (yi − y0)

2]1/2 − r0.

For form error expressions for other standard geometric shapes, see [17, 81].

Two aggregate measures of distance are commonly used:

• least squares (LS): DLS(a) =
∑

i d
2
i (xi,a),

• Chebyshev, minimax, or minimum zone (MZ): DMZ(a) = maxi |di(a)|.

A probe schematic and a visual example for estimating the form error by LS fitting from a

CMM are provided in Figure 3.1 and Figure 3.2, respectively.

A third proposed measure is based on the L1 norm:

DL1(a) =
∑
i

|di(a)|,
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Target

CMM Ruby Probe

Figure 3.1: A CMM probe schematic for measuring roundness.
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Figure 3.2: A visual example a circular artefact with centre (x0, y0), radius r0 and several measured points xi

consisting of m discrete points for estimates d. Form generated by LS fitting.

which has the potential advantage to being much less sensitive to the presence of outlying

data points that can arise in coordinate metrology due to dust particles or cracks. Since

the form error of a part is usually defined as the maximum departure (distance) from

ideal geometry, the MZ criterion is often preferred as it represents the form error directly

based on a discrete representation of the workpiece via the measured coordinated xi.

These aggregate measures will depend nonlinearly on the parameters a so that iterative

optimisation techniques are required to minimise them. In general, algorithms for nonlinear

least squares optimisation are much more straightforward to implement those for nonlinear

Chebyshev or L1 optimisation. For problems that are linear in the parameters a, there are

effective algorithms for both the Chebyshev and L1 problems; see e.g. see for example, [82–

87] and the nonlinear associated problem can sometimes be addressed through solving a

sequence of linearised problems [88].

In more recent years, Dong et al. [89] improved the data quality assessment technique

and showed it is possible to compensate for the dynamic form errors of CMMs, while

Wu et al. [90] conducted an error analysis and accuracy assessment of the reconstructed

surfaces assessing the accuracy of the CMM device. Form tolerances associated with a part

generally state that the form error F should not exceed some tolerance T . In terms of a

discrete representation X = x1:m = {xi, i = 1, . . . ,m} of the part, I can interpret tolerance

requirement as

F̂ (X) = F̂ = min
a

max
i

|di(xia)| ≤ T,

where F̂ is the estimate of the form error F derived from the measured data x1:m. Hence,
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a strategy for assessing part conformity is to gather coordinate measurements x1:m, apply

some computational algorithm to determine the estimate F̂ and pass the part if F̂ ≤ T

and fail it otherwise1. However, this approach does not take into account the fact that

F̂ is determined from measurements and is subject to measurement uncertainty, e.g. see

Joint Committee for Guides in Metrology (JCGM) 100 [91]. Hence, there is possibility

that F̂ < F or F̂ > F and that a wrong decision will be made (false acceptance or false

rejection).

A general approach to assessing conformity on the basis of an estimate is described

in JCGM 106 [92]. The idea is that the information about the measurand, in the case F ,

is encoded in a probability distribution p(F ) and the decision can be made on the basis

of assessing P(F ≥ T ). In a Bayesian setting, the data X allows us to evaluate posterior

distribution π(F |X), given a model of the measurement system, and hence assess P(F ≥ T ).

The approach in JCGM 106 can be generalised using Bayesian decision theory [93] to take

into account the difference in costs associated with passing a nonconforming part (often

termed the consumer’s risk) and rejecting a conforming part (the producer’s risk) via cost

functions [94]. In [95], a cost matrix was used to quantify the different costs of making

decisions that were wrong in different ways (e.g. passing a nonconforming part or failing

a conforming part) to derive an optimal decision strategy that minimised the expected

costs in the long run. In the context of statistical process control [96], it is usually assumed

that the random effects associated with the measurement system are independent from one

measurement to the next.

Forbes [95] discusses the impact of a systematic effect common to all measurements

on the possible risks associated with conformity assessment. The estimate F̂ (X) of the

form error derived from data X is affected by uncertainties associated with the coordinate

measurements X but also by sampling effects relating to the fact that only a finite set

of points is used to represent the complete surface leading to a potentially significant

underestimation of the true form error. Forbes [19] uses a Bayesian approach to determine

a posterior distribution for F on the basis of a finite sample from a rectangular distribution

with independent sampling or Gaussian distribution with independent or correlated sampling

where the spatial correlation associated with the sampling is modelled using Gaussian

1Note that is not necessary to determine the parameters a that minimise the Chebyshev measure

in order to pass a part according to this strategy; it is only necessary to find a set of parameters

a, e.g., using a least squares optimisation, such that the tolerance is met. In order to fail a part

according to this strategy, the Chebyshev solution is required. However, if I can find a subset

X1 ⊂ X of the data for which F (X1) > T , then necessarily F̂ (X) ≥ F̂ (X1) > T
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processes. This chapter aims to extend the analysis associated with a risk and conformity

assessment.

In this chapter, I present an augmented form error model to estimate the form error

quantity F based on the CMM measurement data, combined with environmental, human

and random effects, identified by Bayesian inference. The proposed model is described

using symmetric unimodal distributions (i.e., Gaussian and uniform distributions). A risk

assessment is then performed by combining Bayesian inference, FMECA and conformity

testing, to quantify and minimise the risk of wrong decisions. The objectives of this chapter

are:

• To study the risks of the CMM measurement process and to evaluate the effectiveness

of the action measures taken to manage product conformity rates by combining

Bayesian inference and FMECA together;

• To assess the impact of corrective measures to the CMM measurement process by

comparing the empirical and posterior statistics of the form error parameter F at

different failure modes with and without the measures being implemented;

• To demonstrate the impact of preventive measures taken to monitor and minimize

measurement errors, resulting in more reliable product conformity scores.

• To show how these ideas can be implemented to general measurement processes and

in wider quality engineering applications.

The study will show that the combination of Bayesian inference, conformity assessment

and FMECA is effective in modelling and studying the risks of CMM measurements, leading

to the quantitative evaluation of the action measures and the identification of improvement

measures and actions taken in response to critical failure nodes of a CMM, and thus improve

reliability of future measurements for product conformity assessment.

3.1.2 Chapter structure

This chapter is organised as follows. In section 3.2, I define the form error and propose a new

(augmented) form error model which takes environmental, human and random effects into

account. In section 3.3, I describe the form error model, which uses a uniform distribution

with unknown boundaries to generate a posterior distribution using Bayesian inference. I

then build on from the first posterior model by considering an extended posterior model

that takes into account the likely random effects of form errors as well as real form error

56



data. The second model is then further updated using the proposed augmented model. In

section 3.4, I generate expressions for conformity probability and specific risks associated

with conformity assessment using the provided posterior distribution from the previous

section. In section 3.5, I present a framework which combines FMECA with the methods

and calculations in the previous sections using an integrated approach. In section 3.6, I

present the findings which follow directly from the previous sections. The analysis begins

with a description of the CMM measurement process and a form error model validation.

Then, utilizing the integrated approach, a critical FMECA risk assessment is performed to

identify relevant failure modes/causes to the CMM measurement process, estimate unknown

FMECA risk parameters and obtain the criticality/RPN values. In section 3.7, a discussion

on the calculated criticality/RPN values is provided. Finally, in section 3.8, I present

the concluding remarks for this chapter. A summary of this case study is presented in

Figure 3.3.

• A visual example a circular artefact with 
several CMM measured points .

• Form generated by LSC fitting and a form 
error model is obtained. The form 
parameter 𝐹 is the component of interest.

Apply Bayesian inference to 𝐹 and 
unknown parameters of the form 
error model given the data  to assess 
the uncertainty of new points

Note: 𝐹 = the ideal form error

CMM data from a probing process 
(measurement, form error, etc.)

Operate the CMM

Combine with FMEA to model and study the 
risks of the CMM measurement process.

RPN values are constantly updated using 
Bayesian inference in line with the prevention 
measures carried out in response to failures 
modes of the CMM measurement process.

Enhance the conformity results by 
combining Bayesian FMEA with 
traditional conformity assessment.

Decisions made on accept/reject a 
product are more robust.

Combine with conformity 
assessment to study the risks 

of the form error model. 

Figure 3.3: Summary of the second case study methodology.

3.2 Model and preliminaries

Using coordinates data, form error estimates are derived using the following model

xi = si + dini + ϵi, ϵi ∈ N (0, σ2
ϵ I), i = {1, 2, . . . ,m}, (3.1)

where xi are the measured coordinated, si ≡ si(ui,a) is the point on an ideal surface,

ni is the normal vector to the ideal surface at si, di is the form error at si and ϵi is a

random effect associated with the measurement system, representing a sum of effects that
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change over a very short period of time and model the repeatability element of the CMM.

The uncertainty associated with the measurement is represented by the standard deviation

σϵ. (I can also extend the model to include a systematic effect ei associated with the

measurement system.) Determining a by minimising some aggregate measure D(a) related

to the orthogonal distances d(xi,a), I determine estimates â of a. To the first order,

fi = d(xi, â) ≈ di + ϵi, ϵi ∈ N (0, σ2
ϵ ), i = {1, 2, . . . ,m}, (3.2)

so that the residual distances fi = d(xi, â) are estimates of the form errors di. If the model

for the form errors is that di ∈ N (0, σ2
d) then, approximately fi ∈ N (0, σ2

d +σ2
ϵ ). The above

model in (3.2) related to the estimation of form error in the presence of random effects

associated with the measurement system. Below I extend the model to account for other

effects.

3.2.1 The proposed model

To generalise the form error model to describe the CMM measurement process, I extend

the fitted form error model in (3.2) by introducing two new parameters: environmental

error (θi) and human error (hi). A CMM’s performance can be influenced by a variety of

external environmental factors [97]. Common environmental errors include the effects of:

• Temperature (continual heat switching or overheating of machine tools);

• Humidity (harmful effects of moisture and the corrosion of items and measurement

devices);

• Trapped dust (small particles trapped in the CMM’s bearing surface can cause

breakdown during operation or inaccurate measurements);

• Oil (leakage can lead to deterioration of CMM and future measurements);

• Vibration (criteria levels of whether the CMM is capable of withstanding).

Human errors are specified in ISO 14224 [98] and are associated with various failure

causes. The definition used in ISO 14224 is the “discrepancy between the human action

taken or omitted and that intended ”. Given the concept, it’s also unclear how to improve

on it, particularly in terms of understanding how human performance affects equipment

failures. Is it permissible in a standard focusing on equipment dependability performance

to attempt to link failure causes and human errors? Selvik and Bellamy [99] provided a
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lengthy response to this question and the following three errors were proposed as the most

common sources of human errors when conducting the measurement process:

• Operating error (operation/maintenance-related);

• Maintenance error (operation/maintenance-related);

• Documentation error (management-related).

These factors represent additional sources of variation that increase the measurement

uncertainty associated with the estimates of the surface parameters a and estimates of the

form error F . These factors may contribute poor results, decision costs and (a never-ending

supply of) user dissatisfaction. When all of these factors are considered, the new augmented

model can be extended to:

fi = di + θi + hi + ϵi, (3.3)

with θi and hi associated with Gaussian distributions: θi ∼ N (0, σ2
θ) and hi ∼ N (µh, σ

2
h).

Human error is defined in this thesis as failures caused by humans during the CMM

measuring process, such as dirt on the measured item, a probe that is not calibrated, and

so on. In general, because no experiment can be perfect, there will always be some level of

error, so hi > 0. Furthermore, the observed residual distances fi associated with a surface

fit will be approximately distributed by a Gaussian, fi ∈ N (0, σ2), with

σ2 = σ2
d + σ2

θ + σ2
h + σ2

ϵ . (3.4)

The model in (3.3) involving a response fi that depends additively on a number of factors

allows for a measurement system analysis approach based on the analysis of variance [20–23]

in which experiments are undertaken with a number of factors are held constant (e.g. the

same operator) in order to quantify the influence of the factors through deriving estimates

of σθ, etc. These extra uncertainties can be calculated using an analytical method to

CMM uncertainties based on the Guide to the Expression of Uncertainty in Measurement

(GUM) [92]. These uncertainties are classed as Type B uncertainties and may include

uncertainty in temperature measurement, uncertainty related with stylus modifications,

uncertainty in material expansion coefficient knowledge, and so on [100]. Type A standard

uncertainties, which are typically used to quantify the repeatability or randomness of a

measurement process, are closely linked to human-related errors [100]. I can give an example

of how different environmental factors (temperature effects associated with the CMM and

workpiece) can be combined and modelled in terms of

θi ∈ N (0, σ2
θ), σ2

θ =
N∑
k=1

c2k
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where ck is the standard uncertainty associated with the k-th effect. Similarly, I can also

give an example of how different human factors (e.g., operational and maintenance effects

associated with the CMM measurement process) can be used to estimate σh, i.e.

σh ≈ 1

m− 1

m∑
i=1

(hi − h), (3.5)

where m is the number of measured points, hi = fi − f ′
i is the difference between the form

errors measured before and after any human-related failures (e.g., dirt on item, probe not

calibrated, etc) associated with the CMM measurement process, and h = 1
m

∑m
i=1 hi.

3.2.2 Contributing uncertainties to ck

I want to calculate the size of all contributing uncertainties of ck (for k = 1, . . . , 4) from

the following contributors using the methods in [100], namely:

• The coefficient of thermal expansion of the workpiece (c1).

• The temperature deviation of the workpiece (c2).

• The coefficient of thermal expansion of CMM scale (c3).

• The temperature deviation of CMM scale (c4).

Here, each of these standard uncertainties are given by

c1 = uαL∆T/
√
3, c2 = uTLα/

√
3, c3 = uSL∆T/

√
3, c4 = uνLν/

√
3, (3.6)

where uα is the contribution to the expansion coefficient of the component material, L is the

length of the material, ∆T is the deviation of the workpiece from 20◦C, uT is the contribution

of error from the CMM’s workpiece thermometer, α is the workpiece thermometer, uS is

the contribution to the expansion coefficient of the CMM’s scale material, ν is the CMM’s

scales expansion coefficient and uν is contribution of the possible error of the CMM’s scale

thermometer. The NPL guide [100] provides default values for some of these parameters:

uT = 0.1, α = 11.7× 10−6, uS = 1× 10−6, ν = 7.8× 10−6 and uν = 0.1.

3.3 Bayesian method on the form error

In this section, the form error estimates fi for i = 1, 2, . . . ,m associated with points on the

ideal surface are assumed to be drawn from a uniform distribution whose parameters are

related to the form error boundary parameter F > 0 (more specifically, F is the boundary
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of the form error estimates as seen in Figure 3.2). The aim is to use Bayesian inference to

obtain a posterior distribution for F based on observed form error estimates fi. Conformity

and risk calculations associated with the generated posterior distributions are presented in

section 3.4.

3.3.1 Form errors associated with a uniform distribution

Let fi ∈ (−∞,∞) for i = 1, . . . ,m be draws from a continuous uniform distribution in the

interval [−F, F ], with PDF:

g(fi|F ) ≡ U(fi|−F, F ) =


(2F )−1 fi ∈ [−F, F ],

0 otherwise.
(3.7)

The symmetric nature of this distribution ensures that the mean, median and skewness are

zero, and that the variance of this distribution is explained from σ2
f = F 2/3. Form errors

depend on the data of fi and each fi has uncertainty with the measurements and is the

difference between the measured quantity and its true value.

Since the form error data is given by U(fi|−F, F ), then the likelihood function of

associated with the model for the form error data is

L(f |F ) =
m∏
i=1

U(fi|−F, F ) ∝ 1/Fm, fi ∈ [−F, F ]. (3.8)

By treating F as scale parameter, a suitable non-informative prior PDF for F is π0(F ) = 1/F .

Then by Bayes’ theorem, the combined posterior PDF results to a Pareto distribution:

π(F |m,F0) =


mFm

0 /Fm+1 F ≥ F0,

0 otherwise,
(3.9)

where F0 = max(|f1|, . . . , |fm|). The Pareto is a skewed distribution with heavy or "slowly

decaying" tails, it places significantly higher probabilities as more measured points are

observed. The parameter F0 is the lower bound of the Pareto (which in turn, is the mode

of the distribution). Figure 3.4 graphs (3.9) for various values of m for the case of F0 = 2

μm. Table 3.1 shows that the posterior mean, median and percentiles approaches F0 as m

increases. Similarly, the standard deviation decreases towards zero as m increases. It is

interesting to note that the posterior median is always less or equal to the posterior mean

for all values of m. This is due to the Pareto distribution’s unique nature.

In order to predict future form error numbers, it is better to avoid estimating F and
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Figure 3.4: Pareto distribution for various levels of m starting with a limiting value of F0 = 2 μm. The peak rises

and the tail cuts off earlier as more samples are added.

Table 3.1: Pareto statistics for the posterior mean, median, standard deviation and some upper percentiles for the

case of F0 = 2 μm.

Measured points m 5 6 7 8 9 10 12 15 20 25 30 40 50 75 100 200

Posterior mean 2.50 2.40 2.33 2.29 2.25 2.22 2.18 2.14 2.11 2.08 2.07 2.05 2.04 2.03 2.02 2.01

Posterior median 2.30 2.24 2.21 2.18 2.16 2.14 2.12 2.09 2.07 2.06 2.05 2.03 2.03 2.02 2.01 2.01

Posterior SD 0.65 0.49 0.39 0.33 0.28 0.25 0.20 0.15 0.11 0.09 0.07 0.05 0.04 0.03 0.02 0.01

95th percentile 3.64 3.30 3.07 2.91 2.79 2.70 2.57 2.44 2.32 2.25 2.21 2.16 2.12 2.08 2.06 2.03

99th percentile 5.02 4.31 3.86 3.56 3.34 3.17 2.94 2.72 2.52 2.40 2.33 2.24 2.19 2.13 2.09 2.05

instead use the predictive density, which is defined as:

π(fnew|D) =

∫ ∞

F ∗
0

U(fnew|−F, F )π(F |D) dF =


m

2(m+1)F0
if fnew < F0,

mFm
0

2(m+1)fm+1
new

if fnew ≥ F0,

(3.10)

where F ∗
0 = max(F0, fnew). Figure 3.5 shows the effects of plotting a Pareto distribution’s

predictive density after extracting a new point from a uniform distribution. It’s worth

noting that the predictive density is divided into two parts: a constant π(fnew|D) = A and

a reciprocal component π(fnew|D) = B/fk
new, where A, B and k are constants, and that

the value of the mode acts as a vertical asymptote to the reciprocal part. If the number of

measured points increases, the reciprocal function approaches the asymptote, implying that

the probability of obtaining a new measurement of fnew, given F0, decreases.

3.3.2 Incorporating uncertainty from random effects

In this section, I present a method to obtain a slightly more extensive posterior model, by

taking into consideration the probable random effects of form errors. The calculations in

the previous section assumed that the observed residual distances are accurate estimates of

the surface’s form error estimates fi ∈ U(−F, F ) and were free from some random effects.
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Figure 3.5: Pareto predictive density using π(fnew|D) for the case of F0 = 2 and various levels of m.

Suppose now that fi ≈ di + ϵi where di ∈ U(−F, F ) and ϵi are random effects associated

with a Gaussian distribution N (0, σ2
ϵ ). Random errors are measurement errors that result

in inconsistent quantifiable values when repeated measurements are taken. Most of the

JCGM [92] methodology is based on the premise that the underlying error distribution

is Gaussian. Why are I assuming a Gaussian distribution? Simply because this is the

distribution that represents or approximates what I often see in the physical universe.

As such, I shall model the measurements of CMM data resulting from random errors

added to produce an ideal geometric form. I can use Bayesian inference to obtain a posterior

distribution for the convolution of di + ϵi. The result of the sum of two independent

continuous random variables has PDF:

g(z|F,m, σϵ) =

∫ F

−F
U(t| − F, F )N (z − t|0, σ2

ϵ ) dt,

=
1

2F

∫ F

−F

1

σϵ
√
2π

exp

(
−(z − t)2

2σ2
ϵ

)
dt,

=
1

4F

[
erf

{
F + z

σϵ
√
2

}
+ erf

{
F − z

σϵ
√
2

}]
, (3.11)

where erf(y) is the Gauss error function, given by:

erf(y) =
2√
π

∫ z

0
exp (−t2) dt, t ∈ [−y, y].

By taking the likelihood of (3.11) after observing m measured points and setting a non-

informative prior of π0(F ) ∝ 1/F , the combined posterior PDF is therefore:

π(F |d, F0,m, σϵ) =
CI

Fm+1

m∏
i=1

[
erf

{
F + di

σϵ
√
2

}
+ erf

{
F − di

σϵ
√
2

}]
, F ≥ F0, (3.12)

and zero everywhere else. Here, F0 = max{|d1|, . . . , |dm|} and CI is the integrating factor

to ensure the PDF integrates to one. This distribution reflects the measurement uncertainty

affiliated with the residual distances examined, due to the randomness of σϵ. The value

of CI can be computed very easily using Mathematica’s 1/NIntegrate[] or MATLAB’s
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1./int() command. Due to complicated integrals, summations or products, obtaining a

posterior distribution in many cases is not possible, and thus the posterior distribution does

not have a closed form. Numerical integration is used to compute the value of CI , moments,

quantiles and other common statistics associated with this PDF. Alternatively, I can sample

from the posterior and draw distributions across the parameters using well-known techniques

like the MCMC without having to worry about computing the evidence.

3.3.3 Incorporating environmental and human errors

In this section, I now take into account the effects of additional errors to obtain an even

more extensive posterior mode. I shall model the form errors of CMM measurement data

using Bayesian inference for the convolution of di + θi + hi + ϵi. Since the three Gaussian

random variables has a resulting PDF of N (z|µh, σ
2
θ + σ2

h + σ2
ϵ ), then the PDF of the

convolution of a uniform and three Gaussian random variables is:

g(z|F,m,µ,σ) =

∫ F

−F
U(t| − F, F )N (z − t|µh, σ

2
θ + σ2

h + σ2
ϵ ) dt,

=
1

4F

erf
 F + z + µh√

2(σ2
θ + σ2

h + σ2
ϵ )

+ erf

 F − z − µh√
2(σ2

θ + σ2
h + σ2

ϵ )


 . (3.13)

By taking the likelihood of (3.13) after observing m measured points and setting a non-

informative prior of π0(F ) ∝ 1/F , the combined posterior PDF is therefore:

π(F |d, F0,m,µ,σ) =
CI

Fm+1

m∏
i=1

erf
 F + di + µh√

2(σ2
θ + σ2

h + σ2
ϵ )

+ erf

 F − di − µh√
2(σ2

θ + σ2
h + σ2

ϵ )


,

(3.14)

for F ≥ F0 and π(F |d, F0,m,µ,σ) is zero everywhere else.

3.3.4 Form errors associated with a Gaussian

Alternatively, one could use a Gaussian distribution to represent the form error. In

statistics, the Gaussian distribution is one of the most commonly used. It’s also popular to

use Bayesian inference and conjugate priors to estimate its parameters. Most of the results

can be obtained in closed form thanks to the use of conjugate priors.

Now suppose I consider a Bayesian estimation of a univariate Gaussian’s mean, with the

variance assumed to be known. If f = (f1, f2, . . . , fm)⊤ are accurate form error estimates

observed from a Gaussian distribution with mean µ and (known) standard deviation σ

equal to (3.4), then the PDF of this distribution is:

g(fi|µ, σ) ≡ N (fi|µ, σ2) ∝ exp

[
−(fi − µ)2

2σ2

]
. (3.15)
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According to Bayesian inference, I can derive a posterior probability from two components:

a prior probability and a likelihood function derived from a statistical model for the observed

data. Since the form error data is given by N (fi|µ, σ2), then the likelihood function of

associated with the model for the form error data is

L(f |µ, σ) =
m∏
i=1

N (fi|µ, σ2) ∝ exp

[
−
∑m

i=1(fi − µ)2

2σ2

]
. (3.16)

If I assume a Gaussian prior of π0(µ) = N (µ|µ0, σ
2
0), then the combined posterior distribu-

tion is also Gaussian distributed:

π(µ|f , µm, σm) =

m∏
i=1

N (fi|µ, σ2)N (µ|µ0, σ
2
0),

∝ exp

[
−
∑m

i=1(fi − µ)2

2σ2

]
× exp

[
−(µ− µ0)

2

2σ2
0

]
∝ exp

[
−(µ− µm)2

2σ2
m

]
∼ N (µ|µm, σ2

m). (3.17)

Here, µm and σ2
m are hyper-parameters of the posterior distribution and are given by:

µm = σ2
m

(
µ0

σ2
0

+
mf

σ2
d + σ2

θ + σ2
h + σ2

ϵ

)
, (3.18)

σ2
m =

σ2
0(σ

2
d + σ2

θ + σ2
h + σ2

ϵ )

mσ2
0 + σ2

d + σ2
θ + σ2

h + σ2
ϵ

, (3.19)

where mf =
∑m

i=1 fi. Figure 3.6 shows the effects of updating the Gaussian distribution in

(3.17) sequentially using the hyperparameters in (3.18). As more measurements are taken,

I can see that the posterior density narrows towards a form error mean of zero.
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Figure 3.6: Sequentially updating a Gaussian mean starting with µ0 = 0, σ0 = 1 and σ ≈ 0.9501 using real form

error data. Notice how the posterior becomes narrower as more points are collected.

The Gaussian distribution itself is an example of a symmetric unimodal distribution

since the normal curve has one local maximum (peak) at the mean, median and mode which

makes it a suitable distribution for the form error. However, it may not capture the form

error data precisely, as the probability of observing the form error is almost guaranteed to

be consistent and uniform. For measurements whose best estimate is within the usual range

of standard uncertainty, this fraction of the probability can be substantial, so a Gaussian

PDF may not always be the best choice.
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3.4 Conformity assessment

The main goal of conformity assessment is to ensure that a measurement result is utilized

to determine whether or not a particular item conforms with a set of requirements such as

ISO’s geometrical product criteria [101]. Due to probable system failures or when the item

itself does not meet the established standards, the CMM may not always record accurate

information. In conformity assessment, I wish to assign tolerance limits for a quantity

to control the risks associated with making a wrong decision [92]. Presently, the most

common form of product quality inspection is to use the specification zone over the required

tolerance zone [TL, TU ] as a criterion and assess the quality of each product based on its

calculated value (i.e., the interval containing all acceptable values). When the measurement

results are within the tolerance limit, the item is recognized as accepted. The items are

rejected if the measurement results surpass the tolerance limit. There is a possibility of

uncertainty in the test results due to the effects of measurement uncertainty.

In the following sections, the Pareto posterior distribution in (3.9) and the Augmented

posterior distribution in (3.14) will be used to better understand the conformity method.

3.4.1 Conformity and specific risk calculations

I assume a production line manufactures circular parts that are measured, leading to form

error estimates that are assumed to follow a Pareto-like distribution. To assess whether the

form error complies with a specification, the measured value is compared to a tolerance

interval. The conformity rate, denoted by pc, is an important metric for determining a

process’s capability. This is defined as the probability of an item falling within a one-sided

tolerance interval from [0, T ], where T is the upper limit. For a Pareto distribution, defined

by m and F0,

pc =

∫ T

F0

π(F |m,F0) dF = 1− (F0/T )
m. (3.20)

For the augmented model in (3.14), specified by m, F0, d, µ and σ,

pc =

∫ T

F0

CI

Fm+1

m∏
i=1

erf
 F + di + µh√

2(σ2
θ + σ2

h + σ2
ϵ )

+ erf

 F − di − µh√
2(σ2

θ + σ2
h + σ2

ϵ )


 dF. (3.21)

If the item does not conform with the specification, then the probability of non-conformity

is 1− pc. Note that the tolerance intervals in (3.20) and (3.21) are actually [F0, T ] instead

of [0, T ]. This is because the Pareto and augmented models are defined for F ≥ F0.

JCGM 106 [92] published guidelines for such an assessment addressing two types of

specific risks. Only binary decision criteria are evaluated, which means the item must either
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be deemed as accepted or rejected. As such, these risks can be obtained as a function

of pc. The first is the specific consumer’s risk, denoted here as RS
c = 1 − pc, which is

the probability that an accepted item will be non-conforming. The second is the specific

producer’s risk, RS
p = pc, which is the probability that a rejected item will be conforming.

Both risks are extremely important for a manufacturer to consider when structuring their

measuring procedure in order to strike an appropriate balance between the risk of rejecting

conforming items and the risk of accepting non-conforming items. The calculation of

conformity probabilities allows design of experiment questions to be answered, e.g., how

many measurement points m are required to reduce risks to a specified level.

3.4.2 Measurement process capability index

Another useful indicator is the measurement process capability index Cm. This is a useful

metric that characterizes the measurement’s quality in relation to a tolerance criterion. This

metric compares the process’s actual spread (typically stated as a standard deviation) to the

process’s permissible spread (typically computed as the complete range of the specification

set by the consumer). This is defined by

Cm =
TU − TL

2U
, (3.22)

where U = 2σ is the expanded uncertainty. The conventional choice of 2U is reinforced by

the widespread preference for a coverage interval of approximately 95% [92]. Furthermore,

the measurement capacity index can be linked to the conformity probability. Hence,

the following form can be used to combine the Pareto-like conformity rate, given by

pc =
∫ T
F0

π(F |D) dF , with (3.22):

pc = Π(F0 + 2CmU |D)−Π(T − 2CmU |D), (3.23)

where pc is now determined by D = {f ,µ,σ}, F0, T , U and Cm and Π(·) is the posterior

cumulative distribution function (CDF).

3.4.3 Decision rules for accepting/rejecting a product

When specifying the rules for accepting or rejecting a product, it is important to define the

method for accounting for measurement uncertainty in relation to the measurement result

and the specified requirements [92]. Accepting or rejecting an item when the measurement

result is near to a tolerance limit may lead to a wrong decision and unfavorable outcomes.

There are two types of incorrect decisions: when an item is accepted as conforming but
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may be non-conforming (false positive), and when an item is rejected as non-conforming

but may be conforming (false negative). Altogether, there are four types of decisions in a

conformity assessment with a binary decision rule as seen in Figure 3.7 for a single tolerance

limit T equal to acceptance limit A in a set coverage interval (i.e. A = T ):

• Valid acceptance: Item is accepted and conforms. This outcome of the conformity

assessment test results in a conforming item being accepted (e.g. see case (I),

Figure 3.7).

• False acceptance: Item is accepted but does not conform. This is an incorrect decision

because the cost of such an error is often borne by a consumer who acknowledges the

item as fit for its purpose and acts accordingly (e.g. see case (IV), Figure 3.7).

• False rejection: Item is rejected but conforms. This is an incorrect decision because

the cost associated with such an error is often borne by a manufacturer who can not

sell an item that has failed a conformity test (e.g. see cases (II-III), Figure 3.7).

• Valid rejection: Item is rejected and does not conform. This outcome of the conformity

assessment test results in a conforming item being rejected (e.g. see case (V),

Figure 3.7).

(I)

(II)

(IV)

(V)

(III)

Measured value

True value

Item is accepted

𝑨 = 𝑻

Item is rejected

Figure 3.7: Cases (I) and (V) shows that the measured value and true value responses are within the regions

of valid acceptance and valid rejection, respectively. Cases (II) and (IV) are examples of false rejections and false

acceptance, respectively, due to incorrect decisions made. In case (III), the true measurement value is outside the

coverage interval and the response is characterized by a false rejection.

A decision rule based on simple acceptance and the measured value provided by a

symmetric unimodal distribution (such as a Gaussian) will result in a probability of accepting

a non-conforming item or rejecting a conforming item of up to 50% if the measurement results

coincides with a tolerance limit [92]. To avoid these high probabilities, it is recommended

that acceptance limits be offset from tolerance limits using a conformity decision strategy

known as guard banding. The guard band was first specified in ISO 14253-1 [101], which
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establishes an acceptance decision rule for demonstrating specification compliance with the

goal of minimising consumer’s risk. It is frequently described using an expanded uncertainty

parameter U with a coverage factor of 2 and a coverage probability of 95%. Mathematically,

the expanded uncertainty parameter can be expressed as U = |T −A| = 2σ which is used

to define the area between the tolerance limit T and the acceptance limit A < T in the

case of a one-sided tolerance interval, where σ is the standard uncertainty represented

by the standard deviation parameter. Minimising the producer’s risk is established from

A > T (see Figure 3.8). Reducing the consumer risk is an important approach for increasing

conformity rates. When using a binary decision rule to assess conformity, acting to minimize

the consumer’s risk always increases the producer’s risk.

𝐴

𝑇

𝑈

(a) Consumer’s risk: 𝑨 < 𝑻

Tolerance interval

Acceptance interval

𝑇

𝑈

(b) Producer’s risk: 𝑨 > 𝑻

𝐴

Tolerance interval

Acceptance interval

Guard band Guard band

Figure 3.8: Binary conformity assessment for form errors in order to minimise: (a) consumer’s risk; (b) producer’s

risk.

For the purposes of performing a conformity assessment, decision rules applied to a

conformity assessment of one or two side tolerance limits are often applicable for a variety

of statistical distributions.

3.5 Failure modes, effects, and criticality analysis

3.5.1 The FMECA procedure

FMECA was one of the earliest systematic failure analysis tools. The main goal of an

FMECA risk assessment is to ensure that all possible failure modes/causes have been

evaluated, as well as their effects on the system’s operational success and to assess the

current detection/corrective measures in place. After that, the risk priority number (RPN)

is determined by assigning each failure mode a severity (S), occurrence (O), and detection

(D) rating. The RPN is calculated from the product of these three parameters. Each

parameter has a range of values, but the most common are 1-5 or 1-10, with 1 being the

lowest (and most desirable) value. In general, the lower the RPN, the lower the risk, and

the greater the RPN, the higher the risk, hence the goal is to keep the RPN as low as
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possible. Failures that result in a high RPN are critical and given top priority [42–46, 102].

Control measure detection is examined in the final stage to reduce measurement errors and

improve the reliability of making the right decision. Comparing the RPN for the initial

and revised values, respectively, may reduce the risk associated with a corrective measure.

Although the classic FMECA has a good ability to assess system safety, there are numerous

limitations that have been documented in the literature [44]. A FMECA approach will be

applied to the CMM measurement process and the risk measures will be rated on a scale of

1 to 10.

3.5.2 The integrated approach

There are three primary steps to the integrated approach that this study’s methodology

is based on. The first step is all about getting ready for failure analysis and control. For

the CMM measurement process, trained persons or experts were identified at this step.

Furthermore, the primary FMs and FCs that result from significant measurement errors

during the CMM measurement process, as well as the current detection measures in place,

were identified. The second step is the implementation phase. I want to estimate the

FMECA risk parameters here (S, O and D). Using the augmented posterior model for the

form error, values for S and D can be calculated by computing the specific consumer’s risk

and the posterior standard deviation, respectively. A Bayesian network is used to calculate

the values for the remaining risk parameter O, which is a probabilistic approach. In this

approach, each FM/FC can be considered as a random event when trying to determine the

values of O [103]. In this chapter’s results/findings phase (section 3.6), the Bayesian network

procedure is detailed. The final step is to integrate all the calculated risk parameters for

each FM/FC and calculate the RPNs that result. Figure 3.9 depicts the flow chart for this

integrated approach. The following section is a detailed analysis of the findings and results.

Step 1: FMECA Preparation

•User must be trained or qualified in operating 
the CMM adequately.

• Identify all failure modes, failure causes and 
current detection measures.

Step 2: Implementation

•Determine the risk parameters: 𝑆, 𝑂 and 𝐷.

•Estimate 𝑆 and 𝐷 using Bayesian inference and 
conformity assessment.

•Apply a Bayesian network to estimate 𝑂.

Step 3: RPN calculation

•Combine all estimated risk parameters for each 
failure mode and failure cause.

•Compute the resulting RPNs.

Figure 3.9: A flow chart for the integrated approach.
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3.6 Results and findings

As a follow-up to the previous sections, this section presents the main results and findings

of this chapter. These include a description of the CMM measurement process, a form

error model validation and a critical risk assessment using the integrated approach for

the Bayesian FMECA. The form error model is calibrated using data from a CRYSTA-

Apex S, a high-precision CMM that offers a maximum permissible length measurement

of 1.7 μm. It also includes a temperature correction system that ensures measurement

accuracy at temperatures ranging from 16 to 26 degrees Celsius. The combined scale and

workpiece temperature compensation scheme in this system checks the temperature before

transmitting the measurement result to the controller and corrects it to the value that

would be measured at 20 degrees Celsius. This outperforms prior CMM systems that

just compensated for the scale temperature. In the model, the combined temperature

sensor and workpiece is approximated by σθ using the Type B contribution method in (3.6).

Similarly, I use (3.5) to find that human errors can vary significantly from 0.2-0.5 μm (dust

on item) to 0.9-1.3 μm (mechanical stress and CMM making noise). I assume that the users

performing the form error measurement have received adequate training to detect CMM

faults and other related issues. Furthermore, the standard deviation associated with the

random effects of the CMM measurement process has been set to σϵ = 0.1 μm. Integrals

and other computations were performed in Mathematica and MATLAB, and converted to

graphs and tables in Microsoft Excel. Table 3.2 summarizes each form error model based

on the posterior density obtained (if analytically available), which is used in this section’s

discussion. The findings here will describe the impact of Bayesian inference and FMECA

on a product’s conformity based on its specifications.

Table 3.2: Summary of heavy-tailed form error models. *Only requires the largest absolute form error value, e.g.

F0 = max |fi|. **Extended model (uniform form errors with random effects). ***Augmented model (uniform form

errors with environmental, human and random effects).

Model Section Likelihood Posterior PDF Parameters

Pareto 3.3.1 Uniform mFm
0 /Fm+1 m, F0

Extended** 3.3.2 Uniform-Gaussian mixture (convolution) See (3.12) m, F0, σϵ, d

Augmented*** 3.3.3 Uniform-Gaussian mixture (convolution) See (3.14) m, F0, d, µ, σ
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3.6.1 Description of the CMM measurement process

The measuring process for the CMM setup is broken down into several parts, as shown

in Figure 3.10. The first step is to ensure that the operator has the necessary training

and experience to execute the measurements. The operator must be able to operate

the appropriate CMM software/hardware. The next stage is CMM initialization of the

software/hardware. For the CMM measuring procedure, a companion software (Mitutoyo

PartManager) is used. The workpiece is then placed on the CMM’s surface, with a

thermometer touching it to determine its temperature. The CMM must then be calibrated

to confirm that its geometry and moving parts are in good working order and that it is safe

to measure with. After the calibration is complete, it is important to select what needs to

be measured by the CMM. In this case study, a circular steel alloy item will be assessed at

room temperature. A probe calibration test is then conducted to confirm that the workpiece

is positioned accurately in the X, Y, and Z planes. The probe must be properly inserted and

the workpiece should be (mostly) dust free as well as free of odd finger prints. A 5-point

circle measurement can then be performed using the CMM to determine the workpiece’s

estimated geometry. It’s critical to use the CMM controller’s "Go To" (or similar) feature

to record exact coordinates. Because the same conditions will be used throughout the

measurement method, repeating the measurement will be faster and more reliable. Use the

software’s "CMM repeat mode" after all of the measurement algorithms have been saved.

This macro does automatic measurement based on the measurement algorithm. The CMM

will halt and/or restart the procedure if there are significant failures when in repeat mode.

All measurement errors (related to the probe, the mechanics, the measurement approach,

or the environment) are digitally stored using the CMM companion software.

3.6.2 Form error model validation

In this section, I compare each form error model using their posterior densities which are

summarised in Table 3.2. I am interested in understanding the uncertainty behavior of

the posterior densities obtained from the actual error data obtained from the CMM after

measuring the product. Figure 3.11 shows posterior densities of three models (Pareto,

Extended and Augmented) using real form error data. The following 10 form error

measurements taken from the data points are 0.74, -0.46, -0.26, 0.14, -0.56, -1.86, 0.04, 0.04,

1.84 and 0.34 μm. Table 3.3 presents the posterior mean, median, standard deviation, lower

and upper quartiles, extreme upper percentiles, a 95% credibility interval (and a conditional

probability) for the observed form error data fitted to each of the three models (Pareto,
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Figure 3.10: A flow chart for a CMM measurement process.

Extended and Augmented). The capability index and σm is computed using (3.22) and

(3.19), respectively. Here, I find that all three distributions are consistent. For the observed

data, the minimum absolute form error is F0 = 1.86 μm. The Pareto has the narrowest

peak, while the Extended and Augmented models have a shape and pattern that is quite

similar. The Extended model has a slightly broader peak than the Augmented and this

reflects the measurement uncertainty due to σϵ only. The Extended and Augmented models

have a combined measurement uncertainty of 1.0 and 1.5 μm. The means of the Extended

and Augmented models are 2.182 and 2.130 μm, respectively, which are higher than the

Pareto mean of 2.067 μm. Similarly, the standard deviations for both distributions are

greater than the Pareto, at 0.327 and 0.376 μm, respectively, compared to 0.231 μm. A basic

distinction between the three models is that the Pareto ignores measurement uncertainty

since it is not data-dependent and there is no random component. Since the Extended

and Augmented models are both data-dependent, they reflect measurement uncertainty

and reality better and should therefore be used over the Pareto. The Pareto model has

an advantage over the other two since it is easier and quicker to calculate and provides a

nice lower bound on the distribution of form errors. The form error distribution’s exact

shape is likely to adopt an Extended or Augmented posterior distribution. Although all

three distributions take little or no account of the probability values when F < F0, I find

that the Augmented model takes the greatest amount of measurement uncertainty into

consideration to provide a the smoothest and longest Pareto-tailed cut-off.
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Figure 3.11: Posterior densities (Pareto, Extended and Augmented) for the observed form error for the case of

m = 10 and F0 = 1.86 μm.

Table 3.3: Posterior statistics (using Pareto, Extended and Augmented) for the observed form error data for the

case of m = 10 and F0 = 1.86 μm. The capability index is Cm = 3.87.

Model Mean Median SD Lower Q. Upper Q. 90th Per. 95th Per. 99th Per. 95% Cred. Int.

Pareto 2.067 1.994 0.231 1.914 2.137 2.342 2.510 2.948 (1.865, 2.690)

Extended 2.182 2.084 0.327 1.953 2.304 2.596 2.821 3.349 (1.868, 3.051)

Augmented 2.230 2.118 0.376 1.969 2.368 2.700 2.959 3.605 (1.870, 3.229)

3.6.3 A critical risk assessment using FMECA

One of the main approaches for identifying failure modes (FMs) and prioritizing possible

risk according to failure causes (FCs) is to conduct a risk analysis using FMECA. The

top FCs and FMs are calculated based on severity, occurrence, and detection ratings by

analyzing the FMECA output. In the critical risk assessment using Bayesian FMECA,

assume that a production line manufactures circular parts that are measured, resulting in

form error estimates that follow a Pareto-like distribution. The measured value is compared

to a tolerance interval to determine whether the form error complies with the specification.

For this analysis, I matched the following risk measures:

• O ∼ What are the likely causes of failure from a CMM measurement process? I

determine this using a posterior probability from a Bayesian network (BN) framework

(see subsubsection 3.6.3.2).

• S ∼ What is the magnitude of the end-user risk? I determine this using the specific

consumer’s risk RS
c .

• D ∼ What are the chances that current detection measures will prevent the FM/FC?

I determine this using the posterior standard deviation of the augmented model in

(3.14).
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The FCs, FMs and detection methods are adapted from the available literature [104, 105].

The values of O, S and D are given according to a 10-point occurrence scale in Table 3.4.

Table 3.4: Occurrence, severity and detection rating/criteria associated with the CMM measurement process.

Occurrence rating, O 1 2 3 4 5 6 7 8 9 10

Occurrence: FC probabilty Remote Extremely unlikely Very unlikely Unlikely Low Moderately low Moderate Likely Very likely Frequent

Posterior probability of FC occurring <2 % <5% <7.5% <10% <12.5% <15% <20% <25% <50% ≥ 50%

Severity rating, S 1 2 3 4 5 6 7 8 9 10

Severity: Risk level Remote Very low Low Moderately low Moderate Moderately high High Very high Extreme Severe

Specific consumer’s risk (%) <2% <5% <7.5% <10% <12.5% <15% <17.5% <20 % <25% ≥ 25%

Detection rating, D 10 9 8 7 6 5 4 3 2 1

Detection probability Remote Very Low Low Unlikely Occasional Moderately likely Likely Very likely Almost certain Certain

Posterior SD of form errors (μm) <0.6 <0.7 <0.8 <0.9 <1.0 <1.1 <1.2 <1.3 <1.4 ≥ 1.4

3.6.3.1 Identification of failure modes/causes

The most failure modes (FMs) and their failure causes (FCs) occur immediately after

the "measurement result analysis and interpretation" step. According to the trained

users, experts and the available literature [104, 106], four main FMs that affect the CMM

measurement process were identified. The FMs are probe failure (FM1), measurement

performance failure (FM2), mechanical failure (FM3) and environmental failure (FM4).

There were also eleven FCs identified. The FCs are item displaced slightly or greatly

(FC1/2), dust on time (FC3), mechanical stress (FC4), wrong probe type used (FC5), valve

not set to required pressure level (FC6), temperature set too high or too low (FC7/8), CMM

making noise (FC9), probe not fitted properly (FC10) or probe not calibrated (FC11).

3.6.3.2 A Bayesian network to determine parameter O

The BN technique is a probability-theory-based visual tool. A directed acyclic graph is

utilized in this method to show the number of variables and their dependent links [107].

The BN is a concept that consists of nodes and arrows that is widely used to explain

uncertainty [108]. I used a BN which groups FCs and FMs together in order to anticipate

when or where the proportion of failure is likely to occur next (with a given probability).

The construction of a BN on the GeNIe software for the FMECA is shown in Figure 3.12.

The FCs (blue) are the parent nodes in this case, whereas the FMs (purple) are the children

nodes. The resulting occurrence probability is represented by the last node (yellow). Every

node has two states: "state 0" (non-failure) and "state 1" (failure). Each FM (child node)

is coupled with a conditional probability table that displays the states of its FC (parent

nodes). The main idea here is to obtain and update the probability of a given FM for the

observed FC. The model can address design of experiment questions about the presence of
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an FM in the presence of an FC, such as "What is the probability of a mechanical failure,

given that the CMM is making noise?"

Figure 3.12: A Bayesian network on the GeNIe software for the FCs (blue), FMs (purple) and rejection result

(yellow).

The calculating process for the posterior probabilities of FC given their respective FMs

is shown in the following formula:

π(FC|FM) =
P(FM|FC)π0(FC)∑
FM P(FM|FC)π0(FC)

. (3.24)

where π0(·) and P(·) are the prior and conditional probabilities, respectively. The prior

probability for the FC is calculated by taking the number of occurrences of the j-th FC as

a fraction of the total number of occurrences over all FCs, i.e.

π0(FCj) = n(FC)j/
11∑
k=1

n(FC)k.

The conditional probabilities are derived by dividing the frequency of FCs by the sum of

the FM groups in which they occur:

P(FMi|FCj) = n(FMi|FCj)/
∑
k∈FM

n(FMi|FCk),

Table 3.5 shows the implications of using prior and conditional probabilities to calculate the

posterior probabilities for FCs given a FM. The top row are the FMs with respective prior

and posterior probabilities for each FC. The combined FM accumulates all four probabilities

for convenience. From this table, the combined posterior probabilities show that "probe not

fitted properly" (34.8%, O = 9), "wrong probe type used" (19.9%, O = 7) and "probe not

calibrated" (12.0%, O = 5) are the three leading FCs throughout the CMM measurement

process.
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Table 3.5: A critical risk assessment to rating the "occurrence of failure" likelihood using a BN approach to FMECA.

Probabilities for FC/FM associated with a CMM measurement process are calculated according to (3.24) using

expert judgments.

Mechanical Probe Measurement Environmental Combined

Failure cause Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior Priority O

Probe not fitted properly 5.4% 7.5% 9.2% 19.0% 7.9% 8.4% N/A N/A 22.5% 34.8% 1 9

Wrong probe type used N/A N/A 7.0% 11.1% 8.1% 8.8% N/A N/A 15.2% 19.9% 2 7

Probe not calibrated N/A N/A 6.0% 7.9% 5.5% 4.1% N/A N/A 11.5% 12.0% 3 5

Mechanical stress 4.3% 4.8% N/A N/A 6.0% 4.7% 1.9% 0.5% 12.2% 10.1% 4 5

CMM making noise 3.6% 3.4% N/A N/A 4.0% 2.1% N/A N/A 7.6% 5.5% 5 3

Temperature is set too low N/A N/A N/A N/A 1.0% 0.1% 6.3% 5.3% 7.3% 5.4% 6 3

Temperature is set too high N/A N/A N/A N/A 0.9% 0.1% 5.5% 4.1% 6.4% 4.2% 7 2

Dust on item N/A N/A N/A N/A 1.1% 0.2% 4.7% 2.9% 5.7% 3.1% 8 2

Item displaced greatly 2.7% 1.9% N/A N/A 1.6% 0.4% N/A N/A 4.3% 2.2% 9 1

Valve not set to required pressure level 1.1% 0.3% N/A N/A N/A N/A 2.9% 1.1% 4.0% 1.4% 10 1

Item displaced slightly 2.2% 1.2% N/A N/A 1.1% 0.2% N/A N/A 3.2% 1.4% 11 1

3.6.3.3 Determining parameters S and D

I now wish to find the parameter values for the S and D parameters in the second

stage. These estimations were made using the specific consumer’s risk and the posterior

standard deviation of the form error model, respectively. The experts computed the form

error measurements under controlled conditions (to assure the validity of the results) for

each of the eleven FCs found in Table 3.5 and reported their findings in Table 3.6. For

simplicity, each FC is numbered from 1 to 11 using the "priority" index from Table 3.5.

The contributions cj (mm) for j = 1, . . . , 4 are calculated using (3.6).

Table 3.6: Observed form error measurements fi (μm) and the change in form error assessments hi (μm) after

repeated experiments for i = 1, . . . , 5. Experiments were conducted using a CRYSTA-Apex V544 CNC CMM in a

metrology lab. Contributions cj (mm) for j = 1, . . . , 4 are evaluated using (3.6). Parameters: m = 5 and σϵ = 0.1

μm *Determined from numerous hands-on experiments.

Priority Failure cause O f1 f2 f3 f4 f5 h1 h2 h3 h4 h5 Temp. (°C) c1 c2 c3 c4

1 Probe not fitted properly. 9 -2.25 -1.88 0.46 -1.37 2.84 0.32 0.19 -0.09 -0.19 0.23 20.9 3.89E-04 4.68E-05 9.00E-08 3.12E-05

2 Wrong probe type used. 7 -0.31 1.65 -3.30 1.25 -0.60 0.03 0.15 0.53 0.00 0.10 20.6 2.59E-04 4.68E-05 6.00E-08 3.12E-05

3 Probe not calibrated. 5 -1.83 1.97 1.37 -1.39 2.94 -0.05 -0.04 0.09 -0.04 0.12 20.6 2.59E-04 4.68E-05 6.00E-08 3.12E-05

4 Mechanical stress. 5 1.78 0.91 -2.88 -1.46 -0.13 -0.36 -0.08 -0.06 -0.31 0.03 20.7 3.02E-04 4.68E-05 7.00E-08 3.12E-05

5 CMM making noise. 3 -0.65 1.58 -3.13 0.79 1.37 -0.02 0.02 -0.04 0.10 -0.18 20.7 3.02E-04 4.68E-05 7.00E-08 3.12E-05

6 Temperature is set too low. 3 2.49 2.92 -1.58 -1.05 -0.47 -0.55 0.47 0.16 -0.15 -0.01 17.8 9.50E-04 4.68E-05 2.20E-07 3.12E-05

7 Temperature is set too high. 2 -2.45 -0.34 1.38 2.51 0.39 -0.29 0.04 -0.01 0.30 -0.01 23.1 1.34E-03 4.68E-05 3.10E-07 3.12E-05

8 Dust on item. 2 -0.63 1.24 -0.37 1.12 1.85 -0.09 -0.06 -0.06 -0.22 0.02 20.6 2.59E-04 4.68E-05 6.00E-08 3.12E-05

9 Item displaced greatly. 1 -2.83 1.03 1.85 -1.23 2.17 -0.08 -0.01 -0.13 0.02 0.04 20.9 3.89E-04 4.68E-05 9.00E-08 3.12E-05

10 Valve not set to required pressure level. 1 0.82 0.83 1.75 -0.79 0.91 -0.14 0.05 -0.37 0.14 0.15 20.7 3.02E-04 4.68E-05 7.00E-08 3.12E-05

11 Item displaced slightly. 1 -1.02 0.78 2.23 -1.04 -1.16 0.07 0.07 0.24 0.22 0.21 20.7 3.02E-04 4.68E-05 7.00E-08 3.12E-05

I can now estimate the parameters of S and D using the specific consumer’s risk and

posterior standard deviation of the form error model, respectively, based on the findings from

Table 3.6. The criticality/RPN values are also subsequently calculated by the estimated S,

O, and D parameters. The corrective strategies are determined according to the outcome of

the criticality/RPN values. A good measurement strategy will strike a balance between the

77



cost of reducing measurement uncertainty and the benefit of knowing the true value of the

measurand with greater certainty. The calculation of criticality/RPN values allows design

of experiment questions to be answered, e.g., how many measurement points m are required

to reduce risks to a specified level, or what correction methods are in place to reduce the

detection level. Therefore, it is critical to understand the criticality of failures and current

corrective measures in place during the CMM measuring process before assessing the RPN

value.

A comprehensive breakdown on obtaining these values are given in Table 3.7, which

also summarizes the decisions (accept, conditionally accept and reject) made in response to

the FCs associated with the CMM measurement process. I find that the posterior standard

deviation closely matches the empirical outcome. According to the decision rules, I accept

an item if the risk is less than 5%. This corresponds to a severity rating of S = 1 or 2. I

may also conditionally accept (item is accepted but subject to defects) if the risk is less

than 10% (S = 3 or 4), and I reject an item otherwise (S ≥ 5). These ratings reflect the

severity of the decisions made, but this could easily be expanded to include many more

decisions. As a result, in the next section, I’ll look at a discussion on the criticality/RPN

values.

Table 3.7: Criticality/RPN results of the CMM measurement process which follows from Table 3.6. Parameters:

m = 5, T = 5 μm and σϵ = 0.1 μm. *Accept an item if RS
c ≤ 5%, conditionally accept if RS

c ≤ 10%, or reject

otherwise.

Priority Failure cause O F0 µh σh σθ σ pc RS
c Decision* S Post Mean Post SD D C RPN

1 Probe not fitted properly. 9 2.84 0.089 0.219 0.519 1.103 88.8% 11.2% Reject 5 3.877 1.132 7 45 315

2 Wrong probe type used. 7 3.30 0.160 0.214 0.441 1.007 83.2% 16.8% Reject 7 4.298 1.177 7 49 343

3 Probe not calibrated. 5 2.94 0.016 0.084 0.441 1.050 88.0% 12.0% Reject 5 3.962 1.132 7 25 175

4 Mechanical stress. 5 2.88 -0.155 0.167 0.469 0.974 89.7% 10.3% Reject 5 3.846 1.093 6 25 150

5 CMM making noise. 3 3.13 -0.025 0.102 0.469 1.001 86.0% 14.0% Reject 6 4.118 1.147 7 18 126

6 Temperature is set too low. 3 2.92 -0.016 0.375 0.771 1.272 87.6% 12.4% Reject 5 3.964 1.149 7 15 105

7 Temperature is set too high. 2 2.51 0.005 0.211 0.905 1.255 93.4% 6.6% Cond. Acc. 3 3.464 1.026 6 6 36

8 Dust on item. 2 1.85 -0.084 0.088 0.441 0.669 98.9% 1.1% Accept 2 2.453 0.690 2 4 8

9 Item displaced greatly. 1 2.83 -0.031 0.074 0.519 1.101 90.3% 9.7% Cond. Acc. 4 3.785 1.084 6 4 24

10 Valve not set to required pressure level. 1 1.75 -0.032 0.221 0.469 0.670 99.1% 0.9% Accept 1 2.331 0.662 2 1 2

11 Item displaced slightly. 1 2.23 0.161 0.083 0.469 0.830 97.0% 3.0% Accept 2 2.991 0.860 4 2 8

3.7 Discussion on the criticality/RPN values

The criticality value, which is derived from the product of the occurrence and severity ratings,

is a very valuable indication for determining which failure causes should be prioritized. I

prioritise FCs by the highest criticality value. I find that the following are some of the most

significant failures causes that can affect the measurement process: "wrong probe type used"
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(C = 49), "probe not fitted properly" (C = 45) and "probe not calibrated / mechanical

stress" (C = 25 each). The RPN should be taken into account as well because it combines

the current criticality level with the detection measures in place. I find that low detection

levels rapidly raise the overall RPN. It is crucial to minimize the criticality and increase

the likelihood of preventing the failure in order to considerably reduce or anticipate future

measurement failures. I find that three of the most significant FCs with the highest RPN

are also: "wrong probe type used" (RPN = 343), "probe not fitted properly" (RPN = 315)

and "probe not calibrated" (RPN = 175 each). However, "mechanical stress" has a lower

RPN to criticality ratio then "probe not calibrated" due to differences in the estimated D

parameter for both (i.e. 150/25 vs 175/25), so the highest RPNs are not always the same

as those with the highest criticality. A graphical summary of the findings on probable FCs,

ranked by the highest criticality/RPN values, are given in Figure 3.13. Note that I can’t

compare criticality and RPN on the same graph because they’re measured on a scale of

1-100 and 1-1000, respectively. To get around this, I took the j-th criticality/RPN for the

j-th FC and divided it by the overall criticality/RPN. The formulae are given below:

C%
j = Cj/

n(FC)∑
k=1

Ck, RPN%
j = RPNj/

n(FC)∑
k=1

RPNk,

where n(FC) is the number of FCs.
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Figure 3.13: Risk rating distribution, ranked by the highest criticality/RPN. This is an extension to Table 3.7.

Overall, employing a mix of distinct Bayesian techniques (i.e., a Bayesian network

approach to occurrence calculation, a Bayesian conformity assessment approach to severity

calculation and using the posterior standard deviation for detection calculation) to compute

criticality/RPN values is innovative and highly convenient, and it extends existing FMECA

methods. With more information given to the FMs and FCs, the review team can study

the FMECA worksheet, conformity rates, risks, criticality and RPN. In order to reduce risk,

the review team can identify potential CMM improvements by assessing the key reasons of

failure using the methods and results described above. Design improvements, engineering

safety features, safety devices, warning devices, and procedures/training can all help to
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lower the risk. As a result of the updated measures, the severity, occurrence, and detection

values are reduced, and the RPN value is re-evaluated. The findings of the FMECA review

and the data collected can be stored in a database that can be used to analyze similar

measurement processes in the future. In this manner, future failures can be avoided. As

a result, quality management is enhanced by assessing the risk measures by using this

approach.

3.8 Conclusion

This chapter was concerned about whether a product meets its specifications by adapting a

proposed form error model identified by Bayesian inference to a conformity-based FMECA.

Most conformity assessment problems assume that the uncertainty associated with a quantity

is Gaussian or Gaussian-like. For form error assessment, the associated distribution is far

from a Gaussian. Through Bayesian inference, important posterior distributions were derived

(Pareto, Extended and Augmented models) by considering the likelihood of measurement

data and a non-informative prior PDF (e.g., a reciprocal function or a Gaussian prior),

to describe the proposed form error model. The Pareto is the outcome of the likelihood

taking no measurement uncertainty into consideration and the form error estimates being

uniformly distributed, resulting in an accurate representation of the model. The Extended

model is the result of a uniform-Gaussian mixture distribution by integrating measurement

uncertainty from the likely random effects of form errors. The Augmented model improves

on the Extended model by accounting for additional sources of measurement uncertainty,

such as human and environmental errors. The methodologies considered in this chapter

ignore the fact that surface fitting determines form error estimates at the surface points,

and so they are subject to a correlated effect associated with the fitting.

A novel way of combining conformity assessment with FMECA was then presented. For

the analysis of the FMECA of the CMM measurement process, three risk measures were

matched accordingly:

• Occurrence rating, O, to the posterior probability of FCs occurring using a Bayesian

network approach;

• Severity rating, S, to the specific consumer’s risk;

• Detection rating, D, to the posterior standard deviation of the form error model.

These three values were used to compute the criticality/RPN which prioritises risks/failures
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with the highest values. The probe-related FMs were found to be the most significant,

followed by measurement, mechanical, and then environmental. I were also interested in

predicting when and where the related FCs will occur. I found that the four most significant

FCs are: "wrong probe type used" (C = 49,RPN = 343), "probe not fitted properly"

(C = 45,RPN = 315), "probe not calibrated" (C = 25,RPN = 175) and "mechanical

stress" (C = 25,RPN = 150). The calculated values for criticality and RPN confirmed that

probe failures were extremely likely to be the major FM during the measurement procedure

as a result of the research.

Results have shown that an integrated approach to Bayesian FMECA (using Bayesian

networks, conformity assessment, and posterior statistics) is effective in modeling and

studying the risks of CMM measurements. Contributions in this chapter include using

heavy tail distributions (e.g. Pareto-like distributions) to assess conformity of items at the

form error’s upper limit and using non-Gaussian distributions to evaluate specific consumer

risks, expanding the possibility of using various probability distributions to achieve desired

outcomes. As a result, action steps are quantitatively evaluated, and improvement actions

taken in response to critical FMs of a CMM are identified. Furthermore, the methods

presented here contribute significantly to the extensive literature in JCGM [92] regarding

item conformity assessment.
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Chapter 4

A Bayesian Risk Assessment of the

CMM Measurement Process using an

Autoregressive Form Error Model and

Gibbs Sampling

4.1 Introduction

4.1.1 Overview and related works

Recall from chapter 3 that the classical form error model assumes that I can obtain form

error estimates fi from an artefact’s ideal geometry about the on-machine probe coordinate

data from (at least) two components: orthogonal distances di ∈ N (0, σ2
d) and the (usually)

unavoidable random error ϵi ∈ N (0, σ2
ϵ ), modelled in (3.2). This model related to the

estimation of form error in the presence of random effects associated with the measurement

system. It is critical for manufacturers to assess the effectiveness of CMMs (coordinate

measuring machines) by ensuring that the measuring process runs smoothly. For conformity

or risk analysis, predicting form errors after measuring an item is critical. Furthermore, the

main interest here is in extending the model to account for autoregressive (AR) lags using

failure prediction methods and a time series model.

Failure prediction is required for predictive maintenance due to its capacity to reduce

failure incidents and maintenance costs. Consistent with modeling assumptions, work has

been done in applying the Bayesian framework to various fields, such as model updating,
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reliability analysis, modal analysis, inverse modeling, risk detection, and improving the

performance of construction projects [109–112]. The Bayesian network was employed by

Abu Samah et al. [113] to forecast failure probabilities. While the research appeared to be

fascinating, they did not release the data set they used, making it difficult to duplicate or

compare their proposed model to existing machine learning algorithms. Currently, the most

common methodologies for failure prediction are mathematical and statistical modeling,

which are based on physical models and machine learning techniques [114].

The most widely used tools in the industry, by far, are FMEA (Failure mode and effects

analysis) and FTA (Fault tree analysis) [49]. FTA is a top-down analysis that uses the

notion of Boolean logic to generate a set of True/False assertions to visually represent a

failure path or failure chain. It uses logic gates and events to simulate how component states

affect the overall state of the system, which is extremely beneficial for failure prediction.

The goal of FTA is to quickly identify failure causes and mitigate risks before they occur.

The OR-gate, AND-gate, and inhibit or conditional gate are all commonly used logic gates

in FTA [50]. Furthermore, by including quantitative component reliability data (e.g., failure

rates), a strictly qualitative FTA can be turned into a quantitative FTA. A quantitative

FTA can be used to calculate the system’s reliability using boolean algebra. Hamda [51]

provides a detailed description of largely quantitative FTAs. Some authors argue that FTA

and FMEA should be used together. For example, Bertsche [52] claims that due to the

different starting points of both methods, this can increase the number of failure modes

found (e.g. FMEA from the bottom up vs. FTA from the top down). Even so, completing

both analyses would be time intensive and could lead to a lack of focus on the most critical

system components, which is what a failure analysis is designed to reveal. In light of the

literature, I propose an integrate FTA/FMEA approach to the Bayesian AR model in this

study to predict significant failures throughout the CMM measurement process (this is

further discussed in this chapter).

Time series models have been used for prediction in all sectors of study for decades [115].

From linear to non-linear regression, models such as AR, moving average (MA), and

exponential smoothing, as well as a slew of others, are available. A famous time series

model termed autoregressive integrated moving average (ARIMA) was created by Box

and Jenkins. These techniques have been effectively implemented in a variety of fields,

including data centers, complex industrial systems, transportation networks, and healthcare,

to forecast system failure [116, 117].

A popular model which performs similarly to the classic AR models is the median
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autoregressive (MAR) model which is a special case of quantile autoregressive (QAR)

models used for predicting the conditional quantile Qp where p ∈ (0, 1) in which the

median regression occurs when p = 1/2. The median regression model is equivalent to the

mean regression if the conditional distribution is symmetric; otherwise, they are different.

The mean regression model can be thought of as a summation of all the quantile effects,

therefore QAR provides a thorough examination of how future data given past data are

related. Quantile regression has a lot of applications in risk measurement, and QAR is

just an extension of the work done in Yu and Moyeed [118], where the idea of Bayesian

quantile regression using a likelihood function based on the asymmetric Laplace distribution

was introduced. Bayesian MAR and QAR models, in which the AR coefficients can be

represented as monotone functions of a single, scalar random variable, are of particular

interest. In addition, simple examples of AR modelling using Bayesian inference can be

found online (i.e., using Julia with Jupyter notebook for plots and outputs [119]). However,

there has been a lack of Bayesian inference in regards to forecasting data points of a

measurement process given model parameters and/or decision framework. Specifically,

there is no available literature on an AR model based Bayesian method that can identify

both modal parameters and their uncertainties for a coordinate measuring machine (CMM)

process that can be used efficiently for quality engineering.

The aim of this study is to create an accurate model for predicting future measurement

failure trends by focusing on a measurement criterion such as form error. In this section,

I propose a new model and method for forecasting form errors for decision making. The

proposed model is described using an AR model with Bayesian inference for parameter

estimation of form error data. The main goal is to approximate the coefficients’ posterior

distribution (α, β1, . . . , βq and σ2
ϵ ). I must marginalize each parameter of this posterior

distribution related to each coefficient in order to determine the posterior distribution.

This requires calculating marginal distributions, which can be difficult to do analytically in

practice. This is where Gibbs sampling comes in handy. The Gibbs sampler is an example

of Markov chain Monte Carlo (MCMC) that allows one to estimate the joint marginal

distribution using draws from the conditional distribution. Following this, I can then

build a form error forecast from the algorithm’s posterior density. This makes the forecast

modelling extremely useful in making decisions. The algorithms and coding has all been

done on RStudio.

The study will show that the combination of Bayesian inference, AR modelling, an

integrated FTA/FMEA and Gibbs sampling is effective in modelling and studying the
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predictions of CMM measurements, and thus improve reliability of future measurements for

product conformity assessment.

4.1.2 Coverage and data collection

Real-time CMM form error data was collected using 500 points on the outer surface of a

circular workpiece from the CMM’s automated circle measurement function.
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Figure 4.1: Empirical form error data obtained for 500 points using the scanned feature of a CMM. The observed

radius of the workpiece is 19.9823 mm. 1 micron is equal to 1/1000 mm. Item measured: a smooth circular metal

plate. Measured points were taken using a Renishaw SP25M probe on a CMM.

The plot shows that the form error distribution is highly volatile about zero, with several

highly correlated neighboring points and symmetrically uniform movements with some

randomness. The mean for the sample form error is approximately zero, with approximately

evenly spaced ranges between maximum and minimum form error points, indicating that the

distribution of form errors is highly uniform with a symmetrical structure. I can associate the

randomness of such movements with a number of different symmetric unimodal distributions

to describe the form error distribution such as an uniform or Gaussian distribution.

4.2 Model and methods

4.2.1 The proposed model

In this section, I propose a new model for forecasting form errors. To begin, I propose

an AR model with Bayesian inference for parameter estimation of form error data. This

model is an alternative to the classic mean-based AR models. An AR model with q lag

conditions is referred to as the AR(q) model. The lag parameter q specifies how many

measured points should be used at an instant. For a given form error model denoted by

fm, with m measured points, I get the following regression structure for an AR(q) model:

fm = α+ β1fm−1 + β2fm−2 + · · ·+ βqfm−q + ϵm =: βTf + ϵm, (4.1)
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where α is a mean/median centred constant, βi are parameters of the model, ϵi is the random

error, and β = [α, β1, . . . , βq], f = [1, fm−1, . . . , fm−q] are vectors of unknown coefficients

and form error data points, respectively. The superscript T denotes the transpose. The AR

model assumes that the random error is subjected to a white noise process with mean zero

and variance σ2
ϵ , i.e, ϵi ∼ N (0, σ2

ϵ ).

Regression forecasts are frequently obtained using AR models. This is because each

successive point observed by a CMM resembles a time-series moving around a mean value

of zero has a strongly correlated structure, and so this is possible. Regression, often known

as a regression model, is a statistical technique for modeling the conditional expectation of

the dependent variable given a vector of independent variables, i.e. E[fm|f ]. This can be

used to determine the dependency or effect, as well as to make predictions. I am interested

in the forecast of point-varying probability of an item exceeding a given tolerance level,

and the calculation of p given Q such that p = P(fm ≤ Q|f).

4.2.2 Bayesian inference of AR parameters

The main goal is to approximate the coefficients’ posterior distribution: α, β1, . . . , βq and

σ2
ϵ . I can describe the posterior distribution of the above model in a more succinct way

using Bayesian inference:

π(β, σ2
ϵ |f) ∝ L(f |β, σ2

ϵ )π0(β, σ
2
ϵ ), (4.2)

where L(f |β, σ2
ϵ ) is the likelihood of the data and π0(β, σ

2
ϵ ) is the prior distribution. When

deriving the likelihood of (4.1), it may be easier to write:

ϵm = fm − βTf . (4.3)

Therefore, I can use (4.3) to define the likelihood function according to a Gaussian distribu-

tion:

L(f |β, σ2
ϵ ) = (2πσ2

ϵ )
−1/2 exp

(
(fm − βTf)2

2σ2
ϵ

)
. (4.4)

I can define the priors for the Bayesian analysis of β by using a Gaussian distribution

with a zero-mean vector µ0 = 0 = (0, 0, 0)T governed by a single variance parameter σ2
ϵ ,

such that V 0 = σϵI where I is the identity matrix. I have also used a scaled inverse

chi-squared (SICS) distribution as a prior to model the initial variance parameter σ2
ϵ which

are parametrised by the two quantities, m0 > 0 and τ20 > 0, representing the number

of chi-squared degrees of freedom and the scaling parameter, respectively. Specifically, I
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denote these priors by

π0(β, σ
2
ϵ ) = π0(β|σ2

ϵ )π0(σ
2
ϵ ),

π0(β|σ2
ϵ ) ∼ N (µ0,V 0) = N (0, σϵI), (4.5)

π0(σ
2
ϵ ) ∼ Scaled-Inv-χ2(m0, τ

2
0 ) ≡ IG(m0/2,m0τ

2
0 /2). (4.6)

It should be noted that the inverse gamma (IG) distribution is a special case of the SICS

distribution, which uses a different parametrization to define the same data distribution.

Since the IG distribution is provided by more programming languages and statistical

packages than the SICS distribution, I’ll use it instead. In any case, both distributions are

suitable priors to use because they only support positive numbers and can also be used as

a conjugate prior in Bayesian statistics. For computation simplicity, I set ζ0 = m0τ
2
0 .

The posterior distribution of the parameters based on the data is proportional to the

likelihood function multiplied by the prior distribution of the coefficients. I’ll assume that

both the likelihood function and the prior distribution are Gaussian, which means that the

posterior will be Gaussian as well [120]. A posterior update to (4.5) and (4.6) are outlined

in the implementation phase.

To obtain individual posterior distributions, i.e. π(α|f), . . . , π(σ2
ϵ |f), I must marginalize

each parameter of this posterior distribution related to each coefficient in order to determine

the posterior distribution. This requires calculating marginal distributions, which can be

difficult to do analytically in practice. The Gibbs sampling method is applied here. The

Gibbs sampler is an example of MCMC that allows one to estimate the joint marginal

distribution using draws from the conditional distribution. However, I must first understand

the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of

the series, which are required to determine the order of AR terms, before selecting candidate

AR models for time series analysis and forecasting. The process and findings are described

in the sections that follow.

4.2.3 Analysing ACF and PACF Plots

To completely define the AR model, I must choose a value for q that best fits the observed

form error data while also ensuring that the fundamental assumptions of this class of

models are true [121]. The most critical assumption is that the error term is subjected

to a White Noise Process, i.e. ϵi ∼ N (0, σ2
ϵ ). I’ll characterize the data’s ACF and PACF

to find the best model for the form error. The technique would be to choose models that

closely align the trends of the sample autocorrelation function (SACF) and sample partial
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autocorrelation function (SPACF) with the theoretical model’s ACF and PACF. The word

"auto" comes from the fact that I am computing the correlation of a sequence of measured

points with the values of that same series.

The theoretical definition of the q-th order ACF, denoted by ρq, is given by:

ρq =
Cov(fm, fm−q)

V ar(fm)
=

γq
γ0

. (4.7)

In practice, the SACF or the correlogram is obtained from an observed form error sample:

ρ̂q =
γ̂q
γ̂0

=
1
M

∑M
i=m+1(fi − f̄)(fi−q − f̄)
1
M

∑M
i=m+1(fi − f̄)2

, (4.8)

where M > m is a predicted measured point. The PACF is defined as the last coefficient

in the q-th order autoregression in an AR(q) model, i.e. βq, for q ≥ 1. The main idea is

that the PACF measures the additional correlation between fi−1 and fi−q+1 after removing

the linear dependence of the intermediate lags. The ratio of matrix determinants gives the

explicit formulas for βq as a function of the autocorrelations, ρq, as follows:

βq =

∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1 ρ2 . . . ρq−2 ρ1

ρ1 1 ρ1 . . . ρq−3 ρ2
...

...
...

...
...

ρq−1 ρq−2 ρq−3 . . . ρ1 ρq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1 ρ2 . . . ρq−2 ρq−1

ρ1 1 ρ1 . . . ρq−3 ρq−2

...
...

...
...

...

ρq−1 ρq−2 ρq−3 . . . ρ1 1

∣∣∣∣∣∣∣∣∣∣∣∣

(4.9)

I can get the SPACF by doing the following:

1. Load the CMM data as CSV file.

2. Estimate AR models, i.e., from (4.1), in stages using orders 1, 2, . . . , and pick out

the last coefficient at each point using OLS.

3. Replace the ρi with their sample equivalents ρ̂i using (4.9).

I start by importing the form error data into RStudio (a R-based integrated development

environment). The ACF and PACF plots for the training data are shown in Figure 4.2.

In general, the following findings in the ACF and PACF plots indicate an autoregressive

model:

• A positive autocorrelation at lag 1.
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• The ACF plot steadily decreases to zero.

• At some lag k, the PACF cuts off sharply. I should use this value of k in the AR(q)

model since it equals the value of q.
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Figure 4.2: ACF and PACF plots sampled from real form error data using 500 consecutive measured points from a

CMM’s scanned process.

It can be seen that the ACF and PACF plots meet the requirements in the three points

above. Furthermore, since the PACF plot cuts off at the second lag, the value of q I obtain

for the AR(q) model is q = 2 implying that the form error model follows an AR(2) process

with equation:

fm = α+ β1fm−1 + β2fm−2 + ϵm, ϵm ∼ N (0, σ2
ϵ ). (4.10)

Finally, to ensure that an AR(2) process is stable, then α, β1 and β2 should satisfy the

following stationarity conditions:

β2 < 1± β1 − α, β2 > α− 1. (4.11)
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4.2.3.1 Stationarity conditions for an AR(2) process

For the proof to (4.11), I’ll use the lag or backshift operator B to quickly extract a range

of results relevant to AR processes. The lag operator allows us to write a general AR(q)

process in a more concise form:

β(B)dm = ϵm, (4.12)

where ϵm is a standard white noise process and β(B) is

β(B) = 1−
q∑

i=0

βiB
i, β0 =: α. (4.13)

Proof. I study the AR(2) process’s MA representation to extract the stationarity conditions.

To do so, I must take the following steps:

1. Factor the polynomial β(B).

2. Use the lag operator property in (4.13).

Consider the expected value of an AR(2) process described by the following characteristic

equation:

E[β(B)dm] = 1− α− β1B − β2B
2. (4.14)

If B is the root of the characteristic equation, then the output obtained by rewriting the

above is E[β(B)dm] = 0. I can derive the stationarity triangle of an AR(2) using this

representation, which states that an AR(2) is stable if the AR polynomial’s roots of β(B)

are outside the unit circle, i.e. |B| > 1. Another criterion for AR(2) stability is that all

roots of are contained within the unit circle, i.e. |λ| = |B−1| < 1, with characteristic

equation (1− α)λ2 − β1λ− β2 = 0. Note that the quadratic formula can be used to find

the roots of the mean equation:

λ1,2 =
β1 ±

√
β2
1 + 4(1− α)β2

2(1− α)
. (4.15)

The larger βi value is bounded by the larger root of λ1,2 < 1, i.e.

β1 +
√
β2
1 + 4(1− α)β2

2(1− α)
< 1

β1 +
√
β2
1 + 4(1− α)β2 < 2(1− α)

β2
1 + 4(1− α)β2 < (2(1− α)− β1)

2

β2 < 1− β1 − α.
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Similarly, I find that β2 < 1 + β1 −α. If λi is a complex number, then β2
1 − 4(1−α)β2 < 0,

therefore

λ1,2 =
β1 ± i

√
−
(
β2
1 + 4(1− α)β2

)
2(1− α)

,

where i =
√
−1 is an imaginary number. A complex number’s squared absolute value is

equal to the square of the real part plus the square of the imaginary part, thus:

|λ|2 = β2
1

4(1− α)2
+

−
(
β2
1 + 4(1− α)β2

)
4(1− α)2

= −β2/(1− α).

The AR(2) process is stable if |λ| < 1 and thus β2 > α− 1 is satisfied.

4.3 An integrated approach to FTA/FMEA mod-

elling

I use the Bayesian AR model and the integrated Fault tree analysis (FTA) and Failure

mode and effects analysis (FMEA) approach in this study to predict significant failures

throughout the CMM measurement process. Failure modes (FMs) are a direct result of the

faults identified in the FTA process, and failure causes (FCs) are assumed to be mutually

independent in an FMEA. The design of the integrated failure prediction model is shown

in Figure 4.3. This set of pre-selected parameters is gathered on a regular basis to see if

their values may be used to anticipate CMM measurement failures. The most significant

FMs have come from probe, mechanical, measurement performance and environmental, all

of which have an impact on the form error estimations. In the following subsections, I will

describe the steps required to perform the integrated failure analysis method.

Bayesian estimation of 

parameters and 

forecast (AR model).

Real-time data Forecasted data Update AR model and 

make predictions.

Store 

forecasted 

data into a 

database

Decisions

Usual FTA steps.

Define a threshold 

limit and evaluate 

parameter value.

FTA
FMEA

Usual FMEA steps.

Estimate risk

measures then 

calculate RPN.

Figure 4.3: Failure prediction using Bayesian AR modelling and an integrated FTA/FMEA approach.
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4.3.1 FTA steps

A FTA evaluates each tree node’s state using the concept of detectability index [122]. At

measured point m, f̂m is a predicted value produced from the associated parameters of

the AR model. The predictors’ outputs are converted to binary form using thresholding

values and then input into the FTA. The fault tree analyzes the probability of the CMM

measurement process failing using binary data. I denote T as the threshold tolerance limit

of actual and predicted data. If the actual or predicted form error (e.g., fi or f̂i) surpasses

the threshold, the values given into the tree has a detectability index of δi = 1; otherwise,

δi = 0. This is illustrated in the following:

δi =


1, |fi| > T,

0, |fi| ≤ T,

δ̂i =


1, |f̂i| > T,

0, |f̂i| ≤ T,

for i = 1, . . . ,m. (4.16)

The main idea is to combine (4.16) with a confusion matrix, which could be used to assess

the forecast quality of the proposed Bayesian AR model. In general, a confusion matrix is

a performance metric for machine learning classification problems with two or more classes

as output [123, 124]. There are four classifications in the matrix of predicted and actual

values, namely: TP , TN , FP and FN . For example, the interpretation of TP is that I

predicted positive and it turned out to be true. The values of each classification is given

below:

TP i =


1, δi = δ̂i = 1,

0, otherwise,
TN i =


1, δi = δ̂i = 0,

0, otherwise,

FP i =


1, {δi = 0 ∪ δ̂i = 1},

0, otherwise,
FN i =


1, {δi = 1 ∪ δ̂i = 0},

0, otherwise,

Each sub-scripted classification is summed from i = 1 to i = m to form the whole

classification, e.g.
∑m

i=1 TP i = TP . These classifications are extremely helpful and can be

used to assess a variety of rates. For example, the error, accuracy, prevalence, prediction,
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sensitivity and specificity rates can all be calculated as shown:

Error rate =
FP + FN

TP + FP + TN + FN
, (4.17)

Accuracy rate = 1− Error rate, (4.18)

Prevalence rate =
TP + FP

TP + FP + TN + FN
, (4.19)

Prediction rate =
TP

TP + FP
, (4.20)

Sensitivity rate =
TP

TP + FN
, (4.21)

Specificity rate =
TN

TN + FP
. (4.22)

Some of these measures are extremely useful in the estimation of the unknown parameters

of the FMEA risk measures, namely: the severity (S), occurrence (O) and detection (D)

ratings. This is further discussed and explained the in the following section.

4.3.2 FMEA steps

Aside from the conventional FMEA stages that are outlined and explained in the preceding

chapters, additional tasks that should be completed include employing an approach to derive

the risk parameters: S, O and D for the Bayesian AR model, which are then multiplied

together to obtain the RPN [10]. The following is matched according to the confusion

matrices classification meeasures:

• Failure severity S ∼ Estimated from the error rate in (4.17);

• Failure occurrence O ∼ Estimated from the prevalence rate in (4.19).

• Failure detection D ∼ Estimated from the prediction rate in (4.20).

Table 4.1 depicts an integrated FTA/FMEA spreadsheet with all relevant data from the

recommended methodologies, concluding with suggested preventive measures. Each of these

formulas is compared to a severity, occurrence, and detection scale that ranges from 1 to

10. The results section includes a detailed table that highlights the FMEA’s ratings and

criteria.

Table 4.1: An integrated FTA/FMEA form.

FTA Classification measures FMEA

# Failure mode Failure cause TP FP TN FN Error (%) Prevalence (%) Prediction (%) Sensitivity (%) Specificity (%) S O D RPN Priority Action

1

2

3
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4.4 Implementation

4.4.1 Gibbs Sampling to derive posterior estimates

Now that I’ve described the form error model using an AR(2) process, I can see how it

works in practice. In this section, I will construct some new algorithms and formulas for

implementing linear regression using the Gibbs sampler. Using a Bayesian method, I can

obtain vital posterior statistics for each unknown parameter then use the model to predict

the volatile of CMM measurements. I can accomplish this by using the R code to calculate

conditional distributions and collect samples from the posterior distribution within a Gibbs

sampling framework, making the entire process smooth and seamless.

The aim is to approximate the marginal posterior distribution of each variable from

(4.2) to describe the form error model. In order to obtain these marginals, initialise starting

values for the variables:

Initial =
[
α(j), β

(j)
1 , β

(j)
2 , σ2(j)

ϵ

]
, j = 0.

Then, sample the first variable α(j) based on the current values of the other variables by

setting j = j + 1 with the initial j = 0. This is then repeated by sampling the second

variable β
(j)
1 based on all of the others, and so on until all of the variables (e.g., β(j)

2 , σ2
ϵ
(j))

have been sampled and posterior densities have been obtained.

α(1) ∼ π
(
α|β(0)

1 , β
(0)
2 , σ2(0)

ϵ

)
, β

(1)
1 ∼ π

(
β1|α(0), β

(0)
2 , σ2(0)

ϵ

)
,

β
(1)
2 ∼ π

(
β2|α(0), β

(0)
2 , σ2(0)

ϵ

)
, σ2(1)

ϵ ∼ π
(
σ2
ϵ |α(0), β

(0)
1 , β

(0)
2

)
.

At this stage, the Gibbs sampling algorithm has completed one iteration (j = 1). The

samples from the conditional distributions converge to the joint marginal distributions as

I replicate these procedures a large number of times, e.g. j = N times. With all other

parameters fixed, the result is often a known density form, i.e.

α(N) ∼ π
(
α|β(N−1)

1 , β
(N−1)
2 , σ2(N−1)

ϵ

)
, β

(N)
1 ∼ π

(
β1|α(N−1), β

(N−1)
2 , σ2(N−1)

ϵ

)
,

β
(N)
2 ∼ π

(
β2|α(N−1), β

(N−1)
2 , σ2(N−1)

ϵ

)
, σ2(N)

ϵ ∼ π
(
σ2
ϵ |α(N−1), β

(N−1)
1 , β

(N−1)
2

)
.

This makes many analyses far simpler. The expected value of the retained draws can be

thought of as an approximation of the mean of the posterior distribution after sampling

many times.
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4.4.2 Main steps

This section highlights the main steps for applying Bayesian Linear Regression to the form

error model, which include:

1. Generating matrices and other preliminary functions based on the Bayesian AR(2)

model to store form error data model parameters;

2. Generating a results matrix and specifying priors for the model parameters;

3. Creating a model mapping the training inputs to the training outputs;

4. Creating a Gibbs sampling algorithm to draw samples from the posterior distribution.

The end result will be marginal posterior densities for the parameters, as well as projected

form error point placements, which will be examined to see what is going on. Appendix

A.2 contains many pieces of code that explain how Bayesian linear regression is used in

RStudio to estimate parameters and execute the necessary forecasts.

4.4.2.1 Phase 1: Generating matrices and other preliminary functions

The first step is to load the form error data d (e.g., from a suitable CSV file containing the

data) and specify the number of rows ("nrow"), columns ("ncol"), variables ("nvar") and

lags q. From here, the next steps are to define a function, i.e. F1, from three components:

form error data, number of lags used, and the intercept parameter α, then to generate a

matrix M1 which depends on the size of the data and lags, and is equal to (m−1)× (q+1).

The final steps are to generate a q × q sized matrix M2, a function F2 of the beta

coefficients, i.e. β = [β1, β2], and a q × (q − 1) identity matrix. Matrix M2 converts the

model’s coefficient vector into a mixed matrix of βi, ones and zeros. By expressing the

matrix in this way, it can later be used to determine the model’s stability, which is an

important part of the Gibbs algorithm.

Since I have approximately m = 500 data entries, q = 2 lags and a constant, the

dimension of matrices M1 and M2 are 499× 3 and 2× 2, respectively. Both matrices are

given by:

M1 =


1 f2 f1

1 f3 f2
...

...
...

1 fm fm−1

 M2 =

β1 β2

1 0

 (4.23)
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4.4.2.2 Phase 2: Setting up priors

In this step, priors are set up to obtain approximate posterior distributions for the model

parameters. To begin, denote the initial prior distributions for β and σ2
ϵ , and specify them

according to (4.5) and (4.6), respectively. For simplicity, select m0 and ζ0 to be equal to 1.

Increasing the value of ζ0 gives us a broader distribution, with the β becoming more likely

to take on larger values. Robustness checks have been performed to see where changing the

original prior values can have a major impact on the output posterior distribution. Thanks

to the many iterations of simulation, changing the values has little effect on the posterior

distribution.

4.4.2.3 Phase 3: Mapping input to output matrices

In this step, two new matrices are defined to keep track of the findings, namely, M3 and

M4. The first output matrix, M3, holds all of the repetitions and has rows equal to the

sampler’s number of repetitions (which is set to 10,000). The dimensions of this matrix

depends on the number of repetitions and the number of coefficients (including α plus σϵ),

thus this is expected to be a large matrix of size 10000× 4.

The second output matrix, M4, records the results of the predictions. To make a

prediction, I’ll need the last w < m measurable points. As a result, the number of columns

in M3 will be equal to the number of repetitions assigned times the number of projected

calculated points times, i.e. a matrix of size 10000× 15.

4.4.2.4 Phase 4: Gibbs Sampling

The first step of Gibbs Sampling is outlined in Algorithm 1, and the Gibbs sampler function

is defined as FG ≡ FG(M1,f ,µ0,V 0, σ
2
ϵ ,m0, ζ0,M3,M4). Algorithm 1 requires all codes

to be run, including the matrix M1, which is just a vector f preceded by two periods and a

column of ones. I’ll also need all of the previously established priors, as well as the number

of times I’ll iterate the algorithm, and the two output matrices, M3 and M4.

Algorithm 1 Implementation of Gibbs Sampling (Phase I)

Run all codes from previous 
algorithms.

Define 𝐹𝐺 as the Gibbs Sampler 
function.

Create a loop by performing 
several 𝑛𝑅 repetitions for the 

posterior mean and variance using 
𝝁𝑁 and 𝑽𝑁, respectively. 

Create a random vector 𝜷∗ from 
𝑍𝜷∗, 𝝁𝑁 and 𝑽𝑁.

Check if coefficient matrix is 
stable.

• If the max 𝜆𝜷∗ ≤ 1 , then 𝐴𝑅 2 process 
is dynamically stable.

The loop in the third block (Algorithm 1) is the most important aspect to consider.
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Since a conjugate Gaussian prior distribution was chosen, the posterior would be Gaussian

as well, this is where all of the main computations take place. The normalization coefficient

for this distribution can be found by completing the square of the exponential component

and then using the standard result for a normalized Gaussian. In this case, the resulting

posterior distribution for the given prior in (4.5) updates to:

π(β|f , σ2
ϵ ) ∼ N (µN ,V N ), (4.24)

where

µN = V N

(
V −1

0 µ0 +
1

σ2
ϵ

MT
1 f

)
, V N =

(
V −1

0 +
1

σ2
ϵ

MT
1 M1

)−1

. (4.25)

Bishop’s Chapter 3 [125] contains a similar proof of the formulation and derivation to

the posterior mean and variance in (4.25), but with slightly different notation.

Proof. Let’s assume I have a Gaussian marginal distribution p(x) and a Gaussian conditional

distribution p(y|x), with the mean of p(y|x) being a linear function of x and its covariance

being independent of x. I’ll use the following marginal and conditional distributions:

p(x) = N (x|µ,Λ−1) (4.26)

p(y|x) = N (y|Ax+ b,L−1) (4.27)

where µ, A and b are parameters governing the means, and Λ and L are precision matrices.

If x and y are vectors with dimensions M and D, then the matrix A has size D ×M . I

start by calculating the joint distribution over x and y. To do so, I define z = (x,y)T and

then consider the joint distribution’s log function:

ln p(z) = ln p(x) + ln p(y|x)

= −1

2
(x− µ)TΛ(x− µ)− 1

2
(y −Ax− b)T(y −Ax− b) + constant (4.28)

Given that this is a quadratic function of the components of z, p(z) must be a Gaussian

distribution. It’s worth noting that the quadratic form of a Gaussian distribution is derived

from the exponent part of a multivariate Gaussian PDF, which is useful for calculating the

mean and variance. It is easy to solve such problems by recalling that the exponent in a

general Gaussian distribution N (x|µ,Σ) can be written as:

− 1

2
(x− µ)TΣ−1(x− µ) = −1

2
xTΣ−1x+ xTΣ−1µ+ constant. (4.29)

By identifying the linear terms in (4.28), I can find the mean of the Gaussian distribution

over z, which are given by:

xTΛµ− xTATLb+ yTLb =

x

y

TΛµ−ATLb

Lb

 . (4.30)
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Using the previous result in (4.29), obtained by completing the square over the quadratic

form of a multivariate Gaussian, I find that the mean of z is:

E[z] = R−1

Λµ−ATLb

Lb

 , (4.31)

where

R =

Λ+ATLA −ATL

−LA L

 . (4.32)

Thus, the mean of z is

E[z] =

 µ

Aµ+ b

 (4.33)

Similarly, I consider the second order terms in (4.28) to determine the precision of this

Gaussian, which can be written as:

− 1

2
xT(Λ+ATLA)x− 1

2
yTLy +

1

2
yTLAx+

1

2
xTATLy (4.34)

= −1

2

x

y

T

R

x

y

 (4.35)

Thus, taking the inverse of matrix R yields the variance matrix, i.e.

V[z] = R−1 =

 Λ−1 Λ−1AT

AΛ−1 L−1 +AΛ−1AT

 . (4.36)

Using E[z] and V[z], I can calculate the mean and variance of the marginal distribution

p(y) from:

E[y] = Aµ+ b (4.37)

V[y] = L−1 +AΛ−1AT. (4.38)

Finally, by combining E[z] and V[z] with a method from Bishop’s Chapter 2, I find that

the expressions required for the mean and variance of the conditional probability p(x|y)

are given by:

E[x|y] = V[x|y]{ATL(y − b) +Λµ} (4.39)

V[x|y] = (Λ+ATLA)−1. (4.40)

Since the posterior distribution is Gaussian, its mean, median and mode are the same.

Following that, a random draw from the correct distribution must be performed. A standard
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normal distribution can be used to sample a random vector Zβ = Z(β|0, 1) and transform

it from a Gaussian distribution in (4.24) using the formula below:

β∗ = µN +
(
Zβ V

1/2
N

)T
. (4.41)

The formula in (4.41) indicates to multiply the random vector from the standard normal

distribution by the square root of the posterior variance matrix and then add it to the pos-

terior mean matrix to get the random vector β∗ from the conditional posterior distribution.

Lastly, a stability check is required to check the robustness of (4.41). This leads to the

second (and final) stage of Gibbs Sampling is outlined in Algorithm 2.

Algorithm 2 Implementation of Gibbs Sampling (Phase II)

Run all codes from 
previous algorithms.

Compute residuals 𝑟𝑒
and sample on 𝜷∗
using 𝑚0∗ and 𝜁0∗

Draw samples from 
an Inverse Gamma 

distribution using IG𝜎

Store samples after 
burn period into 

matrix 𝑴3

Compute 
measurement 

forecasts for መ𝑑𝑚+1

According to Algorithm 2, I can compute the residuals f −M1 β∗ which is useful to

find an update to the prior distribution specified in (4.6). This component is essential in

order to sample from the correct IG distribution conditional on β∗ with m0∗/2 degrees of

freedom and scaled parameter ζ0∗/2. In this case, the resulting posterior distribution for

the given prior in (4.6) updates to:

π(σ2
ϵ |f) ∼ IG(m0∗, ζ0∗), (4.42)

where the updated (posterior) hyper-parameters for the correct distribution of σ2
ϵ are given

by:

m0∗ = m0 +m, ζ0∗ = ζ0 + (f −M1 β∗)
T(f −M1 β∗). (4.43)

The algorithm can now sample m0∗ random variables from an alternative standard normal

distribution Zσ and then apply the following modifications:

IGσ =
ζ0∗

Zσ ZT
σ

, (4.44)

where IGσ is a draw from the correct Inverse Gamma distribution. The first four steps of

Algorithm 2 are given in the following code.

4.4.2.5 Phase 5: Forecasts

Algorithm 2’s final phase is concerned with computing measurement forecasts. Here, I

assign a f̂ matrix to store the predictions for the next n calculated points after the m-th
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point. In general, I can write the equation for a one-step prediction as

f̂m+1 = α∗ + β1∗f̂m + β2∗f̂m−1, (4.45)

where {α∗, β1∗, β2∗} ∈ β∗. To summarise, I’ll need a square matrix of size (n+ q) to cover

the number of points I want to forecast in the AR model. This is explained in the next bit

of code:

I can now define a new variable R2 which represents the "updated" results list taken

from the output of Gibbs sampling method. I can then disregard a certain number of

samples (during the burn-in period). The rationale for this is that the stationary distribution

of the Markov chain is the desired joint distribution over the variables, but it can take a

long time to get there; subsequent samples are not independent of one another, but create

a Markov chain with some correlation. After the burn phase, the findings are updated

further into R2, revealing the posterior distribution’s coefficients and forecasts.

4.5 Results

4.5.1 Analysis of the AR(2) model

The algorithm’s results can be examined. I used qplot to plot the posterior distributions

of α, β1, β2 and σ2
ϵ in Figures 4.4a to 4.4d. Considering that I used a conjugate prior

and likelihood function, it is understandable that their shape is very similar to a Gaussian

distribution.
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Figure 4.4: Posterior distributions of α|f , β1|f , β2|f and σ2
ϵ |f for an AR(2) model.
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Each of these variables has also been estimated to obtain its posterior statistics (mean,

median, and quantiles), which is an estimate of each distribution’s true posterior statistics.

These estimates are summarised in Table 4.2. As a result of the Gaussian structure of the

parameters, the posterior means and medians are nearly equal, with mean/median centred

parameter α approximately zero. The quantiles are fairly close together, suggesting the

model’s robustness. All recorded values are given in μm.

Table 4.2: Posterior statistics for the parameters of the AR(2) form error model.

α|f β1|f β2|f σ2
ϵ |f

Posterior Mean −0.00443 1.68505 −0.73234 0.91973

Posterior Median −0.00418 1.68555 −0.73259 0.91469

Posterior SD 0.04321 0.02888 0.02904 0.07335

Posterior 5% Quantile −0.0759 1.64 −0.780 0.809

Posterior 95% Quantile 0.0671 1.73 −0.685 1.05

Figure 4.5 shows the plot with forecast for the next 250 measurement points, which

appear to closely follow the pattern established by the CMM measurement process. The

credibility intervals are relatively narrow, indicating that the model is quite robust, as it

allows for form errors of less than 5 microns. The error bands are calculated using 25-75%

credibility intervals in the R framework:

1 error_bands <- colQuantiles(forecasts ,prob = c(0.25 ,0.75))
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Figure 4.5: Bayesian AR(2) form error forecast model using the posterior mean form error (μm). Points measured:

1-500. Points predicted: 501-750. Credibility bands: 25-75%.
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4.5.2 Failure analysis

This section will utilize the integrated FTA/FMEA approach first outlined in section 4.3

for the purposes of analyzing the relevant FMs/FC of the CMM measurement process. The

following is a step-by-step explanation of the proposed analysis.

1. From the FTA, define a form error threshold and then calculate the four classification

measures: true positive (TP ), false positive (FP ), false negative (FN), and true

negative (TN).

2. Calculate all of the classification rates using (4.17)-(4.22) and compare them to

empirical methods to see how effective they are.

3. Using the calculated classification measures, estimate all risk parameters for the

FMEA and compute the resulting RPN. The criteria for occurrence, severity and

detection ratings associated with the CMM measurement process under the Bayesian

AR(2) model is given in Table 4.3.

Table 4.3: Occurrence, severity and detection ratings associated with the CMM measurement process under the

Bayesian AR(2) model.

Occurrence rating 1 2 3 4 5 6 7 8 9 10

Occurrence probability Remote Extremely unlikely Very unlikely Unlikely Low Moderately low Moderate Likely Very likely Frequent

Criteria: Prevalence rate

associated with the Bayesian

AR(2) model

<1% <2% <3% <5% <7.5% <10% <15% <20% <25% ≥ 25%

Severity rating 1 2 3 4 5 6 7 8 9 10

Severity rate Remote Very low Low Moderately low Moderate Moderately high High Very high Extreme Extremely high

Criteria: Error rate

associated with the Bayesian

AR(2) model

<0.1% <0.2% <0.5% <1% <1.5% <2% <2.5% <3% <5% ≥ 5%

Detection rating 10 9 8 7 6 5 4 3 2 1

Detection probability Remote Very Low Low Unlikely Occasional Moderately likely Likely Very likely Almost certain Certain

Criteria: Prediction rate

associated with the Bayesian

AR(2) model

≤ 50% >50% >55% >60% >65% >70% >80% >90% >95% >99%

A confusion matrix is used to evaluate the fault prediction’s accuracy. TP , FP , FN

and TN are the four classification measures in the matrix. I set the tolerance limit to

T = 10 μm. In Table 4.4, the four classification measures are provided alongside a sample

of observed and predicted form error values obtained from the Gibbs sampler.

Of the initial 500 points measured, I found that TP = 29 points were correctly classified

as exceeding the threshold and FP = 5 points were not. Similarly, TN = 465 points were

correctly classified as below below the threshold and only FN = 1 point was not. Overall,

the fault state had a high accuracy rate of 98.8% and a prediction rate of 85.3%, respectively.

The prediction rate at capturing faults is significantly higher than empirical rates in other

102



Table 4.4: Sample of observed vs predicted dataset using the Bayesian AR(2) model.

i fi f̂i δi δ̂i TP i TN i FP i FN i

1 0.740 0.740 0 0 0 1 0 0

2 8.170 8.170 0 0 0 1 0 0

3 13.000 14.140 1 1 1 0 0 0

4 15.730 16.838 1 1 1 0 0 0

5 17.823 17.901 1 1 1 0 0 0

...
...

...
...

...
...

...
...

...

497 0.420 2.381 0 0 0 1 0 0

498 - 0.820 0.063 0 0 0 1 0 0

499 - 1.800 - 0.774 0 0 0 1 0 0

500 0.600 - 1.517 0 0 0 1 0 0

articles that combined FTA with the classical AR model (e.g. 53% in Chalermarrewong et

al. [115]). The prevalence rate, which describes the frequency with which failures occur,

was calculated to be 6.8%. Sensitivity and specificity are the percentage of positives and

negatives, respectively, that are successfully identified, and in this example, 96.7% and

98.9% were correctly detected. All six classification measures are statistical indicators

of a binary classification test’s performance that are frequently utilized and hence highly

valuable in ensuring the model’s robustness.

The integrated FTA/FMEA results will now be examined. The high accuracy rate

implies that the error (or misclassification) rate is only 1.2% which equates to a severity

score of S = 5 on a 10 point scale, indicating a moderate risk. The prevalence rate

corresponds to an occurrence value of O = 5, indicating that the likelihood of failure is

somewhere between "unlikely" and "possibly" feasible. Furthermore, on a scale of one to

ten, the prediction rate correlates to a detection value of D = 4, showing that prediction

quality is very likely to detect failures. When failures do arise, the prediction model will

know ahead of time, and the loss of computation and data will almost certainly be avoided,

thanks to the high accuracy of detecting the failure cause. When all three risk factors are

combined, the RPN produces a score of 100. For different FMs/FCs, RPN values will range

from 1 to 1000. Assigning a threshold RPN value to categorise FMs/FCs is quite helpful for

engineers. A FM/FC with RPN = 100, for example, can be classified as requiring "minor

corrective action", whereas a FM/FC with RPN = 200 is classified as requiring "critical

corrective action".

The failure analysis will now be extended to match the study provided in subsection 3.6.3,
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in which 11 FCs and 4 FMs were identified with the support of peer experts and domain

experts. Here, I convert the FMEA-generated FCs and FMs into the FTA tree-structure.

The FTA tree structure of the provided method is shown in Figure 4.6. The OR-gate,

which is frequently used in FTA and is explained in depth in [50], is the roundish element

in Figure 4.6.

CMM measurement 

process failure 

Probe failure (FM1)

Measurement 

performance failure 

(FM2)

Mechanical failure 

(FM3)

Environmental failure 

(FM4)

FC5 FC10 FC11 FC1 FC2 FC4 FC9 FC3 FC6 FC7 FC8

Figure 4.6: FTA of the CMM measurement process (top level).

The CMM measurement process failure is specified as a FTA’s top event. The second

layer is determined by their FMs, which are probe failure (FM1), measurement performance

failure (FM2), mechanical failure (FM3) and environmental failure (FM4). The last is

determined by their respective FCs, which are item displaced slightly or greatly (FC1/2),

dust on time (FC3), mechanical stress (FC4), wrong probe type used (FC5), valve not

set to required pressure level (FC6), temperature set too high or too low (FC7/8), CMM

making noise (FC9), probe not fitted properly (FC10) or probe not calibrated (FC11).

Finally, all FM-to-FC pathways analysed previously in Table 3.5 with the highest posterior

rates are kept for the FTA, while the rest are removed (i.e. the posterior probabilities

of observing FM1, FM2, and FM3 given FC10 were 19.0%, 8.4%, and 7.5%, respectively,

so I assign a connecting branch between FM1-to-FC10 and remove FM2/3-to-FC10). A

filled out integrated FTA/FMEA form for significant FMs/FCs associated with a CMM

measurement process is presented Table 4.5.

4.6 Discussion and concluding remarks

This chapter was concerned with using an integrated FTA/FMEA approach with a Bayesian

AR model using form error data for identifying, evaluating and prioritising risks. The

importance of applying the form error model to analyze and anticipate CMM measurement

failures was investigated in this research and confirmed by a literature study. I estimated the

104



Table 4.5: A filled out integrated FTA/FMEA form for significant FMs/FCs associated with a CMM measurement

process.

FTA Classification measures FMEA

Failure mode Failure cause TP FP TN FN Error (%) Prevalence (%) Prediction (%) Sensitivity (%) Specificity (%) S O D C RPN Priority Corrective action

FM1 FC5 80 9 411 0 1.8% 17.8% 89.9% 100.0% 97.9% 6 8 4 48 192 4 High

FM1 FC10 70 11 416 3 2.8% 16.2% 86.4% 95.9% 97.4% 8 8 4 64 256 1 Critical

FM1 FC11 63 8 427 2 2.0% 14.2% 88.7% 96.9% 98.2% 7 7 4 49 196 2 or 3 High

FM3 FC1 5 1 491 3 0.8% 1.2% 83.3% 62.5% 99.8% 4 2 4 8 32 10 Not needed

FM3 FC2 14 2 484 0 0.4% 3.2% 87.5% 100.0% 99.6% 3 4 4 12 48 9 Not needed

FM3 FC4 52 5 440 3 1.6% 11.4% 91.2% 94.5% 98.9% 6 7 3 42 126 7 Minor

FM3 FC9 49 7 442 2 1.8% 11.2% 87.5% 96.1% 98.4% 6 7 4 42 168 5 or 6 Moderate

FM4 FC3 19 1 477 3 0.8% 4.0% 95.0% 86.4% 99.8% 4 4 3 16 48 8 Not needed

FM4 FC6 11 1 487 1 0.4% 2.4% 91.7% 91.7% 99.8% 3 3 3 9 27 11 Not needed

FM4 FC7 59 7 433 1 1.6% 13.2% 89.4% 98.3% 98.4% 6 7 4 42 168 5 or 6 Moderate

FM4 FC8 55 8 434 3 2.2% 12.6% 87.3% 94.8% 98.2% 7 7 4 49 196 2 or 3 High

coefficients’ posterior distribution by using Gibbs sampling which is an example of MCMC

that allows one to estimate the joint marginal distribution using draws from the conditional

distribution. I then built a form error forecast from the algorithm’s posterior density. The

results have shown that the integrated approach to AR modelling and Gibbs sampling is

effective in studying the risks and predictions of CMM measurements, and thus improve

reliability of future measurements for product conformity assessment. The Bayesian AR(2)

model confirmed that it is capable of anticipating form errors, as the forecast was within

the desired measurement (5 μm). The model was also found to have a high fit accuracy rate

(98.8%), making it suitable for the study, as well as high prediction (85.3%), sensitivity

(96.7%), and specificity (98.9%), indicating that the classification measures combined with

Bayesian analysis are extremely useful in assessing the model’s robustness and forecasting

ability. The findings of the investigation also supported the proposed Bayesian FTA/FMEA

approach.

In conclusion, this chapter presents a nice introduction to Bayesian regression in

metrology by intuitively connecting the form error model to an AR process with perfectly

reasonable results. There are several other types of models I could use to extend this

model to get a more reliable forecast, such as MA, ARIMA, state-space or multi-model

linear regression (among others) [126–128], which can adapt a variety of other variables

(such as human, environmental and random effects). The proposed framework, I believe,

might be used to increase the overall efficiency of a CMM measurement process with some

fine-tuning.
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Chapter 5

Discussion and conclusion

5.1 General discussion

This thesis develops an approach to failure and risk analysis that combines Bayesian inference

with Failure Mode and Effects Analysis (FMEA) as a way to evaluate the effectiveness of

the action measures taken to reduce the likelihood of making wrong decisions. I have shown

that Bayesian statistics and an integrated failure analysis (using FMEA/FMECA (Failure

mode and effects analysis/Failure mode, effects, and criticality analysis) or a combined

FTA (Fault tree analysis) and FMEA approach) can be used to estimate risk measures

(severity S, occurrence O and detection D ratings) in all three case studies effectively. These

case studies demonstrated the effectiveness of combining Bayesian statistics with improved

failure analysis methods, which had been severely lacking in the literature. For instance,

posterior statistics were used to estimate failure severity, e.g., as seen in case studies 1-3,

current detection measures for COVID-19 imposed by the government were used to estimate

the detection rating (e.g, the first case study), a Bayesian network approach was used to

estimate failure occurrences (e.g., the second case study), and classification measures from

a confusion matrix were used to assess all three risk measures (e.g., the third case study).

In addition, thanks to the estimation of unknown parameters in the models used (e.g., the

modified SEIR or the augmented/autoregressive form error models), I could have used a

variety of criteria to effectively assess the risk measures of the integrated Bayesian failure

analysis. The following were the primary research questions that needed to be answered for

this thesis:

1. What are the best ways to accurately determine FMs/FCs in complex manufacturing,

measurement systems, or epidemics (among other things)?
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2. Are there any ways to improve risk assessment methods by using Bayesian inference

together with failure analysis methods?

3. What are the options for assessing the effectiveness of the corrective measures taken

to minimize the risk and to improve product quality or process efficiency?

The following subsections summarize the answers to these questions from their respective

case studies.

5.1.1 A discussion on the first case study

In the first case study (see chapter 2), I have combined Bayesian inference and FMEA

to study the risks of COVID-19 infections and to evaluate the effectiveness of the action

measures taken to manage the COVID-19 pandemic. The Bayesian model and FMEA

are applied to the COVID-19 data showing the effectiveness of the interventions adopted

to control the pandemic by reducing the Rt of COVID-19. Since the FMEA focused on

COVID-19 infections, the FM was taken to represent the positive (infected) cases. The

process phases, cause of failures, current measures and current risk ratings are discussed,

and subsequent government action measures are presented with re-assessed risk ratings. The

results have shown that the combination of Bayesian inference, compartmental modelling

and FMEA are effective to model and study the risks of the COVID-19 transmissions, able

to evaluate quantitatively the action measures and identify the lessons learned from the

impacts of governmental measures and actions carried out in response to the community

spread of COVID-19 in the United Kingdom. Using the Bayesian posterior distributions

with actual data, it was demonstrated here that SEIQR was a more effective model than

SEIR for forecasting the outbreak of COVID-19 in Western Europe.

Additionally, I found that SEIQR model was in strong agreement with SEIR, which

can be thought of as a qualitative measure of the UK’s COVID-19 outbreak. After that, a

comparison of the posterior estimates of the effective reproduction number in the United

Kingdom, under the new model, closely matches the deduced empirical values (as seen

in Figure 2.7). A FMEA was then performed for the community spread of COVID-19 in

the United Kingdom, and each risk measure was ranked from 1 (insignificant / remote /

failure prevented) to 10 (critical / extremely high / no detection opportunity). Three risk

measures were examined to assess the risk of COVID-19 spreading in the UK (from March

to October 2020): the CFR rate (S), the posterior median of the effective reproduction

number (O), and the current control measures employed by UK government policies (D),
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as seen in Figure 2.9, Figure 2.7 and Table 2.3, respectively.

The initial and revised RPN values seemed to reflect the government’s contribution to

reducing infection rates accurately. During the fourth phase, for instance, it was found that

the government’s scientific guidance indicated that the reproduction numbers had risen

from 0.5–0.9 at the end of the lockdown to 0.7–1.0 on 15 May, getting closer to the point at

which infections will exponentially increase. For the SEIQR model, these figures correspond

to the posterior median estimates of 0.66–0.96 and 0.88–0.94, respectively (indicating an

excellent fit). The methods and results presented here can contribute to the research on

Bayesian inference and risk assessment associated with the current COVID-19 pandemic,

but they can also serve as a baseline for future pandemics as well as for wider failure

analysis and quality engineering applications.

5.1.2 A discussion on the second case study

In the second case study (see chapter 3), I then considered a Bayesian risk assessment of a

coordinate measuring machine (CMM) measurement process using an augmented form error

model and an integrated FMECA approach. The failure analysis methods have been greatly

extended. The criticality value, which is derived from the product of O and S, is a very

valuable indication for determining which failure causes should be prioritized. The main

novelty here was to present an innovative way of combining conformity assessment with

FMECA to the form error model. Ultimately, this was achieved. The three risk measures

were matched together in the analysis of the FMECA for the CMM measurement process:

O to the posterior probability of FCs occurring using a Bayesian network approach, S to the

specific consumer’s risk, and D to the posterior standard deviation of the form error model.

These three values were used to compute the criticality/RPN which prioritises risks/failures

with the highest values. The most significant FMs came from probes and measurements,

followed by mechanical and environmental factors. Among the most significant failure

causes that can affect the measurement process are: "wrong probe type used", "probe not

fitted properly" and "probe not calibrated / mechanical stress".

The RPN was taken into account as well because it combines the current criticality level

with the detection measures in place. It is crucial to minimize the criticality and increase

the likelihood of preventing the failure in order to considerably reduce or anticipate future

measurement failures. The three FCs with the highest RPN were also "wrong probe type

used", "probe not properly fitted" and "probe not calibrated". Despite this, "mechanical

stress" has a lower RPN to criticality ratio than "probe not calibrated" due to differences

108



in the estimated D parameter for both, so the highest RPNs are not necessarily those with

the highest criticality (see Figure 3.13). RPN and criticality can’t be compared on the same

graph since they are measured according to scales of 1-1000 and 1-100, respectively. The

solution was to divide the j-th criticality/RPN for the j-th FC by the overall criticality/RPN.

As a result, the findings of the FMECA review and the data collected can be stored in a

database that can be used to analyze similar measurement processes in the future. In this

manner, future failures can be avoided.

5.1.3 A discussion on the third case study

In the third case study (see chapter 4), I considered an integrated FTA/FMEA approach

with a Bayesian autoregressive (AR) model using form error data for identifying, evaluating

and prioritising risks. The importance of applying the form error model to analyze and

anticipate CMM measurement failures was investigated in this research. I estimated the

parameters of the AR(2) model by using Gibbs sampling, an example of Markov chain Monte

Carlo (MCMC) that allows one to estimate the joint marginal distribution by drawing from

the conditional distribution. A form error forecast was then constructed from the posterior

density of the algorithm. FMEA-generated FCs and FMs from the second case study were

converted to FTA tree structures (see Figure 4.6). The CMM measurement process failure

was specified as a FTA’s top event. The second layer was determined by their FMs, which

were probe failure (FM1), measurement performance failure (FM2), mechanical failure

(FM3) and environmental failure (FM4). The last was determined by their respective FCs,

which were item displaced slightly or greatly (FC1/2), dust on time (FC3), mechanical

stress (FC4), wrong probe type used (FC5), valve not set to required pressure level (FC6),

temperature set too high or too low (FC7/8), CMM making noise (FC9), probe not fitted

properly (FC10) or probe not calibrated (FC11). Finally, all FM-to-FC pathways analysed

previously in Table 3.5 with the highest posterior rates were kept for the FTA, while the

rest were removed (i.e. the posterior probabilities of observing FM1, FM2, and FM3 given

FC10 were 19.0%, 8.4%, and 7.5%, respectively, so I assign a connecting branch between

FM1-to-FC10 and remove FM2/3-to-FC10).

The FMEA outputs were then examined. Risk measures were evaluated using the error

rate (S), the prevalence rate (O) and the prediction rate (D). The results had shown

that the integrated approach to AR modelling and Gibbs sampling is effective in studying

the risks and predictions of CMM measurements, and thus improve reliability of future

measurements for product conformity assessment. For a given measurement, the fairly high
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accuracy rate (e.g., 1.2% for a given measurement) indicated a low/moderate risk. Similarly,

the prevalence and prediction rates indicated that the likelihood of failure is somewhere

between "unlikely" and "possibly" feasible, or that the prediction quality was very likely

to detect failures. When failures do arise, the prediction model will know ahead of time,

and the loss of computation and data will almost certainly be avoided, thanks to the high

accuracy of detecting the failure cause. Assigning a threshold RPN value to categorise

FMs/FCs was quite helpful (as determined by the experts). Similarly, FM/FCs that have a

RPN of 100 may need "minor corrective action", whereas FM/FCs with a RPN of 200 may

need "critical corrective action". In addition, the Bayesian AR(2) model had high accuracy

and prediction rates when using the classification measures from a confusion matrix, which

compared well with empirical results and validated the suggested Bayesian FTA/FMEA

model. For this reason, anticipating FMs and FCs based on an integrated FTA/FMEA

approach and an autoregressive form error model can be highly beneficial during the CMM

measurement process.

5.2 Conclusive remarks and reiterating the contri-

butions

The creation of new knowledge within the context of a specific field of study is an essential

criterion for receiving a PhD. The contributions made in this thesis are reiterated in the

following paragraphs.

For contributions specific to the first case study, Bayesian inference, FMEA and a

modified SEIR model has been utilised to study the risks of COVID-19 infections and

to evaluate the effectiveness of the actions taken to manage the COVID-19 pandemic by

combining together. The risk measures, S and O parameters, were evaluated using the CFR

rate and posterior median of the effective reproduction number, respectively. Parameter D

was estimated using the current detection measures in place. Thus, the evaluation of the

effectiveness of English government protective measures against COVID-19 was conducted

by comparing the empirical and posterior statistics of the effective reproduction number at

different times with and without the measures. The methods/findings obtained were in line

with empirical results, and, thus, can be used for future pandemic simulations in which

individuals in different compartments interact.

For contributions specific to the second case study, I investigated the risks and identified

significant observable FMs/FCs of the CMM measurement process in order to effectively
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assess the corrective/preventive measures in place. Additional sources of uncertainty (e.g.,

random, environmental, human, etc.) were implemented as additive factors, resulting in

more reliable product conformity rates that matched a Pareto-like distribution. In addition,

the FMECA risk parameters, S from the severity of the specific consumer’s risk, O from

the posterior probability of failures associated with the CMM measurement process under

a Bayesian network, and D from the detectability of the posterior standard deviation of

the proposed form error model, were estimated using the integrated Bayesian approach.

For contributions specific to the third case study, a Bayesian risk assessment that

incorporates a MCMC algorithm (i.e. Gibbs sampling), an autoregressive form error model,

and an integrated FTA/FMEA was shown to be particularly effective in predicting failure

and making decisions. The risk measures S, O, and D, which were critical for determining

the RPN and making decisions, were assessed using classification measures derived from a

combination of the integrated FTA/FMEA and a confusion matrix.

Thus, it has been shown that the methods applied to each case study can be easily

prolonged or applied to other cases studies in the research of Bayesian statistics and failure

analysis. For example, the third case study supplemented and extended the ideas and

methods described in the first and second case studies, respectively, by extending the

time-series approach of updating daily data from the first case study; transforming the

augmented form error model from the second case study into a time-series equivalent (i.e.,

an autoregressive form error model). As a result of the hard work put in to obtain this

PhD, the methodology presented in the three case studies can be used to contribute to

scientific research on Bayesian inference and risk assessment in epidemiology and metrology

using FMEA, as well as other disciplines and applications in quality engineering.

5.3 Future works

In reviewing my case studies, I realised that I concentrated too much on the CMM case

studies and not enough on the COVID-19 modelling (2 vs 1 case studies). The compartmental

model employed in chapter 2 was based on the proposed modified SEIR model, however

due to the research’s timing, it eliminates the vaccination effect: vaccinations started in

December 2020, and this study was completed by then. In future research, it would be

interesting to modify this model to include a vaccinated (V ) compartment and compare

the results to the original version of the model. This approach can be further developed

in a variety of model implementations, with varied post-vaccinated susceptibility based
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on vaccine efficiency, for example. This project is fascinating enough to warrant a whole

chapter.

The suggested compartmental model would take into account six stages of infection:

susceptible (S), exposed (E), infectious (I), quarantined (Q), removed (R), and vaccinated

(V ). Initially, a mathematical analysis would be performed to demonstrate the suggested

model’s non-negativity, boundedness, epidemic equilibrium, existence, and uniqueness, as

well as the effective reproduction number. Finally, I’d combine this modelling approach with

an improved FMEA to model the risks of COVID-19 transmissions due to quarantining and

the various effects of vaccinations, allowing me to quantitatively evaluate action measures

and identify lessons learned from the impacts of governmental measures and actions taken

in response to the community spread of COVID-19 in the United Kingdom.

In addition, I could also greatly enhance the reliability of the results from chapter 3

by considering the effects of combining multiple failure analysis methods with Bayesian

inference (e.g., the Bow–tie method (BT), Design Review by Failure Mode (DRBFM),

Hazard Analysis (HA), Fault Tree Analysis (FTA) and its extension Event Tree Analysis

(ETA), What-if/Checklist, etc) to perform risk assessments in a variety of case studies, and

thus compare the results to the original version of the models. It would also be interesting to

compare the results to the original in chapter 4 using other time series methods, such as an

adaptive Moving Average (MA) or Auto Regressive Integrated Moving Average (ARIMA),

which can adapt a variety of other variables (e.g., additive effects in the case of the CMM

measurement process). Overall, these ideas can easily justify adding a few more chapters

to this thesis or possibly publishing more journal articles.
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Appendix A

Coding in R

A.1 Plotting the ACF and PACF

The following code is used to load the form error data using a CSV file and then produce a

plot of the ACF and PACF for Figure 4.2.

1 # Load CSV form error data

2 da=read.csv(’CMM_data.csv’,header=T)

3 # Check the 1st row of the data

4 da[1,]

5 # Plot the ACF and PACF of form error

6 acf(da[,2]); pacf(da[,2])

A.2 Implementation of a Bayesian approach to AR(q)

The several pieces of code below demonstrates how we used Bayesian linear regression in

R to estimate parameters, determine marginal posterior densities, and forecast form error

point positions.

A.2.1 Step 1: Defining functions and generating matrices

1 # Define F1 and generate M1

2 F1 <- function(data ,q,alpha){

3 nrow <- as.numeric(dim(data)[1])

4 nvar <- as.numeric(dim(data)[2])
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5 dmatrix <- as.matrix(data , ncol = nvar)

6 M1 <- embed(dmatrix , q+1)

7 M1 <- M1[,(nvar +1):ncol(M1)]

8 if(alpha == TRUE){

9 M1 <-cbind(rep(1,(nrow -q)),M1)

10 }

11 d = matrix(dmatrix [(q+1):nrow(dmatrix) ,])

12 nvar2 = ncol(M1)

13 return = list(d=d,M1=M1,nvar2=nvar2 ,nrow=nrow)

14 }

15

16 # Define F2 and generate M2

17 F2 <- function(beta){

18 k = nrow(beta) - 1

19 M2 <- matrix(0, nrow = k, ncol = k)

20 #insert identity matrix

21 M2[2:k, 1:(k-1)] <- diag(1, nrow = k-1, ncol = k-1)

22 betaT <- t(beta [2:(k+1), 1:1])

23 #Insert coeffcients along top row

24 M2[1:1 ,1:k] <- betaT

25 return(M2)

26 }

A.2.2 Step 2: Generating results and setting up priors

1 # Generate results matrices

2 R1 = list()

3 R1 <- F1(d, q, TRUE)

4 M1 <- R1$M1

5 d <- R1$d

6 nrow <- R1$nrow

7 nvar <- R1$nvar

8

9 # Initialise Priors for Beta and Sigma distributions
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10 mu0 <- c(rep(0, nvar))

11 mu0 <- as.matrix(mu0 , nrow = 1, ncol = nvar)

12 V0 <- diag(1,nvar)

13 m0 = 1 # prior number of points / degrees of freedom

14 tau0 = 1 # prior scale parameter

15 zeta0 = m0*tau0^2

16 sigma2 = 1 # initial value for variance

A.2.3 Step 3: Output matrices

1 # Set up some parameters and new matrices

2 RP = 10000 # number of repetitions

3 forecastpoints = 15 # number of predicted points

4 M3 = matrix(0, nrow = RP, ncol = nvar + 1)

5 colnames(M3) <- c(’alpha’, ’beta1’, ’beta2’, ’sigma’)

6 M4 <- matrix(0, nrow = RP, ncol = forecastpoints)

A.2.4 Steps 4 and 5: Gibbs sampling and forecasting

1 gibbs_sampler <- function(M1,d,mu0 ,V0,sigma2 ,m0,zeta0 ,RP,M3,M4

){

2 for(i in 1:RP){

3 if (i %% 1000 == 0){

4 print(sprintf("Interaction: %d", i))

5 }

6 # Let NM be the posterior mean:

7 NM = solve(solve(V0) + as.numeric (1/sigma2) * t(M1) %*% M1

) %*%

8 (solve(V0) %*% mu0 + as.numeric (1/sigma2) * t(M1) %*% d)

9 # Let NV be the posterior variance:

10 NV = solve(solve(V0) + as.numeric (1/sigma2) * t(M1) %*% M1

)

11

12 # Check for stability

13 stability_check = -1
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14 while(stability_check < 0){

15 Bstar <- NM + t(rnorm(q+1) %*% chol(NV))

16

17 # Check: not stationary for 3 lags

18 b = F2(Bstar)

19 ee <- max(sapply(eigen(b)$values ,abs))

20 if( ee <=1){

21 stability_check=1

22 }

23 }

24 # Compute residuals

25 resids <- d- M1%*%Bstar

26 m1 = nrow(d)

27 m2 = m0 + m1

28 zeta1 = zeta0 + t(resids) %*% resids

29

30 # Keeps samples after burn period

31 M3[i,] <- t(matrix(c(t(Bstar),sigma2)))

32

33 # Draw samples from the Inverse Gamma

34 # Let z~N(0,1) such that z=rnorm(m1 ,1), then:

35 z0 = t(rnorm(m2 ,1)) %*% rnorm(m2 ,1)

36 sigma2 = zeta1/z0

37

38 # keeps samples after burn period

39 M3[i,] <- t(matrix(c(t(Bstar),sigma2)))

40

41 # compute 2 year forecasts

42 fhat = rep(0, forecastpoints)

43 end = as.numeric(length(d))

44 fhat [1:2] = f[(end -1):end ,]

45 cfactor = sqrt(sigma2)

46 M1_mat = c(1,rep(0,q))

47 for(m in (q+1):forecastpoints){
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48 for (lag in 1:q){

49 # Update M1 matrix with q lags

50 M1_mat[(lag+1)] = fhat[m-lag]

51 }

52 # Use M1 matrix to forecast fhat

53 fhat[m] = M1_mat %*% Bstar + rnorm (1) * cfactor

54 }

55 M4[i,] <- fhat

56 }

57 return = list(M3,M4)

58 }

59

60 # After the burn phase , the findings are updated further into

R2, revealing the posterior distribution ’s coefficients and

forecasts. The next lines of code explains this.

61 R2 <- gibbs_sampler(M1,d,mu0 ,V0,sigma2 ,m0,zeta0 ,RP,M3,M4)

62 burn = 3000

63 coef <- R2 [[1]][( burn +1):RP ,]

64 forecasts <- R2 [[2]][( burn +1):RP ,]
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