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Abstract—This paper proposes a gas identification system based
on the committee machine (CM) classifier, which combines various
gas identification algorithms, to obtain a unified decision with im-
proved accuracy. The CM combines five different classifiers: K
nearest neighbors (KNNs), multilayer perceptron (MLP), radial
basis function (RBF), Gaussian mixture model (GMM), and proba-
bilistic principal component analysis (PPCA). Experiments on real
sensors’ data proved the effectiveness of our system with an im-
proved accuracy over individual classifiers. Due to the computa-
tionally intensive nature of CM, its implementation requires sig-
nificant hardware resources. In order to overcome this problem,
we propose a novel time multiplexing hardware implementation
using a dynamically reconfigurable field programmable gate array
(FPGA) platform. The processing is divided into three stages: sam-
pling and preprocessing, pattern recognition, and decision stage.
Dynamically reconfigurable FPGA technique is used to implement
the system in a sequential manner, thus using limited hardware
resources of the FPGA chip. The system is successfully tested for
combustible gas identification application using our in-house tin-
oxide gas sensors.

Index Terms—Committee machine (CM), dynamically reconfig-
urable field programmable gate array (FPGA), gas identification,
pattern recognition.

1. INTRODUCTION

HE PAST DECADE has seen a significant research ac-
Ttivity in the development of electronic nose (EN) for a
wide range of applications in civil and military environments.
Most of this work has been focused on systems using mi-
croelectronic gas sensors featuring small size and low-cost
fabrication, making them attractive for consumer electronic
applications. Unfortunately, gas sensors present a lack of se-
lectivity and, therefore, respond similarly to a wide variety of
gases. Thus, the general structure of an EN, which combines an
array of sensors with signal preprocessing and pattern recog-
nition algorithms, has been widely accepted and being used by
researchers in this field [1]. Combining multiple classifiers to
build an ensemble classifier is an advanced pattern recognition
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technique which has gained increasing attention within the
machine learning community [2]. Ensemble-based classifier
is generally more robust and accurate than a single classifier
trained on the original dataset. However, ensembles suffer from
some shortcomings as reported in [3]: “While ensembles pro-
vide very accurate classifiers, there are problems that may limit
their practical applications. One problem is that ensembles can
require large amounts of memory to store and large amounts
of computation to apply.” Thus, this scheme can be put to
efficient practical use only if efficient hardware implementation
strategies are developed. The appearance of fast reconfigurable
field programmable gate arrays (FPGAs) brings about a new
path for the design of such systems. FPGA-based implemen-
tation has the advantage of short design period and low cost
of fabrication, which are suitable for the implementation and
prototyping of new algorithms. However, the FPGAs present
limited resources to implement complex hardware such as the
EN system. Dynamically reconfigurable FPGA techniques
[4]-[6] provide the possibility of implementing such complex
system by using time multiplexing strategies.

In this paper, an EN system using a committee machine
(CM) classifier is implemented using a dynamically reconfig-
urable FPGA-based system. The proposed CM combines five
different pattern recognition algorithms: K nearest neighbors
(KNNs), multilayer perceptron (MLP), radial basis function
(RBF), Gaussian mixture model (GMM), and probabilistic
principal component analysis (PPCA) [1], [7]-[9]. The CM
combines the results of all the individual classifiers by applying
a novel combination rule and achieves improved classification
performance [10], [11]. This paper is organized as follows.
Section II presents the general architecture of the EN system.
Section III describes the proposed CM and evaluates its classi-
fication performance. Section IV describes the implementation
of dynamically reconfigurable FPGA-based gas identification
system and presents the detailed architecture of its building
blocks. Section V presents the implementation results and
discussion. Section VI concludes this paper.

II. ARCHITECTURE OF EN SYSTEM

An EN is an instrument which comprises an array of
electronic chemical sensors with partial specificity and an
appropriate pattern recognition system, capable of recognizing
simple or complex odors. As illustrated in Fig. 1, this process
can be split into five stages: sensing, signal preprocessing, di-
mensionality reduction, prediction, and validation [1]. Sensors
that can transform different gases into measurable electrical
signals are fundamentally required in the application-specific
sensing system. After the sensor signals have been acquired, the
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Fig. 1. Building block of the pattern analysis system for an EN.

Fig. 2. Microphotograph of the integrated gas sensor array.

preprocessing stage is used to extract descriptive information
from the sensor array response and generate the feature vector
for further processing. Dimensionality reduction is an optional
stage used to project the initial feature vector to a lower dimen-
sional space. The prediction stage is used to solve the problem
of classification, regression, or clustering depending on the
application requirement. Here, we focus on the application of
combustible gas recognition, this stage can be called pattern
recognition stage. The final stage is used to estimate the true
error rates or select the parameter settings for a trained model
by means of validation techniques but it is not necessary for the
practical EN system.

In our application, microhotplate tin oxide gas sensors are
used for combustible gas identification application. Tin-oxide
gas sesnors feature the advantage of good sensitivity to com-
bustible gases, low-power consumption, low fabrication cost,
and compatibility with semiconductor technology [12]. Fig. 2
shows a microphotograph of the manufactured chip including
four sensors on a single chip. Each sensor has its own heater
and temperature sensor. Three different sensing films are used
to implement the sensor array. One sensor is based on Au/SnO
(sensor 1), another sensor is based on Pt/Cu(0.16 wt%)-SnO
(sensor 2), and the remaining two sensors are based on Pt/SnO
(sensors 3 and 4) [13]. Totally, two chips were used and cal-
ibrated by tuning their selectivity to a given set of gases using
the temperature parameter. A good sensitivity to H was obtained
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Fig. 3. Typical response of the sensor array. The voltage measurement of the
sensor decrease when exposed to the analyte gases.

at about 260 °C, while a good sensitivity to CH was obtained at
about 300 °C. It should be noticed that the two chips are iden-
tical; however, the operating temperature is different, allowing
us to tune the selectivity of the two chips to different gases. The
two chips provide eight responses, which could be seen as a fin-
gerprint or a signature corresponding to a given gas mixture,
which can then be exploited by a pattern recognition system in
order to build a selective detection system, as will be described
in the following sections.

When the sensors are exposed to the analyte gases, the resis-
tance of the sensor will change. Thus, the voltage response of
the sensor is measured using a simple voltage divider. Fig. 3
shows the row response of the two sensor chips (operated at
different temperature) to the an input gas. The steady-state of
the sensors are used as features. Thus, a gas pattern is a vector
with dimension of eight. After the gas pattern is obtained from
the sensor array, Euclidean normalization is performed to re-
duce the pattern dispersion induced by concentration changes.
Normalization has been previously employed in gas discrimi-
nation applications where the identification must be based on
signature pattern, and not on the concentration dependent am-
plitudes [13]. Normalization is also useful to set the range of
values for sensors output. Principal Component Analysis (PCA)
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Fig. 4. Architecture of the CM (CT stands for CT).

is then used to remove the redundant information of the gas pat-
tern and reduce the complexity of the pattern recognition stage
by decreasing the dimension of the gas pattern [14], [15]. Fi-
nally, the pattern recognition stage will process the gas pattern
to perform the classification. CM is used as a pattern recogni-
tion stage, which will be described in the next section.

III. COMMITTEE MACHINE (CM) AND
WEIGHTED COMBINATION

A. Committee Machine (CM) Architecture

A CM is a classical ensemble method which combines a mix-
ture of experts and effectively make use of the results produced
by individual classifiers to improve the classification perfor-
mance. Fig. 4 shows the system overview of our CM combining
five classifiers (KNN, MLP, RBF, GMM, and PPCA). In order to
combine the results from each individual classifier, the outputs
of the classifiers are first transformed to confidences using con-
fidence transform functions (CT as shown in Fig. 4). The con-
fidences are then combined using weighted combination rule to
generate the score for each gas. The class with the highest score
would be selected as the recognized gas.

B. Confidence Transform (CT) Functions

The CT method is the combination of a scaling function and
an activation function [16]. The scaling and activation functions
are used to normalize the outputs from each classifier in order to
make the outputs comparable and meaningful by transforming
the classifiers output to a moderate range. In order to find the
confidences of various classifiers, we used different functions
depending on the classifier [17], as follows.

* K nearest neighbor: The classifier calculates the distance
between the unknown pattern x and each data pattern. The
closest K examples will be found in the data set and the
predominant class C; is selected among those K neigh-
bors. Thus, the confidence of the result is defined as the
number of neighbors belonging to each class divided by
K,ie.,

Ky
Cfe= K ey
In our experiment, we set K = 3. This choice of K = 3 in
implementing the KNN was purely experimental and based
on the classification performance. KNN was tested for dif-

ferent values of K and k = 3 enables the best performance
for our specific application.

* Density models (GMM and PPCA): The classifier will
model the class conditional density (z|Ck) (i.e., the
model is trained for each class) and then by applying
Bayes’ rule to compute the posterior distribution, we
obtain

o(Cela) = L) 6)
iz 0z | Cp(C)
The posterior probability o(Cy|z) is considered as the con-
fidence for our density models.

* Neural networks: The output of MLP approximates the
posterior probabilities. Although, in practice the number of
training data patterns is limited, the outputs will not always
represent probabilities. In order to interpret MLP outputs as
probabilities (confidence), the following function is used:

exp(yx)
> im1 exp(yi)

where v, is the output related to k), class. For RBF, the
outputs can also be interpreted by the posterior probabili-
ties of class membership.

Chw= 3)

C. Combination Rules

In order to reduce the risk of any algorithm that performs
poorly on average from affecting the ensemble decision, we
propose to use the weighted combination rule to combine the
confidences computed from the outputs of each individual clas-
sifier. The weighting and combination block shown in Fig. 4
assembles the results by calculating the score S of each class as
follows:

Sy = Z W (i)C fi (i) 4)

The class with the highest score would be selected as the rec-
ognized class of the CM. We propose a weighting function to
calculate weights for individual classifier [17]

P, - P,

NW, = B _ P, 4)
where N W; is the weight of a given classifier - with a given per-
formance P;. P, and P, are the best and the worst classification
performance within the CM, respectively.

To evaluate the performance of the proposed CM and indi-
vidual classifiers, we used a gas data set, which is collected from
our tin-oxide gas sensor array. Table I summarizes the analyte
gases and their concentration ranges used in the experiment. The
steady states of the sensors are used as features. The original gas
data set with dimension of eight is projected to a lower dimen-
sion space by using PCA. Tenfold cross validation method is
used to obtain the average classification performance of all the
classifiers. Table II reports the average accuracy of the trained
classifiers based on gas data set with different principal compo-
nents (PCs).

Using the normalized weights, the impact of each classifier is
normalized with respect to its performance with the CM. At the
same time, the worst classifier is removed from the ensemble
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TABLE 1
GASES AND THEIR CONCENTRATION RANGES

Gas concentration range (ppm)
co 25-200
Ho 500-2000
CHy 500-4000
CO — H> 25-200&500-2000
CO — CHy 25-200&500-4000

TABLE II
GAS IDENTIFICATION RESULTS BASED ON GAS DATA SET
WITH DIFFERENT PRINCIPAL COMPONENTS (%)

No. of PCs 2 3 4 5 6 7 8
KNN 79.1 86.4 88.6 87.7 88.2 89.1 89.1
MLP 81.4 | 88.2 91.8 90.5 93.2 93.6 92.3
RBF 70.9 | 65.5 86.4 86.8 81.8 83.2 82.3
GMM 75 86.4 90.9 94.5 90 91.8 90.9
PPCA 70.5 | 81.8 84.5 84.1 79.1 79.1 79.1
CM 82.7 | 90.9 | 93.2 | 95.5 | 94.5 | 95.5 | 95.9

because its corresponding normalized weight will be zero. The
results demonstrate that with the use of confidence and normal-
ized weighting function, poor result from individual classifiers
would not affect the ensemble result.

IV. IMPLEMENTATION OF EN SYSTEM BASED ON
DYNAMICALLY RECONFIGURABLE FPGA

A. System Overview

We have seen in the previous section that the EN system
consisted of data acquisition, signal preprocessing, and pattern
recognition stages. Our proposed CM can achieve over 95%
classification performance. However, the implementation of the
whole system will occupy very large hardware resources. Thus,
using full-custom IC design will lead to high fabrication cost.
In addition, the response of the sensor is very slow (the time to
achieve steady-state is around a few hundred seconds to a few
minutes) [18], [19], thus, full-custom IC design, which is gen-
erally used to achieve high-speed operation, is not necessary for
our application. Semi-custom design such as DSP, microcon-
troller, or FPGA is another viable option but only if sufficient
hardware resources are available.

Due to the slow response of the sensor array, the time con-
straint is relaxed allowing to operate each stage of the system
sequentially. This relaxed requirement will permit to use all the
hardware resources for different stages, while the gas identifi-
cation system is implemented, as shown in Fig. 5.

This system can be regarded as a dynamically reconfigurable
system which can implement different stages at different times.
Reconfigurable FPGA presents a good solution to implement
such dynamic reconfigurable system. For the whole system, we
can first implement data acquisition and signal preprocessing
stage on the FPGA to generate a valid pattern to be processed
at a later stage by the pattern recognition system. After signal
preprocessing is performed, the gas pattern will be stored in
the SRAM and the FPGA will be automatically reconfigured
to implement the CM. The CM will first read out the gas pat-
tern stored previously in the SRAM and perform the classifica-
tion. All the results will be stored again in the SRAM before the
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FPGA is reconfigured to implement the final decision stage. Fi-
nally, the decision stage will output the results from the CM and
provide the classification results.

The system platform is shown in Fig. 6. The platform consists
of two boards: the sensor interface board and the FPGA board.
A gas sensor array chip, analog multiplexer, and ADCs are lo-
cated on the sensor interface board, which is used to sample
the responses of the sensor array and convert them into dig-
ital data. The gas identification system was developed based
on the RC203 FPGA platform provided by Celoxica [20]. The
RC203 is suitable for evaluation and development of high-per-
formance FPGA and soft-core microprocessor-based applica-
tions. The FPGA on RC203 belongs to Xilinx virtex II family,
which is shown in Fig. 7.

There are two banks of SRAM providing a total of 4 MBytes
and a SmartMedia socket used to configure the FPGA. All the
bit files for the FPGA reconfiguration are stored in the Smart-
Media card. The FPGA is reconfigured through CPLD by down-
loading bit files from the SmartMedia card. The SRAM is used
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to store intermediate results and the LED is used to display the
final classification result. The following section will introduce
the FPGA implementation of all building blocks including data
acquisition, signal preprocessing, pattern recognition, and the
final decision stage.

B. Architecture of the CM’s Building Blocks

1) Data Acquisition and Signal Preprocessing Stage: Data
acquisition and signal preprocessing stages are used to extract
the steady-state of the sensors and prepare the gas patterns for
pattern recognition stage. Fig. 8 shows the architecture of the
data acquisition and signal preprocessing block.

An analog multiplexer with eight input channels, a 12-bit se-
rial ADC and a buffer are used to build an interface between
the sensor array chip and the FPGA. As illustrated in Fig. 8§,
the FPGA is configured to implement the circuits including a
steady-state detection (SSD) circuit, normalization circuit, PCA
circuit, and the control circuit implemented as a finite-state ma-
chine (FSM). The FSM is used to generate control signals for
the analog multiplexer, clock signal for the ADC. In addition,
the FSM is responsible for controlling all the other three blocks
mentioned above.

Fig. 9 shows the timing diagram of the sampling circuit for
the sensor array using an analog multiplexer and a 12-bit se-
rial ADC. A 20 MHz clock signal generated by the FPGA chip
is used to control the conversion and readout processes of the
12-bit serial ADC. The process of sampling the response of one
gas sensor takes 20 clock cycles (Fig. 9). The whole process can
be described as follows: 1) at the first clock cycle, the ENMUX
signal is set high and a 3-bit address is generated to determine
which gas sensor will be sampled; ii) at the second clock cycle,
the ADC is enabled by setting the CS signal to low and the CLK
is used to generate SCLK which controls the readout process;
iii) during the first three cycles of SCLK, 3 leading zero bits are
generated, 12 data bits will be generated serially after 3 zero

bits; and iv) at the last clock cycle of SCLK, the output of the
ADCl is set to tri-state and a new sampling process will start after
three clock cycles. Data can be periodically sampled every 1 s
and the sensors in the array are scanned at a rate of 1 MHz. The
circuit shown in Fig. 10 is used to detect the steady-state of the
sensors. The detection process is explained in Fig. 11. When the
response from +th sensor is sampled, a shift register (SR) is used
to receive the digital word from the serial ADC, then a subtractor
will calculate the difference between the sampled data and the
previously sampled one from the same sensor stored in RDi.

A comparator will compare the difference with a certain
threshold and the output of the comparator will control a switch
to decide whether the sampled data will be stored in RDi or
RSi registers which are used to store the dynamic response or
the steady-state value, respectively. If the steady-state of the
sth sensor has been detected, the FSM will receive a low signal
from the comparator and will generate a high signal to disable
the switch, which means that the steady-state is reached for the
ith sensor. Finally, the steady-state values of the sensor array
will be ready in RS7-RS8 for normalization. The normalization
circuit consists of a group of adders and a divider to realize the
city block normalization expressed by

€Ly
S ©

The architecture of the normalization circuit is shown in Fig. 12.
The sum of all the components of the pattern vectors is first
calculated by a group of adders. Then, a divider is applied to
normalize each component one by one and the results are stored
in RNI-8 registers.

The PCA circuit is used to realize the linear transform of the
gas pattern to a lower dimensional space. The transform is actu-
ally a vector-matrix multiplication, which can be expressed as

Tin

z=zxT 7

where z, x, and T are the transformed pattern, the original pat-
tern, and the transform matrix (a constant matrix), respectively.
The implementation of the PCA circuit is based on Distributed
Arithmetic (DA) [21]. ROM-based DA uses a ROM table to
store the precomputed data, which makes it regular and effi-
ciently implemented into an FPGA hardware [22]. The basic
operations required are storage of precomputed coefficients in
a ROM, addition, subtraction, and shift operations of the input
data sequence [21]. All of these functions can be efficiently
mapped to FPGA structures. Consider an inner product of two
vectors A and B of length K

K
Y = Z Ay By )
k=1

where By is in 2's complement binary number scaled such
that |B,| < 1, with wordlength N and is defined as By: by,
b, - - brv_1)

N-1
Bp= b+ »_ bgn2 " ©)

n=1
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Fig. 10. The SSD circuit used to extract the steady-state of the gas sensor array.

where by is the sign bit. Substituting (8) in (9), we obtain

K N-1
Y = Z Ap | —=bro + Z ban_"]

L -

"4 Z A (=bro)

B
- K
"+ A(=bro).  (12)
k=1

(10)

(1)

1

[l
gl

1

K
|2 Arbn
k=1

The term Zszl Apbgn and Zszl Ay (—bro) have only 2* pos-
sible values each, and can thus be stored in a ROM of size 2k+1,
However, if an adder/subtractor block is used, instead of just an
adder, the second term in (12) can be eliminated, and the size
of the ROM is reduced to 2%. Hence, vector dot product can be
efficiently implemented in DA form using ROMs and adders.
Fig. 13 shows a simple structure that can be used to calculate
(12) with K = 3. By is delivered in a one-bit-at-a-time fashion
with LSBs first to access the ROM. The sign bits are the last bits
to be received. S is the sign control signal (when the sign bits are
received, S will be set high). This sign control signal is used to
configure the add/subtract unit and toggle the switch shown in
Fig. 13. During each clock cycle, components of B} will shift
their LSBs out to access the ROM and the corresponding value
stored in the ROM will add the previous partial results (which

3
II

Voltage (V)

steady state B

Fig. 11. Sampling process controlled by the FPGA. The difference between
two sampled values is compared with a threshold until a steady-state is detected.
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Fig. 12. City block normalization circuit.

have been right shifted one bit). After the sign bits access the
ROM, the result is output. The content of the ROM is shown on
the right side of Fig. 13. The size of the ROM is dependant on
the vector’s length K.

In our case, the original gas pattern x has a dimension of
eight (K = 8) and z has a dimension of five. Thus, five ROMs
with size of 28 x 11 bits (z is 8 bits) are required for DA-based
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Fig. 14. PCA circuit implemented based on DA algorithm.

implementation. In order to reduce the size of the ROM, we
divided z and T into two parts: z* with the first four components
and z2 with the last four components, T with the first four rows
and T with the last four rows. Now, (6) and (7) can be rewritten
as
z=g'T" + 2°T°. (13)

Thus, ten ROMs with the size of 2* x 10 bits are required for
DA-based implementation. The architecture of PCA circuit is
shown in Fig. 14. The calculation of each principal component
requires two DA units and one adder. The architecture of the
DA unit is shown in Fig. 13. The 4-bit address used to access
the ROM is composed of the LSBs of four components of !
or z2. The DA unit requires eight clock cycles to finalize the
calculation. z will be stored in RP/-RP5.

All the circuits mentioned above are implemented in the same
FPGA chip but SSD, normalization circuit and PCA circuit are
enabled sequentially due to the slow response of the sensor.

C. CM Stage

The CM consists of the five individual classifiers, which we
introduced in Section II1. All of the five individual classifiers are
designed and implemented on the same FPGA chip. However,
each individual classifier can be considered as an independent
system and operates in parallel on the FPGA chip. The imple-
mentation of each individual classifier are introduced next.

: 1
; .

Fig. 15. Architecture of KNN classifier.

1) KNN: KNN classifier calculates the distance between an
unknown pattern and all the data patterns and find the K nearest
neighbors. Thus, the operation of KNN classifier can be divided
into two parts: i) calculating the distance between unknown pat-
tern and each data pattern in the training data-set and ii) finding
the K nearest neighbors for the input pattern.

The architecture of KNN classifier is shown in Fig. 15. All the
components of the unknown pattern z are fed into the system
in parallel. The :th elements of the data pattern are stored in
ROM:. There are five subtractors, five SQuare units (SQ), and
four adders used to calculate the squared distance between x and
one data pattern. A winner-takes-all (WTA) circuit consists of
three comparators (C1-C3) and three registers (R/-R3) which is
used to find three nearest neighbors (KX = 3 in our application).
The KNN classifier operates using pipelining strategy and hence
the new squared distance can be calculated every clock cycle.
The WTA circuit compares the distances one by one and update
the three nearest neighbors in R/-R3 every clock cycle until the
last distance is processed. The operation of the circuit can be
described as follows: when a new distance is calculated, CI-C3
will compare this distance with the previous three smallest dis-
tances stored in R/—R3 (the first smallest distance is stored in R/
and there are 5 bits used to store the label of the corresponding
data pattern corresponding to the class label). The output of
C1-C3 will dictate whether the information of R/—R3 will be
updated or not.

The new distance and the label of the corresponding class will
be stored in R/ and the information in R/ and R2 are shifted to
R2 and R3, respectively. If the new distance is just smaller than
the one stored in R2 and R3, the new distance will be stored in
R2 and the information in R2 is shifted to R3. The comparison is
repeated until all the distances are compared. Finally, the labels
of the three nearest neighbors stored in R/-R3 will be stored in
the SRAM.

2) MLP: In our application, the MLP network consists of
two layers. The computations involved in the MLP classifier
can be described as two vector-matrix multiplications and the
calculation of the activation function described by

M
yk(.’l,‘) = Zwqu)j(:c) + Wko- (14)
=1

The basis functions can be given by tan h activation functions

®;(x) =tanh (07 + 0,0) . (15)
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The vector-matrix multiplication is implemented using ROM-
based DA. The calculation of the activation function are imple-
mented based on linear piecewise function (LPF) approximation
which is proven to be hardware friendly [23]-[25]. The archi-
tecture of MLP classifier is shown in Fig. 16. The number of
hidden nodes of the MLP in our application is six. Thus, six
DA units DA1-1 to DA1-6 and 6 LPF units are used to realize
(14). The outputs of the 6 LPF units will access the other five
DA units DA2-1 to DA2-5 to obtain y in (15). Finally, y will be
stored in the SRAM for final decision.

3) RBF: The RBF classifier is similar to MLP and the main
computation is expressed by

;(x) = exp (— (16)

y(z) = W (x) (17
where ®(z) are M fixed basis functions ®;(z) and Wisacx M
matrix of the adjustable network weights [8]. The number of
hidden nodes of RBF (n = 13) is much higher than that of MLP
in our application. Thus, calculating the activation function of
each hidden node in parallel would result in excessive hardware
resources. DA-based RBF implementation was not selected be-
cause it requires all the vector components to access the ROM
in parallel, which is prohibitively expensive. The RBF circuit
architecture is shown in Fig. 17. The components of z are fed
into the system serially and a subtractor, a square unit, and an
accumulator are used to calculate the distance between x and
the centers. In (16), 012» is approximated by using power-of-two
coefficients in order to use shift operation instead of a division.
The dimension of z is 5, ®;(x) is generated by the LPF unit
every five clock cycles. During these five clock cycles, ©;(x)
will multiply w1 to ws; one by one to obtain the partial results
of y1 to y5. Finally, five accumulators are used to obtain the final
y result.

4) GMM and PPCA: In a Gaussian mixture model, a clas-
sifier can be constructed by evaluating the posterior probability
of an unknown input pattern = belonging to a given class C}
expressed as p(Cy|z). Based on Bayes’ theorem, p(Cy|z) can
be written as

©(Cr)p(2|Cr)
o(z)
where p(C}) and p(z) are the frequency of a given training

sample in the data set and the unconditional density, respec-
tively. In GMM case, the class conditional densities p(z|C})

9(Cklr) = (18)
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Fig. 17. Architecture of RBF classifier.

can be expressed as a linear combination of basis functions
p(z]7). A model with M components is described as a mixture
distribution [9]

(19)

M
$|Ck = Z

where () are the mixing coefficients of the component den-
sity functions p(z|j). Each mixture component is defined by a
Gaussian parametric distribution in d dimensional space

eXP{—% (z—n) =7 - #j)}
(2m) /2|31

p(x]j) = (20)
Since the unconditional density p(z) is independent of the class,
it may be omitted from the Byes’ formula as the classifica-
tion process consists of comparing the posterior probabilities.
p(2|Cr)p(Cy) is, therefore, used to find the decision bound-
aries in the evaluation period, which can be expressed as

M

0(Cr) > o) ().

i=1

o(z|Cr)p(Cr) = 21

When implementing GMM classifier, a new set of parameters
(constant K; and a triangular matrix G;) are defined and used
instead of p(C), p(4), |=;|*/2, and 2;1(2]-_1 is a full matrix)
in order to reduce the memory size. The new coefficients K
and G; are given by

_o(Chel)
b )
G/ G, = z:— (23)

G is a triangular matrix introduced in order to reduce the com-
plexity as compared with dealing with a full matrix when it
comes to (20) calculation [25]. If we assume that

7 =[x — )" Gjll(z —n;)"Gj]" (24)
(21) can be rewritten as
(x| Cr) p(Cr) Z Kjexp{—z;}. (25)

7=1
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Fig. 18. Functional blocks of the GMM classifier system [25].

Fig. 18 shows the functional block diagram of the overall
GMM classifier system. The architecture includes two main reg-
isters Reg-X and Reg-GMM used to store the input pattern z and
the GMM parameters (u, G, K), respectively.

The GMM processor includes a serial parallel vector matrix
multiplier, a square and multiplier units, two accumulators, and
a LPF unit, which is used to approximate the exponential func-
tion. Initially, the G; Matrix is multiplied by the s; = = — p;
vector. The resulting vector g, is then feed to a square unit fol-
lowed by an accumulator, which performs the summation of all
the squared components of the vector resulting in the value z;,
as described in (24). The result is fed to the LPF unit and is
multiplied by a constant K;. The multiplication result repre-
sents a single parameter K; exp{—z;}, which when accumu-
lated M times will lead to the value of p(z|Cy)p(Ck), as de-
scribed by (25). An accumulator is, therefore, required at the
output of the exponential block which is iterated M times. The
values p(z|Cy)p(Cy) are then stored in the SRAM.

PPCA classifier is similar to GMM in the evaluation period.
Thus, the implementation of PPCA is the same with GMM ex-
cept for the parameters stored in the ROM which are obviously
different.

D. Confidence Transform (CT) and Decision Stage

We have seen that the CM will first process the outputs of each
individual classifier in order to evaluate the confidences. Next,
the weighted confidence are calculated to obtain the scores for
each class. The class with the highest score will be assigned to
the unknown pattern. The architecture of the CT and the de-
cision unit is shown in Fig. 19(A). Five CT units are used to
process the outputs of the individual classifier and to evaluate
confidence values. Five multipliers and adders are used to ob-
tain the final score. A digital winner-takes-all (WTA) circuit is
used to make the final decision.

We can note from Fig. 19 that the CT unit for different clas-
sifiers is different. For KNN, the classifier provides 5 bits labels
of 3 nearest neighbors. The 5 bits label will control the multi-
plexer to decide whether the confidence of each class will be
increased or not [Fig. 19(B)]. Since K is equal to 3 for our ap-
plication, the confidence will be increased by 1/3 for 1 nearest
neighbor. If three nearest neighbors belong to the same class, the

NW1
Labels of 3NN mé
Nw2

RBF
R CT RBF é}—~

MLP___|
Y- CT MLP

classification
(.

WTA
result
(A)
2
—~[Acc}—=cn
g
\Y4
Yy
—[acC }|—cn

Y2 -
] > V; —{Divider Cfi
» o

[ F—-[aCC }—c15 v
() ©)

Fig. 19. (a) Architecture of CT and decision unit. (b) CT unit for KNN. (c) CT
unit for MLP, RBF, GMM, and PPCA.

TABLE III
IMPLEMENTATION RESULTS ON XILINX VIRTEX II FPGA CHIP
Data acquisition | Committee CT &
& signal machine decision
preprocessing
No. of slices 2723 12146 3075
(% of resources) (19%) (84%) (21%)
No. of 4-in LUT 3812 20115 4236
(% of resources) (13%) (70%) (15%)
Frequency (MHz) 50
Reconfiguration time (ms) 26.26

confidence will be 1. For the other four classifiers, the output y
will be normalized into the range of [1 0] to approximate the
post probability of each class. Thus, adders and a divider are
used to calculate the corresponding confidence. Finally, a dig-
ital WTA circuit [25] is used to make the final decision based on
a weighted majority vote function.

V. IMPLEMENTATION RESULTS

A. System Implementation Results

Hybrid design entry based on a top level Handel-C wrapper
and optimized cores from the Xilinx Coregen library for stan-
dard arithmetic operations such as addition/subtraction, multi-
plication, division and comparison has been adopted. The EDIF
netlists are generated using the the Celoxica DK 3 Design Suite.
ISE 7.1 [26] has been used to synthesize the design and generate
the configuration bitstreams.

The gas identification system is divided into three parts, as
illustrated in Fig. 5. The three main building blocks of the CM
are implemented into Xilinx virtex Il [26] FPGA chip separately
and the corresponding bit files are stored in the SmartMedia
card. The implementation results are summarized in Table III.
A clock frequency of 50 MHz is applied to the system, which
is the maximum frequency available on RC203 board. It can be
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TABLE IV
OCCUPIED RESOURCES ON XILINX VIRTEX II, SPARTAN 3, AND VIRTEX
FPGA CHIP. FOR VIRTEX, STAGE 2.A CONSISTS OF KNN, GMM, AND RBF
CLASSIFIER AND STAGE 2.B CONSISTS OF MLP AND PPCA CLASSIFIER

Stage 1 Stage 2 Stage 3
Virtex 11 19% 84% 21%
Spartan 3 13% 59% 15%

Stage 1 | Stage 2.a | Stage 2.b | Stage 3
Virtex 39% 92% 83% 31%

noted from Table III that the dynamic reconfiguration concept
permits us to implement computationally intensive processing,
which otherwise would not be possible on a single FPGA. The
overall system requires 24% extra resources, which is possible
to accommodate using dynamic reconfiguration, as illustrated
in Table III.

The FPGA chip is automatically reconfigured by down-
loading the bit file in the SmartMedia card through CPLD. The
reconfiguration process can be described in the following basic
operation. i) Once the FPGA completes the current task, it will
communicate the address where the bit file is located in the
SmartMedia card to the CPLD. ii) The CPLD sets up the FPGA
for the next reconfiguration and checks if the SmartMedia
card is inserted properly. iii) The bit file is copied from the
SmartMedia card through the CPLD. The reconfiguration time
is proportional to the size of the bit file, which depends on the
type of FPGA chip. The size of the Xilinx virtex II bit file is
1.25 MByte. The reconfiguration time was measured for our
application to be around 26 ms. It should be noted that the
system is easily portable to other FPGA platforms and chips.
For the sake of comparison, we implemented our system using
different FPGA chips and the required resources are reported in
Table I'V. A less powerful processor will require partitioning the
processing to a large number of stages. For example, in the case
of Virtex, the CM stage cannot be implemented on the FPGA
chip in a single iteration. The CM stage is, therefore, further di-
vided into two stages: stage (a) which consists of KNN, GMM,
and RBF and stage (b) which consist of MLP and PPCA (refer
to Table IV). It should be noted, however, that a more powerful
FPGA such as Spartan 3 can handle all required processing
stages in one iteration. It is, however, important to note that the
limiting factor in the design is the speed of the sensor. Hence,
time multiplexing by reconfiguration does not decrease the
overall performance. Conversely, apart from a simpler design,
newer and larger FPGAs, which are significantly more expen-
sive, do not offer any other performance advantages that can
be effectively leveraged, in our application. In addition, there
is a significant surge of algorithmic solutions using boosting
strategies, whereas a cascade or a parallel configuration of
“basic classifiers” are used in order to improve the overall
detection performance [27], [28]. Dynamically reconfigurable
hardware can be very effectively used for such applications as
the number of basic classifiers can be prohibitively large and
may not fit on a single chip FPGA.

B. Gas Recognition Results

An automated experimental setup was built in order to per-
form gas sensing characterization. The setup can be used to
measure gas-sensing characteristics in well-defined temperature
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cycles and gas concentration levels. The system includes a gas
chamber, the gas delivery system, as well as the data acquisi-
tion system. The sensor chip is placed inside the chamber with
feed-through wires used for resistance measurement and tem-
perature control. The data from the sensor are sampled and pro-
cessed using the FPGA platform. The gas concentrations in the
sensor chamber are adjusted by selecting the correct flow rate
for different gases. The temperature of the sensors is constantly
monitored by periodically reading data from the integrated tem-
perature sensor. The microhotplates of each chip are heated to
a particular temperature by flowing the precalibrated current
through the heating element. After the training procedure, the
parameters for each classifier are quantized and loaded into the
FPGA board. The test performance was experimentally mea-
sured using the FPGA platform and the performance are com-
pared with the performance obtained by simulation. 94% accu-
racy was obtained for the CM using 5 PCs. This represents a 2%
drop in performance as compared with the simulation results
reported in Table II. This performance degradation is mainly
due to the quantization error and linear piecewise approxima-
tion used to implement some of the complex nonlinear func-
tions needed for some classifiers such as MLP, RBF, and GMM.
It should be noted, however, that the performance of individual
classifiers generally suffer more than a 4% drop in performance
suggesting that CMs are robust against quantization error.

VI. CONCLUSION

In this paper, the implementation of gas identification system
based on dynamically reconfigurable FPGA was introduced.
Due to slow response of the gas sensor, the time constraint is
relaxed allowing to partition the computation requirement of
our system into different stages and FPGA implementation
is carried out sequentially. The proposed gas identification
system consists of three stages: data acquisition and signal
preprocessing, CM, CT, and decision. Data acquisition and the
signal preprocessing unit includes a SSD circuit, normaliza-
tion circuit, and PCA circuit to extract the steady-state of the
sensors and generate the normalized gas pattern with reduced
dimensionality. For the implementation of the CM which con-
sists of five classifiers (KNN, MLP, RBF, GMM, and PPCA),
each individual classifier is implemented as an independent
system but all classifiers operate in parallel within the FPGA.
Novel ROM-based DA approach was applied to implement the
vector-matrix multiplication required in most preprocessing
and pattern recognition algorithms. The results from the CM are
further processed in order to evaluate the confidence using 5 CT
units operating in parallel. Finally, a digital WTA circuit [25] is
used to make the final decision based on a weighted majority
vote function. The implementation of different stages of the gas
identification system shared the same FPGA chip in a dynamic
way. The system can operate at a frequency of 50 MHz. The
reconfiguration time of the FPGA chip is around 26 ms, which
can be neglected compared with the speed of the gas sensors
(in the range of a few seconds). It was shown that the dynamic
reconfiguration concept enables the implementation of compu-
tationally intensive processing, which would not be possible
on some FPGA platforms. Dynamically reconfigurable FPGA
offers a very viable implementation mean which can be used for
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implementing new generation of boosting and cascading-based
pattern recognition algorithms. Indeed, these algorithms feature
a prohibitively large number of basic classifiers which may not
fit on a single FPGA chip.
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