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A B S T R A C T   

Design of experiment (DoE) techniques are invaluable tools which readily allow for efficient optimisation of 
processes via simultaneous evaluation of a combination of input parameters. Such approaches can yield positive 
outcomes whilst minimising the number of resources and amount of time utilised, hence, achieving a more robust 
approach. Additionally, when designing the experiment intelligently information about the interaction between 
the variables could be gathered, therefore, allowing for a more in-depth understanding of the process and 
identification of the “key players”. This method of conducting an experimental campaign is, unfortunately, 
underused (or often misused) in academia. This review aims to technically scrutinise the employment of design 
of experiment techniques in the context of synthesis and deployment of carbonaceous sorbents and the opti
misation of the adsorption processes in both gaseous and aqueous media for environmental applications. We 
have also discussed how the implementation of DoE techniques in interpreting the results and the underlying 
trends and/or adsorption mechanisms could help with a better understanding of such observations. Additionally, 
a brief description of the most popular experimental design techniques with an explanation and a simple visu
alisation is provided. This review aims to facilitate a greater understanding and appreciation of these powerful 
optimisation tools, and to depict the best practices upon their employment in academic research in the field of 
chemical and environmental engineering.   

1. Introduction 

“Time is of the essence”. This aphorism is used plentifully with a 
recent example being provided by the speed of development and rollout 
of various COVID-19 vaccines in 2021. Such a pressing issue had to be 
resolved quickly, efficiently and without damaging the quality of the 
final product. An industrial solution to overcome time limitations and 
other (financial or resource) constraints is implementation of advanced 
experimental designs to optimise the manufacturing processes in a more 
sustainable way. Science can be viewed as a production line for infor
mation and knowledge, and therefore, in order to optimise the process of 
“science generation”, statistical techniques - typically referred to as 
design of experiments (DoE) - can be employed in the same way as they 
are used to address optimisation challenges in an industrial setting. An 
intuitive method for conducting a typical experimental campaign to 
reveal the impact of a select variable on a target output, is the one- 
factor-at-a-time (OFAT) approach. This conventional pathway relies 
upon changing one of the parameters, while keeping the others constant. 
However, this technique does not identify possible interactions between 

the studied factors, thereby, compromising the true optimum point. An 
advanced design, however, reveals the hidden impacts of simultaneous 
change of variables as well as provides an additional benefit of reduction 
of the number of experiments needed to complete an experimental 
campaign. (Smallwood, 1947) defined design of experiments as “plan
ning of a number of experiments in order for their combined result to 
yield a maximum amount of information”, hence, an appropriate DoE 
has to be painstakingly devised prior to the conduction of experiments. 
There are myriad advanced designs with an aim to either optimise time 
and/or resources. These designs, however, must generate suitable “re
sponses” to enable improvement of the process. 

Despite such key benefits, the employment of DoE appears to have 
been significantly overlooked in academia (Snetsinger and Alkhatib, 
2018). Nevertheless, despite the frequent use of “optimisation” in the 
title of peer-reviewed publications, only 6.67 % of articles published in 
Analytica Chimica Acta in 2009 have identified the optimum operating 
envelopes through the employment of a non-OFAT multivariable 
approach (Leardi, 2009). In 2020, however, the number of papers 
published in the Journal of Hazardous Materials, claiming adsorptio
n/adsorbent optimisation, and employing a DoE, was raised by 
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approximately 28.5%. This could be due to adsorption (in aqueous 
media mainly) being a fairly mature technology, and hence, having 
received a higher attention in terms of industrial optimisation via DoE 
techniques. Nevertheless, the value of optimisation of an adsorption 
process cannot be understated. Since the main challenges associated 
with optimisation of both the synthesis protocol and the application of 
carbonaceous adsorbents are derived from the vast range of precursors, 
modification/processing methods as well as the envisaged separation 
technique and adsorbate species (i.e. the adsorbate itself, its concen
tration, competing adsorption, process conditions and etc). Thus, the 
optimisation of (e.g.) an activated carbon derived from coconut shell by 
physical activation with steam for the purposes of hydrogen separation in a 
vacuum swing adsorption process of a steam-methane reforming setup would 
greatly differ from (e.g.) tailoring chemically a recycled carbon nanofibre to 
be employed in a water-treatment facility for purification from antibiotics for 
aquaculture purposes. Not only the impactful factors but also their 
appropriate levels change significantly when substituting each and any 
part of a given process with an alternative approach. Having this said, 
activation temperature (Tact) and time (τact) are often considered for 
evaluation (alongside the impregnation ratio (IR) of precursor to acti
vation agent if dealing with a chemical activation approach), whereas 
adsorption temperature (Tads) and adsorption time (τads) are often 
chosen as the input variables if optimising the separation process. The 
response variables, on the other hand, are quite often chosen to be: 
product yield, adsorption capacity of the material (or other modes of 
quantifying surface area (e.g. various morphological properties or “in
dicator” numbers) to serve as an estimation) as well as oper
ating/production cost or a combination of them. Moreover, in order to 
be viable, these optimisation campaigns should be carried out utilising 
the minimum number of resources, both monetary and natural, thus, 
highlighting the value of advanced experimental designs. 

In this work, we have rigorously reviewed the employment of the key 
DoE techniques in the synthesis and application of various carbonaceous 
adsorbents by carefully scrutinising the scientific literature. The limited 
number of available papers reviewed in this work is a clear indication of 
the visible gap in this research area and the room for further improve
ment. Ultimately, this review paper aims to popularise and propagate 
deployment of such powerful optimisation tools in synthesis and 
application of carbonaceous adsorbents for environmental technologies. 
The main search engine to conduct this review was Scopus to blanket the 
most impactful publications in the scientific literature. 

The following section of the paper is designed to introduce the reader 
to the most common DoE tools and methods, their most appropriate 
applications, merits and limitations as well as best practices. Within this 
chapter a brief description of the most commonly employed statistical 
analysis techniques is also provided. Next, optimisation of the syntheses 
processes of various carbonaceous adsorbents is presented; describing 
the influence of the parameters at the evaluated levels (i.e. conditions) 
employed (as well as their interactions) and their output, on the target 
dependent variable. This chapter is divided into subcategories which are 
based on the target variable (parameters) that have been optimised. 
Furthermore, this section includes a discussion of the underlying sci
entific reasoning together with brief critiques of the experimental de
signs at hand. In section 0, especial attention has been given to the 
optimisation of the adsorption processes with the help of DoE. Similarly, 
the observations are confirmed with a description of the impacts and 
relationships identified in the literature among the input process vari
ables and their interactions on the desired responses. The latter portion 
of this review paper provides a roadmap for practitioners in this realm of 
research. 

2. Common Experimental Designs and Statistical Analysis 
Techniques 

This section explores the most common DoE matrices used for 
adsorbent optimisation as well as the analytical techniques used in data 
interpretation. The choice of the technique is dependent on the desired 
outcome, namely, to screen a number of variables to identify the most im
pactful ones, or to optimise the procedure and visualise (map) the response 
surface. Factorial designs generally favour the former objective, whereas 
the latter is normally accomplished by other DoE matrices. Nevertheless, 
the scientific literature is populated with research where such tech
niques have been deployed interchangeably. 

Nomenclature 

AC Activated Carbon 
ACF Activated Carbon Fibre 
Tact Activation Temperature 
τact Activation Time (often referred to as dwell(ing) time or 

hold(ing) time) 
Tads Adsorption Temperature 
τads Adsorption Time 
ANOVA Analysis Of Variance 
BBD Box-Behnken Design 
BG Brilliant Green 
SBET Brunauer–Emmett–Teller Surface Area 
CCD Central Composite Designs 
VTSA combined Vacuum and Thermal Swing Adsorption 
DoE Design of Experiments 
D Desirability 

XN Factor N (often referred to as parameter or variable) 
F-value Fisher value 
IR Impregnation Ratio of precursor to activation (ing) agent 
ID Inner Diameter 
XN XM Interaction between factor N and factor M 
MG Malachite Green 
MB Methylene Blue 
MWCNT Multi-Walled Carbon Nanotubes 
OFAT One-Factor-At-a-Time 
PSA Pressure Swing Adsorption 
p-value Probability Value 
Y Response 
RSM Response Surface Methodology 
S/N Signal-to-Noise ratio 
SSA Specific Surface Area 
TSA Temperature Swing Adsorption 
VOC Volatile Organic Compound  

Fig. 1. – 23 factorial design space: a) Full factorial; b) Fractional factorial.  
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2.1. Factorial DoE 

Factorial DoEs are preferable for initial (screening) studies and exist 
in a variety of forms. When the number of parameters is moderate, a full 
factorial design may be feasible, and render to be the most accurate. 
Such matrices aim to evaluate all possible combinations; thus, the 
number of experiments (N) can be calculated via: 

N = LP (1) 

Where L is the amount of investigated levels and P is the number of 
input factors (parameters). Often, this design is implemented in an 
investigation of 3 input variables at 2 different levels each resulting in 8 
factorial points (i.e. experimental conditions) as shown in Fig. 1a. 
However, when evaluating a larger number of parameters, fractional 
factorial designs may be preferable. This “variation on the full factorial 
DoE” reduces the number of trials needed for the experimental campaign 
by focusing only on the main effects and interactions. Such designs also 
provide great efficiency for screening studies or when evaluating a 
larger number of parameters. Both of these DoE matrices can be easily 
depicted as cubes. Fig. 1b provides a visualisation of the same 23 

factorial design as described above (and pictured in Fig. 1a), though in 
form of a ½ fraction design. 

Another DoE method discussed in this paper is the Placket-Burman 
design. This technique is often utilised as a preliminary screening tool 
to determine factors with significant contribution in the early experi
mentation phase. The method is usually only applied when there is a 
lack of knowledge about the system in question. An important limitation 
of the Placket-Burman design is that the main effects can be strongly 
skewed due to any existing interactions between the factors. 

2.2. Central Composite DoE 

Classically, if the task at hand requires response optimisation, or 
mapping out the design space for the dependent variable, Central 
Composite designs (CCD) could be employed. The latter objective is a 
significant part of the Response Surface Methodology (RSM). RSM is a 
valuable tool used to improve/optimise and/or find the frailties of the 
process, which is discussed at length in Section 2.5. 

CCD is a useful method due to the superior ability in estimating 
curvature and, therefore, should be used when a linear model fails to 
accurately represent the design space. As introduced by (Box and Wil
son, 1951), the design features the fractional factorial design points 
([+1] and [-1]), i.e. experimental conditions. Axial (often referred to as 
“star”) points ([+α] and [-α]) and centre points such that the number of 
tests, N, can be determined as: 

N = 2k + 2k + N0 (2)  

where 2k, 2k and N0 refer to the number of factorial, axial and central 
points, respectively. For a design with two variables, nine experiments 
must be defined (if N0 = 1) within the range of variables in order to 
allow development of a second-order polynomial that can be used to 
predict the response: 

y = β0 + β1x1 + β2x2 + β3x3 + β11x2
1 + β22x2

2 + β33x2
3 + β12x1x2 + β13x1x3

+ β23x2x3

(3)  

where y is the predicted response, (β0), (β1, β2, β3), (β12, β13, β23), and 
(β11, β22, β33) represent intercept, linear, interaction, and quadratic 
coefficients, respectively. Thus, a CCD contains within its design an ever- 
present factorial design. Therefore, if it is evident that a factorial 
(regardless full or fractional) DoE does not suffice for appropriate 
modelling of the process being optimised, furthering the investigation 
by incorporating the performed design into a wider CCD framework is a 
viable solution. This overlay can be easily visualised from Fig. 2, where 
the red dots represent the ever-present factorial design points, the yel
low stars represent the axial (or star) points and the grey circle in the 
middle stands for the centre point experiment (in this visualisation, no 
repetitions are shown). 

Additionally, the star points in the CCD allow the user to glimpse 
outside of the original matrix, hence, broadening the design space as 
well as the response surface. 

2.3. Box-Behnken DoE 

A Box-Behnken design (BBD) is considered to be a more efficient 
alternative to CCD (Alaoui et al., 2015), (Ferreira et al., 2007) (espe
cially when working with a high number of factors) as they normally 
require less runs to complete an experimental campaign. Thus, CCD is 
usually chosen over BBD when three or less factors are being considered 
as the former designs are more flexible with respect to two-way in
teractions. However, when working with three factors, BBD does not 
comply with the criteria for iso-variance per rotation, meaning that the 
design cannot be rotated around its centre point without changing the 
prediction of variance. This can be attributed to the positioning of the 
design points within the subareas of the dimension, centre points must 
be added to maintain rotatability in these cases (as can be seen from 
Fig. 3). 

BBD makes use of the following expression to identify the number of 

Fig. 2. – Central composite design space.  Fig. 3. – Box-Behnken design space.  
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experiments required to design the response surface: 

N = 2P(P − 1) + N0 (4)  

where P represents the number of parameters (factors) and N0 the 
number of central points. It should be noted that increasing the amount 
of central point experiments assists in evaluating the experimental error. 

Another benefit of BBD is the ability to eschew extreme experimental 
conditions. If the corner (classical factorial) points constitute a hazard 
for the operator or are simply too harsh (causing a fault of the experi
mental set-up or any other potential for loss of data), employing BBD is a 
viable alternative for response surface mapping. 

2.4. Taguchi Orthogonal Arrays DoE 

Taguchi Orthogonal Arrays are designs that are, similarly to CCD, 
based around the factorial designs (full and/or fractional). However, 
instead of adding new points into the design matrix, Taguchi’s approach 
favours an overlay of 2 traditional factorial designs (also referred to as 
the inner array and the outer array). For instance, Taguchi’s 25 array can 
be viewed as a ¼ fraction of the full factorial design, resulting in 8 ex
periments instead of 32, positioned in a particular way as is depicted in 
Fig. 4 . 

In Fig. 4 the red squares represent the factorial points (previously 
shown as red circles in Fig. 1 and Fig. 2), whereas the blue circles 
overlaying them are the design points of the outer array. The differences 
between such designs and classical factorial DoE matrices are subtle (as 
opposed to the major alterations needed for CCD). Taguchi-style 
frameworks distinguish between control variables and noise variables, 
placing the former into the inner array and the latter into the outer 
portion of the design space (Davis and John, 2018), thus allowing more 
control over the noise, which in turn, provides the operator with the 
ability to develop a robust process that could withstand alterations to 
the surroundings (which could be the ambient temperature or humidity 
if referring to agricultural crops; for ACs it could be positioning of the 
crucible in the furnace, precursor material variation or other lurking 
variables) without much influence on the control variable. Additionally, 
such designs allow for identification of interactions between the pa
rameters, whilst maintaining the ability to evaluate the input factors 
separately (i.e. independent from one another) due to their inherent 
orthogonal nature. These designs can then be analysed using myriad 
statistical analysis techniques. 

The basic and relatively small orthogonal arrays (L8, L9, L16 among 

others) can also be simply visualised via linear graphs (Fig. 5 ). However, 
the list of potential options for an experimental campaign is vast and 
includes myriad of available Taguchi designs. 

Another great benefit of Taguchi designs is the ability to incorporate 
parameters at different levels without a sharp rise in the number of 
required experiments. 

As a result, the choice of design is dictated by the objectives of the 
study and the stage at which the investigation is. Placket-Burman de
signs could be used for initial identification of fundamental features of 
the system, hence, preliminary screening. Full factorial techniques 
create a suitable experimental campaign providing coherent under
standing of the design space as well as a “bird’s-eye view” of the eval
uated phenomenon as opposed to OFAT or Placket-Burman. Fractional 
factorial designs help to minimise the required number of experiments 
of a full factorial campaign, whilst still evaluating the design space and 
understanding the impacts of the studied factors. The main effects, 
however, can be contaminated by interactions. Some Taguchi designs, 
however, can evaluate a limited number of two-way interactions. 
Taguchi orthogonal arrays can be viewed as an alternative pathway to 
classical factorial designs, which are most appropriate when dealing 
with “outside” or uncontrollable parameters. They allow to create a 
process that is robust towards noise and lurking variables. Taguchi DoEs 
could also be used as a great tool for main effects estimation or 
screening, especially if the parameters are evaluated under different 
levels (i.e. mixed-level designs). CCDs could be employed as a build-up 
on a conducted factorial design to evaluate the non-linear nature of two- 
way interactions as well as to increase the design space (both due to 
presence of star (and central) points). They are a useful technique for 
response surface mapping as well as process optimisation. BBDs have 
similar objectives to CCDs but may result in a lower number of required 
experiments, hence, appropriate utilisation of resources. Further, they 
are preferable if evaluation of the extreme conditions (i.e. corner points) 
is not feasible. 

2.5. Statistical Analysis Techniques 

The most prominent analysis techniques featuring in this review are 
Analysis of Variance (ANOVA) and Response Surface Methodology 
(RSM). Fig. 6 

ANOVA is a method to evaluate and separate any variation associ
ated with the main effects within the experimental design, where the 
independent variables are discrete with three or more levels (Mont
gomery, 2017). It applies a least squares method to determine sources of 
variation within a dataset. In order to apply ANOVA, the following 

Fig. 4. – 25 Taguchi design space.  

Fig. 5. – Linear graphs representing the L16 Taguchi orthogonal arrays (Suzuki 
et al., 2012). 
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Fig. 6. – A simplified algorithm for statistical analysis.  
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assumptions must be fulfilled: every replicate must be independent of all 
others, and the experimental measurements must be completely 
randomised. 

Prior to applying ANOVA, a normality test should be used to deter
mine whether the data set is well modelled by a normal distribution 
(common normality tests include: Kolmogorov-Smirnov test, Lilliefors 
corrected K-S test, Shapiro-Wilk test, Anderson-Darling test, Cramer-von 
Mises test, D’Agostino skewness test, Anscombe-Glynn kurtosis test, 
D’Agostino-Pearson omnibus test, and the Jarque-Bera test) (Ghasemi 
and Zahediasl, 2012). Additionally, normality can be assessed visually 
using frequency distributions, stem-and-leaf plots, boxplots, P-P plots, 
and Q-Q plots; however, these techniques are usually considered to be 
less reliable (Ghasemi and Zahediasl, 2012). 

Nevertheless, ANOVA is a popular method as it allows one or more 
factors, each at several levels to be tested simultaneously as well as assist 
in decision making, due to determination of statistical significance 
(represented as percent of contribution). Additionally, fewer replicates 
are required to make pairwise group comparisons when comparing 
ANOVA to other statistical techniques such as a student t-test. 

Fisher (F) values determine the variance of a term with the variance 
of residual (Rashidi and Yusup, 2015) (variation between or within the 
samples in a data set). The larger the F-value, the higher the variation 
between sample means, relative to the variation within the samples. 

The confidence level of ANOVA is confirmed by the probability value 
(p-value), which is a measure of probability that any observed difference 
could have occurred by random chance. It could also be viewed as the 
probability of achieving results close to the actual/representative of the 
experimental data (Rashidi and Yusup, 2019). The probabilities of the 
standard normal distribution, Z, could also be calculated using p-value 
tables (Pledger, 2008). When the p-value is sufficiently small (i.e. ≤
0.05), it can be concluded with 95% confidence that there is a statistical 
significance between group means, and therefore, the null hypothesis 
can be rejected - The higher the F-value, the lower the corresponding 
p-value. 

RSM is a useful tool in optimisation that can be used to visualise the 
effects various parameters may have on the response as well as to 
identify the frail points within the design space. However, applying 
ANOVA prior to RSM is beneficial because 3D plots only need to be 
produced if the combined effects are significant, thus, eliminating any 
insignificant terms. 

RSM is applied to establish an empirical statistical model to develop 
an approximate relationship between a set of control variables (xi) and a 
response variable (y) (Khuri and Mukhopadhyay, 2015), though, each 
factor has to be measured on at least three levels in order to generate 
either a 3D model or a 2D contour plot (in general 3D plots are preferred 
as a clearer picture of the response is observed). The relationship be
tween the control (i.e. independent) variables and the response variable 
can be written as: 

y = f (x1, x2, x3…xi) + ε (5)  

where the form of the true response function f is unknown, and ε is a 
term that represents other sources of variability not accounted for in f 
(such as measurement error, background noise etc.). The true response 
must be approximated using a low-order polynomial, such as first- or 
second-degree polynomial models. When applying the first-order model 
to two independent variables, the coded variables are as follows: 

η = β0 + β1x1 + β2x2 (6) 

The first-order model should be applied when approximating the 
true response within a relatively small area of the experimental region, 
where there is little curvature in f (Khuri and Mukhopadhyay, 2015). 

The second-order model is more widely applied due to its flexibility 
and ability to use a variety of functional forms. Additionally, the pa
rameters can be easily estimated using the method of least squares. The 
second-order model is coded as: 

η = β0 +
∑k

j=1
βjxj +

∑k

j=1
βjjx2

j +
∑ ∑k

i<j=2
βijxixj (7) 

The model is then fitted to a data set generated by observing the 
response variable when the parameters are varied within the experi
mental region. RSM is useful to determine the optimum conditions and 
the significance of the factors and understand the nature of the rela
tionship between them. Additionally, it can be used to predict the 
response at locations within the experimental regions (Khuri and 
Mukhopadhyay, 2015). RSM graphs can also be overlaid to compare and 
optimise several response variables simultaneously. 

Less commonly used techniques include Pareto charts and pertur
bation plots (Dos Reis et al., 2016). Pareto charts highlight the most 
significant factors and interaction effects by displaying the absolute 
values of the effects. This is achieved by drawing a reference line on the 
chart, hence, when a factor exceeds the line, the effect is potentially 
important. The method employs an algorithm for producing statistically 
based acceptance limits (similar to confidence levels). Additionally, it is 
beneficial to critically evaluate the outcomes of a Pareto chart against a 
Normal Probability Plot (NPP). NPPs are produced by plotting the 
interaction effects of the parameters against the cumulative probability 
(%) (Antony, 2014). A straight-line graph should be produced for this 
method, any factors that deviate from the line are classed as an “active 
effect” or statistically significant. Perturbation plots are produced by 
varying one factor within a defined range while keeping all other factors 
constant. The plots allow researchers to compare the effects of all the 
factors at a particular point in the design space. Other analytical tech
niques that may also be utilised include: main effects plots, interactions 
plots and cube plots (Antony, 2014). 

Post-experimental analysis is vital to ensure that valid conclusions 
can be derived from the data. The analysis phase can determine pa
rameters that: yield the optimum performance, influence performance 
variability or affect the mean process performance. The majority of 
statistical software (in alphabetical order: Design-Expert, JMP, Minitab, 
SPSS, and etc) can assist in both analysis and creation of the desired DoE 
campaigns. 

3. Optimisation of Adsorbents’ Syntheses 

3.1. Optimisation of Adsorbents’ Porosity and Morphology via Variation 
of Synthesis Conditions 

This section is dedicated to reviewing the works that have set out to 
optimise the morphological properties (namely, BET surface area (SBET), 
micropore volume, micropore ratio and others) of various carbonaceous 
adsorbents using DoE techniques; outlining the synthesis conditions as 
well as identifying the most impactful parameters, describing the in
teractions between these parameters and briefly discussing the under
lying reasoning. The discussed response variables are often employed as 
a proxy for evaluation of adsorption capacity. Such an approach, how
ever, suffers from the great diversity of separation processes with many 
of them being influenced by myriad other factors (diffusion limitations, 
surface functional groups, activity and availability of active adsorption 
sites) apart from the produced porous structure. Nevertheless, the 
morphological properties can serve as a strong indication of the success 
of the thermal treatment as well as the nature of the produced adsorbent. 

3.1.1. Factorial DoE 
Exactly the same experimental matrix as shown in Fig. 1a has been 

applied to investigate synthesis of activated carbon (AC) from olive cake 
waste by means of chemical activation with KOH (Abdel-Ghani et al., 
2016). The factors and the levels were chosen in accordance with pre
liminary experiments and identified as activation temperature (Tact) of 
600 and 900◦C (X1), holding/activation time (τact) of 1 and 3 h (X2), and 
impregnation ratio (IR) of precursor to activation agent of 1:2 and 1:4 
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(X3) utilising a 23 full factorial DoE using Minitab software. It should be 
noted, however, that when evaluating parameters at only 2 levels, 
identification of non-linear relationships (i.e. curvature) is impossible, 
leading potentially to false conclusions. All process variables were found 
to have a significant impact (p<0.05) on the BET surface area with the 
τact being the most impactful parameter followed by the three-way in
teractions and then Tact. The authors identified the optimum preparation 
conditions to be at the lowest levels of the investigated factors for such 
chemical activation. However, other activation agents and routes as well 
as precursor materials will yield different optimum points. For instance, 
(Dos Reis et al., 2016) has investigated the effects of changes in input 
variables for both conventional and microwave pyrolysis of sewage 
sludge with ZnCl2 as activating agent. The studied factors for the con
ventional activation process were τact (X1

1
, 15 – 60 min), Tact (X2

1
, 500 – 

800◦C) and agent/sludge ratio (X3
1
, 0.5 – 1.5), while the preparation 

conditions for the microwave methods varied greatly. The hold time was 
significantly smaller (X1

2, 8 – 12 min) and the activation temperature was 
substituted by the supplied power (X2

2
, 700 – 980 W); however, the IR 

was kept the same for both of the AC synthesis routes. The BET surface 
area was maximised under the following conditions: furnace – 500◦C for 
15 min, microwave– 980 W for 12 min, while maintaining an IR of 0.5 
for both activation pathways. It is noteworthy that for the conventional 
method, Tact was the most significant factor affecting the SBET (for mi
crowave – the interaction between ratio and power) and the second was 
the three-way interaction. In contrast, the second most important factor 
for microwave activation was the holding time, which was found to be 
positive. If comparing the two activation routes, the authors have 
demonstrated the specific volume of pores, the micropore surface area 
and SBET to be larger for the conventional method than for the micro
wave activation (with a higher bulk density for the latter). These dif
ferences were attributed to the impact of radiation on the decomposition 
kinetics of the organic compounds. Microwave energy is transformed 
into heat by dipole rotation and ionic conduction. Such quick volumetric 
heating promotes development of pores over a shorter time span, hence, 
saving energy. 

Fractional factorial designs have also been implemented in the 
literature (Bergna et al., 2020) to investigate the effects of several pro
cess variables on a number of outputs for AC production via physical 
activation of peat with steam using MODDE 9.1 by Umetrics software. 
Within the chosen framework, the reactor (rotating quartz tube in an 
oven) rotation speed (X1, 4.36 – 17.44 rpm), initial turf mass (X2, 100 – 
300 g), heating rate (X3, 2.6 – 13◦C/min), inert gas flow rate (X4, 100 – 
300 ml/min of N2), oven temperature (X5, 700 – 800◦C), τact (X6, 1 – 4 h) 
and steam flow rate (X7, 30 – 120 g/h) were adjusted. Despite evaluating 
7 factors at 2 levels each, and conducting 3 repetitions at the central 
point, a matrix of only 19 runs has sufficed, thus, highlighting the value 
of DoE. With regards to the overall activation process τact, Tact and steam 
feed were identified as the most influential parameters, strongly 
affecting the yield and total carbon content of the final product, but 
aiding the development of micro and mesoporosity, hence, the BET 
surface area. Rotation speed, the fourth most influential (and often 
discarded parameter for AC production) factor of the study, had a 
negative effect on the adsorption characteristics of the AC with a notable 
exception of benefiting the formation of mesopores (likely due to better 
contact of the steam with the biomass), though to a much lesser extent 
than the 3 key identified variables. The authors have also identified the 
initial mass of the sample to have little to no impact on the outputs, since 
porosity creation via carbon-steam reaction rate is governed by the 
gas-surface interaction rather than gas-mass (Kiel et al., 1975). How
ever, the authors acknowledged that the miniscule yield gradient (1.4%) 
might be associated with the quite narrow range of the investigated 
levels of X2 and as such an increase of the initial mass may more vividly 
affect the outcome when scaling up the process. 

3.1.2. Central Composite DoE 
Such a route has been previously taken in the literature 

(Loredo-Cancino et al., 2013) upon discovering an imminent inflection 
point within the explored range of variables during optimisation of AC 
synthesis from barley husk. The independent variables were the IR (X1, 
0.5 – 1.5 g ZnCl2/g precursor) combined with the τact (X2, 20 – 180 min) 
and Tact (X3, 300 – 700◦C), while the desired responses were maximum 
iodine number (a proxy for estimating surface area) and AC yield. Uti
lising Design-Expert software, ANOVA, RSM and a dual optimisation 
approach by quadratic models, the authors have determined the opti
mum preparation conditions for improving both of the responses 
simultaneously to be at 1.1 mass ratio, 20 min and 436◦C. However, the 
optimum points for each individual Y varied greatly between one 
another. Thus, to arrive at a point of simultaneous optimisation of both 
control variables, a desirability function was deployed (described at 
length in section 4.1.2). Both of the outcomes were considered to be of 
equal value, hence, assigning the same weight of one to both yield and 
iodine number. 

Moreover, (Rio et al., 2005) performed an intelligent DoE with CCD 
to optimise synthesis of carbonaceous sorbents from sewage sludge. 
Although, their design and results are discussed at length in section 3.2.1 
of this review, it is noteworthy, that the authors have shown Tact to affect 
the SBET and micropore volume, whilst changes in τact and IR have been 
demonstrated to be positive. Furthermore, these three parameters have 
also had a positive impact on mesopore development within the inves
tigated levels. Additionally, in their investigation the trials have been 
randomised in order to reduce errors from the possible lurking variables. 
Such diminishment of the uncontrollable effects (often referred to as the 
lurking variables) is desired when employing DoE matrices. 

3.1.3. Box-Behnken DoE 
(Gao et al., 2015) have employed this DoE framework to evaluate the 

preparation method of an AC from a green alga for use as an electrode 
material. In their investigation a total of 17 samples were synthesised 
(since here P = 3, leading to 12 factorial points, and N0 = 5, meaning 5 
repetitions in the central position) to study the influence of altering Tact 
(X1, 500 – 900◦C) and τact (X2, 30 – 90 min) together with the activating 
agent/char ratio (X3, 0.5 – 3.5) on the BET surface area and micropore 
ratio as well as mean pore size of the final product (if the authors were to 
employ a CCD for the same set of process variables, the experimental 
campaign would have comprised of 20 experimental runs containing 8 

Fig. 7. – A contour plot for specific surface area as a function of activation time 
and temperature (Gao et al., 2015). 
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factorial, 6 axial and 6 central replications). The data has been analysed 
using Design-Expert 7.0 software and RSM technique. The responses 
suggest the optimum preparation conditions to be 850◦C for an hour 
with an IR of 1.1 (KOH to precursor) with the Tact being the most sig
nificant influencing factor on surface area (F-value = 129.35), whilst the 
interactions between the parameters were found to be effectively 
insignificant due to the circular nature of the contour plots as can be 
seen in Fig. 7 . 

Tact was also found to possess a pronounced effect on the micropore 
ratio (F-value = 47.43) and the mean pore size (F-value = 130.54), 
though the interaction between the temperature and IR also contributed 
significantly to the changes in both outputs (15.36 and 121.20, respec
tively), thus, depicting the intensification of the synthesis conditions to 
propagate widening of micropores, hence, the transition towards meso 
and macropores. 

3.1.4. Taguchi Orthogonal Arrays DoE 
Most of the experimental design frameworks described in Taguchi’s 

catalogue are mixed level designs (Kacker et al., 1991) and these designs 
have been widely deployed when evaluating adsorbent synthesis. For 
instance, (Loloei et al., 2017) have used a mixed level L16 (22 x 44) 
Taguchi orthogonal array for the means of AC production optimisation 
via a two-step activation process. The investigated factors with 4 levels 
were pyrolysis/carbonisation temperature (X1, 550 – 700◦C) and hold
ing time (X2, 30 – 120 min) as well as Tact (X3, 800 – 950◦C) and τact (X4, 
30 – 120 min) while the heating rate and CO2 flow rate were only 
changed from 5 to 10◦C/min and from 400 to 600 ml/min, respectively. 
Their optimised synthesis route for maximising the iodine number was 
stated to be at carbonisation temperature and time of 700◦C for 60 min, 
Tact and τact of 900◦C for 60 min and at a CO2 flow rate of 400 ml/min. 
To maximise the yield, the process conditions should be kept largely the 
same, with the only difference being τact and Tact should be maintained 
at the lowest studied levels. These findings are in good agreement with 
the literature as longer time and temperature of the activation process 
promote surface pore development leading to a diminishment of the 
final product yield but also to a possible increase in adsorption prop
erties. Therefore, the Tact and τact have been stated to be the key vari
ables (respectively), possessing the highest F-ratios and having the 
biggest influence on the properties of the AC. It is noteworthy, that the 
optimised conditions described for the different responses do not feature 
the heating rate. This was attributed to the minute differences in final 
product properties when elevating the ramp rate from 5 to 10◦C/min. In 
their further works (Loloie et al., 2017) the authors have compared the 
responses for the iodine number with the responses for the specific 
surface area (SSA). The results suggest that these outputs are analogous 
in nature as the optimum sample in their later study was produced at the 
exact same conditions bar the exception of the temperature of the first 
pyrolysis step where maintaining the AC precursor at 650◦C facilitated 
the highest BET surface area. Similarly, the most influential parameter 
was Tact. 

The Taguchi orthogonal arrays have also been utilised to optimise 
activated carbon fibre (ACF) production out of waste cotton (Ekrami 
et al., 2014). The chemical activation procedure conditions, i.e. τact (X1, 
0.5 – 3 h) and Tact (X2, 350 – 500◦C), IR (X3, H3PO4/precursor mass =
0.5 – 3) and heating rate (X4, 2 – 20◦C/min), were varied to identify their 
impacts on product yield and iodine number. The optimum conditions to 
compromise between the antagonistic effects of the formerly-mentioned 
process variables were identified at 450◦C for half an hour at a ramping 
rate of 10◦C/min while doubling the agent-to-precursor mass ratio. 
Interestingly, the obtained p-values for all of the parameters were 
greater than 0.05 with regards to the iodine adsorption, though, the 
temperature of activation had the highest F-value followed by the IR. In 
the case of ACF yield, Tact and τact were found to be significant with the 
former possessing a higher F-value and a lower p-value. 

3.2. Optimisation of Adsorbents’ Capacity via Variation of Synthesis 
Conditions: Gaseous Media 

This section (as well as section 3.3) endeavours to discuss and review 
published research on the topic of optimisation of the carbonaceous 
sorbent’s capacity (i.e. uptake) for a given adsorbate in gaseous (aqueous 
for section 3.3) media. As with the previous section the experimental 
matrix as well as the influence and significance of various synthesis 
conditions and (their interactions) is outlined. 

3.2.1. Central Composite DoE 
A central composite design created via Design-Expert 8.0.5 software 

containing 20 experiments (including the ANOVA and RSM studies) was 
employed to investigate the impact of activating agent IR (X1, H3PO4 to 
AC precursor = 0.66 – 2.34), τact (X2, 69.55 – 170.45 min) and Tact (X3, 
381.82 – 718.18◦C) on a number of output parameters such as yield, 
iodine number and CO2 adsorption capacity (Khalili et al., 2015). The 
latter was shown to be influenced by all of the formerly mentioned input 
variables and their interactions (p-values < 0.05), though the IR had the 
greatest antagonistic effect showing the highest F-value. The other two 
responses were found to be strongly impacted by the variations in τact 
(showing the lowest p-values and maximum F-ratios). The authors have 
also optimised the AC preparation procedure in order to compromise 
between the dependent variables utilising a desirability function (this 
technique is described at length in section 4.1.2). The sample achieving 
high micropore volume and surface area whilst maintaining a respect
able product yield was prepared by impregnating the precursor with 
H3PO4 with an agent ratio of 2.2 and activating for 170.45 minutes 
under 488.82◦C. The increase in τact and Tact led to enhanced CO2 
adsorption. This phenomenon might be associated with formation of 
micropores which positively impact this response variables. These mi
cropores could be formed due to the release of tarry matter or dis
organised carbon that was blocking the pores. Alternatively, formation 
of micropores could be attributed to a larger amount of phosphorus 
being incorporated into the precursor when elevating X2 and X3 in the 
form of phosphates or polyphosphates. Hence, their removal might be 
“at fault” for the formation of micropores. However, increasing the IR 
led to a drop in uptake. The antagonistic impact is perceived to be the 
result of micropore destruction, which affects the CO2 adsorption ca
pacity of the AC. 

CCD has also been used to evaluate the impact of time (X1, 20 – 220 
min), temperature (X2, 532 – 868◦C) and H2SO4 (X3, 0.15 – 1.85) IR on 
the production of carbonaceous adsorbents from sewage sludge (Rio 
et al., 2005). The authors have analysed 13 different material properties 
(employing STATGRAPHICS® software) as their targeted responses. 
Such a vast number of desired outcomes has made optimisation inher
ently difficult due to the contradictory nature of some of the dependent 
variables. Therefore, the authors have denoted two different sets of 
optimised activation conditions in order to find a compromise between 
the various outputs. The procedure for developing optimal micropore 
volume as well as maximising both acetone and toluene adsorption ca
pacities simultaneously whilst adhering to their targeted 35 – 40% final 
product mass yield was found to be at τact and temperature of 145 min 
and 700◦C with the IR of sulfuric acid to sewage sludge of 1.5:1. The 
authors concluded that all effects and interactions were of significance 
(especially the quadratic effect of Tact leading to an extremum point at 
700◦C, thus, proving the applicability and necessity of a CCD design for 
the experimental campaign) and summarised the impact of IR and τact to 
be positive, whilst emphasising the Tact to affect the volatile organic 
compounds (VOCs) sorptive properties. 

3.2.2. Box-Behnken DoE 
(Yu et al., 2020) investigated the possibilities of synthesising acti

vated carbon as an adsorbent for CO2 capture. In their study, the 
Box-Behnken design was employed to evaluate the effect of 3 parameters 
(mass ratio of activating agent to carbon precursor, X1; τact, X2; Tact, X3) 
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at 3 different levels (1:0.5 – 2.5; 0.5 – 2 hours and 650 – 850◦C, 
respectively). In order to obtain the optimum adsorption capacity as 
well as the yield of final product, the authors developed an experimental 
campaign consisting of 17 runs with 5 repeating experiments on the 
central point to validate their model. Design-Expert software has been 
used to determine the number of trials. In addition, ANOVA was applied 
to determine the significant contributors to each of the response vari
ables separately. Their findings propose that boosting the Tact leads to a 
diminishing AC yield, due to the degree of polycondensation reactions. 
They have also observed an apparent trend of growing significance of 
the interaction between τact and Tact as the latter rises. This phenomenon 
was explained by strengthening of the reaction between the activating 
agent (KOH) and the coal tar pitch used as carbon precursor as the Tact 
maximizes, therefore, leading to a lesser yield of the final product. 
Furthermore, pore creation and pore widening determine the adsorption 
capacity of the material. In fact, as ultramicropores (< 0.7 nm) are most 
suitable for immobilising carbon dioxide molecules, finding the opti
mum point for these competing processes is of utter importance. It is 
suggested that long τact vastly affects pore creation, shifting the equi
librium towards pore widening. This effect is pronounced stronger at 
higher temperatures, i.e. relatively low temperatures favour creation 
rather than widening of pores. Therefore, the optimum capture capacity 
was found to be at the following preparation conditions: 650◦C for 1.25 
hours with the KOH IR of 2.5: 1. Others (Rashidi and Yusup, 2019) have 
also used BBD to optimise AC production for carbon capture, although 
via a single-step physical activation. In this study, the independent 
variables were selected to be inert gas flow rate (X1, 150 – 450 ml/min) 
together with τact (X2, 60 – 120 min) and Tact (X3, 750 – 950◦C). As 
thermal activation techniques lack an activating agent, the most deter
mining factor was learned to be Tact. This parameter possessed the 
greatest F-value and a p-value smaller than 0.05. The optimum activated 
carbon sample was activated at 850◦C under the maximum flow rate and 
minimum time out of the investigated levels. It is noteworthy, that these 
conditions have been chosen on the basis of the maximum adsorption 
capacity, rather than as a function of both capacity and product yield. 
The reasoning behind this decision was that these experimental condi
tions provide an adequate final product yield (exceeding the minimum 
industrial target provided in the literature). Nevertheless, when evalu
ating more than one output parameter, it is favourable to apply a 
function of desirability in order to maximise all of the targeted responses 
simultaneously. The authors did, however, randomise the sequence of 
their trials which, as mentioned previously in the review, is a favourable 
practice when conducting an intellectually designed experimental 
campaign. 

3.2.3. Taguchi Orthogonal Arrays DoE 
A large orthogonal array consisting of 25 experiments (L25) has been 

employed within the Taguchi experimental design framework by 
(Rashidi et al., 2013) to evaluate the Signal-to-Noise (S/N) ratios for 6 
varying factors such as: precursor (X1, Coconut fibre, coconut shell, palm 
kernel shell, palm mesocarp fibre and rice husk), particle size (X2, 250 – 
1000 μm), heating rate (X3, 5 – 25◦C/min), flow rate (X4, 100 – 300 
ml/min), Tact (X5, 500 – 900◦C) and τact (X6, 15 – 90 min). Each 
parameter has been evaluated at 5 different levels within the boundaries 
outlined above. The key factor influencing the gas sorption capacity was 
determined to be the Tact due to the activation process being endo
thermic. However, the composition of the original material has also 
been noted to play a crucial role as it has the highest impact on the ash 
and carbon contents of the final adsorbent. The authors have elaborated 
on this in their further work (Rashidi and Yusup, 2015) performing 
ANOVA and outlining the p-values (and F-values) for the formerly 
mentioned parameters to be > 0.0001 (23.10) and 0.0074 (5.88), 
respectively. This analysis has been performed utilising Design Expert® 
version 8.0 software. The optimum sample has been identified to be 
produced from 250 μm coconut shell particles that were activated at 
900◦C for 45 min under a CO2 flow of 150 ml/min and a ramping rate of 

20◦C/min. When evaluating carbonaceous adsorbent precursors, un
derstanding the carbon content of each of the materials is imperative. 
Since for physisorption the carbon surface immobilises the adsorbate via 
weak van der Waals forces, a larger quantity of C would imply poten
tially higher adsorption capacity. On the other hand, the amount of ash 
in the precursor also plays a crucial role as these particles may block the 
pores, hinder porosity development and, hence, uptake. 

3.3. Optimisation of Adsorbents’ Capacity via Variation of Synthesis 
Conditions: Aqueous Media 

3.3.1. Factorial DoE 
Full factorial design has been commonly applied to optimise the 

synthesis of activated carbon (Alam et al., 2009), (Lim et al., 2020). For 
instance, (Alam et al., 2009) optimised the synthesis of powdered acti
vated carbon from oil palm empty fruit bunches. The method applied a 
2-level full factorial design with two central points and a total of 10 
experiments, developed on the Design Expert software (version 6.0.8). 
The effects of three experimental factors were investigated; Tact (X1, 600 
– 900◦C), τact (X2, 15 – 45 min) and CO2 flow rate (X3, 100 – 250 
ml/min) to optimise the adsorption capacity and yield, whereas ANOVA 
and RSM were applied to determine the significance of the factors and 
the optimum conditions. The optimum conditions were Tact of 900◦C, 
τact of 15 min and a CO2 gas flow rate of 0.1 L/min. Temperature was 
found to be the most significant factor for both adsorption capacity (f =
521.67, p = 0.001) and yield (f = 1936.85, p = 0.0005). Adsorption 
capacity increased with increasing Tact and decreasing τact and CO2 flow 
rate. The highest carbon yield was obtained when all of the variables 
were at the minimum value. Elevated temperatures increase the burn-off 
of carbon, causing the pores present within the structure to become 
more developed and the pore volume to increase. Additionally, any 
volatile materials and tar blocking the pores are removed, optimising the 
adsorption capacity. However, increased burn off causes a decrease in 
yield, thus, leading to a trade-off between yield and adsorption capacity 
when selecting the optimum conditions. The R2 values for the models 
were calculated to be 0.9964 and 0.9992 for adsorption capacity and 
yield, respectively. Both models had R2 values close to unity and stan
dard deviations of ≤ 0.2, indicating that the theoretical values correlate 
with their experimental counterparts. 

3.3.2. Central Composite DoE 
CCD has been widely implemented to evaluate the synthesis condi

tions of carbonaceous adsorbent for pollutants removal from aqueous 
media (Hoseinzadeh Hesas et al., 2013, Garba et al., 2014, Mozaffarian 
et al., 2019, Tan et al., 2008, Basheer et al., 2019). For example, an AC 
has been synthesised from waste palm shell using microwave radiation 
and zinc chloride as the activation agent (Hoseinzadeh Hesas et al., 
2013). CCD was applied to optimise yield and methylene blue (MB) 
adsorption capacity by investigating four factors on three levels, namely 
τact (X1, 10 – 20 min), microwave power (X2, 900 – 1200 W), IR (X3, 1.13 
– 2.25) and particle size (X4, 1 – 2 mm). The experimental design con
sisted of 16 factorial points, 8 axial points and 6 replicates at the centre 
points, for a total of 30 experiments. However, CCD is usually only 
applied for three or less factors since an excessively increased number of 
(steady-state) experimental runs may lead to the introduction of errors 
into the experiment. When working with four or more factors, it is 
advisable to split the matrix into blocks of relatively homogeneous 
experimental conditions, allowing for independent estimates of the 
block effects (Antony, 2003). Effects of variation due to noise factors 
would be eliminated, hence, improving the efficiency of the experi
mental design. 3D response surface plots were analysed using Design 
Expert software (version 7.1.5) to determine the optimum conditions. 
Yield and adsorption capacity were maximised at τact of 15 min, a mi
crowave power of 1200 W, a ZnCl2 impregnation ratio of 1.65 and a 
particle size of 2 mm. The significance of the factors was determined 
using ANOVA. τact, microwave power and IR had a significant effect on 
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AC yield, while all 4 factors were significant for MB adsorption. Among 
them, Tact had the most significant effect on yield (f = 265.14, p <
0.0001) microwave power impacted MB adsorption the most (f = 62.07, 
p < 0.0001). Additionally, all interactions were found to be statistically 
significant for both of the responses. X2 X4 had the greatest impact on 
yield (f = 27.88, p < 0.0001), whereas MB adsorption was the most 
sensitive to X1 X3 (f = 41.80, p < 0.0001). The factors were further 
investigated using 3D response surface plots. At lower τact, yield was not 
significantly affected by increases in microwave power and IR, this was 
attributed to lack of time for the reaction to take place between the 
activation agent and carbon. However, as τact was increased, microwave 
power had a larger effect on yield, credited to increased burn off and 
pore widening. MB adsorption was maximised when both τact and mi
crowave power were at the highest value due to the development of the 
porous structure and increase in available active sites. No considerable 
changes were observed when increasing IR due to excess chemical agent 
blocking the pores and available active sites. The predicted carbon yield 
and adsorption capacity were 65.484% and 96.93%, respectively. 
Experimental values were both slightly lower at 64% and 95.95%. The 
model was determined to be of sufficient accuracy due to the low rela
tive errors of 2.26% for yield, and 1.01% for adsorption capacity. 

Garba et al. applied CCD to optimise the preparation of AC from 
Borasus aethiopum (a type of palm) shells via chemical activation (Garba 
et al., 2014). The experiment consisted of eight factorial points, six axial 
points and six replicates giving a total of 20 experiments. Three factors 
were investigated; IR (X1, 1.17 – 4.03), Tact (X2, 571 – 779◦C) and τact 
(X3, 0.79 – 2.81 h). Design Expert software (version 6.0.6) was employed 
to determine the optimum activation conditions, which were as follows: 
Tact and τact of 713◦C and 2 h 49 min, respectively and an IR of 1.33. 
ANOVA was applied to investigate the significance of the factors. The 
model indicated that τact to be the most significant factor (f = 94.83, p <
0.0001). The mechanism for chemical activation using hydroxides has 
been proposed previously, for example (Lillo-Ródenas et al., 2003). 
hypothesised that the reaction between NaOH and carbon is as follows: 

4NaOH + C ⇌4Na + CO2 + 2H2O (8) 

According to equation 1, an increased τact prolongs the reaction time 
between NaOH and carbon, therefore, removing any disordered carbon 
in the form of CO2. Physical activation will also take place as more CO2 is 
generated throughout the reaction, increasing the porosity and adsorp
tion capacity but decreasing the yield. Nevertheless, X2 X3 interactions 
between had the most significant combined effect (f = 14.88, p =
0.0019). Additionally, the 3D plots indicated that increasing both IR and 
temperature would affect the AC yield, though, no notable effects were 
observed when increasing τact. 

3.3.3. Box-Behnken DoE 
Many studies have applied BBD matrix, when evaluating 3-factors at 

3-levels. This method consists of a total of 15 experiments, involving 12 
factorial runs and 3 replicates at the central point (Jung et al., 2019, 
Chen et al., 2013, Pereira Da Silva et al., 2019, Md-Desa et al., 2016), 

with commonly investigated factors including IR, Tact and τact to opti
mise response variables such as carbon yield and adsorption capacity. 
For instance, (Jung et al., 2019) used a BBD-based quadratic model to 
optimise the synthesis of AC/iron oxide magnetic composites using 
marine microalgae as the precursor. The effects of IR (X1, 1:1 – 3:1), Tact 
(X2, 600 – 800◦C) and τact (X3, 60 – 180 min) on the production yield and 
acetylsalicylic acid adsorption capacity were investigated. 
Design-Expert (version 6) and SAS (version 9) packages were applied to 
design and statistically assess the experiment. The optimum conditions 
were determined to be τact and Tact of 129.26 min and 727.09◦C, 
respectively, and an IR of 2.62:1. The conditions achieved an overall 
yield and adsorption capacity of 60.44% and 69.09 mg/g, respectively. 
ANOVA was used to establish the most significant factors; it was found 
that Tact had the most significant impact on yield, and IR on adsorption 
capacity. RSM plots were created using the selected polynomial 
quadratic regression models. The plots indicated that all independent 
variables had a negative influence on the yield due to the removal of 
volatile matters and tar leading to a greater weight loss. The opposite 
trend was observed for adsorption capacity due to functionalisation of 
the surface and development of the porous structure. 

BBD has been used to investigate the production of AC from kenaf 
core using K2C2O4 as the chemical activation agent (Chen et al., 2013). 
The method sought to optimise iodine and MB adsorption by evaluating 
the effects of three factors, Tact (X1, 750 – 850◦C), IR (X2, 0.5 – 1.5) and 
τact (X3, 1.5 – 2.5 h). The BBD method was determined using Design 
Expert (Trial Version 7.0.0) software. The optimum conditions were as 
follows: Tact of 800◦C, IR of 0.65 and τact of 2.5 h. Use of ANOVA 
determined that all the studied factors were significant. IR followed by 
τact and their interaction were identified as having the most significant 
impact on the iodine number. Whereas, τact, followed by IR and the 
combined effects of τact and Tact had the most significant impact on MB 
adsorption. RSM indicated that the optimum yield was achieved in a 
region where IR was at the minimum value and τact was at its maximum 
point. Whereas, decreasing Tact and increasing τact gave the optimum 
value for MB and I2 adsorption capacity of 323.19 mg/g and 1185.17 
mg/g, respectively (Fig. 8). 

3.3.4. Taguchi Orthogonal Arrays DoE 
(Liu et al., 2013) and (Makeswari and Santhi, 2013) employed the 

Taguchi design matrix, using an L16 orthogonal array with four opera
tional parameters each on 4 levels, hence, 16 experiments in total. The 
former optimised the synthesis of activated carbon form Spartina alter
niflora using chemical activation with the investigated parameters being 
carbonisation temperature (X1, 400 – 550◦C), KOH:char IR (X2, 1:1 – 1:4 
wt/wt), Tact (X3, 600 – 850◦C) and τact (X4, 30 – 120 min). The study 
aimed to optimise the iodine number (iodine, mg/g carbon). In order to 
investigate the influence of the operational factors on iodine number, 
the ANOVA technique was employed to determine S/N ratios using SPSS 
(version 13.0). The optimum synthesis conditions for X1, X2, X3, X4 were 
found to be 450◦C, 3:1, 90 min and 800◦C, respectively. The factors were 
analysed by calculating the percentage contribution using the following 

Fig. 8. – 3D response surface plots for combined effects on the MB adsorption value: (a) IR and temperature, t = 2 h; (b) time and temperature, IR = 1.0; (c) time and 
IR, T = 800 ◦C (Chen et al., 2013). 

M. Gorbounov et al.                                                                                                                                                                                                                            



South African Journal of Chemical Engineering 41 (2022) 111–128

121

equation: 

% contribution =
Sum of Squares

total Sum of Squares
x 100 (9) 

The analysis showed that Tact had the largest contribution (82.65%) 
on adsorption capacity. Increasing the temperature up to 800◦C 
increased adsorption capacity; however, temperatures greater than 
800◦C had a negative impact. Similar trends were observed for 
impregnation ratio and τact when the conditions were above 3:1 and 90 
minutes, respectively. This was attributed to the collapse of micropores, 
reducing surface area and adsorption capacity. 

(Makeswari and Santhi, 2013) studied microwave-assisted chemical 
activation using zinc chloride to prepare activated carbon form Ricinus 
communis. The parameters investigated were microwave radiation 
power (X1, 100 – 600 W), microwave radiation time (X2, 4 – 10 min), 
concentration of ZnCl2 (X3, 30 – 60 vol%) and impregnation time (X4, 16 
– 28 h). The study aimed to maximise iodine number and yield. The 
optimum responses were determined by plotting the experimental yield 
and ZnCl2 concentration to determine the optimum conditions for ra
diation power (100 W), radiation time (8 min), concentration of ZnCl2 
(30 %) and impregnation time (24 h). The study concluded that radia
tion time and concentration of ZnCl2 were important factors for yield, 
whereas, iodine number was only significantly impacted by concentra
tion of ZnCl2. To identify the optimum conditions, the researcher pro
duced a graph which included each level of each parameter along the x 
axis and the response factors along the y axis (Fig. 9); however, the study 
would have additionally benefited from applying ANOVA, because the 
results were not analysed statistically and therefore, it cannot be 
determined whether any of the factors are of significance to the 
response. 

4. Optimisation of Adsorption Processes 

The following portion of our review paper is dedicated to reviewing 
the application of the formerly-mentioned DoE frameworks for optimi
sation of the process of adsorption on the carbonaceous material (sec
tion 4.1 evaluates the sorption process of gas-phase adsorption, whereas 
section 4.2 is focused on aqueous media) as opposed to optimising the 
synthesis routes of the sorbent (section 0). Thus, this section covers the 
impact of adsorbate concertation and flow rate, the temperature and 
duration of the process and other parameters (e.g. pH of the system and 
etc.). 

4.1. Optimisation of Adsorbents’ Capacity via Variation of Process 
Conditions; Gaseous Media 

4.1.1. Factorial DoE 
The full factorial experimental matrix has been employed widely in 

the literature (Hsi and Chen, 2012, Miller et al., 2000, Liu and Ritter, 
1998). For instance, using a three-factor two-level design (23) design, 
(Muzic et al., 2010) investigated diesel fuel desulfurization. Desulfur
ization of the fuel was achieved via adsorption using commercial AC and 
13X zeolite. The design investigated the effect of adsorbent mass (X1, 
2.00 and 4.00 g), adsorption temperature (Tads, X2, 30.0 and 70.0◦C) and 
time (τads, X3, 20 and 100 mins) on the adsorbent capacity (qi, mg/g) and 
residual sulphur content (Ci, mg/kg). It was found that the interactions 
between the studied factors were minimal in contrast to the effects of 
individual parameters, with adsorbent mass and τads contributing the 
largest effect on Ci at 83.87% and 7.44% and on qi at 91.12% and 3.17%, 
respectively. The multiple regression analysis in Design-Expert software 
determined a model describing the effects of the three factors on Ci and 
qi accounting for over 94% of the variability. 

(García et al., 2011) employed RSM to study the combined effect of 
the adsorption CO2 partial pressure (PCO2, X1, 1 – 3 bar) within a total 
pressure of 5 to 15 bar and Tads (X2, 25 – 65◦C) on CO2 capture capacity 
and breakthrough time. The three-level two-factor full factorial experi
mental campaign consisted of 13 experiments (nine factorial points and 
four replicates at the centre of the design that make it possible to esti
mate any experimental error). CO2 partial pressure was identified as the 
primary influencer on both capture capacity and tb. Using ANOVA, 
statistical significance was evaluated, the two second-order models were 
statistically significant and their lack of fit found to be not significant (at 
a 95% CL). The Adj-R2 and the absolute average deviation (AAD) values 
were acceptable at 0.969 and 3.4%, respectively for CO2 capture ca
pacity; and 0.984 and 2.0 respectively, for breakthrough time. Inter
estingly, no interaction effects between the two independent variables 
were found. Both capacity and tb were found to be proportional to PCO2 
and inversely to Tads and the square of Tads. Response plots elucidated to 
response curvature, indicating that the effect of temperature varies over 
the experimental range. 

In the assessment of combined thermal and vacuum adsorption 
(VTSA) in the work of (Ramalingam et al., 2011) a factorial design of 
experiment was employed and validated via process simulation. The 
regeneration performance was evaluated by considering bed regenera
tion rate, concentration of recovered VOCs and operating costs. The 
VTSA process involved thermally regenerating the spent activated car
bon with hot nitrogen followed by vacuum desorption. The factorial 
design considered the effect of the thermal regeneration operating pa
rameters, with the vacuum desorption parameters remaining constant. 
Nitrogen gas temperature (T, X1, 85 and 93◦C), nitrogen flow rate (Vf, 

Fig. 9. – The effect of operational parameters on responses of the prepared 
samples, (A) radiation power, (B) radiation time, (C) concentration of ZnCl2, 
and (D) impregnation time (Makeswari and Santhi, 2013). 

Fig. 10. – Comparison of the design space employing a single 23 design (cube 
in black) vs two overlapping 22 designs (yellow and blue). The crossed out red 
corners represent the originally proposed design points that were unfeasible. 
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X2, 0.07 and 0.14 NL/h) and intermediate regeneration percentage (IR, 
X3, 55 and 75 %) were varied, and the recovery percent (FR) and 
operating costs (OPEUR) measured. However, due to an inability to 
achieve IR = 75 % at Vf = 0.07 NL/h, a 23 design had to be abandoned in 
favour of two 22 campaigns. The first 22 studied T and IR whilst fixing Vf 
at 0.14 NL/h, the second 22 studied T and Vf whilst fixing IR at 55%. 
Given that two (out of four) of the experiments defined in both designs 
evaluated the same desorption conditions, the total number of trials run 
was 6 and not 8 as to be expected from two 22 designs. 

Although an ingenious solution to overcome equipment limitations, 
Fig. 10 illustrates the significant reduction in design space (effectively 
studying only two sides of the initially proposed domain). The authors 
could have benefitted from selecting levels for each factor that were 
attainable within the confinements of the experimental setup; quite 
clearly two 22 designs is not a comparable substitute for a 23 matrix. 
Alternatively, optimisation with BBD could be a promising avenue as it 
paves the way for designing a campaign “around” potential data-loss 
points. Regardless, selection of appropriate (attainable yet impactful) 
levels for the evaluated parameters facilitates production of reliable 
responses. 

Nevertheless, within the evaluated design spaces, the nitrogen flow 
rate, Vf was identified as the dominant factor in determining high re
covery efficiency and reducing operating cost, whereas IR was found to 
be critical in achieving high recovery, though at an increased cost. This 
increased cost is compensated, however, by the elevated FR. No signif
icant interaction effects were observed. In 2012 when investigating the 
recovery of acetone, dichloromethane and ethyl formate using micro
porous carbon in a TSA process, (Ramalingam et al., 2012) employed a 
factorial design. In this case, nitrogen temperature (X1) and superficial 
gas velocity (X2) were optimised to maximise regeneration efficiency 
(RE) and minimise operating cost. The two levels considered for X1 were 
130 and 170◦C and for gas velocity (v), 0.10 and 0.17 m/s in a 22 design 
using Minitab. For each VOC, v was found to be the most significant 
factor with regards to RE, with the interaction effect greater in the case of 
acetone. An increase in X1 resulted in a reduction in OPEUR for all cases. 

The fractional factorial design has been deployed by (Rodrí
guez-Mosqueda et al., 2018) to conduct a parametrical study on direct 
air CO2 capture using a hydrated potassium carbonated sorbent sup
ported on an activated carbon honeycomb. With a view to investigate 
the impacts Tads (X1, 20 and 40◦C), water vapour pressure of air (Pw, X2, 
5 and 17 mbar) and air flow rate (X3, 5 and 15 L/min), an AC monolith, 
coated in K2CO3 and hydrated by moist nitrogen, was tested via a frac
tional factorial design of experiments. The centre points were chosen 
such that each factor represents the middle value (i.e. 30◦C, 12 mbar and 
10 L/min) in the interest of exposing curvature in the response of 
adsorption capacity. Repeatability of results was evaluated by con
ducting the centre point in triplicates; the adsorption data was then 
analysed using Minitab. The fitted equation presented a standard devi
ation of 4.2% and an R2 value of 97.85% with the response being 
influenced only by X3, X1 X2 and X2 with latter exhibiting the strongest 
effect. When conducting the triplicate centre point, a reduction in the 
response was observed indicating a 4.8% loss of adsorbent capacity. The 
main effects plot for X2 and X3 indicated a linear relationship with the 
response. With regards to the interaction between X1 and X2, the plot 
elucidated a dynamic relationship where at low Pw the capture capacity 
increased with Tads, whereas the opposite was observed at high Pw. 
Interestingly, an increase in temperature alone was not observed to 
significantly disadvantage the capture efficiency which would be ex
pected due to the shifting of the chemical equilibrium in an exothermic 
process. This unconventional observation, however, was determined to 
be a result of the evaporation and desorption of water that occurs 
concurrently with CO2. The cooling effect as result of evaporation is 
obviously more prominent at elevated temperatures, which might also 
explain why T did not feature as a significant factor in the analysis. 

4.1.2. Central Composite DoE 
The central composite design of experiment has featured in the 

experimental and statistical study of hydrogen purification via pressure 
swing adsorption (PSA) (Saberimoghaddam and Nozari, 2017) with a 
view to develop a statistical process model without the need for complex 
partial differential equations and involved procedures. Here, the PSA 
process was modelled and optimised to maximise the adsorption of CO2 
from a binary H2/CO2 mixture and revealed distinct second-order 
polynomial equations that could predict the purity (%), recovery (%) 
and productivity of hydrogen (lit/grs) with R2 values of over 0.99. The 
effects of purge to feed ratio (P/F) and τads on hydrogen purity, pro
ductivity and recovery as well as their interactions were assessed. In this 
case, P/F ratio (0.10 – 0.30) and τads (5 – 15 min) are the independent 
variables; thirteen experiments were conducted in total due to the 
presence of 5 central replicates. The authors identified that effects of 
P/F, τads, (P/F)2 and (τads)2 were all significant (P < 0.0001) whilst the 
statistical models for the three responses: purity, recovery and produc
tivity possessed F-values of 204.91, 376.00 and 483.92, respectively. 
Additionally, R-squared values for each model were above 0.99 indi
cating good approximation of the experimental data which is corrobo
rated by Adeq Precision measures (which measure the signal to noise 
ratio) above 4. Regarding the effect of each independent variable, the 
authors identified a number of notable relationships within the PSA 
process. An increase in P/F was observed to increase the purity whilst 
decreasing both recovery and productivity whereas when increasing τads 
purity remained constant until Ad.t = 10 min after which it began to 
decline due to fresh adsorbent availability being finite. However, above 
10 min, each response saw a decrease. By optimising the PSA process 
under two conditions (in range or maximise), seven cases were identi
fied; qualitative appraisal of the seven cases can be used to identify the 
optimum. Due to this, an overall desirability (D) was employed as a 
parameter to select the optimum condition; when maximisation of re
sponses is required, the overall desirability and desirability for each 
response are defined as below (Saberimoghaddam and Nozari, 2017), 
(Gunst et al., 1996): 

D =
(
dr1

1 × dr2
2 × … × drm

m

) 1
r1+r2+…+rm (10)  

di =

(
yi − L
T − L

)w

(11)  

when a response is in range, the desirability is defined as shown below 

Fig. 11. – Response surface plot of desirability vs the P/F ratio and τads (Ad.t 
on the graph) in the one-column PSA process (adopted from (Saber
imoghaddam and Nozari, 2017)). 
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(Saberimoghaddam and Nozari, 2017): 

di = 0 if response < low value 
di = 1 if response varies from low to high 
di = 0 if response > high value 

Where D is the overall desirability, di is desirability for each 
response, ri represents the importance of each response which varies 
from 2 to 5 and w is the weight of each response; T and L represent the 
maximum and minimum possible value for the responses, respectively; 
yi is the optimum value. A response surface was plotted (Fig. 11) rep
resenting the overall desirability (D) against P/F and τads, when purity 
was maximum, and recovery and productivity were in range. The sur
face of D = 1 provided a flexible PSA process at the maximum purity at 
low P/F and high τads. An overall desirability of 0.884 was achieved 
when maximising all responses: P/F = 0.2, τads= 10.42 min, purity =
96.31, recovery = 54.31 and productivity = 3.37 × 10 − 5. 

In the application of acid gas removal by sawmill residue-derived 
biochar, (Bamdad et al., 2019) employed a CCD coupled with RSM to 
determine the optimum conditions for maximising acid gas (CO2) 
adsorption and for assessment of the process itself. The adsorption pa
rameters considered included Tads (X1, 20 to 80◦C), inlet feed flow rate 
(X2, 60 to 200 mL/min) and CO2 concentration (X3, 20 to 100 %, (v/v)), 
whilst the response evaluated was the adsorption capacity. In total, 20 
experiments were conducted. It was observed that when increasing the 
inlet flow rate, the bed became saturated more quickly due to an 
increased mass of CO2 entering the system; the mass transfer zone also 
became narrower whilst the mass transfer coefficient increased as a 
result of an increase in the corresponding Reynolds number. Contrast
ingly, the equilibrium capacity of the bed was seen to increase at lower 
inlet flow rates due to an elevated residence time. When increasing the 
adsorption temperature, the breakthrough time was seen to decrease yet 
by decreasing CO2 concentration in the feed stream, a slight increase in 
breakthrough time was realised since binding sites become saturated 
more quickly at elevated adsorbate concentrations (Bamdad et al., 
2019). A decrease to adsorbent CO2 concentration in the inlet gas stream 
will also act to decrease the overall driving force of adsorption, hence 
increasing the time required for breakthrough and ultimately decreasing 
adsorbent capacity (O’Mahony et al., 2002). ANOVA tests were able to 
determine that the interactions between X1 X2 and X1 X3 and both X1 and 
X3 have a significant effect on the adsorption capacity. The model itself 
was significant and presented an F-value of 46.88 with an Adeq value of 
23.354 demonstrating good model discrimination. 

(Vohra et al., 2020) employed date palm-tree branch-based AC to 
treat gaseous toluene streams under varying dynamic flow conditions 
using a 6.5 mm ID column at atmospheric pressure and room tempera
ture. The authors investigated the effect of influent gas flow rate (X1, 2 – 
3 slpm), AC bed depth (X2, 4 – 6 cm) and influent gas concentration (X3, 
10 –20 ppmv) on the breakthrough (BT) and exhaustion time (ET) using 
a CCD design with one centre point. All of the studied variables within 
their ranges, presented statistically significant influence on the re
sponses (p-values < 0.05) and the Adeq precision values were 19.3374 
and 25.5566 for the BT and ET models, respectively, which are indica
tive of a good model fit. The respective models were also assessed based 
on the assumptions of normality and random variation of the residuals, 
the plots confirmed the assumptions and hence the respective normality 
and randomness results indicated model validity. Their results depict a 
decrease in both BT and ET when increasing the flow rate as a result of a 
reduced residency time leading to a reduced bed efficiency and an early 
breakthrough and exhaustion. Additionally, a higher influent toluene 
concentration from was shown to reduce both BT and ET irrespective of 
gas flow rate. This is indicative of the AC employed which possesses a 
fixed amount of adsorption sites and specific surface area; an increase in 
concentration accelerates adsorbent saturation. 

(Baytar et al., 2020) too, studied the effect of process parameters on 
the adsorption of toluene. In this work, though, the adsorption of 

another VOC, benzene was also considered. Employing an experimental 
setup with a glass reactor of 16 cm in height and 0.9 cm ID, the effect of 
τads (X1, 14.66 – 90.34 min), initial concentration (X2, 9.27 – 22.72 ppm) 
and Tads (X3, 16.48 – 58.52◦C) was evaluated on the adsorption capacity 
of benzene and toluene (mg/g). A total of 20 experiments were defined 
with 6 replications at the central point for each response; statistical 
significance was measured with an F-value (p < 0.05) at a 95 % confi
dence level. The correlation coefficients (R2) of the proposed model 
equations were all in the range 0.95 – 0.99 indicating successful repre
sentation of the experimental data. In this work, all independent vari
ables were deemed significant on the two responses, with τads presenting 
being most impactful on both benzene and toluene adsorption. The Adeq 
precision measures were 81.31 and 49.82 for benzene and toluene 
adsorption capacities. Multiple linear regression analysis of the data 
resulted in quadratic polynomial equations for each response which 
were assessed through ANOVA and were found to be accurate repre
sentations of gas-phase adsorption of the VOCs in the presence of AC. 
The response surfaces depicted an increase in capacity for both VOCs 
when increasing τads which can be explained by the fact that adsorption 
capacity is a function of time (de Luna et al., 2013), and that the increase 
in the number of gas-phase adsorbate molecules acts to accelerate access 
to the adsorption equilibrium state (Hameed and El-Khaiary, 2008). 
When increasing initial concentration, no significant change in capacity 
was observed due to the finite availability of specific surface area and 
adsorption sites (Vohra, 2015). When considering time and temperature, 
as expected with the exothermic nature of physical adsorption, capacity 
decreased with an increase in temperature and increased with time for a 
constant initial concentration. For a constant τads, capacities decreased 
with increasing Tads; however, no significant change was identified 
when increasing initial concentration since the total amount of VOC 
adsorption onto AC is constant. The optimum process conditions for 
benzene adsorption were defined at an τads of 74.98 minutes, a con
centration of 16.68 ppm and a Tads of 26.97◦C resulting in a capacity of 
437.76 mg/g. In the case of toluene, these conditions were 73.26 mi
nutes, 18.46 ppm and 29.8◦C, resulting in a capacity of 512.03 mg/g. 

4.1.3. Box-Behnken DoE 
The Box-Behnken Design of experiment has also featured in the 

assessment of gas-phase toluene removal with granular activated carbon 
in the work of (Gupta and Kumar, 2020). The experimental setup 
involved a 0.1 m high column with an ID of 0.05 m; breakthrough time 
was defined at an effluent toluene concentration equal to 5% of the inlet 
toluene concentration. The three variables studied included bed height 
(X1, 0.015 – 0.025 m), initial concentration (X2, 7000 – 11500 ppm) and 
flow rate (X3, 35 – 106 ml/min); the response was defined as the fraction 
of the bed utilised until the measured breakthrough time, thus, leading 
to 15 experiments (as both P and X were 3). The experimental data was 
fitted to a second-order polynomial. The adequacy of the proposed 
model was evaluated using ANOVA. With an F-value of 247.98 and a 
p-value of < 0.05, the model was clearly significant. The residual anal
ysis clearly indicated that the model accurately described the experi
mental domain. The analysis also elucidated the statistical significance 
of all three parameters on the response, while the square and interaction 
effects presented a statistically insignificant influence. Optimisation in 
Minitab identified a maximum in the response, fraction of bed utilised 
until breakthrough of 0.774 at a bed height of 0.025 m, an inlet con
centration of 11500 ppm and a flow rate of 35 ml/min. When con
ducting a confirmation experiment under these conditions, the response 
was found to be 0.81 indicating a good agreement with the model. 

In the optimisation of CO2 adsorption by (Baldovino et al., 2017), 
Tads (X1, from 40 to 120◦C) and inlet gas flow rate (X2, from 100 to 300 
ml/min) also featured as the investigated variables alongside adsorbent 
(nitrogen-functionalised graphene-oxide) loading (X3, from 4 to 8 mg). . 
Using a modified TGA-equipment, the modified graphene oxide was 
evaluated for CO2 adsorption using 15 pre-defined experiments with the 
response Y defined as the amount of CO2 adsorbed (mmolCO2). The 
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optimum points were found at 80◦C, 100 ml/min and 8 mg providing an 
uptake of 0.0063 mmolCO2. If we first consider the optimum Tads, this is 
contrary to the generally accepted ideal temperature for physical 
adsorption, but you must consider that there exists 
nitrogen-functionalities on the adsorbent surface which require elevated 
temperatures to interact with the CO2, hence, 80◦C is likely the ideal 
temperature for a cooperative contribution to adsorption from both the 
physical and chemical interactions. Although unlikely to inform those 
considering industrial deployment of this modified graphene oxide, the 
results did expose several things that must be considered when inves
tigating novel materials for CO2 adsorption using TGA equipment. The 
optimum values for both the adsorbent loading and gas flow rate are 
most likely a result of the experimental setup. A larger loading simply 
exposes a greater surface area for adsorption to take place, whereas an 
elevated flow rate just increases the throughput of gas in the fixed TGA 
furnace volume thus reducing residency time and hence, reducing the 
quantity adsorbed. The proposed quadratic model revealed by the RSM 
presented a predicted optimum response with a 1.59 % error. 

4.2. Optimisation of Adsorbents’ Capacity via Variation of Process 
Conditions; Aqueous Media 

4.2.1. Factorial DoE 
A 24 full factorial design has been applied to optimise the adsorption 

of many pollutants including MB using AC synthesised from cashew nut 
shells (Subramaniam and Kumar Ponnusamy, 2015). The experimental 
design in this study, however, also contained nine replicates at the 
centre point and eight experiments at axial points, resulting in 33 ex
periments conducted in total. The independent process variables were 
pH (X1, 2 – 10), adsorbent dose (X2, 0.5 – 3 g/L), initial dye concen
tration (X3, 50 – 250 mg/L) and τads (X4, 60 – 120 min). Minitab 14 
software was used to estimate the response of the dependent variable. 
The optimum conditions for maximum MB removal were 10, 2.18 g/L, 
50 mg/L and 63 min for pH, adsorbent dose, initial dye concentration 
and τads, respectively. It was observed that the adsorption capacity of 
MB is significantly reduced when the pH is very acidic (≤ 2). At low pH 
MB is positively charged and therefore, competitive adsorption would be 
observed between the cationic dye and the H+ ions. Additionally, in 
acidic conditions, the pH is lower than the point of zero charge of the 
adsorbent causing the surface to become positive. Consequently, the 
electrostatic repulsion between the adsorbent and the dye increases, 
therefore, decreasing the adsorption capacity. The student t-test was 
applied to determine the significance of the parameters. All factors were 
realised to be significant due to their high t numbers and p-values 

smaller than 0.05. ANOVA was applied to determine the significance of 
the model. The large F-value of 161.8 and p-value of < 0.0001 indicated 
that the model was highly significant and could adequately represent the 
relationship between the variables and the response at a 99 % confi
dence level. The optimisation of adsorbent dosage and contact time on 
removal percentage was studied using RSM. The maximum removal was 
achieved when the adsorbent dose and τads were in the region of 1.4 – 
2.2 g/L and 60 – 90 minutes, respectively. 

A 25 full factorial design has been less commonly used to optimise 
chromium (VI) adsorption using a granular AC (Halder et al., 2015). This 
experimental matrix was applied to investigate the effects of pH, AC 
dose, contact time, initial concentration and temperature on percentage 
removal. The method employed ANOVA and RSM to determine the 
optimum removal efficiency of 96.33 %, which was achieved when the 
conditions were as follows: pH 4.0, AC dose 1.6 g/L, contact time 40 
min, initial concentration 200 mg/L and temperature of 35◦C. 

4.2.2. Central Composite DoE 
Many studies have been undertaken to optimise the adsorption of 

pollutants, when considering up to three factors; however, when there is 
a lack of knowledge about the system in question, there could be a large 
number of potential factors. Preliminary screening methods such as 
Placket-Burman analysis can be applied to determine factors with sig
nificant contribution to the output. Pareto charts are a good visual 
method to identify significant factors and/or interactions involved in a 
design optimisation study. This is achieved by arranging the absolute 
values of the target factors (calculated by statistical software) in a 
descending order (Antony, 2014). The key component of the graph is the 
reference line; any factors exceeding this limit are deemed to be sig
nificant, whereas the factors below are not. For example, (Asfaram et al., 
2017) used this method to consider six factors: pH, adsorbent mass, 
sonication time, brilliant green (BG) and malachite green (MG) con
centration and ultrasound temperature, discovering the former three 
factors to be significant using Pareto charts (Fig. 12). The factors were 
studied on five levels and a total of 14 experimental runs. The optimum 
conditions were found to be a pH of 7.0, an adsorbent dosage of 0.02 g 
and an ultrasonication time of 3 minutes. At optimum conditions, the 
removal percentages for MG and BG were 99.5 % and 99.0 %, 
respectively. 

ANOVA revealed that pH had the most significant impact on the 
removal percentage of both BG (f = 793.8, p < 0.0001) and MG (f =
1934.0, p < 0.0001). It was observed that adsorption capacity decreases 
with decreasing pH. As mentioned in section 4.2.1, this is due to 
competitive adsorption between the dyes and H+ ions and increased 

Fig. 12. – Pareto chart of parameters effects on the removal efficiency for (a) BG and (b) MG. (Asfaram et al., 2017).  
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electrostatic repulsion. Analysis of combined effects revealed that pH 
and sonication time had a significant impact on BG adsorption (f =
151.9, p = 0.0003), whereas MG adsorption was considerably affected 
by the interaction between adsorbent mass and sonication time (f =
80.18, p = 0.0002). Similar to BG adsorption, the maximum MG 
adsorption was achieved when both of the interacting factors were at 
their maximum values. RSM determined that the maximum removal 
percentage was achieved in the region defined by the highest adsorbent 
mass and sonication time. 

Adsorption of heavy metals and dyes using functionalised multi- 
walled carbon nanotubes (MWCNT) was optimised using CCD (Alimo
hammady et al., 2018, Mahmoodi et al., 2020, Bandari et al., 2015). The 
heavy metal studies were similar in the fact that they both investigated 
adsorbent dose, pH and initial ions concentration. (Alimohammady 
et al., 2018) investigated the three factors on five levels, while (Mah
moodi et al., 2020) investigated an additional factor of contact time, on 
3 levels. Both studies employed Design-Expert to determine the exper
imental design and statistically assess the data. The former study con
sisted of 20 experimental runs, whereas the later required an additional 
10 experiments. Both studies applied ANOVA to determine the signifi
cant factors. (Alimohammady et al., 2018) reported that pH had the 
greatest impact on both the adsorption of Hg(II) and As(III). In contrast, 
for Cd(II) the concentration was found to be the most significant factor 
in the latter study (Mahmoodi et al., 2020). RSM was applied in both 
cases to gain an understanding of the combined effects of the variables 
and determine the optimum conditions for adsorption; however, the 
former (Alimohammady et al., 2018) further analysed the data using 
perturbation plots (Fig. 13). In all cases, pH displayed a sharp curvature 
indicating sensitivity of this variable. The plots also indicated that 
maximum removal efficiency was achieved when adsorbent dose was at 
the maximum level. 

The value of the pH determines the dominant species present in the 
solution, for example, at pH < 3, Hg2+ is the dominant species, whereas 
Hg(OH)2 becomes dominant at pH ≥ 6. When the pH is raised to above 6, 
the adsorption capacity is substantially increased due to hydrogen 
bonding between mercuric hydroxide and the carboxylate groups on the 
surface of the MWCNTs. Additionally, at lower pH there is strong 
competition between H+ and the metal ions on the adsorption sites, 
reducing adsorption capacity. The optimum conditions for the adsorp
tion of Hg(II) and As(III) were found to be a pH of 7-8, an adsorbent 
dosage of 20 mg, and an initial ionic concentration of 20 ppm. The 
optimum conditions for Cd(II) adsorption, were 0.02 g, 10.69 mg/l, 
30.45 min and 6.37 for adsorbent dose, Cd(II) concentration, contact 
time and pH, respectively. 

Other researchers have optimised the removal of organophosphorus 
pesticides (azinphos methyl, chlorpyrifos, malathion, and parathion) 
using CCD (Wanjeri et al., 2019). MWCNTs fixed onto the surface of a 
magnetic silica substrate (Fe3O4@SiO2). The experimental method was 
designed using Statistica version 8. Three experimental factors were 

considered on three levels, namely, pH (X1, 3 – 11), adsorbent dosage 
(X2, 6 – 80 mg) and τads (X3, 6 – 60 min). The optimum conditions were 
found to be an adsorbent dosage of 80 mg, a pH of 7 and a contact time of 
6 min, giving a maximum removal efficiency of 89.8, 95.9, 99.8, and 
99.2 %, for azinphos methyl, chlorpyrifos, malathion, and parathion, 
respectively. Following ANOVA, dosage was determined to be of most 
significance for azinphos methyl, chlorpyrifos and parathion, whereas 
pH was the most significant factor for malathion. The acidity of the 
solution was still significant for azinphos methyl adsorption (though, 
had little impact on chlorpyrifos and parathion). This was attributed to 
the decomposition of azinphos methyl and malathion within acidic and 
alkaline solution, affecting their recovery. Nevertheless, malathion is 
most sensitive to pH due to the absence of a benzene ring within the 
structure, leading to a lack of π-π stacking interactions at higher pH and 
consequently, lower percentage recoveries. Removal efficiency 
increased with increasing dosage for all organophosphorus pesticides 
due to the increase in available active sites for adsorption. Additionally, 
extraction time was shown not to impact sorption of the evaluated 
pesticides. 

4.2.3. Box-Behnken DoE 
BBD has been employed to optimise the removal percentage of MB 

using chemically-activated carbon (Jawad et al., 2020), (Jawad and 
Abdulhameed, 2020). One study (Jawad et al., 2020), applied an opti
misation process consisting of 29 experimental runs with three levels, 
five centre points and four parameters investigating the impacts of 
adsorbent dose (X1, 0.02 – 0.08 g), pH (X2, 4 – 10), Tads (X3, 30 – 60◦C) 
and τads (X4, 30 – 120 min). All factors were found to be statistically 
significant when analysing the data using ANOVA (p < 0.05). Dosage 
was found to have the greatest effect on removal percentage (f = 135.19, 
p < 0.0001), temperature was the least impactful parameter (f = 5.17, p 
= 0.0393). When considering combined effects, however, only the 
interaction between X1 and X2 was statistically significant (f = 10.21, p 
= 0.0065). RSM was utilised to further study X1 X2, depicting a positive 
correlation between dosage and pH with removal percentage reaching a 
maximum when both factors are at the highest value. The phenomenon 
can be explained by considering the point of zero charge of that AC (6.8). 
At pH greater than 6.8 the adsorbent acquires a negative charge, hence, 
an enhanced electrostatic attraction between the adsorbent and the 
cationic dye resulting in greater removal percentage. 

Several studies have applied BBD to optimise the removal of heavy 
metals (Azari et al., 2015), (Adetoro and Ojoawo, 2020). (Azari et al., 
2015) applied BBD to optimise the removal percentage of Ni(II), Co(II) 
and Cd(II) using a magnetite-AC composite. The method was planned 
using Design Expert software (version 8.0), consisting of 46 experi
mental runs to investigate the following factors on three levels: pH, τads, 
Tads, adsorbent dose and initial concentration of metal ions. RSM was 
applied to investigate the effects of pH and temperature and the former 
was found to be the significant parameter. This phenomenon was 

Fig. 13. – Perturbation plot for the adsorption process. a Hg(II) removal by MWCNTs-COOH, b Hg(II) removal by MWCNTs-f, c As(III) removal by MWCNTs-COOH, 
and d As(III) removal by MWCNTs-f (Alimohammady et al., 2018). 
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attributed to electrostatic forces between the adsorbent and metal ion as 
when the pH is acidic, the surface of the adsorbent is positive leading to 
electrostatic repulsion between the metal ions and the positive surface. 
The surface of the adsorbent becomes ionised as the pH is increased 
leading to increased electrostatic attraction and removal percentage. 
The 3D surface plots also revealed the τads and initial ion concentration 
to be inversely related, therefore, maximum removal percentage was 
achieved when τads was at the highest value and initial concentration 
was at the minimum (due to increased competition for active sites on the 
adsorbent surface when the concentration of ions was elevated). 
Adsorbent dosage and τads were also studied using RSM, depicting 
maximum removal efficiency at the greatest level of both factors. 
ANOVA was applied to determine the significance of the model. The 
F-values for Ni(II), Co(II) and Cd(II) were 83.80m 69.05 and 56.09, 

respectively All p-values were < 0.0001, indicating that the models for 
all ions were significant. 

5. Conclusions and Recommendations 

Experimental work is often tedious, requiring myriad time and re
sources. However, intelligent designs of experimental campaigns can not 
only alleviate this burden but also provide valuable insight into the 
governing forces, their prominence and impacts on the response vari
able. Within academia, the powerful DoE techniques have been mostly 
overlooked, leading to usage of additional time and resources as well as 
missing the various possible parameter interactions that may greatly 
impact the outcome of the process. This might be attributed to the fact 
that these powerful optimisation tools are, perhaps, not fully understood 

Fig. 14. – Simplified algorithm for DoE selection and execution.  
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and have been, for part, overlooked within academia. 
Here, we have endeavoured to facilitate a better understanding of 

some of the most popular DoE techniques (via a description backed up 
with a simple visualisation, outline of their benefits and drawbacks, 
proposed applications, followed by an overview of the most prominent 
data analysis tools as well as best practices) in order to maximise 
implementation of advanced experimental designs within the academic 
domain of chemical and environmental engineering, which was then 
followed by examples and discussion of the results and their in
terpretations within the domain of carbonaceous adsorbents’ synthesis 
and application. This review paper aims to help bridge the gap between 
commonly employed optimisation DoE tools and their deployment in 
academic research to improve sorbent uptake capabilities and the 
associated process performance in environmental applications. Unfor
tunately, the vast range of carbonaceous adsorbents precursors, their 
proposed application (both in terms of adsorption media, adsorbate and 
process envelope) and processing/activation techniques prohibits a 
blanket approach towards optimisation. Nevertheless, in terms of sor
bent production, τact and Tact coupled with IR for chemical activation 
(and potentially their interactions) are more often than not found to be 
the most impactful parameters in terms of sorption capacity enhance
ment and porosity development (within the confinements of their 
(respective) appropriate levels). In terms of adsorption process optimi
sation, the feed conditions (whether adsorbate concentration and/or 
flow rate) and the process/experimental conditions (time, pH, temper
ature, pressure and etc.) as well as their interactions are normally found 
to be statistically significant. The exact parameters and levels would 
vary greatly depending on the optimisation goal (e.g. maximum removal 
efficiency or optimised cost), the materials and methods as well as the 
experimental campaign goal itself. 

The authors urge the operators to plan and then evaluate critically 
their proposed experimental campaign in primis; prior to execution, and 
to identify the appropriate DoE technique based on desired outcome 
(goal of the study) as well as the number of parameters (and levels) 
involved. The choice of these input variables could be informed based on 
previous works or literature on similar adsorbents, adsorbates, processes 
and etc. The levels should endeavour to encompass the maximum range 
possible (that would result in high quality data (e.g. avoiding data loss 
points, equipment constraints or clearly ludicrous conditions)), whilst 
simultaneously striving to keep the step size as small as practically 
possible. Additionally, prior to optimisation, if the process is not yet well 
understood, (pre)screening studies are recommended. These may well 
inform (or even be incorporated into) the next experimental design. A 
simplified flow chart is depicted in Fig. 14 to help practitioners visualise 
the process of adopting and carrying out an experimental campaign 
utilising DoE technique to their full potential. 

It is a good practice to avoid misusing designs, i.e. screening param
eters with a CCD or employing small 2-level factorial designs to study high- 
order interactions. Additionally, avoiding simple 2-level designs (by 
adding centre points or increasing the number of levels) as well as 
randomising the trials are advised. The former assists with determining 
curvilinear relationships within the design space, while the latter de
creases the impact of noise on the system. Moreover, operators have to 
keep in mind that the mathematical optimum might be unattainable or 
uneconomical in real-world applications. 

Wide implementation of DoE techniques would not only increase the 
pace at which evaluations and academic studies are carried out, but it 
would also improve the optimisation of the associated processes. 
Consequently, this would allow for accumulation of more data (for 
instance, the vast importance of parameter interactions on the operation 
of a system as a whole and its actual demonstration as opposed to 
theoretical concepts) and fundamental understanding, whilst utilising 
fewer resources and therefore, paving the way for the conduction of 
accelerated yet more efficient research. 
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