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Abstract 
Predicting business insolvency is considered one of the main supportive sources of information 

for decision making for financial institutions, investors, creditors, and other participants in the 

business market. Financial reporting systems provide relevant information that can be used to 

assess the financial position of firms. It is crucial to have classification and prediction models 

that can analyse this financial information and provide accurate assurance for users about 

business health. Recent studies have explored the use of machine learning tools as substitute 

for traditional statistical methods to develop classification models to classify firm insolvency 

according to financial statement information. However, these models have no ideal classifier, 

since each provides a certain percentage of wrong outputs, which is a crucial consideration; 

every percentage of wrong response can mean massive financial losses for stakeholders. 

Therefore, this study proposes new insolvency classification and perdition models based on 

machine learning modelling techniques to develop an improved classifier.  

Individual modelling techniques using statistical methods and machine learning were used to 

develop the classification model of business insolvency. The results showed that machine 

learning method outperformed statistical methods. Deep Learning (DPL) achieved the highest 

performance based on all performance measurements used in the study, and it was the best 

individual classifier, with average accuracy of 97.2% using all-years dataset. Ensemble-

Boosted Decision Tree classifier ranked second, followed by Decision Tree classifier. Thus, it 

has been proven that DPL modelling approach is useful for business insolvency classification.  

A key contribution in enhancing individual classifier outputs is the use of traditional combining 

methods with two new aggregation methods in business insolvency (Fuzzy Logic and 

Consensus Approach). The Consensus Approach showed the best improvement in the results 

of all individual classifiers with average accuracy of 97.7%, and it is considered the best 

classification method not only in comparison with individual classifiers, but also with 

traditional combiners.  

This study pioneers the development of a time series business insolvency prediction model 

with Big Data for UK businesses. The aim of the model is to provide early prediction about a 

business health. Three prediction models were developed based on Nonlinear Autoregressive 

with Exogenous Input models (NARX), Nonlinear Autoregressive Neural Network (NAR), 

and Deep Learning Time-series model (DPL-SA) and achieved average accuracy rates of 

83.6%, 89.5%, and 91.35%, respectively. The results show relatively high performance in 

comparison with the best individual classifier (deep learning).  
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Chapter 1  
Introduction 

1.1. Background 

The increasingly interconnected globalised economy has increased competition among 

business institutions to remain competitive and retain or increase market share worldwide, 

which has become a universal need among all business stakeholders. This puts more pressure 

on companies, and increases uncertainty about their survival, compounded by advanced 

technologies in robotics and the Internet of Things that are poised to revolutionise industries 

and supply chains. Therefore, companies face several critical challenges in their marketing, 

human resources, financial supply, and innovative systems dimensions, which can eventually 

lead to business failure if not managed effectively (Li and Sun, 2011). Business failure is 

defined as the state in which the company is not capable of honouring its commitment (Smiti 

and Soui, 2020). Many factors, such as weak corporate governance, lack of innovation, and 

weak performance of business management in a market full of uncertainty may hinder the 

achievement of organisational goals and can eventually lead to business failure (Gordini, 

2014).  

There are numerous factors that lead to companies failing, the most prominent of which among 

major corporations are high interest rates, recessionary profits, and high debt burdens (Charitou 

et al., 2004). In addition, specific industrial features can have profound impacts, such as 

government regulation and the nature of operations, which could contribute to the financial 

distress of companies and lead to failure (du Jardin, 2015). Studies of business failure patterns 

in Australia, Canada, the UK, and the US have shown that small, private and newly formed 

companies with inefficient control procedures and poor cash flow planning are more vulnerable 

than larger public companies to financial distress (Charitou et al., 2004). For any size of 

institution there are significant economic costs of business failure, which extend far beyond the 

failed institutions themselves (e.g., ancillary impacts of unemployment, interrelated with socio-

economic development and local and national economic growth). Evidence shows that before 

their final collapse, the market value of distressed companies decreases significantly; thus, 

business failures severely affect capital suppliers, investors, and creditors, as well as internal 

stakeholders (management, employees, and supply chain partners). Auditors may also face the 
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risk of prosecution when firms fail, as they are mandated to provide qualified audit opinions 

that provide early warning signals about potential failure of companies (Lisic et al., 2015). 

Business failure prediction is of great importance to help business stakeholders make rational 

economic decisions. Enterprise condition concerns the business community components of its 

participants as well as policy makers and the global economy. Hence, the economic and social 

costs resulting from businesses’ inability to survive have triggered the attention of researchers 

to better asses the financial condition of enterprises and their future long-term operation 

prospects using their financial results (Jabeur et al., 2021). Companies’ own financial reporting 

systems (which are subject to state regulation) are considered to be a major indicator used by 

stakeholders to get information about business status (Williams, 2016).  

Business failure analysis faces the issue of how to classify firm status (as either active or failed). 

The aim of classification models is to help users to make better economic decisions on whether 

to invest in businesses based on their financial indicators. After the pioneering study of Altman 

(1968), the field of business failure modelling has been widely researched and developed by 

scholars deploying statistical approaches such as Linear Regression and Multiple Discriminant 

Analysis (MDA), to build and develop classification models that have been used later as a 

baseline benchmark model in the field. More recent technological developments have enabled 

the use of artificial intelligence (AI) modelling techniques such as Artificial Neural Network 

(ANN), Decision Tree (DT), Naïve Bayes (NB), and Support Vector Machine (SVM) as 

substitutes for traditional statistical methods of analysis, for the purpose of developing more 

robust business failure models (Heo and Yang, 2014; Tsai et al., 2014; du Jardin, 2015; 

Iturriaga and Sanz, 2015; Barboza et al., 2017; Jing and Fang, 2018; Smiti and Soui, 2020).  

The large amount of information on firms’ financial data has attracted the attention of many 

researchers to apply more data mining techniques in order to improve classification accuracy 

in evaluating the situation of firms. It has been concluded from the literature that machine 

learning techniques outperform statistical methods in terms of classification accuracy of 

business insolvency. However, despite of the impressive results achieved by researchers in the 

field, and the ability of data mining tools to classify business failure using financial data, there 

is still a call for larger sets and more complex modelling techniques to develop models and 

increase classification accuracy (De Andrés et al., 2011; Lee and Choi, 2013; Zhou, 2013; 

Gordini, 2014).  
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The use of various techniques in the construction of business failure models has evolved with 

time. Researchers have adjusted the design of the individual business failure models using more 

complex modelling methods, such as ensemble and combining methods, in an attempt to 

improve model classification capabilities and to enhance performance (Lee and Choi, 2013; 

Wang et al., 2014; Barboza et al., 2017; Fan et al., 2017; Choi et al., 2018; du Jardin, 2021). 

The basic idea of utilising this method is to achieve better classification results, using a group 

of single classifiers that have been trained and tested in classifying business status individually. 

However, computational costs accompanied with increased modelling complexity can be a 

drawback when adopting ensemble and combining methods in business failure studies. 

Nevertheless, it is believed that using more complex modelling methods could lead to better 

business failure models, which is the main aim of this thesis (Lee and Choi, 2013; Wang et al., 

2014; Barboza et al., 2017; Fan et al., 2017; Choi et al., 2018; du Jardin, 2021).  

The purpose of this study is to clarify the potential capability of more complex data mining as 

a classification tool in accounting and financial analysis to classify and to predict business 

failure. This study attempts to develop an accurate classification model and another early 

prediction model using different using data mining techniques. This study is the first to use Big 

Data of financial information to develop a model capable to classify and to predict business 

failure in the UK.  

1.2. Research Motivation 

Recently, the research in the area of business failure prediction has focused on adopting 

individual classification models. However, complex ensemble methods have also been adopted 

based on combined pools of diversified individual classifiers for building prediction models. 

There are two types of combination methods that have been used in business failure studies: 

homogenous and heterogeneous classifier ensembles. The first method combines different 

classifiers that have the same algorithm, such as ensemble boosting DTs, while the second 

combines classifiers that have different algorithms. Both methods aim to enhance classifiers 

prediction performance through offsetting the weaknesses of individual classifiers.  

Recent business failure prediction studies have shown that ensemble classifiers can enhance 

prediction results and produce better performance than single AI classifiers. Most of these 

studies have focused on homogenous combining methods, such as weighted average, majority 

voting, reliability-based methods, and fuzzy rules. However, few studies have focused on 

employing heterogeneous combining methods. Ensemble learning uses n heuristic algorithm 
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to combine all classifiers’ decisions, after they are trained independently, to produce one final 

classification decision.  

1.3. Aim and Objectives 

The main aim of this study is to discover and explore a new combining technique and new 

individual classifiers that can enhance business failure prediction for the UK firms by 

developing a new combination method and classifiers. This study addresses the question of 

whether new classification techniques and complex combining methods can enhance 

classification performance and produce more reliable results. The process in developing the 

proposed models starts with simple individual classifiers using different individual data mining 

techniques, followed by adopting and implementing various combination techniques to achieve 

the main goal of this study. Firstly, deep learning classifier is used as an individual classifier, 

to answer the question of whether it can outperform other individual classifiers. Then, a new 

combination method (Cons combiner and Fuzzy logic) is developed whereby individual 

classifiers work in tandem, interacting and cooperating to solve the same problem. Another 

aim of this study is to explore new time-series classifiers, such as Nonlinear Autoregressive 

Neural Network (NAR), NARX, and DPL-SA, to predict business failure one year earlier. To 

achieve the main aim, this study seeks to address the following objectives:  

• Collect a balanced dataset of the UK businesses. 

• Clean the datasets. 

• Implement nine individual classifiers, including DPL classifier and LR as a benchmark 

for performance comparisons. 

• Improve individual classifiers’ performance by implementing Cons and Fuzzy logic 

combiners and comparing the outcomes with traditional combining methods.  

• Implement time-series modelling methods (NAR, NARX, and DPL-SA). 

• Measure classifiers’ performance based on different performance measurements. 

• Using significant test, Friedman, and Bonferroni to validate classifier performance and 

demonstrate that Cons has better classification performance than other individual or 

combined classifiers tested in this work.  
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1.4. Contributions to Knowledge 

This study uses various modelling techniques to build and develop business failure prediction 

models in an attempt to improve classifier performance. The main contributions of this work 

are as follows:  

• A comprehensive literature review on different modelling approaches used in the field 

of business failure prediction.  

• Using a balanced Big Dataset of UK firms. 

• Applying a new individual classifier using DPL techniques and comparing it with all 

available individual classifiers that have been used in studies of business failure 

classification. 

• Improving individual classifier performance through two new combining methods 

(Cons and Fuzzy Logic) and comparing the results with different traditional combining 

models. 

• Implementing a time-series prediction classifier to predict business failure in advance. 

• Introducing new performance measurement to validate classifier performance. 

• Using significant tests to explore which classifier has the most reliable prediction 

performance. 

• Allozi, Y., Abbod, M., (2021). Predicting Business Failure using Neural Network: An 

Empirical Comparison with Statistical Methods and Data Mining Methods. The 3rd 

International Conference on Deep Learning, Artificial Intelligence and Robotics, 

(ICDLAIR). University of Salerno, Italy. (Accepted). 

1.5. Structure of the Thesis 

This thesis consists of seven individual chapters, structured as follows. 

Chapter 2 presents the theoretical background in the field of business failure and its related 

issues in the literature, focusing on the historical development of the field accompanied, with 

a focus on the source of business failure indicators that used to develop classification and 

prediction models. Secondly, it focuses on the application of data mining techniques in other 

financial areas, such as fraud prediction and on-going concern prediction. The next section 

presents a systemic review of related works on business failure that have utilised data mining 

techniques for developing their proposed models, followed by a comprehensive critical 

analysis of its findings to finally highlight the gaps in the reviewed works. 
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Chapter 3 presents the methodological experimental design adopted on this thesis, explaining 

each step in developing the classification and prediction models. The chapter explains data 

collection and pre-processing techniques used to structure the proposed classifiers. 

Classification methods and all performance measurements are explained in their theoretical 

context.  

Chapter 4 presents all individual classifiers used to develop business failure model (ANN, LR, 

linear discriminant analysis [LDA], KNN, SVM, DT, NB, ENS-DT, and DPL. All individual 

classifiers’ results were presented, followed by a comparison in terms of their performance 

measurements. Significance testing were used to determine the best classifier that can classify 

business failure most accurately.  

Chapter 5 presents two new combining methods (Cons and Fuzzy logic) and another six 

traditional committee combiners (AVG, WAVG, Median, MAX, MIN, and Majority Voting), 

which were tested to improve the individual classifier performance (presented in Chapter 4). 

This chapter explains the theoretical background of each combining method. Their 

performance results after tested are presented and discussed. Finally, a decision is made to 

determine the best combiner method that has the best classification improvement in term of 

correctly classifying firm status.  

Chapter 6 presents the time-series modelling techniques adopting in this study to predict 

business failure in advance (including NAR, NARX, and DPL-SA). The prediction results of 

each model are then evaluated and presented based on all performance measurements, and are 

compared with the performance results of the individual classifier DPL for the Year 2019 

benchmark dataset. In the final step, the statistical significance test is applied to determine 

which method has the best prediction capability for business failure.  

Chapter 7 highlights the main conclusions drawn from the experimental results of all 

classifiers’ performance, noting the salient outcomes, It also identifies the study limitations and 

directions for future research in this field. 
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Chapter 2  
Literature Review 

2.1. Introduction 

This chapter presents a comprehensive review of literature relating to business failure 

prediction modelling approaches. It begins with the theoretical background of business failure 

and its definition, the importance of financial reporting and financial analysis as a main 

indicator of business failure to assess firms’ health, and its on-going concern on the market. 

This is followed by the history of business failure prediction modelling techniques, from 

statistical to more advanced machine-learning methods. Modelling techniques are then 

described, and their prediction performance is discussed in detail, to better understand their 

predictive capabilities. To date, there are a large number of studies in the literature which have 

been undertaken by researchers and scholars to enhance business failure classification using a 

variety of efficient modelling approaches. Only those which are more related and most relevant 

to business failure that used quantitative modelling methods were selected and collected for 

analysis in this study, in order to achieve its aim. Finally, all findings are demonstrated and 

summarised, along with justifications of the importance of the research trends of classification 

and business failure. 

2.2. Business Failure Conceptualisation 

The integration of worldwide markets and economic globalisation has increased competition 

among businesses in all industries and areas. This places more pressure on businesses in an 

increasingly competitive environment and poses more uncertainty about survival. 

Consequently, enterprises are more vulnerable to potential disruptions, crises, or inefficiencies 

in any operational processes, including marketing, human recourses, financial supply, 

innovation systems and so on, any of which can potentially lead to business failure (Li and 

Sun, 2011). Ineffective management and innovation to address defects in business institutions 

can result in losses and business failure. In most cases, business failure is a result of a 

combination of various critical factors within the enterprise, which are ultimately reflected in 

the financial position of the firm (i.e., economic losses). The accumulation of sustained losses 

accompanied with poor management undermines the prospects for firm development and 

survival, and for larger firms – or clusters of interdependent firms in a supply chain network or 
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market segment – can potentially cause major macroeconomic impacts, such as financial crises 

in the capital market (Lin, 2008).  

An increasing number of failed firms in general is associated with substantial losses in the 

economy, thus the need to classify and predict their failure early in advance has become a very 

important topic. Therefore, both the academic and the industrial fields have become 

increasingly concerned about how to effectively and correctly predict the survival of the firms 

using their financial performance across the years, in order to protect the national 

macroeconomic environment as well as to optimise short- and long-term individual investment 

prospects. 

Business failure can be caused by numerous factors, including legal, economic, financial, 

strategic, organisational, and managerial circumstances. Numerous studies over the years have 

attached varying importance to particular indicators of business failure. Altman (1983) 

highlighted new firm formation, economic growth, and credit policy. Wruck (1990) found that 

financial distress was chiefly related to inadequate cash flow, and that information asymmetries 

makes it hard for firms to restructure and renegotiate with creditors when they are facing 

financial difficulties. More recently, Huynh et al. (2020) demonstrated that information 

asymmetry in Vietnam has a major negative effect on firm value. Several studies have been 

carried out to identify the default risk of corporations by conducting financial analysis on 

accounting information, highlighting the informative capabilities of such information in 

classifying and predicting business failure (du Jardin, 2015; Barboza et al., 2017). 

Enterprise default predictions are an important informative tool used in various fields across 

the economy, helping corporations to establish and adjust their strategies based on their current 

survival status, as indicated by various prediction models. Executive management can be more 

effective and avoid possible failures using key indicators of default risk. Such data provides 

investors with substantial information about companies’ on-going survival, reducing 

uncertainty in the market, which allows them to better manage their portfolios and avoid the 

likelihood of firms’ defaults. Moreover, business failure prediction can help governments to 

revise and impose macroprudential policies to improve the economy through more appropriate 

financial regulations (Alaka et al., 2018). As a result of all these beneficial aspects of firms’ 

failure prediction models, the financial system can be designed and improved to avoid financial 

crisis and market instability. The 2008 global financial crisis and increasing demand to reduce 

uncertainty in world markets highlighted the importance of this field. Therefore, employing 
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and developing prediction models using data mining and machine learning tools to determine 

firms’ status has become the cutting edge of advanced financial engineering in recent studies.  

The quality of business failure classification plays a major informative role for many firm 

stakeholders, such as investors, creditors, employees, and suppliers, etc. From an investor 

perspective, it is crucial to minimise uncertainty about the businesses they are working with or 

investing in, to minimise any potential losses that might accrue from any failure of the business. 

Moreover, other stakeholders who rely on business survival and profitability of the entity that 

they have business with need to understand the level of entity on-going operation and its 

financial health to reduce risk and protect their operation income (Priego et al., 2014). In 

relation to the high-risk environments facing businesses these days, adopting business failure 

prediction models can reduce the cost of financial analysis, the uncertainty of the market in 

general and of the business in particular, and speed-up the business evaluation, allowing better 

observation of business accounts and health. Another benefit of business failure prediction is 

for auditing firms. A substantial role of the auditor is to assess the on-going concern related to 

audited businesses, and failure risk analyses can be an excellent tool for auditing (Kuruppu et 

al., 2003).  

In the UK, the term ‘bankruptcy’ in the business field refers only to individuals, who are 

governed by the Insolvency Rules 1986, and part nine of the Insolvency Act 1986. The de facto 

‘bankruptcy’ of a limited company is referred to as ‘insolvency’, which is governed by UK 

Insolvency Law, by which a business can be compelled to undergo compulsory liquidation 

relatively easily (Gov.uk, 2019). However, business insolvency cannot be easily defined in a 

single definition. According to Watson and Everett (1993), it is simply defined when one of 

four circumstances occur:  

• Sale of the business to avoid more losses. 

• Termination of trading and loss of credit. 

• Ending the business for any other reasons. 

• Not successfully starting a (new) business. 

In this study, insolvent businesses are those that have gone through bankruptcy based on 

receivership or liquidation under UK insolvency law, or which have merged with more stable 

firms. Studied firms are those with available financial data, which can be extracted for analysis. 

Figure 2.1 displays total company liquidations in England and Wales by sector as of Q4 2019. 



10 

 

Figure 2.1: Total company liquidations in England and Wales by broad industry sector,  

year ending Q4 2019 

Source: Gov.uk (2019) 

2.3. Financial Reporting System 

Financial reporting is a communication language used by management to represent financial 

information to firm stakeholders, such as existing and potential investors, creditors, suppliers, 

government agencies, and other external users (Ball, 2006). The reporting system consists of 

the firm’s financial department preparing financial statements, with the collaboration of other 

departments within the firm, including narrative and numerical representation of company 

operations, interests, managerial assumptions, and financial positions on a quarterly and annual 

basis (Ikpefan and Akande, 2012). Narrative disclosures highlight the accounting and financial 
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policies the firm complies with to reflect its managerial assumptions and estimations used to 

report its resources, operations, and liabilities. Numerical disclosures form the core of the 

financial reporting system and the applicable regulatory framework, quantifying the financial 

position of firms through transparent and verifiable representation of business models, 

resources, sources of finance, and operating activity. The purpose of financial disclosures is to 

provide material high-quality information to users that can be effectively used for monitoring 

on-going operations (Ball, 2006). Hence, business failure models rely heavily on this 

information to be able to classify and predict the continuity of business. The reporting system 

consists of five essential statements identified by Mackenzie et al. (2012) and explained below. 

• Statement of financial position 

The financial position statement is the most important, providing summary information about 

three main elements: the assets that the firm owns, and the liabilities and owners’ equities used 

to finance these assets. Assets are divided into current and non-current assets, thus the liabilities 

and the total amount of assets should equal the summation of both the liabilities and owner 

equity. 

• Income statement 

The income statement consists of the firm’s total revenue, the subtraction of all types of 

expenses and costs, and the consequent net income.  

• Cash flow statement 

The cash flow statement consists of operating, investing, and financing cash flow used by the 

firm during the accounting period. 

• Change in equity statement 

The change in equity statement provides information about shareholders’ equity in the firm and 

how earnings are divided (retained earnings and share dividends).  

• Statement of comprehensive income 

The statement of comprehensive income is a general summary of the firm’s earnings relative 

to the above factors. 

All of these financial statements should provide relevant, reliable, and faithful representation 

of financial information to users, to support their decision-making process, and publicly listed 

firms are legally obliged to disclose certain types of information. According to Barth et al. 
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(2008), financial statements make fundamental differences for stakeholder decision-making, 

which is the reason they are so important. Faithful representation means that the financial 

information represents the real economic situation of the firm in the market, with confirmatory 

and predictive value reflecting reality. Naturally, firm stakeholders (particularly management) 

have an interest to present performance favourably, while the board of directors is entrusted to 

oversee managerial activities on behalf of shareholders, to avoid information asymmetry 

between principals and agents. Many researchers have tested the value relevance of financial 

information, and they normally define it as value relevant (Barth et al., 2008; Clarkson et al., 

2011; Yip and Young, 2012). 

According to Barth et al. (2008) there are two primary qualitative characteristics that financial 

statements should deliver to users to inform their decision-making with useful information: 

relevance and faithful representation. Relevance is defined as the capability of the delivered 

financial information to make a difference to users’ financial decisions. It means that the 

financial information has confirmatory and predictive value, which is reflected in the real 

market. Faithful representation means that the financial information represents the real 

economic situation in the market. Moreover, the financial statements have a complementary 

enhancing qualitative characteristic alongside the primary characteristics, which are 

verifiability, timeliness, comparability, and understandably. The purpose of these enhancing 

characteristics is to make financial information more useful for readers and more reliable for 

decision making.  

In the UK, the financial reporting system went through a major development regarding the 

emergence of different regimes used by different firms’ classes for reporting. Small and 

medium size companies were first defined and permitted by the Companies Act 1981 to report 

their financial information using abbreviated accounts (Iatridis, 2010a). Later in 1994 these 

companies were exempted from auditing their reports. Another amendment to their reporting 

regulations occurred in 1997, when they were allowed to report under simpler accounting 

regulations according to FRSSE. Moreover, they were eligible to report their financial 

performance according to UK GAAP. From January 2005 onwards, in compliance with EU 

requirements, all listed companies in the UK started complying with International Financial 

Reporting Standards (IFRS) in all published consolidated accounting statements, while unlisted 

medium-sized and large firms continued to use the UK’s own Financial Reporting Standards 

(FRS).  
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The IFRS are the accountability rules issued by an independent London-based organisation, 

the International Accounting Standards Board (IASB). They offer a set of rules which they 

claim should ideally apply equally to all public companies’ financial reporting worldwide. 

According to regulatory bodies such as the Financial Accounting Standards Board (FASB) and 

the IASB, financial statement reporting provides relevant and reliable information to users that 

is useful for the decision-making process. Therefore, many researchers have tested the value 

relevance of financial information under the IFRS, and they normally define it as value relevant 

(Ball, 2006; Barth et al., 2008; Clarkson et al., 2011; Yip and Young, 2012). 

IFRS adoption is considered a substantial step toward the harmonisation and globalisation of 

the financial reporting standards (Leuz and Wysocki, 2016). Another advantage of the IFRS is 

the improvements it achieves in financial statements’ qualitative characteristics, such as 

transparency and comparability, which in return provide more informative information for 

financial statement users (Ball et al., 2015). These reports help financial analysis and other 

financial statement users to better understand firm performance through extracting different 

financial ratios as an indicator of profitability, and to measure the survival prospects, to make 

better, more informed decisions (Iatridis, 2010b).  

2.4. Financial Statements Analysis 

It is obvious from the previous section that financial reports are an indispensable source of 

information for business failure prediction. With this noted, this section illustrates the 

analytical process of financial reports that provide the final informative features of business 

failure models. Aside from its implicit meaning, financial analysis comprises the process of 

understanding and interpreting the financial information provided in financial statements and 

reports (Rashid, 2018). The analysis of financial statements is at the core of developing reliable 

business failure prediction models. Financial statements analysis is defined as the process of 

converting financial information into more meaningful ratios that can be useful tool to serve 

managements and other financial statements users to analyse firms’ historical performance and 

allow comparison with other peers (Rashid, 2018). Financial statements illustrate firms’ 

operations and profitability during a particular time period.  

Despite their historical nature, financial ratios can provide useful information for users in terms 

of financial matters, but interpretation is still ultimately subjective, relating to user perspectives 

in the context of personal goals and concerns, and expected market developments in the future 

(Garrison et al., 2010). Traditionally, firms were evaluated mainly in terms of on-going 
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operational efficiency by management, future ability to meet obligations by creditors and 

suppliers, and future profitability and dividends by shareholders and potential investors; based 

on these dimensions, several types of financial ratios can be calculated according to different 

priorities (Altman, 1968). Financial analysis using financial ratios plays a major role in 

examining the firms’ future predictions and business failure, which are the primary objectives 

for all users (Garrison et al., 2010).  

Business failures are generally a result of financial distress that companies experience and 

cannot sustain or overcome. Analysing company financial statements is an informative source 

of indicators used to assess the level of the financial difficulties a business might experience 

that could lead to bankruptcy and failure (du Jardin, 2015). Financial statements analysis is a 

useful tool to understand the financial condition of a company, providing an illustration of its 

performance and profitability. Through financial statements analysis, projections about a 

company’s future can be drawn using various financial aspects, which can also be used as an 

indicator of possible bankruptcy. Therefore, predicting the continuity or going concern is an 

important aspect of the financial analysis, whereby prediction models can be constructed using 

the output of the analysis to avoid losses resulting from firm failure.  

In an investigation of the importance of financial analysis as a determination of the companies’ 

condition, Bhargava et al. (2017) conducted a study on the telecommunication industry and 

concluded that there is a high demand for providing financial measurements to monitor the 

economic performance of businesses for improved understanding and decision making by 

investors and other stakeholders. Therefore, financial statement analysis plays a major role in 

assessing firms’ financial conditions and worthiness. Other studies have proven the importance 

of financial ratios and their usefulness in predicting firms’ market and share values (Lewellen, 

2004). However, although such analyses offer useful information on financial reports and 

provide an in-depth understanding of firm condition, precaution has to be taken when 

interpreting them (Abraham, 2004). 

Mesak (2019) analysed the Indonesian stock exchange to explore the impact of financial ratios 

in identifying financial distress conditions. Ratios related to liquidity, profitability, financial 

leverage, and operating cash flow were extracted from companies’ annual financial reports and 

were used as a predictive variable. The model was developed based on logistic regression 

applying 5% significance level. The results showed negative relationships between companies’ 

financial distress and ratios related to liquidity and profitability, and a positive relationship 



15 

with financial leverage. However, cash flow ratios showed no effect on the condition of firms. 

It can be concluded that companies’ management can use these analyses as an early sign of 

possible failure and make and adjust new policies to prevent the firm descending into 

bankruptcy. 

Kulustayeva et al. (2020) used financial ratios calculated from the publicly available financial 

statements of insurance companies of the Republic of Kazakhstan as indicators of their 

profitability and stability. Profitability, leverage, and liquidity ratios were selected as 

independent variables in the model. The empirical testing showed that financial leverage has 

the greatest impact on companies’ profitability and stability, with a positive relationship. 

However, according to Barua et al. (2018), financial leverage ratios have no impact in the short 

term on the profitability of insurance companies, and they have a negative impact over the long 

term. These studies revealed the importance of the analysis of reported financial data and its 

superior informative information for users such as investors, creditors, and other stakeholders 

to assess and predict firm stability, and thus to make better decisions.  

Kanapickienė and Grundienė (2015) studied ‘The Model of Fraud Detection in Financial 

Statements by Means of Financial Ratios on the International Scientific Conference Economics 

and Management - 2015 (ICEM-2015)’, to identify the best financial ratios indicative of 

financial statement fraud. They developed a fraud detection model based on best financial ratio 

fraud indicators, applied to financial ratios extracted from the financial statements of 40 

fraudulent and 125 non-fraudulent Lithuanian firms. Logistic regression method was used for 

model creation. The independent variables of the model included 51 financial ratios, including 

profitability, liquidity, solvency, activity, and structure ratios. Their findings indicated that 32 

financial ratios were suitable for use in classifying fraudulent Lithuanian companies.  

Samman (2015) studied the industrial sector of Oman to measure the financial determination 

of firms’ profitability. With a model consisting of seven ratios, they concluded that financial 

analysis has a significant interpretation performance in determining firm’s profitability and 

stability. Mbona and Yusheng (2019) investigated the best financial ratios to measure the 

performance of the Chinese telecom industry. They analysed financial statements using a 

multiple regression model consisting of 18 ratios as independent variables to determine firm 

performance. The aim of the study was to help different stakeholders picking the most 

significant ratios that reflect companies’ performance. 
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Eng et al. (2018) conducted a fundamental analysis of a sample of 2,164 Chinese companies 

using nine financial ratios extracted from firms’ financial statements to investigate their 

relationship with excess returns. The results show an association between these ratios and 

firms’ excess returns, whereby five ratios had a negative relationship, and the other four had a 

positive relationship. Hence, high quality financial statement figures provide valuable firm-

specific information. However, an earlier study by Bai et al. (2006) on the Chinese market 

found a weak relationship between financial ratios and excess return; they emphasised that 

financial ratios’ explanatory power varies with time.  

Many research studies investigated the purpose of financial ratios as an indicator of firms’ 

profitability and liquidity in various countries. Bolek and Wolski (2012) found that investors 

in the Warsaw Stock Market are more concerned with investing in companies with a higher 

level of liquidity which maintain a high level of cash to meet their obligations. Investor and 

other financial statement users’ perspectives support maintaining high levels of profitability 

and liquidity, represented in financial ratios, in order to assess on-going operations and to avoid 

any potential bankruptcy (Behn et al., 2001).  

Financial ratios provide a useful tool to serve firm management and investors in assessing the 

financial situation of the enterprise through the process of analysing and comparing their 

historical financial performance. This allows them to illustrate what has occurred in a certain 

time to better assess the risk a company faces. However, according to Noreen et al. (2011), 

most financial statement users are more concerned about what will occur in the future. For 

illustration, Altman (1968) indicated that creditors and lenders are more concerned with the 

future capability of the firm to meet all its obligations, while stockholders and investors are 

more concerned about dividends and profitability. In order to assess these matters, financial 

ratios for different purposes can be extracted and calculated from the firm’s income statement, 

balance sheet, change in equity, and cash flow statements, and be used for business failure 

model development.  

2.5. The History of Financial Insolvency Modelling 

The main purpose when developing a business failure model is to establish the best 

classification technique that can accurately discriminate between healthy and failing 

companies, and accordingly classify and predict business status. Business failure classification 

and prediction have been applied widely in the area of finance (Zavgren, 1985; Watson and 

Everett, 1993; Boritz and Kennedy, 1995; Youn and Gu, 2010; Li and Sun, 2011; Priego et al., 
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2014; De Bock, 2017; Alaka et al., 2018). Historically, a wide range of classification 

techniques have been used by researchers in the field, varying from statistical (e.g., LR and 

LDA) to machine learning (e.g., NN, DT, and SVM). The most significant difference between 

statistical and machine learning techniques is in classification superiority, since statistical 

methods rely on assumptions to study the relationship between the dataset features in order to 

predict outcomes, whereas machine learning does not require any assumptions about dataset 

features, and relies directly on available data to develop a classification system (Guang-Bin 

Huang et al., 2004). 

According to Beaver (1968), the first study to identify the risk of business failure was 

conducted in 1908 by Rosedale, who used financial information related to companies’ current 

assets as an indicator of firm failure. Successive researchers in the field focused on using firm’s 

financial information and financial ratios analysis to assess the business insolvency risk more 

accurately (Fitzpatrick, 1932; Smith, 1935; Beaver, 1966), applying univariate discriminant 

analysis to multiple financial measures to predict the companies’ health status. 

Altman (1968) was the first study to propose a foundation model for predicting firms’ default 

in accordance with Beaver’s (1966) recommendations. The model, called Z-score, was 

constructed using five financial ratios representing the financial condition of the firm as the 

predictor of bankruptcy. Z-score pioneered the use of MDA, which subsequently became the 

most commonly used statistical modelling tool. It is capable of generating an ordinal ranking 

of firms’ failure risk, called the credit score. Altman Z-score is considered to be the first 

prediction model that consists of several financial ratios as independent variables that can best 

determine whether a firm is default-based on a linear discriminant function of these variables. 

A firm can be classified as default if the score is above a certain threshold, and as normal if the 

score is below that threshold. MDA was subsequently popular in accounting and financial 

literature (Taffler, 1982), and numerous later studies were simply used by finance professionals 

without considering the assumptions that are to be met for MDA model to be valid. This has 

led to improper application, whereby some assumptions restrict the generalisation of the 

discriminant analysis model, such as the proviso that the independent variables should follow 

multivariate normal distributions (Joy, 1975; Richardson, Davidson, 1984; Zavgren, 1985).  

The next generation of predicting business failure used binary response models to classify 

firms’ health status. Binary classification models classify firms based on their activity status as 

‘1’ for active firms and ‘0’ for inactive (bankrupt, insolvent, and failed) ones. In most cases, 
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explanatory variables such as financial ratios are used for model construction to estimate firms’ 

failure probability based on logistic function, such as pro-bit modelling. An example is the O-

score model proposed by Ohlson (1980), which applies logistic function using financial ratios 

to predict firm bankruptcy. This transformation to a binary classification has several advantages 

over the previous discriminant analysis approach. First, it does not require a specific 

distribution of the independent variables or any assumptions about the probability of the firm’s 

status. Second, it can allow to verify the explanatory power of each of the independent variables 

used in the model. Lastly, it can be deployed to predict the probability of firms’ failure in 

advance. Moreover, Kukuk and Rönnberg (2013) developed a mixed logit model as an 

extension of a binary classification that allows non-linearity and stochastic parameters in the 

prediction variables.  

The third generation of predicting firm’s failure using statistical models is called hazard 

models. According to Shumway (2001), this approach deploys duration analysis to build a 

model that is capable to predict firm defaults over time better than traditional single-period 

models. The hazard model is defined as an early trigger about firm defaults or as a survival 

analysis used to calculate the probability of a firm failing over time. It uses Cox’s (1972) hazard 

regression model as a prediction methodology for binary classification of firm status, where 

firm status is longer classified once failure occurs (Whitehead, 1980). Many later studies 

developed the model further to enhance its prediction performance. Chava and Jarrow (2004) 

confirmed its superior prediction performance, and Nam et al. (2008) used time varying 

covariates to include temporal and macroeconomic predictive factors in an extension of 

Shumway's (2001) analytical methodology. Dakovic et al. (2010) conducted a study on 

Norwegian companies and proposed a discrete hazard model using a mixed linear model, which 

they proved outperformed conventional models using Altman’s (1968) variables. Tian et al. 

(2015) improved the prediction performance of the hazard model using variable selection 

methodology, and Traczynski (2017) applied a Bayesian model averaging methodology on 

hazard model, whose results showed improved performance in correctly predicting default 

firms compared to typical models.  

Due to the increasing availability of advanced technology from the early 1990s, researchers 

were able to develop and use more sophisticated techniques as alternatives to traditional 

statistical tools, enabling them to handle larger datasets. To better understand and predict the 

risk of companies’ bankruptcy, non-parametric modelling methods such as ANN began to be 

used (Odom and Sharda, 1990; Coats and Fant, 1991; Tam and Kiang, 1992; Wilson and 
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Sharda, 1994; Serrano-Cinca, 1997). As neural network modelling techniques have shown 

higher prediction performance over traditional statistical approaches, the race to find more 

effective methods using computing applications continued. Recent years have seen a new 

category of methods resulting from the implementation of more advance computational 

modelling techniques, such as genetic algorithm (Shin and Lee, 2002), SVM (Härdle et al., 

2012), and colony algorithm (Zhang and Wu, 2011). These methods, in comparison with 

traditional linear multivariate analysis or logit and probit analysis, enable more capabilities to 

cope with modelling imprecisely defined problems, large data, and data with incomplete 

features. While a variety of techniques have been historically used for building business failure 

prediction models, the main focus recently has been to develop models using machine learning 

techniques.  

Machine learning, pioneered by Samuel (1959), is a tool used by computers to learn without a 

clear program. These tools have demonstrably superior outperformance capabilities in 

predicting firm’s bankruptcy compared to traditional statistical models (Barboza et al., 2017). 

Among computerised AI techniques, the most commonly used for bankruptcy prediction are 

ANN and NN (Aziz and Dar, 2006; Tseng and Hu, 2010), simply because they are the most 

popular architecture. The ANN back-propagation algorithm for bankruptcy was arbitrarily used 

in many studies (Wilson and Sharda, 1994; Tam and Kiang, 1992; Odom and Sharda, 1990; 

Boritz et al., 1995). In addition, ANN’s prediction model for a relatively small sample size was 

developed by Fletcher and Goss (1993), who noted that ANNs generally need large samples 

for maximum performance (Tam and Kiang, 1992; Wilson and Sharda, 1994).  

The SVM classification modelling algorithm has been widely used to solve classification 

problems, including firm failure prediction. SVM models can classify firms as one of two 

classes (failed or active) using a separating hyperplane, each of which has number of features. 

Shin et al. (2005) applied SVM algorithm to classify bankrupt firms and showed that it 

performs better for predicting firm bankruptcy in comparison with back-propagation ANN 

algorithm. Chiu et al. (2011) compared bankruptcy prediction performance of traditional 

statistical models with the different intelligent modelling techniques and found that SVM 

achieved the highest performance for both short-term and long-term failure predictions. Liang 

et al. (2016) studied bankruptcy prediction using an SVM model based on financial ratios and 

corporate governance indicators as input variables, demonstrating improved prediction 

performance in comparison with other modelling methods.  
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DT is a classification methodology to solve binary classification problems such as firm failure. 

Olson et al. (2012) compared DT algorithm with other machine learning algorithms and 

concluded that it is more understandable and provides better performance for bankruptcy 

predictions. Zięba et al. (2016) conducted a study to predict firm’s bankruptcy using ensembled 

boosted DT accompanied by synthetic feature generation where the results of the experiment 

showed an outperformance of the proposed model in comparison with other classification 

methods. Tsai et al. (2014) developed bankruptcy prediction models using ensemble DT, SVM, 

and neural network, and the results showed the superior performance of ensemble DT.  

ANN is a learning algorithm used to solve problems in processing systems based on the 

operation of the human brain system. It uses a simple structure mimicking the structure of the 

brain, which enables it to solve complex problems such as bankruptcy prediction. Yang et al. 

(1999) explored the prediction capabilities of NNs to predict bankruptcy and claimed that it 

had the best prediction performance in comparison with other statistical approaches. Azayite 

and Achchab (2016) enhanced the prediction capabilities of an NN algorithm by incorporating 

discriminant variables. Geng et al. (2015) conducted a study to predict financial distress on 

Chinese companies and found that NN models outperformed other data mining classification 

methods.  

Prusak (2018) reviewed literature on the importance and application of enterprise bankruptcy 

prediction in central and eastern European countries. The aim of the study was to review the 

usage of prediction models to assess bankruptcy risk in studied countries and to determine the 

level of advancement achieved in the field, where In the Czech Republic, Karas and Režňáková 

(2014) adopted linear multidimensional discriminant analysis and boosted DT methods to build 

and compare the performance of bankruptcy predictions. They concluded that non-parametric 

modelling methods have outperformed traditional statistical methods and are more efficient. In 

Hungary, Bozsik (2010) constructed two prediction models based on LDMA and ANN 

techniques and compared their prediction efficiency, finding that NN techniques had superior 

performance in correctly predicting insolvent firms. Moreover, many researchers in Poland, 

Latvia, Lithuania, Romania, Slovakia, and Ukraine have conducted similar studies to 

investigate in the application of traditional statistical methods or non-parametric methods, 

comparing their prediction performance based on their national datasets. It was concluded that 

foreign prediction models developed in developed countries were mostly used in these studies, 

which may not be transposable to developing or different national contexts, which calls for the 

development of more nation-specific models (Prusak, 2018).  
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Salehi et al. (2016) conduct a study to predict corporate financial distress using four data 

mining classifiers: ANN, KNN, SVM, and NB. The data represented five financial variables 

related to 117 companies listed in the Tehran Stock Exchange for the period from 2011 to 2014, 

with distressed companies categorised according to Article 141 of the Iranian Commercial 

Codes (e.g., companies whose accumulated losses exceed half of their equity). The data was 

divided into two group samples: a training dataset consisting of 75 firms (43 healthy and 32 

distressed), and a control sample consisting of 42 firms (20 healthy and 22 distressed). Three 

performance measurements were used to compare models’ predictions capability: Type I and 

Type II Error, and average accuracy rate. The analysis of the experimental results showed that 

ANN outperformed other classifiers with an average accuracy rate of 88.1% in the year before 

financial distress, and 97.62% for data two years before financial distress. In terms of 

efficiency, SVM ranked second, and NB fourth.  

Li and Miu (2010) compared the classification performance of both traditional statistical 

methods as a benchmark and the top 10 commonly used data mining tools with classification 

and regression tree (CART) for the purpose of predicting business failure. The two baseline 

benchmark methods were MDA and logistic regression. SVM and KNN were selected as the 

two most commonly used modelling techniques among the top 10 data mining algorithms in 

the field of business failure prediction modelling. They used data consisting of 30 financial 

ratios related to 135 pairs of companies (failure and healthy) from the Shenzhen Stock 

Exchange and Shanghai Stock Exchange. Only four financial ratios were selected (activity, 

liability, and growth ratios, and per share items and fields) using stepwise MDA method to 

develop the models. The experimental results show the superior performance of CART over 

the two statistical methods at the level of 5%, and over SVM and KNN at the level of 10%, 

with an average accuracy rate of 90.3%. However, the concluded that the employment of MDA 

as a feature selection method did not enhance CART performance, which indicates that using 

all features would be more suitable to produce higher classification accuracy. 

Jabeur et al. (2021) constructed a classification model to predict corporate failure using 

CatBoost modelling technique. The model uses Ordered Boosting, which overcomes the 

problem of target leakage. The advantages of the new gradient boosting algorithm include its 

lower information loss and ability to successfully work with categorical features. Moreover, it 

is considered useful for small datasets. The new modelling approach was compared with two 

statistical tools (MDA and LR) and six reference machine learning algorithms (NN, SVM, RF, 

Gradient Boosting Machine, Deep NN, and Extreme Gradient Boosting). The model was 
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trained and tested with 18 financial variables extracted from the Orbis database related to the 

financial statements of French firms in order to predict failure one, two, and three years before 

failure. The dataset was divided into 70% for training and 30% for testing. The proposed model 

using CatBoost outperformed other classifiers in terms of average accuracy rate and area under 

the ROC curve. However, according to the results, it only outperformed other classifiers on 

data for data one year before failure; XGboost showed higher average accuracy for year two 

before failure, and RF and NN showed higher average accuracy rates for year three before 

failure.  

2.6. Data Mining Applications in the Financial Analysis 

2.6.1. Financial Statement Auditing and Fraud Detection 

A financial audit is an objective evaluation of an organisation’s financial reports and reporting 

processes, conducted by an independent auditor. The primary responsibility of a financial 

auditor is to provide confidence to stakeholders such as regulators, investors, directors, and 

managers that financial statements are accurate, complete, and free of error or fraud. Although 

they provide a reasonable level of assurance, they do not give the users of financial statements 

absolute assurance. Since fraud detection has to account for a number of unknown and 

inconsistent factors, it has become an exceptionally difficult endeavour that requires both skill 

and technological innovations. Using business analytics tools for analysing and detecting fraud 

in financial statements by auditors is considered very beneficial (Holsapple et al., 2014). 

Detection and prediction analytics modelling is the next trend of analysing data, and it is 

considered as a useful tool to predict what will happen in the future (Bertsimas, Kallus, 2014).  

Chen (2016) constructed a financial statement fraud detection model to analyse Taiwan’s listed 

and OTC companies from various industries, but they excluded the financial industry, since its 

financial statements and ratios are not comparable to those of other industries. The data 

contained companies known to have issued fraudulent and non-fraudulent financial statements, 

with a matching sample design of one fraudulent to three normal companies. Hybrid methods 

of data mining were used to build up the model, and DT, BBN, SVM, and ANN were used for 

variable selection. The model consisted of 30 independent variables, including 23 financial 

variables and seven non-financial variables, to predict and classify fraudulent and normal 

companies. The results showed that the DT CHAID, combined with CART, provided high 

accuracy in detecting financial statement fraud.  
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Amani and Fadlalla (2017) explored the applications of data mining in the accounting field 

through a systematic review of the topic in previous literature. Their research methodology 

consisted of seven steps to capture most related literature from different data resources. 209 

data mining and accounting related papers were selected to be studied in order to be presented 

in a structurally logical and thematically coherent approach. Their results showed that 82% of 

reviewed studies used data mining applications for predictive goals, and 11%, and 7% for 

descriptive and prescriptive goals, respectively. In terms of research topics, 64% of the research 

was related to accounting assurance and compliance; managerial accounting consisted of 25%; 

and financial accounting and accounting information system topics comprised 11% of the 

sample. The review noted that data mining techniques are mainly used for classification 

purposes, followed by estimation.  

Gray and Debreceny (2014) sought to provide a transparent taxonomy of data mining for the 

detection and prediction of financial statement fraud. The research focused on the applications 

of data mining in the auditing field. The authors explained auditing process phases and fraud 

detection patterns and demonstrated the degree of the applicability of data mining in each phase 

and pattern. They concluded that there is a growing general awareness of data mining 

capabilities on auditing and fraud detection by financial statement regulators, standard setters, 

and accounting firms. Moreover, they implied that text mining such as mining the text in firm’s 

emails, annual reports, and MD&A could be used by financial analysts and auditors to enhance 

fraud detection and prediction accuracy. The paper provided useful guidance for future research 

on the application of data mining to fraud detection in financial statement audits.  

Hajek and Henriques (2017) developed an early financial statement fraud detection model 

using data from annual financial statement and MD&A notes from a dataset of 622 US firms 

from different industries. Machine learning methods (NN, DT, SVM, and ensemble classifiers) 

were used to construct a model consisting of 32 financial variables (firm size, profitability 

ratios, activity ratios, business situation, liquidity ratios, leverage ratios, and share related 

ratios), and eight linguistic ones (qualitative information from managerial discussions and 

analysis of firm performance, such as frequency count of positive, negative, tone, and 

uncertainty). The research findings indicate that ensemble DTs achieved higher accuracy in 

determining true fraudulent reporting firms (true positive). However, Bayesian Belief  Network 

(BBN) outperformed other remaining methods in detecting true non-fraudulent firms (true 

negative), which could provide potential decision support for auditors.  
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Dalnial et al. (2014) investigated the capabilities of financial ratios to predict fraudulent 

financial reports, using financial ratios related to financial leverage, profitability, asset 

composition, liquidity, capital turnover, and Altman Z-score model. Multiple regression was 

used as a statistical analysis method to analyse a dataset of the financial statements of 130 

Malaysian publicly listed firms (65 fraudulent and 65 non-fraudulent). The research results 

indicated that the means of profitability ratios exhibited no differences between fraudulent and 

non-fraudulent firms, whereas the other variables showed significant differences. However, 

based on multiple regression result, total debt/total equity, receivable/revenue, and Z- score 

ratios can be an effective instrument for constructing a detection financial fraud model.  

Alles and Gray (2015) researched the application of Big Data Analytics (BDA) tools and their 

advantages in auditing, finding that such solutions can provide auditors with superior analytical 

capabilities, such as strong predictive power, fraud investigation, and the ability to develop 

predictive models for going concern decision. Moreover, they could also be used to reduce 

financial statement fraud and increase ‘red flag’ discoveries, since the substantial Big Data 

content and the concept of 100% sampling it provides prevents fraudsters from manipulating 

all data elements.  

Benyoussef and Khan (2017) conducted a research study on financial statement fraud detection 

using the concept of information manipulation theory. The aim of the study was to analyse the 

relationship between quantity, quality, manner, and timing of financial restatement and 

committing financial statement fraud. They used the Audit Analytics database of 254 US firms 

which announce restatements during 2009 and 2010 and developed a regression model using 

18 variables related to four components (quantity, quality, manner, and timing) as independent 

variables, and the occurrence of fraud as the dependent variable. The results revealed four 

significant variables: (1) date of discovering the material error, (2) the issue being discussed 

with the audit committee, (3) the presence of item 4.02, and (4) accuracy magnitude. 

Albashrawi (2016) conducted a systematic literature review of research on data mining 

techniques used for the detection of different types of financial fraud for the period 2005 to 

2014. The sample comprised 65 articles (58 from journals and seven conference papers) and 

summarised them based on fraud type, dataset used, data mining technique employed, and best-

performing technique (highest accuracy). Data mining tools were used for financial statement 

and bank fraud detection in 63% (n = 41) of the articles. Logistic regression modelling 

technique was found to be the most commonly employed tool for detecting fraud across 
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different financial applications, followed by DT, NN, then SVM. Moreover, most articles were 

conducted with data from the US (23 articles), followed by Taiwan and China (with eight and 

seven articles, respectively). Only three of the 65 articles were conducted on UK data.  

2.6.2. Going-Concern Prediction 

‘Going concern’ is a professional term in auditing whereby auditors investigate whether the 

firm will be continuing their normal business operation and sustainable development in the 

future. The main task of auditors is to investigate the available financial information from the 

firm’s financial statements to evaluate the probability of the enterprise continuing in business 

or facing financial distress, which could lead to discontinuity. Moreover, companies prepare 

their financial statements based on the going-concern basis unless the management declares its 

intention to liquidate or terminate business through a general-purpose financial statement. 

Hence, it is the auditor’s responsibility to provide financial statement users and other 

stockholders with assurance that these financial statements are free from material misstatement 

and are prepared on a going-concern basis.  

To cater to the advent of the application of data mining techniques in the accounting and 

auditing field, many researchers adopted data mining tools in their studies to develop skilled 

models to classify going-concern firms. According to Martens et al. (2008), the first going-

concern research studies used MDA to construct classification models to support auditor 

decision judgments (Levitan and Knoblett, 1985; Mutchler, 1985). Later studies mainly used 

logistic regression as a modelling technique to test for the explanatory power of predictor 

variables (Menon and Schwartz, 1987; Bell and Tabor, 1991; Chen and Church, 1992; 

Raghunandan and Rama, 1995; Mutchler et al., 1997; Behn et al., 2001; Gaeremynck and 

Willekens, 2003). However, a key limitation of statistical traditional classification methods is 

that they have to be in accordance to the required specific assumptions in the data. Therefore, 

Martens et al. (2008) empirically investigated the sampling methodology of previous 

researchers and introduced a more advanced data mining technique with an SVM-based 

classifying model and rule-based classifiers to predict going-concern doubt. Their proposed 

work provides a decision table allowing auditors and other users easy consultation in everyday 

audit business practices.  

Salehi and Fard (2013) developed a going-concern prediction model using data mining 

approach which they applied to a balanced data consist of 146 Iranian manufacturing 

companies listed in the Tehran Stock Exchange for the period from 2011 to 2011. Using 
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stepwise discriminant analysis for variable selection, only 10 financial ratios were selected out 

of 42 that were extracted from the financial statements of these companies. The prediction 

model was developed using Classification and Regression Tree (CART) and Naïve Bayes 

Bayesian Network (NBBN) to develop the going-concern prediction model, and their results 

showed; the CART model achieved 98.62% and the NBBN model achieved 75.55%.  

Yeh et al. (2014) proposed a going-concern prediction model using hybrid random forests and 

rough set approach in an attempt to enhance the prediction accuracy of going-concern models 

in the literature. The study used 27 variables related to 220 Taiwanese companies listed on the 

Taiwan Economic Journal for the period 2004 to 2008. The results showed an increase in 

accuracy and fewer type 1 and type 2 errors in predicting company continuity.  

Goo et al. (2016) extended going-concern research by attempting to improve prediction 

performance for Taiwanese listed companies. They used 22 financial ratios extracted from the 

financial statements of listed companies from 2002 to 2013. It was the first study to use the 

least absolute shrinking and selection operator (LASSO) to select important predictive 

variables before applying data mining techniques. The prediction model was constructed based 

on NN, SVM, and CART using four selected variables. According to the empirical results, 

SVM model outperformed NN and CART models based on prediction accuracy of 89.79% and 

type 1 error measurements of 10%.  

Jan (2021) constructed an ongoing concern model using data mining tools for certified public 

auditors to make correct judgments about firms’ going-concern decisions. Deep neural 

networks (DNN) and recurrent neural networks (RNN) were used as modelling methods, with 

CART to select important variables. The dataset extracted from the Taiwan Stock Exchange 

and the Taipei Exchange consisted of 352 companies in total, including 88 companies with 

going-concern doubt, during the period from 2002 to 2019. Using 16 financial variables and 

three non-financial variables to construct the optimal model, the RNN model achieved an 

average accuracy rate of 93.92%. 

2.7. Big Data Analytics for Business Failure Prediction 

Big Data was directly addressed by Mashey in Silicon Graphics project ‘Big Data and the Next 

Wave of InfraStress’ (Diebold, 2012). big Data is defined by its three major characteristics, 

known as the three V’s: velocity, volume, and variety (Zikopoulos and Eaton, 2011). Volume 

is used to categorise the size of data, velocity represents the generation speed and the type of 
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analysis required to deal of such data, and variety refers to the variability of data. Another two 

V’s (veracity and value) were later added (Hitzler and Janowicz, 2013). Although the 

widespread perception about Big Data is that it has to do with unstructured data, structured data 

still can be classified big Data as long as it has the necessary characteristics (Zikopoulos and 

Eaton, 2011).  

With the advanced analytical capabilities of data mining techniques, Big Data gained a 

substantial interest among researchers to solve predictive, perspective, descriptive, and 

inferential analytics’ problems (Ohlhorst, 2012; Talia, 2013). The type of analytics used to 

solve business failure problems is predictive analytics, which is concerned with using past 

happenings within a dataset to make predictions about future trends, patterns, and probabilities 

of events. The term ‘classification’ is usually used in the business failure literature to describe 

predictive analytics problems, but in some cases inferential analytics has been used as a 

subordinate of predictive analytics, helping explain the interaction of independent variables 

with the dependent variable in the dataset (LaValle et al., 2011). The aim of this study focuses 

on using predictive analytics to answer the question of what will happen, and inferential 

analytics to select explanatory variables.  

The volume characteristic of big Data datasets entails the use of advanced technological tools 

for storing and processing data (Suthaharan, 2014). Big Data volume requires clusters of 

computers running in parallel mode, in order to analyse the data and unmask potential patterns 

(Fan and Bifet, 2013). Although size is defining feature of Big Data, the type of analysis used 

to analyse the data play a major contribution to the process. Jacobs (2009) conducted a study 

on a demographic dataset consisting of the world population in a table of ten columns 

(including gender, ethnicity, material status, and religion, among others) and 7 billion rows. 

The dataset was stored in a 100-gigabyte hard disk. They attempted to load the data on an 

enterprise-grade database system using a super performance computer, but the experiment had 

to be aborted six hours later due to an unsuccessful upload. Hence, it is clear that it can take 

several days to perform a serious analysis on vast data sizes, and big Data classification can be 

accorded based mainly on analysis requirements.  

The data of thousands of businesses in the UK over some years can be qualified as Big Data. 

A Microsoft Excel file containing financial input data in rows and columns of thousands of 

firms might not be considered as ‘Big’, but it would be onerous on any computer to perform a 

complex analysis such as business failure classification for a large number of cases using 
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machine learning tools with iterative classification analysis. For instance, du Jardin (2010) used 

a relatively large dataset of 500 companies in modelling to predict business failure using ANN 

algorithm. The results indicated a very good model with a computational duration of five days 

on 30 running PCs. In contrast, with recent modern technologies such as BDA, these 

computations can be performed in seconds. In this study a large dataset consisting of thousands 

of UK firms is used for modelling using BDA, alongside high-performance AI tools.  

Richins et al. (2017) provided a conceptual framework aiming to provide insight into whether 

BDA could offer opportunities or threats for the accounting profession (i.e., in that BDA 

applications could help the automation of many of the tasks hitherto performed by accountants 

and auditors). In order for accountancy to remain relevant in the BDA context, they proposed 

a conceptual framework with a data type and analysis approach. Data type was segregated into 

structured and unstructured data, and the analysis approach was broken down into problem-

driven and exploratory analysis. Structured data includes highly organised data generated from 

firms’ systems (sales, inventory, and customer/supplier management systems) which can be 

easily included in a traditional analysis. Unstructured data are extracted in a variety of forms 

(text, audio, and video) from variety of sources, such as firm websites, social media accounts, 

and financial websites – a BDA tool is required to extract features and patterns from such rich 

data. The authors implied that problem-driven analysis of structured data was used before the 

era of BDA, but problem-driven analysis on unstructured data and all exploratory analysis of 

structured and unstructured data are necessary in the Big Data context. They discussed the 

implications of BDA in financial accounting, management accounting, and auditing, and 

explained how accountants could enhance their analysis skills and add value to their firms. 

They emphasised that accountants should start learning BDA techniques and understand 

principles of programming if they want to be able to communicate with data in the future.  

2.8. Business Failure Studies 

The field of business failure prediction has been widely investigated in the literature for more 

than five decades. Although many methods have been utilised in this regard, from statistical to 

machine learning, the latter has shown more capabilities in implementing single classifier, 

ensemble, and hybrid models than statistical modelling methods, resulting in more reliable and 

efficient models. Hence, machine-learning techniques are believed to overcome the 

shortcomings of statistical methods. Therefore, this thesis focuses on quantitative approaches 
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of machine-learning methods used in developing business failure prediction models for a 

database of UK firms. 

In practice, real historical financial performance datasets used to develop business failure 

models differ in size, categories, and characteristics. Since single machine-learning classifiers 

are not capable of triggering the relationships among these data, some researchers have 

employed hybrid modelling methods to better capture the classification strength of data and to 

exploit the potential relationships between them. Moreover, some researchers have deployed 

the ensemble methods that allow the enhancement of single classifiers’ ability to learn from 

different parts of data and develop higher performance prediction models. The results of these 

studies using hybrid and ensemble methods have shown their superiority compared to single 

or individual classifiers. For this reason, this thesis focuses on exploring and applying hybrid 

and ensemble methods in the field of business failure prediction.  

The following subsections explain the mechanism used in this thesis for collecting related 

studies from the literature.  

2.8.1. Literature Review Collection Process 

The large number of studies related to business failure prediction modelling using machine-

learning techniques is indicative of the importance of the topic in financial studies. In this 

thesis, the collection process started with searching for the keywords ‘business failure’, 

‘bankruptcy prediction’, ‘business distress’, ‘machine-learning’, and ‘data mining’ in the 

relevant fields using four academic science databases: IEEE, Springer, Science Direct, and 

Google Scholar. The intended search focuses on papers published from 2010 to 2021, in order 

to include the latest research. Initial searching yielded a huge number of resources, including 

journal papers, articles, conference papers, and books.  

Since journal papers and articles generally provide more in-depth and cutting-edge information 

about modelling techniques used and data processing more than conference papers and books, 

only these sources were only included in the further research as the main source of the literature 

review content. Papers that aimed at using single classifiers, hybrid, and ensemble methods 

containing business failure prediction were selected and organised in sequential order from 

2010 to 2021. All findings were summarised comprehensively and discussed thoroughly based 

on database nature, modelling methods used, feature selection processes, performance 

measurements, and type of variables used.  
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The following subsection summarises the main characteristics of the relevant studies to outline 

the history of business failure prediction using machine-learning techniques.  

2.8.2. Literature Discussion and Analysis  

In this section, 37 papers were selected from various scientific journals focusing on machine 

learning approaches used in developing business failure models. Table 2.1 summarises all 

valuable information related to methods used, data size, performance measures, and the salient 

findings extracted from the papers that could lead to reliable conclusions about business failure 

models using different approaches. Table 2.1 includes all the key information contained within 

the related studies, taking into consideration most important aspects of building and developing 

business failure model. The number of firms used in training, validating, and testing the model 

accompanied with the number of features used for building the model are shown, considering 

data splitting ratios between failed and active firms in the dataset. Moreover, the data pre-

processing using feature selection methods used to train and test models are considered to be 

an important factor in improving prediction performance. The number of classification 

techniques used in each study is an essential consideration as it allows the assessment and 

comparison of how different classifiers perform in correctly predicting business failure. 

Moreover, hybrid and ensemble approaches are considered, as they represent studies’ 

approaches to enhance model prediction performance. Another aspect is the significance test 

used to test model prediction performance reliability and robustness. 
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Table 2.1: Comparison of related studies 

No. Study No. of 
firms 

Active/Failed  Number of 
variables 

Variable 
selection 
method 

Classification 
techniques 

Ensemble 
approach 

Performance 
measures 

Significance 
test 

1 Cho et al. 
(2010) 

1000 50%/50% 15 financial 
variables 

Yes ANN, DT, CBR1, 
LR 

- ACC - 

2 Yoon and 
Kwon (2010) 

10000 50%/50% 24 credit sales 
variables 

Yes SVM, ANN, 
MDA2, LR 

- ACC Yes 
 

3 du Jardin 
(2010) 

1020 50%/50% 41 financial 
variables 

Yes ANN, MDA, LR - ACC - 

4 De Andrés et 
al. (2011) 

59474 99.77%/0.23% 22 financial 
variables 

Yes ANN, MDA, LR - Total error, Type I & 
Type II Error 

- 

5 Chen et al. 
(2011) 

1200 50%/50% 31 financial 
variables 

Yes SVM, ANN, GA3 - Total error, Type I & 
Type II Error 

- 

6 Chen et al. 
(2011) 

244 53.3%/46.7% 30 financial 
variables 

- SVM, ANN, GA - ACC, AUC, Type I 
& Type II Error 

Yes 

7 Li (2011) 370 50%/50%  Yes RF4, MDA, LR - - - 

8 du Jardin and 
Séverin 
(2012) 

2360 50%/50% 41 financial 
variables 

Yes ANN, GA - ACC Yes 

9 Jeong et al. 
(2012) 

2542 50%/50% 27 financial 
variables 

Yes ANN - Total error - 

10 Tsai and 
Cheng (2012) 

653 45.3%/54.7% - - SVM, ANN, DT, 
LR 

- ACC, type 1 & Type 
II Error 

- 
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Table 2.1: Comparison of related studies (cont.) 

No. Study No. of 
firms 

Active/Failed Number of 
variables 

Variable 
selection 
method 

Classification 
techniques 

Ensemble 
approach 

Performance 
measures 

Significance 
test 

11 Kristóf and 
Virág (2012) 

504 86.7%/13.3% 31 financial 
variables 

- ANN, DT, LR - ACC, AUC, ROC - 

12 Lee and Choi 
(2013) 

1775 66.2%/33.8% 21 financial 
variables 

Yes ANN, MDA - ACC - 

13 Zhou (2013) 2010 50%/50% 27 financial 
ratios 

Yes ANN, DT, MDA, 
LR 

- ACC, sensitivity, 
specificity 

- 

14 Kasgari et al. 
(2013) 

135 52.5%/47.5% 49 financial 
variables 

Yes ANN, GA, LR - ACC, sensitivity, 
specificity, positive 

predictivity 

- 

15 Arieshanti et 
al. (2013) 

240 53.3%/46.7%  Yes SVM, ANN -  - 

16 Zhou et al. 
(2014) 

2010 50%/50% 27 financial 
ratios 

Yes ANN, DT, MDA, 
LR 

- ACC, sensitivity, 
specificity 

- 

17 Gordini 
(2014) 

3100 51.6%/48.4%  Yes SVM, GA, LR -  - 

18 Heo and 
Yang (2014) 

2762 50%/50%  - SVM, ANN, DT, 
MDA 

-  - 

19 Tsai et al. 
(2014) 

690 44.5%/55.5%  - SVM, ANN, DT -  - 

20 Gordini 
(2014) 

3100 52%/48% 18 financial 
variables 

Yes GA, SVM, LR - ACC Yes 
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Table 2.1: Comparison of related studies (cont.) 

No. Study No. of 
firms 

Active/Failed Number of 
variables 

Variable 
selection 
method 

Classification 
techniques 

Ensemble 
approach 

Performance 
measures 

Significance 
test 

21 Wang et al. 
(2014) 

240 50%/505 30 financial 
variables 

Yes LR, NB, DT NN, 
SVM, 

Bagging, 
Boosting 

ACC, type 1 & Type 
II Error 

- 

22 du Jardin (2015) 16880 50%/50%  - ANN, MDA, LR -  - 

23 Iturriaga and 
Sanz (2015) 

772 50%/50%  Yes SVM, ANN, 
MDA, LR 

-  - 

24 Barboza et al. 
(2017) 

13433 98%/2% 11 financial 
variables 

- LDA, LR, NN, 
SVM, RF 

Boosting, 
Bagging 

AUC, ACC, Type I 
and Type II Error 

- 

25 Jones (2017) 35939 87%/13% 21 financial 
variables 

- LR XGBoost5 AUC, ACC - 

26 Fan et al. (2017) 626 50%/50% 16 financial 
Ratios 

- LR, SVM, ANN, 
RF 

Gradient 
Boosting-DT 

ACC, Type I & Type 
II Error 

- 

27 Choi et al. 
(2018) 

385 87%/13% 21 financial 
variables 

- SVM, DT, NB, 
LR, KNN 

Voting-based 
ensemble 

ROC, AUC - 

28 Jing and Fang 
(2018) 

293 - 18 financial 
ratios 

Yes LR, NN, SVM, 
KNN 

- AUC, ACC, - 

29 Bešlić Obradović 
et al. (2018) 

126 65%/35% 24 financial 
variables 

Yes LR - ACC, specificity, 
sensitivity 

Yes 

30 Veganzones and 
Séverin (2018) 

1500 95%/5% 50 financial 
variables 

Yes LDA, LR, NN, 
SVM, RF 

- Sensitivity, AUC - 
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Table 2.1: Comparison of related studies (cont.) 

No. Study No. of 
firms 

Active/Failed Number of 
Variables 

Variable 
selection 
method 

Classification 
techniques 

Ensemble 
approach 

Performance 
measures 

Significance 
test 

31 Huang and Yen 
(2019) 

64 50%/50% 16 financial 
variables 

Yes SVM XGBoost, Type I & Type II 
error, ACC, 

- 

32 Matin et al. 
(2019) 

278047 97%/3% 50 financial 
variables 

Yes LR, NN, XGBoost, AUC - 

33 Son et al. 
(2019) 

977940 23137 9 financial 
variables 

Yes LR, NN, RF XGBoost, AUC, ACC - 

34 Uthayakumar et 
al. (2020) 

43405 95%/5% 64 financial 
variables 

Yes - - ACC, sensitivity, 
specificity, FPR, 
FNR, error rate 

- 

35 Bateni and 
Asghari (2020) 

174 50%/50% 23 financial 
ratios 

- GA, LR - ACC - 

36 Smiti and Soui 
(2020) 

5910 93.06%/6.94% 64 financial 
ratios 

- KNN, DT, SVM, 
ANN, DT, DPL 

- ACC, AUC, 
sensitivity, specificity 

Yes 

37 Jabeur et al. 
(2021) 

133 50%/50% 18 financial 
ratios 

Yes LDA, LR, SVM, 
ANN, RF, GBM6, 

DNN7,  

XGBoost, 
CatBoost8 

ACC, area under the 
ROC 

Yes 

1CBR: Case Based Reasoning, 2MDA: Multiple Discriminant Analysis, 3GA: Genetic Algorithm, 4RF: Random Forest, 5XGBoost: Extreme Gradient Boosting, 6GBM: Gradient Boosting Machine, 7DNN: Deep Neural 

Network, 8CATBoost: Categorical Boosting Machine
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The summary of the studies’ findings allows assessment of what has been achieved in the field 

of business failure prediction, including methods and data sizes used for designing and 

modelling, and the extent to which these results can help to investigate and apply new 

techniques that are not fully covered in the area of business failure. As a result, this study is 

guided in developing a classification and prediction model based on new different aspects, 

based on adopting new modelling approaches that have never been used in the field. It should 

be noted that this thesis focuses on proposing new classification techniques in the field of 

business failure prediction in the UK, rather than comparing results with other related studies.  

Based on information from Table 2.1, different findings and conclusions can be derived about 

business failure models. The first concerns the data class distribution used for developing the 

model. A total of 17 studies out of 38 used balanced dataset with the same number of failed 

firms as active (e.g., Li, 2011; Heo and Yang, 2014; Huang et al., 2014; Zhou et al., 2014; 

Jabeur et al., 2021; du Jardin, 2021). Other studies that used imbalanced datasets could suffer 

from imbalanced classification in their results, which could lead to bias in model classification 

results, because of the skewed class distribution on the data. This is exemplified when 

classifying binary two classes, whereby most data related to a specific class represents a normal 

case in the domain, and only a few other classes represent an abnormal case. As the distribution 

of classes is not balanced, most machine learning algorithms perform poorly and need 

modification to avoid predicting the majority class in all cases. Another disadvantage is that 

model performance measurements could lose their meaning, and alternate evaluation metrics 

are required such as ROC area under curve.  

A substantial step in model development is data pre-processing and the feature selection 

process used to select the best prediction variables for the model. All of the studies used 

financial ratios variables as explanatory features or attributes of business failure models. 

However, it is crucial to select the most relevant features amongst these datasets, and it is 

important to clean the dataset by removing outliers, noisy, and irrelevant or redundant features 

in order to improve model classification performance. According to Tsai (2009), cleaning data 

and filtering it from irrelevant and redundant information can increase the performance of the 

model, even though this might be time- and cost-consuming. The most commonly used feature 

selection method used in the literature was stepwise method, which was deployed in 10 out of 

37 articles.  
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The second finding regards the data partitioning or splitting method used to train and validate 

or test the model. Two main techniques were used to split the datasets: hold-out splitting and 

K-fold cross-validation. The hold-out splitting method requires dividing the dataset into two 

parts, one part for training the model and the other for testing and validating. For example, the 

data can be divided into 70% for training and 30% for testing and validating. On the other hand, 

the K-fold cross-validation splitting techniques divide the dataset into K number of subsets, 

also called the number of folds, whereby each fold contains an equal size of data, and K cannot 

exceed the size of the dataset. Moreover, there are other methods of data splitting techniques, 

such as leave-one-out and repeated hold-out methods (Garcia et al., 2015). However, according 

to Garcia (2015), the researcher’s preferences determine the selection of the most suitable 

splitting technique.  

The third finding and the most important stage in developing prediction models is the type of 

classifiers used to build the model. As can be noticed from Table 2.1, the number of business 

failure classifiers using machine-learning techniques varies among studies. The purpose of 

deploying different classifiers is that all studies aimed to introduce new modelling techniques 

while comparing them with other methods within the same study and previous works in the 

area of business failure. In general, the aim is to prove a model’s validation and superiority 

over other methods or classifiers, to achieve the highest performance of correctly predicting 

business health status. However, there is no general superiority of one model over another, 

since each study used different datasets, data-splitting methods, and performance 

measurements, which must be taken into consideration when comparing modelling results from 

different studies.  

Hybrid models to enhance prediction performance are believed to be superior in achieving 

better classification results when applied in the business failure field, as discussed previously. 

The modelling design of these techniques is by integrating different classifying methods in 

accordance with deploying different feature selection and data filtering methods in order to 

enhance and exploit single classifiers’ strengths while mitigating their performance 

weaknesses.  

Some studies proposed business failure models using ensemble methods as an experimental 

modelling approach. Using ensemble learning relies on combining several classifiers, such as 

using different DT structures as ensemble members with different types or parameters in order 

to train the dataset. The resulting model consists of pooled members after the ensemble 
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strategies applied to get the final output. According to Wang et al. (2011), it is crucial to build 

an ensemble model that is diverse and accurate.  

A substantial step after developing business failure models is the evaluation of its performance, 

by assessing the classification capability of the model when applied on new data. Most of the 

studies used average accuracy rates as an indicator of how accurate the model in classifying 

business health is, accompanied with Type I and Type II Error and sensitivity and specificity 

ratios. Another performance measure is the AUC, which calculates model performance at 

various threshold settings, whereby higher AUC values represent better model performance in 

distinguishing between failed and healthy firms.  

The final step after developing business failure model’s performance is to investigate the 

reliability and the robustness of the model. Using statistical tests on models’ results is an 

important step to determine whether model outputs are causative, and not coincidental. 

However, only seven of the 37 studies employed statistical significance testing. It is worth 

mentioning that the type of test depends on the number of classifiers needing to be compared.  

As can be inferred from Table 2.1, the main steps used to develop a business failure model are 

as follows:  

• Collecting the dataset: most studies collected financial information related to each 

business presented, mostly with financial ratios. 

• Splitting techniques: choosing the best splitting technique for data and considering the 

size and the distribution of the dataset (e.g., majority and minority classes). 

• Modelling techniques: these depend on the manner in which the developer or researcher 

tries to solve the problem at hand. The main objective is to create an effective model 

with reliable results. Others try to develop new ideas using either hybrid models or 

ensembles. Therefore, this is generally determined from the perspective of the 

researcher. 

• Selecting appropriate performance measures: among the many performance measures 

available, the researcher should select the most suitable measures to reflect every angle 

of the model performance. 

• Statistical analysis: to reach a reliable conclusion, a developed model should be 

validated statistically, using an appropriate test. 
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2.9. Summary 

This chapter reviewed related literature to present the theoretical background of business 

failure and its related issues, based on modelling approaches used in previous studies. The first 

part revealed the concept of business failure prediction in terms of definition, importance, and 

the history of business failure model development and implementations. It discussed the 

benefits of early predictions of business failure for the economy, and how it become an 

important topic for firm stakeholders. Moreover, it discussed the importance of the topic for 

the machine-learning community, and how it become an important area to investigate by 

researchers in the field.  

The source of information used for predicting business failure, such as financial statement data 

and financial analysis tools, have been explained. The financial data about firms’ operations 

provided by management and delivered to stakeholders such as investors, creditors, suppliers, 

government agencies and other external users is considered to be an informative 

communication language about business health. The reporting system includes the preparation, 

quarterly and annually, of the financial department’s financial statements, together with other 

departments within the company, including the quarterly and annually representatives of the 

business, interests of the company, management assumptions and financial positions. 

Moreover, the accounts show the accounting and financial policies of the company complying 

with its management assumptions and estimates used to report its resources, transactions, and 

liabilities. As a core financial reporting system, the numerical disclosures quantify the firm’s 

financial position by ensuring that its business models, resources, source of financial support, 

and activity are transparent and verifiable. Therefore, the aim of financial disclosures is to 

provide users with materials of high-quality information that can be used effectively to monitor 

ongoing companies, which can thus be used for business failure modelling, which relies heavily 

on this data to predict business continuity. 

Subsequently, the chapter focused on the quantitative tools used by researchers to develop 

business failure prediction models. An overview of the several methods used for modelling 

ranging from traditional statistical methods to machine learning was highlighted. After 

considering the different modelling techniques used in business failure studies, a substantial 

concern is established on the superiority of machine learning methods over traditional 

modelling that in most cases, machine-learning models achieve higher performance. Moreover, 

model performance evaluation was explained in relation to checking model reliability and 

robustness.  
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The last part of the chapter reviewed literature collected from recent key studies that deployed 

machine-learning techniques for model development. A systematic analysis followed with a 

summary of the studies was conducted, focusing on several important factors used for 

modelling, such as the size of datasets, number of variables used, data-splitting, type of 

modelling technique, and performance measurements used to evaluate the model performance. 

Findings and conclusions were revealed during the analysis, highlighting the literature gap of 

the dearth of studies considering classifier combinations, ensemble selection, and incorporating 

new classifiers. 
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Chapter 3  
Research Methodology for Proposed Business Failure Prediction 

Model 

3.1. Introduction 

This chapter explains and discusses the main steps used in constructing the proposed business 

failure prediction model, from the data collection to analysis stage.  

Firstly, it presents an overview of the data collection process in terms of data types and 

resources, and the commonly used data pre-processing method adopted in this thesis. 

Furthermore, data splitting techniques are explained and discussed, with justification for the 

selection of such tools.  

Secondly, the chapter explains the modelling techniques using statistical and machine learning 

methods, including the theoretical background behind each method.  

Thirdly, the performance measurements used to validate and evaluate model’s performance are 

presented.  

Finally, extra validation using statistical significance testing is explained.  

3.2. Data Collection and Processing 

3.2.1. Data Collection 

In the field of business failure prediction, data collection is the most fundamental step to 

execute developed models. All previous studies extracted financial information from firms’ 

financial statements in the form of ratios, which play a major role as indicators of business 

health, and which have been ubiquitously deployed in business failure modelling. Hence, this 

study follows in the steps of previous studies and collects financial ratios related to different 

companies from all industries in the UK.  

The performance and reliability of any classifier in binary classification problems are 

dramatically affected by the data balance ratio, and bias toward any class in the classification 

must be avoided, as explained previously. For instance, when using extreme imbalance 

datasets, the classifier will always predict the class of the majority, at the expense of the ignored 

minority class. This has significant implications for accuracy and performance for minority 
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class prediction. For example, for an imbalanced dataset consisting of 90% active and 10% of 

failed firms, the developed classifier can still achieve an average accuracy rate of 90%, due to 

correctly classifying all active firms, and misclassified all failed firms in the dataset. In other 

words, the model achieves high accuracy at the expense of reliability (Aljawazneh et al., 2021). 

In this thesis, the data were extracted from the FAME website, which is a financial information 

database of 7 million companies in the UK, updated on a daily basis, with up to 10 years of 

history (FAME, 2019). It provides detailed firm information, including financial statement data 

and pre-calculated financial ratios related to firms’ financial performance, as shown in Table 

3.1.  

Table 3.1: Number of firms included in the datasets 

 Datasets 

No. of Firms Active Firms Failed Firms 

Year 2019 Dataset 20,000 10,000 10,000 

Year 2018 Dataset 20,000 10,000 10,000 

Year 2017 Dataset 20,000 10,000 10,000 

All-Datasets 60,000 30,000 30,000 

Dynamic Modelling Dataset for 5 

Years 
20,000 10,000 10,000 

 

For business failure classification problems, three separate datasets were collected, including 

all businesses in the database that failed during the years 2017, 2018, and 2019, with a matching 

number of businesses that still operating during the same years. To achieve the best 

classification results, both active and failed firms were selected and matched based on the same 

number of firms from the same industry, with relatively similar market capitalisation (business 

size).  

On the other hand, for developing dynamic time series one step ahead prediction models, data 

were gathered over five consecutive years for the same businesses entities, to render financial 

variables as insensitive as possible to any short-term variations that may occur within the 

company’s economic and financial environment. Hence, we used the business in the dataset of 

the year 2019 and collected five datasets in a time manner series, representing the financial 

ratios for the studied years: 

• t - 4 (2015)  
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• t - 3 (2016)  

• t - 2 (2017)  

• t – 1 (2018) 

• t year (2019) 

This collection process allows the development and design of prediction models based on a 

time series manner.  

3.2.2. Data Pre-Processing 

A critical point in developing a prediction model is having a dataset with high quality, to allow 

model generalisation. This essentially relies on the importance of model attributes and the 

freedom of data from outliers and missing values. Accordingly, data pre-processing plays a 

major role in solving business failure classification problems (Alasadi and Bhaya, 2017). 

Datasets collected for a large number of firms from a real-world database may involve 

completely raw data, containing noisy and missing values. Therefore, it is an essential step in 

model development to have a dataset free from irrelevant, redundant, unreliable, or noisy 

attributes before any further analyses or procedures, as this makes knowledge discovery and 

predictions easier and more reliable. This can be done using several methods, such as data 

imputation, feature selection, data normalisation and deleting data that contains outliers. Once 

data pre-processing is performed, a new dataset is ready to train the proposed models. The 

following subsections present the pre-processing methods used to make data ready for model 

development in this study.  

3.2.2.1. Data Imputation 

When collecting businesses financial ratios datasets, there are missing and incomplete values 

in some attributes that should be taken into consideration when training the model. In order to 

overcome this problem, there are two approaches adopted in this study. The first step is to 

delete instances that contain a large volume of missing feature values. The other way is by 

adopting an imputation method, such as replacing the missing values with new values based 

on some estimations. In this study using datasets collected from UK firms that contain some 

missing values, both approaches were used to make datasets ready for training the classifiers.  

3.2.2.2. Data Normalisation 

Data normalisation is used for model development containing values out of the range of 0 to 1, 

which for some classifiers could be an issue when training the model. In this case, data 
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normalisation becomes an important step to avoid any bias in the data, and accordingly feeding 

the classifiers with the right attribute values. For example, NN and SVM modelling techniques 

require input variables to be in the range of 0 to 1; in order to achieve that, attributes can be 

normalised and transformed into values in the required range using an appropriate 

normalisation method (Alasadi and Bhaya, 2017). Moreover, data normalisation improves 

classifier learning performance from the data by removing any outliers in the data, and 

removing the presence of any controlling variables (Singh and Singh, 2020). For our datasets, 

min-max normalisation technique was adopted, which requires taking the highest value of an 

attribute and giving it a value of 1, while the lowest value is given 0, and other values of the 

attribute are computed with the following equation: 

 !"#	%&'(" = ((+,-.-!&'	– 	0-!	) (0&2–0-!))⁄ × 50&2
!"#

–0-!
!"#

6 + 0&2
!"#

 (3.1) 

3.2.3. Feature Selection 

Selecting a group of attributions that have higher prediction information is extremely important 

in a wide range of research disciplines, including in business failure modelling. Reducing the 

amount of unnecessary or redundant features reduces the working time of a learning algorithm 

dramatically and provides a more general approach. The possibilities of feature selection 

facilitate the viewing and comprehension of data, reduce measure and storage requirements, 

reduce training and usage durations, and defy dimensionalities to increase prediction 

performance (Falangis and Glen, 2010). This also helps in understanding the concept 

underlying classification in the real-world. 

The selection process is usually carried out before models are trained. Feature selection has the 

advantage of reducing overfitting by removing unnecessary data from the model, allowing it 

to only focus on the relevant features, and not getting bogged down on irrelevant features 

(Guyon and Elisseeff, 2003). Removing irrelevant information improves the model’s 

predictions by reducing errors, and reducing the time required to produce the model. The 

interpretation of a model is easier when there are fewer features. Feature selection is thus vital 

to achieve accurate prediction for any value, as well as efficient processing. 

Adopting a selection method provides a starting point when there is no intuition about the 

dataset and what features are important for the model. It also allows effective selection of the 

most significant features from a big size of data. However, a disadvantage that could result 

from adopting this method is that it does not run through every single combination of features, 
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which prevents optimal model outcomes. Another disadvantage is models with high 

multicollinearity between features, due to potential relationships among these features, which 

can negatively affect the model classification and prediction accuracy (Guyon and Elisseeff, 

2003).  

Wrapping methods are used to evaluate the importance of each feature to be included in a 

certain subset that allow the prediction model to achieve higher prediction performance. The 

process includes iterating and trying different features and subsets until the optimal subset is 

reached. However, two disadvantages can be taken into consideration when adopting this 

method: it consumes large computation time when the number of features is high, and it might 

overfit the model when the size of data points is low. There are three main wrapper methods 

used for feature selection: forward selection, backward selection, and stepwise selection 

method.  

Forward selection method starts the first model with zero features, and then for each single 

feature it builds up a model and determines the p-value associated with the t-test. After 

calculating the p-value for each feature, it selects the one with lowest p-value measurement and 

adds that feature to the working model. The next step is running the model with the selected 

first feature and added another feature that has the lowest p-value. New features with the lowest 

p-value continue to be added to the model until all features with significant p-values are added. 

The final model thus contains all of the most significant features, and any features with 

insignificant p-values are excluded by default.  

In contrast, in backward selection method, the model starts running with all available features 

in the dataset, then it computes the p-values associated with the t-test or F-test for each feature 

of the model and removes features with the most insignificant p-values. The iterations continue 

until all insignificant features have been removed from the model.  

Stepwise selection is a hybrid selection method consisting of using both the forward and 

backward selection methods. Similar to forward selection method, it being by selecting a model 

with zero features, and starts adding the first feature based on the rule described above. It then 

adds the next feature with the lowest significant p-value to the model. When performing the 

third iteration, a third feature is added to the model with the lowest p-value, while any feature 

with an insignificant p-value is removed from the model, and so on for the rest of the dataset 

features. This results in a model which includes all significant features, which comprises the 

final feature subset. In this thesis, stepwise selection method was selected to determine the 
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most influential and relevant attributes to construct the proposed classification and prediction 

models (Table 3.2). 

Table 3.2: Selected variable using stepwise method 

Independent Variables Ratio number 

Liquidity ratio 5 

Operational ratio 7 

Profitability ratio 8 

Solvency ratio 3 

Non-financial ratio 1 

 

3.3. Data Splitting 

After all data have been pre-processed, the dataset is ready for training and testing the 

classification models. In this stage, data splitting is used to partition the dataset into training 

and testing datasets; the former is used to train the model, while the latter is used to evaluate 

and validate model performance. This process is considered to be a fundamental step in model 

development and evaluation. After training the model using the training dataset, the testing 

dataset is used to evaluate how well the model will perform with real-world datasets. An 

important aspect when splitting dataset is the size of each data-split. Therefore, more data 

instances in the training dataset results in a more fitted model, and more data in the testing 

dataset results in better accuracy estimation, which enhances model reliability. 

Another important issue that has a great effect on model performance when splitting data is to 

have data splits that fairly represent each class of the dataset for both training and testing. 

Balanced data distribution plays a major role when training the model with different classes, 

and results in a good generalisation over the testing dataset. For solving business failure 

models, there are two main data splitting techniques used by researchers in the field: K-fold 

and hold-out techniques.  

3.3.1. K-fold 

Using this technique requires partitioning the original dataset into K-subsets, also referred to 

as folds, which are used to train and test the model performance. For example, a dataset can be 

divided into equal number of partitions in the form of S1, S2, S3, …., Sn, where n is the number 
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of subsets. Thereafter, each subset is individually trained and tested using the classification 

model applied. Table 3.3 illustrates the K-fold cross-validation process. 

Table 3.3: K-fold cross-validation 

Partitions/Folds Training set Testing set 

1 S2 S3 S4 Sk S1 

2 S1 S3 S4 Sk S2 

3 S1 S2 S3 Sk S3 

4 S1 S2 S3 Sk S4 

5 S1 S2 S3 S4 Sk 

 

The process of K-fold cross-validation relies on using one partition of the dataset for testing 

and the rest for training the model. The process is iterated until all of the subset is trained and 

tested. To calculate the model performance, the final prediction accuracy is estimated by taking 

the average performance of all folds used for testing. An advantage of using this approach is 

that it ensures the use of all data available, thereby preventing overlapping. Moreover, due to 

having many data for training and testing, K-fold method allows for multiple repetition of the 

process, which results in more robust and efficient model performance.  

An important issue that could arise when adopting this approach is the optimal number of folds 

or partitions to put data in. For example, a high number of folds could result in better 

performance of the model in terms of accuracy classification, but on the other hand, it results 

in high variance, while a small number of folds could enhance variance measurements, but the 

model performance might be biased. According to García et al. (2015), the optimal number of 

folds depends on the size of the dataset, whereby 5 or 10 folds can work in favour of models 

with differently sized data. Another important issue is the repetition of the process, to minimise 

variances as much as possible, by using different subsets of training and testing data. In this 

thesis, K-fold cross-validation was adopted and applied to the dataset to validate and test the 

model’s performance with 10 repetitions using 5-fold cross-validation, resulting in a total of 

50 tests to achieve reliable and robust conclusions about the model’s performance.  

3.3.2. Holdout Technique 

Holdout technique divides the dataset into two separate parts: one part is used to train the 

model, and the other to test and validate its performance. Due to its simplicity, this technique 

has been widely adopted by researchers in the field of business failure prediction. The most 



47 

frequent way to apply this method is by dividing the dataset into an 80% subset for training the 

model, and the remaining 20% for testing. Another ratio that can be used is 70% training subset 

and 30% for testing. In this study (80%, 20%) technique is selected. However, the holdout 

method could result in biased model outcomes, and both training and testing subsets might be 

unrepresentative, which reduces the scope of practical application (Bischl et al., 2012).  

In order to overcome this issue, multiple repetitions of holdout technique can be performed to 

avoid any bias on the representable dataset. Applying this can reduce the probability of getting 

a favourable testing subset, and lead to more robust model outcomes. 

3.4. Modelling Techniques 

This section explains the modelling approach used to develop the business failure classification 

and prediction models. The approach began with individual classifiers that have been used 

widely in the literature due to their classification outperformance over statistical methods (as 

explained previously). To justify this experimentally, individual classifiers were first built 

using several heterogeneous classifiers, trained and tested using financial data of UK firms 

adopted in this thesis. Different hybrid and ensemble classifiers were then developed using data 

extracted from already trained individual classifiers, to enhance their output performance. The 

final stage was to develop a dynamic classifier that can predict data and business status in 

advance to solve business failure problems. The following subsections explain the background 

behind every modelling technique.  

3.4.1. Individual Classifiers 

The state-of-the art of each individual modelling approach in the field of business failure, from 

statistical to machine-learning modelling methods, are overviewed below. Many techniques 

have been proposed by researchers to build well-performing classification and prediction 

models. According to Heneley (1997), in order to select the best classifiers, the size of the 

dataset and the type of variables have to be considered in terms of the optimum model fit and 

performance. Following the steps of the studies in the literature, statistical methods such as LD 

and LR are used as benchmark classifiers, and their prediction performance is used to compare 

other machine-learning modelling performance.  

3.4.2. Linear Discriminant Analysis 

This classification method was first used by Fisher (1936) as a parametric statistical modelling 

approach to classify between two classes in the dataset population. It has been widely used in 
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the field of business failure prediction to classify failed companies (Laitinen, 2007). To solve 

business failure classification problems, assume there is a dataset of n companies, where each 

company has a certain L number of attributes or variables in the form of (x1, x2, x3, …, xL) that 

are used to classify firm’s activity status y in a binary classification system (active/1 or 

failed/0). The main objective of the model is to estimate the probability of a firm to be 

categorised as either ‘fail’ or ‘active’ p(y/x), based on all variables on the dataset. By linearly 

combining all variables in the dataset, firm status can be classified in its appropriate class as 

expressed in the following equation: 

 8 = 	9$ + 	9%	2% + 	9&	2& +⋯+ 	9!	2! (3.2) 

where y represents the discriminate score of firm status, β0 is the model intercept, and βi 

represents the coefficient related to each variable x of the model. To better explain how the 

above discriminate model works, the values of the variable’s coefficient are adjusted based on 

the covariance and the mean values of both classes on the dataset. After training the model, the 

best coefficients values are assigned to each feature of the dataset, whereby the final 

discriminate score can be calculated for each company (Rafiei et al., 2011). Finally, the 

calculated score is compared to a threshold in order to classify the firm status as failed or active. 

However, this modelling technique is considered to have some classification limitations when 

solving problems that have non-linear relationships between dataset variables (Veganzones and 

Séverin, 2018).  

3.4.3. Logistic Regression 

Logistic regression is the most frequently used statistical method to solve business failure 

problems. Unlike LDA and linear regression models that give continuous output values, LR 

classification method was developed and used in business failure studies to solve binary 

classification, in which the final output can be characterised by 0 if the company is failed or 1 

if it still active (Vuran, 2009). Logistic regression requires less restrictive statistical 

assumptions to ensure that all the problems discussed with regard to discriminant analysis are 

essentially avoided with a logit analysis.  

For solving business failure classification problems, the probability of a firm to be classified 

as failed or not is the result of the relationship of the independent variables and the firm status 

based on a logistic curve. The result is an s-shape curve where all of the output values are 
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between 0 and 1, representing the relationship between the independent variables and the 

output binary classification, by adopting a non-linear function as in the following equation:  

 ; =
1

1 + "'()!*)"+)
 (3.3) 

where p is the probability of target firm status, β0 is the intercept term, and β1 represents the 

coefficient related to the features X. For solving business failure prediction problems, if the 

probability of failed company is p, then the probability of active company is (1-p). This concept 

is referred as odds, calculated as the ratio of probability of having failed firm relative to the 

probability of having an active firm. Odds can be expressed as follows: 

 =>>? = ;/(1 − ;) (3.4) 

Thereafter, the odds ratio can be used to calculate the curve equation: 

 ;/(1 − ;) = 	"2;()!*)"+) (3.5) 

However, in the above equation, the left-hand side can take values between 0 and 1 while the 

right-hand side can take any value. This distraction can be solved by taking the natural 

logarithm of both sides of the equation as in the following:  

 '!	[;/(1 − 	;)] = 	9$ 	+ 9%D% +	9&D&+	. . . . +9!D!	 (3.6) 

Once the odds of the logit function are known, the final step is to find the probability in a range 

between 0 and 1 as follows:  

 ; = +>>?	/	(1 + +>>?) (3.7) 

In contrast to LDA classification method, in LR method, data do not necessarily have 

multivariate normal distribution. However, a drawback of this method is it reliance on a full 

relationship between the predictable variables in relation to the logit of the target variable (Lee 

and Chen, 2005).  
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Despite its classification disadvantage, LR classifier has been widely used in the literature in 

the field of business failure, where in some cases it is been used as a benchmark classifier 

(Gordini, 2014; Barboza et al., 2017; Jing and Fang, 2018; Veganzones and Séverin, 2018; 

Matin et al., 2019; Son et al., 2019; du Jardin, 2021).  

3.4.4. Artificial Neural Network 

ANN is as a computational or mathematical modelling tool of non-linear data, constructed 

based on an emulation of the biological neural system (human brain function). The concept of 

ANN mimics the neural system, whereby a group of artificial neurons are interconnected to 

process information using a connectionist approach to computation, and to learn and adapt form 

historic data (Veganzones and Séverin, 2018). ANN has been used in modelling business 

insolvency and financial distress as an alternative to traditional statistical methods (Matin et 

al., 2019; Son et al., 2019; Smiti and Soui, 2020; du Jardin, 2021). 

An ANN has to be configured such that it achieves the desired set of outputs from the 

application of a set of inputs. As shown in Figure 3.1, ANN topology consists of three layers: 

input, hidden, and output layers. The structure of the business insolvency model starts by 

feeding financial variables, as an attribute of each firm, to the input layer for processing them, 

after which they are processed further in the hidden layer. Finally, after thorough processing of 

the data, the values are sent to the output layer to give an answer on whether a firm is healthy 

or is going to fail. Weights are assigned to each attribute to calculate the output based on their 

relative importance; these weights can be adjusted based on supervised learning rule, by which 

input and output data are fed to the model to be used in training. All of the weights are summed 

together using transfer function (i.e., sigmoid or tansig) in order to predict output. The process 

of adjusting weights is repeated iteratively to minimise the error between predicted and actual 

output.  
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Figure 3.1: NN feed-forward back propagation topology 

Source: Alhunaity and Abbod (2020) 

To explain how the model works to solve business failure prediction problems, assume there 

is a training set consist of number of attributes x = {x1, x2,..., xn}; the feed-forward back 

propagation starts by feeding these data to the input layer. A random initial weight is given to 

each attribute, which is then fed to the hidden layer, then an activation function is applied to 

process all data inputs. After processing the data and assigning all attributes new weights, the 

weighted inputs are linked to the output layer, where a further activation function is applied to 

lead to the final output. All neurons in the network hidden layer are companioned using the 

following function:  

 !- 	= 	ƒ	G	(H 2. . #.-
/

.0%
), -	 = 	1,2, . . . . , K (3.8) 
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where ni is the output of the hidden layer, ƒ H is the activation function used, and the most 

activation function used is the sigmoid function. Thereafter, the new attributes with adjusted 

weights are passed to the output hidden layer to calculate the final output values:  

 81 	= 	ƒ	L	 MH !- . #-1

2

-0%
N , L	 = 	1,2, . . . . . , O (3.9) 

where y is the final output representing the model’s final decision about the data. An important 

stage of the training process is that if the difference between the final output values and the 

actual target values is significant, the weights computation process is repeated again, and all 

weights between the input and hidden layer and the weights between the hidden and output 

layer are updated until the differences are minimised.  

The core advantage of ANN is its capability to find relationships between variables and deal 

with nonlinearity, choosing among the most important predictable attributes in the model 

(Messier and Hansen, 1988). Moreover, it has the capability to model using incomplete data 

sets with missing and noisy data with no previous assumption of data distribution, which allows 

it to recognise complex patterns between attributes (Vellido et al., 1999). However, its long 

training process and lack of theoretical grounding are considered as drawbacks of ANN 

modelling technique. 

In this study, we used feed forward backpropagation as an ANN modelling method for 

classifying failed firms.  

3.4.5. Decision Trees 

DT modelling techniques are commonly used machine-learning approaches that have been 

widely deployed in business failure applications. DT is a non-parametric classification method 

that analyses target data using a function of independent attributes (Tsai et al., 2014). The 

conceptual idea behind using DT techniques in business failure is to classify businesses into a 

binary classification system. It starts with a root node that includes both classes of business’ 

status, and then it splits into another two nodes containing the possible event based on the 

chosen attributes by applying a decision algorithm. In the DT structure, the leaves are marked 

by class labels while branches are marked with conjunctions, which lead to classifications 

(Sharma and Kumar, 2016). The process continues in a loop of all possible splits until optimal 

DT is reached, optimally partitioning the mostly active and failed firms with the lowest error 
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and misclassification rate. This classification method has been used widely by researchers of 

business failure (Tsai and Cheng, 2012; Heo and Yang, 2014; Tsai et al., 2014; Wang et al., 

2014; Smiti and Soui, 2020). Larivière and Van den Poel (2005) adumbrated the main 

advantages and disadvantages of DT. The advantages are that it: 

• Does not make assumptions based on data distribution. 

• Allows for numerical and nominal attributes. 

• Handles missing data or values. 

• Is easy and interpretable.  

Its main disadvantages are that it:  

• Has less model robustness and optimality of performance. 

• Is sensitive to data outliers and irrelevant attributes. 

• Requires extreme efforts to handle missing data  

Figure 3.2 displays the structure of a DT.  

 

Figure 3.2: Example of a Decision tree structure 

3.4.6. Naïve Bayes 

NB is a statistical classifier used to predict binary class problems. The classifier relies on 

adopting the Bayesian theory to classify the final output of the model when the input variables 

space is high (Choi et al., 2018). The simplicity of the method in regard to binary classification 

decisions means that is has gained little attention in the field of business failure prediction 

(Wang et al., 2014).  

Total Firms = 20000
Active Firms = 10000
Failed Firms = 10000

Total Firms = 11000

Active Firm = 5000

Failed Firm = 6000

Total Firms = 5000

Active Firms = 3000

Failed Firms = 2000

Total Firms = 6000

Active Firms = 2000

Failed Firms = 4000

Total Firms = 9000

Active Firm = 4000

Failed Firm = 5000



54 

NB modelling starts by calculating the conditional probability of a class or instance being 

classified, represented by independent variables x. For solving business failure classification 

problems, assume that there is a training dataset containing a number of variables in the form 

of { x1, x2,….., xn}, assigned with a class label m indicating either ‘fail’ or ‘active’. The NB 

classifier trains the data and finds the mapping function that can predict the probability of a 

class based on all features on the dataset using the following the computational method: 

 P	(Q-|	2%, . . . . . , 2!) = 	P	(2%, . . . . . , 2!	|	Q-) ∗ 	P	(Q-)/	P(2%, . . . . . , 2!) (3.10) 

where P(ci | xi...., xn) is the conditional probability of a business class based on all variables x. 

In contrast, P(x1,....., xn | ci) is the probability of the variables belonging to firm class. P(ci) is 

the prior probability of class unconditioned to any data, and P(x1,....., xn) is the probability of 

all variables on class ci. The model uses minimum error probability criterion or maximum 

posterior probability to assign the posterior probability to the label class. 

3.4.7. K-Nearest Neighbour 

KNN is defined as a type of non-parametric classification method, and it is a popular data 

mining technique to solve classification problems (Choi et al., 2018; Smiti and Soui, 2020). 

The KNN algorithm analyses all available data and classifies it, and then uses the classifications 

of the previously established categories to determine how the new cases should be classified. 

The first step is to count the number of closest neighbours and see if the class assignment is 

correct. To determine the distance between an instance and all training instances, the model 

first needs to know the size of each training instance. The instances are ordered according to 

their distance from one another, and their nearest neighbours are discovered. The process of 

finding the shortest path is therefore equivalent to moving from the new instance to the starting 

point. Nearby neighbourhoods are then visited to see if they can find the majority (Smiti and 

Soui, 2020). This majority of the class is a class that was predicted to be the final result (Choi 

et al., 2018). 

3.4.8. Support Vector Machine 

SVM is a supervised learning modelling technique derived from statistical learning theory, 

which is associated with a learning algorithm used to analyse data in classification and 

regression. This machine learning modelling method has been widely adopted to develop 

classification models in the field of business failure (Barboza et al., 2017; Fan et al., 2017; 
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Choi et al., 2018; Jing and Fang, 2018; Huang and Yen, 2019; Smiti and Soui, 2020; Jabeur et 

al., 2021).  

As illustrated in Figure 3.3, SVM topology has a decision surface called the optimal 

hyperplane, and the data points closest to it and the margins (dashed lines) are called support 

vectors. The support vectors are very important elements used for training the model, whereby 

the SVM finds the optimal hyperplane separating the input data with the maximum margin 

width to fit the data. SVMs is a non-probabilistic binary linear classifier that classifies a set of 

training to one of two categories (Huang and Yen, 2019). Kernel function mechanism can be 

used for the mapping process, by which the SVM can be adapted to become a nonlinear 

classifier using nonlinear kernels. Several binary SVM classifiers can be combined to convert 

SVM into a multiclass classifier.  

 

Figure 3.3: SVM model 

Source: Huang et al. (2018) 

SVM has the ability to model nonlinear data using different types of kernels that transfer data 

in higher dimensional space to provide higher prediction accuracy rates in comparison with 

other modelling techniques. However, in contrast to ANN, SVM is sensitive towards missing 

and noisy data (Teng et al., 2010). 
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3.4.9. Deep Learning  

Deep learning can be used as supervised classification learning model consisting of input, 

output, and hidden units, where most data processing work is completed. Long Short-Term 

Memory Recurrent Neural Network (LSTM RNN) is a very deep neural network in the time 

direction, developed to learn sequence and time patterns from time series or data sequences, 

and to learn long-term dynamics while avoiding problems of vanishing and exploded gradients 

(Aljawazneh et al., 2021).  

The network is composed of LSTM memory blocks (instead of hidden neurons), which consist 

of memory cells and gates that replace the hidden layers unit of the RNN. Each cell is mainly 

configured by three gates: the input, output, and forget gates. These cells and gates play an 

important role in training long-range dependency while controlling information storage. The 

memory block consists of one memory cell (ct) and four gates: input (it), forget (ft), input 

modulation (gt), and output (ot) gates (Jang et al., 2019). Unlike in feed forward NN, deep 

learning LSTM introduces a directional loop that uses previous information to analyse the 

current output, as the previous output is related to the current output sequence, and the nodes 

between memory cells are connected (Jang et al., 2019). Figure 3.4 shows a deep learning 

LSTM structure. 

 

Figure 3.4: Deep learning LSTM structure 

According to Figure 3.4, in a standard LSTM RNN network algorithm, the calculated ht is the 

final prediction value calculated by receiving input information at time t (xt) using previous 

hidden state ht-1, which is represented in the following equations: 
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 T1 = 	U(V3#$ + W3ℎ1'% + Y3) (3.11) 

 -1 = U(V-#$ +	W-ℎ1'% + Y-) (3.12) 

 gt = tanh(Wcxt + Ucht – 1 + bc) (3.13) 

 Q1 = -1 ⊙.1 + T1 ⊙Q1'% (3.14) 

 +1 = 	U(V4#$ + W4ℎ1'% + [4%$ + Y4) (3.15) 

 ℎ1 = +1 ⊙ L&!ℎ(Q1) (3.16) 

 

where σ is the activation function (sigmoid), xt represents input variables, t is the time unit, W 

and U represent the assigned weights, it is the input gate, ot is the output gate, b is the bias, ct 

represents the vector of memory status, σ is the sigmoid function, gt represents the input 

modulation, and ⊙ is a pointwise multiplication.  

The first step in the LTSM process is the forget gate procedure, where the sigmoid function is 

applied to identify information to be discarded (based on value). The next step applies 

equations 3.13, 3.14, and 3.15, where the sigmoid and the tanh functions are used to make the 

decision to update information from the input values. The final step (equation) is to calculate 

the final predictions.  

In this thesis, the deep learning classifier was used as an individual classifier for predicting 

business failure one year ahead.  

3.4.10. Ensemble Boosting Decision Trees 

Ensemble boosting methods combine two or more classifiers to increase the prediction 

accuracy and improve model performance. They are more proficient and useful to handle the 

model instability and increased variance between multiple data subsets taken from the 
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population (Freund and Schapire, 1997). They let the classifier learn from the maximum 

variance within the dataset, using DT models as the base classifiers to do so.  

Boosting is defined as the combination of learning algorithm in series, to improve learner 

performance from many sequentially connected weak classifiers (Freund and Schapire, 1997). 

For AdaBoost boosted DT modelling classifier, DTs are weak classifiers, whereby each tree 

attempts to improve the classifying accuracy and reduce the errors of the previous tree. 

Therefore, adding many trees in series, with each focusing on improving the classification 

errors from the previous one, results in a more efficient and accurate classification model. The 

classifier is designed such that in each step the data distribution is adapted to put more weight 

on misclassified data, and less weight to correctly classified data, in order to reduce 

misclassification errors from the previous classification tree. Also, more weight is assigned to 

stronger classifiers based on their classification performance, and the final classification result 

is a weighted average of all the weak classifiers. An advantage of adding trees sequentially is 

that the boosting mechanism learns slowly and performs better. Figure 3.5 shows the ensemble 

boosting process of the DT framework. 

 

Figure 3.5: Ensemble boosting DT framework 

Source: Sun et al. (2011) 



59 

3.5. Performance Measurements 

This section explains model performance evaluation, which is ultimately the most important 

stage in the development process of business failure models. Each developed model in this 

study was tested using performance evaluation metrics derived from related studies in order to 

determine the extent to which these models are reliable and well-learned, to be ready to predict 

new real-world data. According to Lessmann et al. (2015), there are three important types of 

measure that should be taken into consideration when evaluating model performance results to 

reach a comprehensive conclusion on how well the developed model performed: 

• Measures used to evaluate the prediction power of the model. 

• Measures to assess the discrimination power of the developed model. 

• Measures used to assess the extent of model accuracy in predicting instances.  

In order to evaluate and validate the prediction performance of all models used in this study 

and to make a robust conclusion on predictive accuracy, eight performance measures were 

selected that can be integrated from the confusion matrix: 

• Accuracy 

• Sensitivity 

• Specificity 

• Type I Error 

• Type II Error 

• Area under the curve (AUC) 

• Reliability diagram 

• Brier Score 

These measures (as shown in Table 3.4) have been widely used in business failure studies, 

therefore they were chosen to cover all aspects of model performance in this study.  

3.5.1. Confusion Matrix 

The confusion matrix is a table used to provide information about model performance results, 

reporting the number or percentage of correctly and incorrectly classified data. The table 

consists of information about the number of firms classified as True Positive (TP), False 

Positive (FP), True Negative (TN), and False Negative (FN). Several performance measures 

can be derived from this information, which has been widely used to evaluate model 

performance. Table 3.4 displays a confusion matrix table. 
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Table 3.4: Confusion matrix table 

 
Predicted classifier (%) 

Failed Active 

Actual 

class 

(%) 

Failed 
True Negative (TN) 

(Specificity) 

False Positive (FP) 

(Type I Error) 

Active 
False Negative (FN) 

(Type II Error) 

True Positive (TP) 

(Sensitivity) 

 

The following section describes the important performance metrics that can be derived from 

the confusion matrix. 

3.5.2. Average Accuracy Rate 

Average accuracy rate measures the percentage of correctly classified data instances out of the 

total number of the cases on the dataset. As can be seen in Table 2.2, it is the most commonly 

used measurement to assess model performance in business failure studies due to its simplicity 

of calculation. The accuracy rate is calculated using the following formula:  

 Average	Accuracy = 	
TP + TN

TP + TN + FN + FP
 (3.17) 

However, it does not take into consideration how accurate the model performs in classifying 

different classes individually. As explained previously, if a dataset is imbalanced, consisting 

of 90% active and 10% failed firms, the developed classifier can still achieve an average 

accuracy rate of 90% due to correctly classifying all active firms, despite misclassifying all 

failed firms in the dataset. In this case, a substitute measurement that can give insight on each 

predicted class is preferable, in order to see if a model is biased toward a specific class such as 

Type I and Type II Error, and sensitivity and specificity ratios.  

3.5.3. Type I and Type II Error 

Based on information from the confusion matrix, Type I Error represents false negative (FP), 

and Type II Error represents false negative (FN). If a failed firm is misclassified as active, this 

is considered as Type I Error, and if an active firm is misclassified as failed, this is considered 

as Type II Error. These measures are frequently used in business failure studies (Barboza et 

al., 2017; Fan et al., 2017; Huang, Yen, 2019; du Jardin, 2021).  
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For business failure prediction, Type I Errors are related to financial and economic loss 

resulting from classifying failed firms as active, with high risk of quitting the market, and Type 

II Errors are related to potential economic loss that could occur from classifying an active firm 

as failed. Type I and Type II Errors can be calculated using the following: 

 Type	I	Error	 = 	
FP

TN + 	FP
 (3.18) 

 

Type	II	Error	 = 	
FN

TP + FN
 

(3.19) 

Practically, a business failure model that is better able to correctly predict failed firms is 

considered more beneficial for users than a model that focusing on correctly classifying active 

firms. Therefore, it is of more concern for users to have a prediction model that can prevent 

losses that could occur from investing in failed firms, as well as giving assurance to make profit 

in active firms. It is essential to have an unbiased balanced model to predict business status.  

3.5.4. Sensitivity and Specificity 

Sensitivity and specificity represent measures that deal with each class of business status in the 

dataset. Sensitivity is defined as how effectively a classifier is able to identify positive class 

(Sokolova and Lapalme, 2009). The measure calculates the percentage of correctly classified 

failed firms, referred to as true positive (TP) predictions (according to the confusion matrix). 

Specificity is defined as how effectively a classifier identifies firms with a negative class 

(Sokolova and Lapalme, 2009). It measures the proportion of correctly classified active firm, 

which is known as true negative (TN) (Bešlić Obradović et al., 2018). Sensitivity and 

specificity can be calculated as follows: 

 Sensitivity	 = 	
TP

TP + FN
 (3.20) 

 Specificity	 =
	TN	

TN + FP
 (3.21) 
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3.5.5. Area Under Curve Receiver Operating Characteristic Curve 

AUC is a measurement used to evaluate model classification performance based on various 

threshold measures. Basically, it represents the area under the Receiver Operating 

Characteristic (ROC) curve, which is a two-dimensional graphical representation of the 

possible distribution of the predicted business class, as shown in Figure 3.6. The proportion of 

correctly predicted active firms is plotted in the (x-axis) as the true positive rate (sensitivity), 

and the percentage of misclassified failed firms is plotted in the (y-axis) as the false positive 

rate (1-specificity) (Brown and Mues, 2012). Moreover, the ROC illustrates the behaviour of a 

classifier without being affected by any misclassification errors, or any change in class 

distribution (Veganzones and Séverin, 2018). 

 AUC =
Sensitivity	 + (1 − Specificity)

2
 (3.22) 

The diagonal line is the balance of sensitivity and (1-specificity) for a random 

classification model, with an AUC value of 0.5. The ROC curve should be as far to the top left 

corner as possible for a successful classification. The best classification classifier is the ROC1 

curve in the example shown in Figure 3.6. 

 

Figure 3.6: ROC illustrative example 

Source: Brown and Mues (2012) 
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In business failure classification problems, AUC provides indications about how well the 

model performs in distinguishing between different classes (Son et al., 2019). For instance, a 

model with a higher AUC value performs better in correctly classifying both classes of the 

dataset, whereas an excellent model has AUC values close to 1, reflecting good separability. 

In contrast, a model with an AUC value close to 0 has the worst separability, with an AUC 

value of 0 meaning that the model is reciprocating the result and predicting all 0s as 1s, and all 

1s as 0s. However, an AUC value of 0.5 means that the model has no class separation capacity.  

3.5.6. Brier Score  

The Brier score is a cost or loss function used as a model performance measurement to measure 

the accuracy of probabilistic predictions (Brier, 1950). Since it is a cost function, a classifier 

with lower Brier score measure has more accurate prediction performance than a classifier with 

a higher score. Therefore, the best possible classifier can have a Brier score of 0, and the worst 

can have a score of 1. Brier score is an important performance measurement in evaluating 

classifier prediction (Lessmann et al., 2015). Unlike average accuracy rate, which transforms 

classifier prediction into two separate classes (0 and 1) based on a threshold pre-determined 

value, Brier score measures the mean squared error of the classifier prediction as follows: 

 BS = 1/NH (p5 − y5)&
6

50%
 (3.23) 

where N denotes the total number of firms, Pi stands for the probability of the firm i, and yi is 

the actual class for the firm.  

3.5.7. Reliability Curve 

A reliability diagram offers a visual examination to test if the binary classifier is calibrated. It 

is used as a key diagnostic tool to check model calibration by plotting predictive probability 

values against the actual observed event. For binary classification, both statistical and machine 

learning classifiers generate continuous predictive probabilities within the range of 0 to 1. In 

these settings, to generate a reliability curve, binning and counting approach is used to arbitrary 

select a certain number of bins, whereby each bin includes a certain number of predicted values, 

and the average of these values is calculated and assigned to the bin. The same process is 

assigned to the target values representing the actual status of companies. Each bin value is 

graphically matched against the optimal diagonal line that represents the actual respective 

observations.  
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According to Prati et al. (2011), well-calibrated classification outputs should produce a curve 

close to the optimal diagonal line, resulting in a small reliability measurement, which is the 

weighted average of the squared vertical distances between the curve and the main diagonal. 

The curve represents the bias of the predictions, with curve lines lying entirely below or above 

the optimal diagonal line that represent negative or positive biased predictions (respectively). 

Regions of low resolution can be presented on the flat lines or line segments on the curve (Prati 

et al., 2011).  

3.6. Statistical Significance Testing 

Testing the statistical significance of classifier prediction performance is the final important 

stage in business failure model development. The fact that a model achieves better prediction 

performance based on techniques used or performance results obtained is insufficient in itself 

to prove superiority. Therefore, to have a comprehensible evolution of model performance, 

hypothesis testing can be used to prove that the differences are statistically significant and are 

not due to random aspects. In choosing the best test for statistical significance, factors such as 

the size of the datasets, the number of models or classifiers adopted, and the measurement scale 

of the output (such as binary, interval, or nominal) should be taken into consideration. Applying 

inappropriate significance testing can undermine research conclusions, and result in misleading 

information about model performance (McCrum-Gardner, 2008) 

Previous studies tested statistical significance using parametric methods such as paired t-test, 

and nonparametric methods such as Friedman test. According to Demšar (2006), parametric 

tests could be conceptually inappropriate, and nonparametric tests are considered statistically 

safer, since they do not require normal data distribution or homogeneity of variances. 

Therefore, the dataset used in this study was tested for normality using SPSS version 26 

statistical software, which revealed that it is not normally distributed.  

Nonparametric testing can be carried out to compare the performance results of more than two 

classifiers. Hence, Friedman (1940) test was adopted in this study in order to investigate and 

discover statistical differences in different models’ prediction capabilities for business failure.  

Friedman Test 

In order to assess and compare the classification results obtained by various classifiers used, 

Friedman test (Demšar, 2006) was adopted in this study. It is a non-parametric randomised 

back analysis of variance that allows comparison of classifiers’ results for the same subject. 
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The test is a Chi-square with j-1 degree of freedom, where j is the number of repeated measures. 

The null hypothesis is rejected when the p-value is small (usually < 0.05). The aim of this test 

is to determine whether statistically significant differences exist between the algorithms 

examined over certain datasets. The test determines the algorithm ranks of each set of data. 

Friedman test detects whether there are statistically significant differences between algorithms 

examined and classify algorithms from the best to the worst. If statistical significance is 

detected, the researcher can carry out post-hoc procedures to determine which algorithms differ 

significantly. In our case, the test is used to detect the significance of each classifier’s 

predictions represented in columns, and different outputs on each sample in rows, as in Table 

3.5 and Table 3.6. 

Table 3.5: Floating predictions 

Input  Model 1 Model 2 Model 3 ⋯ Model n 

1 D%% D%& D%7 ⋯ D%! 

2 D&% D&& D&7 ⋯ D&! 

3 D7% D7& D77 ⋯ D7! 

⋮ ⋮ ⋮ ⋮  ⋮ 

K D8% D8& D87 ⋯ D8! 

Source: Author 

Table 3.6: Predictions ranking 

Input Model 1 Model 2 Model 3 ⋯ Model n 

1 ,%% ,%& ,%7 ⋯ ,%! 

2 ,&% ,&& ,&7 ⋯ ,&! 

3 ,7% ,7& ,77 ⋯ ,7! 

⋮ ⋮ ⋮ ⋮  ⋮ 

K ,8% ,8& ,87 ⋯ ,8! 

 

According to the tables, the initial step is to convert the row of floating predictions to ranking, 

where #$% ∈{1,2, ...,'}, $∈ {1...'}, % ∈ {1...(}, #$% = ̸#$)∀$ ∈ {1...'}, and %,) ∈ {1..(}. For 

example, if a row consists of the predictions (1, 0.35, 0.15, 0.56, 0.67), it will be converted to 

ranking row as (5, 2, 1, 3, 4) (respectively), so that higher prediction value will receive bigger 

ranking. After converting classifier outputs to rankings for each row, equation (3.24) is applied: 
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 K =
12

wx(x + 1)
Hy-

& − 3w(Q + 1), #ℎ","	y-	 =	H,-.

/

.0%

:

-0%

 (3.24) 

The probability of S can be approximated by chi-squared distribution if + > 15 or , > 4. The 

null hypothesis is rejected if the value of S is greater than the critical value of chi-squared 

distribution -!" (, − 1) for probability ..  

If the null hypothesis is rejected, a post-hoc Bonferroni–Dunn pairwise comparisons test is 

recommended. The test measures the critical difference (CD), which is the minimum required 

difference in rank sums for a pair of classifiers to differ at the pre-specified alpha level of 

significance (Demšar, 2006). The CD statistic is calculated using the difference in rank sum 

averages (i.e., Rj/n), rather than rank sums. 

3.7. Study Framework and Research Design  

The above discussion explained the essential steps of developing a business failure model. 

Accordingly, the experimental design of the proposed business failure model in this thesis is 

shown in Figure 3.7, and summarised as follows:  

1. Data collection 

2. Data pre-processing 

3. Data splitting  

4. Feature selection 

5. Model development  

6. Performance evaluation  

7. Statistical significance testing 

3.8. Summary  

This chapter provided an overview of all the methodological steps used to build and develop a 

business failure model. The development process of business failure encompasses several main 

stages, starting from the dataset collection and pre-processing to be implemented in the models. 

Hence, the experimental design framework adopted in this thesis demonstrates the essential 

steps used to develop comprehensive and reliable models of business failure in the UK. The 

next chapters fully demonstrate the execution of each stage of the proposed model.  
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Figure 3.7: Flowchart of the experimental design 
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Chapter 4  
Data Mining Tools for Insolvency Modelling 

4.1. Introduction 

This chapter presents multiple classification methods used to develop a business failure 

classification model and evaluates their performance over three datasets (comprising financial 

data related to UK companies). It illustrates the development phase of each classifier and 

compares its prediction capability based on its performance measurements, in order to assess 

how each classifier performed in predicting business failure. Table 2.2 displays several 

modelling techniques used as individual classifiers for business failure predictions, which are 

to be deployed in this chapter and different fields. 

These famous individual classifiers have been used to solve binary classification problems in 

deferent fields, because of their ease of implementation. Nine base classifiers are used for 

model development and analysis in this thesis, namely ANN, SVM, DT, LR, LDA, KNN, NB, 

DPL, and ENS-DT. Each of these classifiers has its own running methodology, with particular 

advantages. However, LR is considered as the default modelling method in the field of business 

failure, and it was selected as a benchmark classifier to compare other performance results with 

(as explained previously). The experiments of this study are conducted using MATLAB 2019a 

version on an 8 GB RAM personal computer with 3.4 GHz, Intel CORE i7, and Microsoft 

Windows 10 operating system. 

For individual classifiers, it is crucial to implement the best classifier parameters in order to 

allow the model to perform well. For business failure classification datasets, the same features 

are used for model development, so implementing the best model parameters plays a major role 

to achieve best classification performance for all datasets. In this section two major aspects are 

presented: (1) dataset preparation and pre-processing in order to be fed into the classifiers; and 

(2) the model development process and training for each classifier based on the best parameter 

selection (to achieve the best classification results).  

4.2. Data Pre-Processing and Preparation for Training and Evaluation 

As explained in Chapter 3, pre-processing and preparation before feeding financial datasets 

into the classifiers enhances data quality, improving classification capability to produce best 

results. To achieve this objective, the financial data is pre-processed by the following steps: 
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• Data cleaning by removing firm data with missing values. 

• Normalisation of the values of some attributes of each dataset.  

The datasets are then partitioned using two substantial methods for training and testing 

purposes depending on the classifiers used: 

• Data are divided into two data segments (training, and testing) using the percentages 

80% and 20%. 

• Data are divided using K-fold cross-validation partitioning technique with 10 × 5 cross-

validation.  

The training stage builds and develops classifier models by using and selecting classifier 

parameters, which are then tested in order to evaluate prediction performance. The classifier 

building and development process is explained in the following section. 

4.3. Model Development and Experimental Results  

This section presents the performance of each individual classifier in tables and figures 

extracted from the results of testing using holdout technique and 10 × 5 cross-validation across 

the three datasets of UK companies. Each table includes eight performance measurements 

selected to evaluate and compare classifier performance, which allows us to discover the best 

classifier among all individual classifiers for classifying business failure. Moreover, all results 

are compared to the LR industrial statistical modelling technique, which is the traditional 

benchmark classifier in business failure literature. Tables 4.1 to 4.9 demonstrate each 

individual classifier’s results based on all classification measurements. Moreover, the figures 

in this chapter show the graphical presentation of the ROC and reliability curve performance 

parameters of each classifier.  

After describing all results, a thorough discussion and analysis process is conducted based on 

performance measurement results to explain each classifier’s advantages and disadvantages, in 

order to discover the best classifier model for BF classification. The model development of 

each machine learning single classifier is based on parameters selected and tuned in order to 

achieve the highest performance. 

4.3.1. Linear Regression 

LR, the benchmark classifier, illustrates the outperformance of machine learning over statistical 

classification methods. According to Table 4.1, the average accuracy rate increased from 
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75.4% for year 2017 to 80.1% for year 2019. This increase was reflected in the substantial 

decrease of Type II Error, which means the misclassification of failed firms decreased. As can 

be seen, Type II Error was 29.3% in 2017, and decreased to 22% in 2019. 

However, the specificity rate, which represents the ability of the model to correctly classify 

failed firms, is relatively higher than the sensitivity one, indicating the model’s performance in 

classifying active firms for all years’ datasets, whereas the scenario is the opposite for all other 

classifiers, which had higher sensitivity than specificity. Meanwhile, LR classifier only 

outperformed the other statistical LDA classifier based on all performance measurements; all 

other classifiers showed better results than LR.  

All-Data results show that the classification performance of the LR classifier was enhanced in 

comparison with each year datasets results; the average accuracy rate of 81.8% is 1.7% higher 

than 2019 dataset and 6.4% higher than 2017 results. The improvement of classification is 

related to correctly classifying failed firms, manifest in a reduction of Type II Error to 18.8%.  

Table 4.1: LR results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 80.1% 77% 75.4% 81.8% 

Type II Error 22% 26.3% 29.3% 18.8% 

Type I Error 17.8% 19.7% 20% 17.6% 

Sensitivity 78% 73.7% 70.7% 81.2% 

Specificity 82.2% 80.3% 80% 82.4% 

AUC 89% 86% 85% 91% 

Brier Score 0.1328 0.1531 0.1621 0.1211 

Area Under Reliability 

Curve 
0.0574 0.0685 0.0710 0.0385 

 

The ROC graph presented in Figure 4.1 shows the curve for each year’s dataset generated from 

the LR classifier results. The shape of the curve and the AUC shown in Table 4.1 give 

indications about the model performance. Based on the graph, the 2019 dataset had a better 

curve than 2018 and 2017.  



71 

 

Figure 4.1: ROC curve for LR classifier 

Figure 4.2 shows the reliability diagram of the LR classifier. The shape of the line of the 

predictions presented in 20 bins indicates very low classification error for active firms (the part 

of the curve above the 0.5 threshold of mean predictive value); the line should optimally be at 

the diagonal line or above. The line also indicates higher error rate of failed firm classification 

(the part of the curve below the 0.5 threshold of mean predictive value); the line should 

optimally be at the diagonal line or below. This mean LR is more reliable in correctly 

classifying active firms than failed ones, which is also reflected in the area under the reliability 

line shown in Table 4.1: 3.85% for All-Data, and 6.85%, 7.1%, and 5.7% for the years 2017, 

2018, and 2019, respectively.  
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Figure 4.2: Reliability diagram for LR classifier 

4.3.2. Linear Discriminant Analysis 

LDA is a classification method that uses Gaussian distribution function to classify input data. 

The model was trained using a dataset with k-fold cross-validation with five folds. Table 4.2 

shows the results of the LDA classifier, which was found to be the worst based on all 

performance measurements. This indicates that LDA modelling is not preferable for business 

failure classification using financial ratios datasets. The best accuracy rate of the model was 
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has the highest Type I and Type II Error, and its Brier score has an inverse relationship with 

accuracy rate, reflected in the high values shown in Table 4.2. However, the classifier showed 

better results for the All-Data dataset, with 75% average accuracy rate. This confirms that Big 

Data is relatively germane for this classifier’s classification performance.  
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Table 4.2: LDA results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 71.5% 70.5% 69.5% 75% 

Type II Error 28.7% 30.4% 30.8% 24.6% 

Type I Error 28.3% 28.5% 30.1% 25.4% 

Sensitivity 71.3% 69.6% 69.2% 75.4% 

Specificity 71.7% 71.5% 69.9% 74.6% 

AUC 77% 76% 75% 80% 

Brier Score 0.1978 0.215 0.2059 0.1825 

Area Under Reliability 

Curve 
0.0825 0.0799 0.0772 0.1028 

 

According to Figure 4.3, the ROC curve for LDA model shows bad performance in comparison 

with all classifiers. This can be seen as all curves lay closer to the diagonal line, indicating 

lower AUC values. An AUC value of 80% for All-Data is considered the best performance of 

the model, but it is still the lowest value among all other classifiers. 
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Figure 4.3: ROC curve for LDA classifier 

According to the reliability diagram in Figure 4.4, the shape of the prediction line indicates a 

very bad performance. As can be seen from the figure, the right side of the line is below the 

diagonal line, whereas it should be above, which means the model is not reliable in correctly 

predicting firm status. The high area value between the prediction line and the optimal diagonal 

line shows high prediction error. These values are the highest among all other classifiers for all 

years’ datasets. It can be noticed that the lines for all datasets lay a similar distance from the 

diagonal line, approved by their area values from Table 4.3.  
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Figure 4.4: Reliability diagram for LDA classifier 

4.3.3. K-Nearest Neighbour 

KNN is a classification algorithm used for the approximation of local function and the 

execution of all computations until function evaluation. For classification purposes, the 

algorithm relies on computing the distance between features and targets, by normalizing the 

features to achieve the highest classifying accuracy rate. Therefore, to solve classification 
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 d(x, y) = }H(x5 − y5)&
;

50%

 (4.1) 

Where xi is the value of the variables of the input data, yi is the target class of the firms in the 

dataset, and n represent the number of firms in the dataset.  The distance weight function is set 

as ‘squared inverse’ (weight is equal 1/distance2). The tie-breaking parameter set as ‘smallest’, 

which is used when multiple classes have the smallest cost.  

According to Table 4.3, KNN classifier shows relatively weak performance in terms of 

classification accuracy in comparison with the other classifiers except for LR and LD 

classifiers. Its average accuracy rates of 81.2%, 80.4%, and 79.4% for the years 2019, 2018, 

and 2017 (respectively) are considered to indicate relatively low classification performance. 

However, the decline in average accuracy through year 2017 to 2019 is relatively low, which 

indicates relatively stable performance among all datasets. Although the model’s high Type I 

Error of 25.5% for the year 2017 dataset decreased slightly to 22.9% for the year 2019 dataset, 

the error values still reflect the weakness of the model to correctly predict failed firms in 

relation to the other datasets. It is worth mentioning that when using All-Data dataset, the 

classifier showed a small enhancement of classification accuracy, with a 1.8% increase in 

comparison to 2019.  

Table 4.3: KNN results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 81.2% 80.4% 79.4% 82.9% 

Type II Error 14.7% 15.6% 15.7% 12.7% 

Type I Error 22.9% 23.5% 25.5% 21.6% 

Sensitivity 85.3% 84.4% 84.3% 87.3% 

Specificity 77.1% 76.5% 74.5% 78.4% 

AUC 90% 89% 88% 91% 

Brier Score 0.1311 0.1362 0.1428 0.1194 

Area Under Reliability 

Curve 
0.0534 0.047 0.0446 0.0592 

 

The ROC curve of KNN classifier shown in Figure 4.5 displays a smooth decrease from the 

year 2017 to 2019. This is considered compatible with the classifier performance according to 
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other performance parameters shown in Table 4.3. An AUC of 91% for All-Data is considered 

low in comparison with other classifiers, but it is still higher than LR and LD; KNN 

outperformed these classifiers in terms of all performance parameters.  

 

Figure 4.5: ROC curve for KNN classifier 

Figure 4.6 shows the reliability diagram for KNN classifier, plotting the predictions line below 

the diagonal. This indicates low reliability of the classifier prediction performance, even though 

the lines for all datasets were close to the optimal diagonal line. This can be explained by its 
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Figure 4.6: Reliability diagram for KNN classifier 
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the factor max_perf_inc, the learning rate is adjusted by the factor lr_dec and the change that 

increased the performance is not made. 

The function traingdx combines adaptive learning rate with momentum training. It is invoked 

in the same way as traingda, except that it has the momentum coefficient mc as an additional 

training parameter. traingdx can train any network as long as its weight, net input, and transfer 

functions have derivative functions. Backpropagation is used to calculate derivatives of 

performance dperf with respect to the weight and bias variables X. Each variable is adjusted 

according to gradient descent with momentum using the equation 4.3, 

4- = 9, ∗ 4-.#5: + 2# ∗ 9, ∗ 4.#56/4-                                                                        (4.3) 

where dXprev is the previous change to the weight or bias. 

For each epoch, if performance decreases toward the goal, then the learning rate is increased 

by the factor lr_inc. If performance increases by more than the factor max_perf_inc, the 

learning rate is adjusted by the factor lr_dec and the change that increased the performance is 

not made. 

Trainlm supports training with validation and test vectors if the network’s NET.divideFcn 

property is set to a data division function. Validation vectors are used to stop training early if 

the network performance on the validation vectors fails to improve or remains the same for 

max_fail epochs in a row. Test vectors are used as a further check that the network is 

generalizing well, but do not have any effect on training. trainlm can train any network as long 

as its weight, net input, and transfer functions have derivative functions. 

Backpropagation is used to calculate the Jacobian jX of performance perf with respect to the 

weight and bias variables X. Each variable is adjusted according to Levenberg-Marquardt 

through the equation 4.4, 4.5, and 4.6, 

%% = %- ∗ %-                                                                                                                          (4.4) 

%5 = %- ∗ <                                                                                                                           (4.5) 

4- = −(%% + ? ∗ 9@)\%5                                                                                                      (4.6) 

where E is all errors and I is the identity matrix. 

The adaptive value mu is increased by mu_inc until the change above results in a reduced 

performance value. The change is then made to the network and mu is decreased by mu_dec. 
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To select the optimal training function, trainlm was selected to allow the network to adjust 

input weights to achieve the optimal output value and minimise the error of the classification 

where the trainlm is a network training function that updates weight and bias values according 

to Levenberg-Marquardt optimization. This function assumes that model’s performance is a 

mean of squared errors. Therefore, networks trained with this function must use the Mean 

Squared Error performance function in order to minimise the classification error of the model. 

This function is often the fastest backpropagation algorithm in the toolbox and is highly 

recommended as a first-choice supervised algorithm, although it does require more memory 

than other algorithms (traingdx, traingda) where traingdx  is a network training function that 

updates weight and bias values according to gradient descent momentum and an adaptive 

learning rate and traingda is a network training function that updates weight and bias values 

according to gradient descent with adaptive learning rate. 

The network structure consists of input, hidden, and output layers. One hidden layer is selected, 

where it is crucial to select the optimal number of neurons in order to improve network 

classification capability (the greater the number of neurons, the more complex the model). For 

data training, the number of ten neurons was selected based on trial-and-error, which produced 

the best performance based on all measurement parameters.  

For the hidden layer the tansig hyperbolic tangent is selected as a transfer function, which is 

the most common function used for network development:  

 L&!h(2) = 
2 

+ 1 (4.1) 1−"−22 (4.7) 

For the output layer, pure linear ‘purlin’ function was used as a transfer function. This uses 

hidden layer output as the final decision of the network classifier.  

Table 4.4 shows the performance of NN classifier. It has better performance than KNN, LD, 

and LR in terms of average accuracy. The model achieved 84.9% average accuracy for All-

Data dataset. Its average accuracy of 83.1% for 2019 is just 1.6% higher than for the 2017 

dataset, which indicates relatively stable classification rates among three datasets. However, 

these rates are still lower than those other classifiers apart from those mentioned above.  

On the other hand, the classifier has relatively balanced Type I Error and Type II Error, which 

illustrates the model’s capability to perform well in predicting both active and failed firms. 

However, Type I Error, which reflects model failure to predict active firms, only outperformed 
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LD and LR classifiers for all years’ datasets. The model’s Brier score results were lower than 

those of KNN and LD, indicating lower predictions error. 

Table 4.4: NN results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 83.1% 82.5% 81.5% 84.9% 

Type II Error 16.4% 17.5% 18.8% 13.7% 

Type I Error 17.4% 17.4% 18.2% 16.5% 

Sensitivity 83.6% 82.5% 81.2% 86.3% 

Specificity 82.6% 82.6% 81.8% 83.5% 

AUC 92.02% 91.2% 90% 93% 

Brier Score 0.1155 0.1212 0.1454 0.1073 

Area Under Reliability 

Curve 
0.0867 0.0881 0.113 0.0958 

 

Figure 4.7 shows the ROC curve for NN classifier. It indicates an increase in the performance 

of the classifier from the year 2017 to 2019, as the curve shifted away from the diagonal line. 

However, the shape of the curves is still better than KNN, LR, and LD classifiers; moreover, 

the AUC values for NN for all years’ datasets are greater than those classifiers.  
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Figure 4.7: ROC curve for ANN classifier 

Figure 4.8 shows the reliability diagram resulting from the predictions of the NN model. The 

classifier achieved the best line shapes for all datasets among all classifiers. This is reflected in 

the lowest area between the lines and the diagonal line, based on the values cited in Table 4.4. 

This is due to the balanced classifier’s capability to predict both active and failed firms for all 

years, which gives the classifier a prediction advantage over other classifiers.  
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Figure 4.8: Reliability diagram for ANN classifier 

4.3.5. Support Vector Machine  
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Table 4.5 demonstrates SVM performance results for all years’ datasets. The model achieved 

a relatively higher average accuracy rate of 87.7% for the All-Data dataset in comparison with 
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KNN, LD, and LR, with a rate gap of only 1.4%. Also, the SVM outperformed all other 

classifiers except for DT, ENS-DT, and DPL in terms of sensitivity and Type II Error. This is 

an indicator of its superior ability to correctly classify failed firms.  

Table 4.5: SVM results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 86.7% 86.8% 85.3% 87.7% 

Type II Error 11.6% 11% 13% 10.9% 

Type I Error 14.9% 15.4% 16.3% 13.7% 

Sensitivity 88.4% 89% 87% 89.1% 

Specificity 85.1% 84.6% 83.7% 86.3% 

AUC 94% 94% 93% 95% 

Brier Score 0.1063 0.0995 0.1845 0.0843 

Area Under Reliability 

Curve 
0.1694 0.1461 0.2825 0.0796 

 

Figure 4.9 demonstrates the ROC for the SVM classifier, showing slight gaps between the 

curves for all years’ datasets. The All-Data dataset clearly has the best curve, which means that 

the classifier’s performance is enhanced with larger datasets. However, all the curves have a 

good shape, reflecting good classifier performance.  
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Figure 4.9: ROC curve for SVM classifier 

Source: Author 

According to Figure 4.10 the reliability diagram of the SVM classifier shows a relatively better 

shape for the All-Data and 2019 datasets. The line shifted away from the diagonal line with the 

worst distance for the 2017 dataset. The area between the predictions lines and the diagonal is 
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other classifiers.  
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Figure 4.10: Reliability diagram for SVM classifier 

4.3.6. Naïve Bayes  
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based on the model parameters selected to obtain the best results.  
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previous classifiers which achieved their best classification for the 2019 dataset. Type I and II 

Error were the most stable over all years’ datasets in comparison to other classifiers, except for 

DT, ENS-DT, and DPL. However, the high value of Type II Error indicates weak performance 

in correctly classifying failed firms. Therefore, it is obvious that the higher average accuracy 

rate can be explained by the capability of the classifier to predict active firms more correctly 

than failed ones.  

Table 4.6: NB results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 86.3% 87% 86.8% 89% 

Type II Error 8.5% 7.8% 7.1% 6.6% 

Type I Error 17.95 18.2% 19.3% 15.3% 

Sensitivity 91.5% 92.2% 92.9% 93.4% 

Specificity 82.1% 81.8% 80.7% 84.7% 

AUC 95% 95% 95% 97% 

Brier Score 0.1098 0.1090 0.1090 0.0926 

Area Under Reliability 

Curve 
0.2908 0.2540 0.2538 0.3374 

 

Figure 4.11 shows the ROC curve for the NB classifier. Based on the shape of the curves for 

all years’ datasets, NB classifier has better performance than previous classifiers, which can be 

attributed to its higher AUC values (Table 4.6).  
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Figure 4.11: ROC curve for NB classifier 

Figure 4.12 shows the reliability diagram for the NB classifier. It has the worst shape compared 

to all other classifiers, as illustrated by the high area between the predictions line and the 

diagonal line. As shown in Table 4.6, this is based on the value of 0.2908 for the year 2019 

dataset, and 0.3374 for the All-Data dataset. Although these values are surprisingly lower in 

2018 and 2017, NB still has the worst value among all other classifiers, and the classifier has 

poor performance to correctly predict failed firms.  
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Figure 4.12: Reliability diagram for NB classifier 

4.3.7. Decision Tree 

DT is a common approach used by researchers for predictive modelling in statistics, data 

mining, and machine learning, because of its predictive power capability to solve classification 

problems. Its modelling starts from observation about the target, which is financial ratios in 

this study, represented in the nodes linked by corresponding branches to terminal (leaf) nodes, 

to make a conclusion about the target classification represented on the leaf nodes that take the 

values of ‘1’ and ‘0’.  

As financial ratios were assigned as input data in different classes, with each class labelled to 

a single node. Each node was labelled to a possible target value. The classification tree is 

classified when all nodes are labelled with a probability distribution over the target classes. The 

training process of the model is executed to classify firms’ status using the optimal algorithm. 

The algorithm type is set as ‘fine tree’, with a maximum number of splits of 20, and the split 

criterion Gini’s Diversity Index is applied. After setting the optimal parameters, training data 

is fed to the model with k-fold cross-validation, to train the model to classify firm’s status.  
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Based on Table 4.7, DT classifier outperformed all previous classifiers in terms of all 

measurement parameters. The average accuracy rate increased from 93% for the year 2017 to 

94.2% for 2019. This is considered a relatively small difference in comparison to the previous 

classifiers. The classifier showed more stability in classifying firms over the years. Moreover, 

the model achieved low values of Type I and Type II Error, which explain the superiority of 

the model to correctly classify both active and failed companies. However, these values are 

still higher than those of ENS-DT and DPL classifier. In regard to the specificity values, DT 

classifier showed more capability to classify failed companies, achieving the highest accuracy 

rates among the classifiers whose results have been presented thus far.  

Table 4.7: DT results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 94.2% 93.6% 93% 95.3% 

Type II Error 5.5% 5.1% 5.2% 4.9% 

Type I Error 6.5% 7.6% 8.7% 4.5% 

Sensitivity 94.5% 94.9% 94.8% 95.1% 

Specificity 93.5% 92.4% 91.3% 95.5% 

AUC 98% 98% 97% 99% 

Brier Score 0.0460 0.04880 0.0576 0.0373 

Area Under Reliability 

Curve 
0.085 0.0635 0.1203 0.1035 

 

Figure 4.13 demonstrates the ROC curve for DT. The curve has the optimal shape in 

comparison with previous classifiers, which reflects the superior performance of the model. 

The curve shifted upward slightly as the accuracy of classification of companies’ status 

increased from 2017 to 2019. This can be explained by the AUC values for DT shown in Table 

4.7.  
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Figure 4.13: ROC curve for DT classifier 

Figure 4.14 shows the reliability diagram for DT classifier. The diagram illustrates the good 

performance of the model for classifying companies’ status. Surprisingly, the All-Data dataset 

has a greater area between the predictions and diagonal lines than the years 2019, 2018, and 

2017.  
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Figure 4.14: Reliability diagram for DT classifier 

4.3.8. Ensemble Boost-Decision Tree  

Ens-DT is a classification tool used to improve the performance of other types of classification 

algorithm. It is known by its capability of building a strong classifier by combining the outputs 

of weaker classifiers in weighted sums to represent the final output (i.e., the boosted classifier). 

Therefore, for best classification, the type of ensemble boost is selected as ‘tree’, whereby 

‘Decision Tree’ classifier is selected as the weak learner. The ensemble method is set as 

‘Adaboost’ algorithm, and the model is set with maximum number of splits of 20, and the 

number of learners as 30, with a learning rate of 0.1. The main advantage of using AdaBoost 

is that it feeds the weak outputs at each stage of the algorithm into the growing tree algorithm, 

to give more focus on misclassified outputs in order to improve classification accuracy and 

reduce errors. K-fold cross-validation was selected to validate model results, with five folds.  

Table 4.8 demonstrates the performance results for EnsBoost-DT. As this classifier was used 

to improve the performance of DT classifier by its strong algorithm, which deals with weak 

classification outputs, it outperformed all previous classifiers in terms of all measurement 
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parameters. The results show the model achieved 96.2% average accuracy rate for the All-Data 

dataset. Also, the Ens-DT classifier was able to correctly classify 94.8%, 94.4%, and 94% of 

firms for the years 2019, 2018, and 2017, respectively. Therefore, the model preforms well and 

shows more stability for classifying firms’ status. Moreover, the model achieved the lowest 

values of Type I Error among all other previous classifiers, with values ranging from a high of 

8% for the year 2017 to a low of 6.2% for the year 2019. This enhancement in classifying failed 

companies makes the model more balanced and accurate for all years’ datasets.  

Table 4.8: ENS-DT results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 94.8% 94.4% 94% 96.2% 

Type II Error 4.2% 3.8% 4% 4.8% 

Type I Error 6.2% 7.5% 8% 3.5% 

Sensitivity 95.8% 96.2% 96% 95.2% 

Specificity 93.8% 92.5% 92% 96.5% 

AUC 99% 99% 99% 99% 

Brier Score 0.0414 0.0440 0.0470 0.0346 

Area Under Reliability 

Curve 
0.1194 0.1213 0.126 0.1681 

 

Figure 4.15 demonstrates the ROC curves for Ens-DT. It shows the optimal performance of the 

classifier over the years, with the curves shifting up in small gaps from 2017 to 2019. Moreover, 

it has the highest AUC values among all classifiers.  
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Figure 4.15: ROC curve for ENS-DT classifier 

Figure 4.16 shows the reliability diagram of the Ens-DT classifier. The shape of the diagram is 

considered as the best so far, especially in comparison with DT classifier. The shape of the 

curve indicates a high calibration of the classifier, and high reliability in its classification. 
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Figure 4.16: Reliability diagram for ENS-DT classifier 

4.3.9. Deep Learning 

DPL is a robust classification algorithm can be built using deep learning to solve binary 

classification by using multiple layers, which progressively extract information from the raw 

input data. Deep learning methods are commonly used to train data using supervised learning, 

providing input data to predict binary classification. The architecture of the model consists of 

building a layer-by-layer model.  

The model is built using Long Short-Term Memory (LSTM), in which the core components of 

the network are a sequence input layer. For network creation, a layer containing a sequence 

input layer is implemented, followed by the LSTM layer, fully connected to a Softmax layer, 

linked to a classification output layer. SofMax activation function is selected because of its 

ability to handle multiple classes and its usefulness for output neurons. The input size is set as 

24, representing the number of features of the input data used to feed the sequence input layer 

in the network. The number of hidden units is set as 24, and the number of classes is set as 2 

(representing the two classes of the target output). The maximum epochs are set as 2000, and 
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the minimum batch size as 1000. After creating the optimal model structure, the model is 

trained and tested using a training and testing dataset extracted form original dataset (with 

percentages of 80% and 20%, respectively). 

As shown in Table 4.9, the DPL classifier outperformed all of the other classifiers based on all 

measurements. The model achieved the highest average accuracy rates for all years’ datasets, 

with the smallest gap of only 1% between year 2019 and year 2017. The average accuracy rate 

of 97.2% for the All-Data dataset is considered the highest in comparison with all other 

classifiers. Moreover, the model has the best performance of classifying both active and failed 

companies, illustrated by its lowest values of Type I and Type II Error. Based on the specificity 

and sensitivity measurements, the model has the most balanced classification capability to 

classify companies’ status, as these values are similar. This allows the model to be ranked first, 

based on its superior performance as an individual classifier.  

Table 4.9: DPL results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 96.3% 95.1% 95.3% 97.2% 

Type II Error 2.8% 3.9% 3% 3% 

Type I Error 4.5% 5.9% 6.3% 2.6% 

Sensitivity 97.2% 96.1% 97% 97% 

Specificity 95.5% 94% 93.7% 97.4% 

AUC 99.35% 98.9% 98.82% 99.04% 

Brier Score 0.0282 0.0370 0.0374 0.0237 

Area Under Reliability 

Curve 
0.0405 0.0414 0.045 0.0412 

 

Figure 4.17 shows the ROC curves for the DPL classifier. Obviously, the model has the best 

ROC shape among all classifiers, with small shifts in curves from year 2017 to year 2019. For 

All-Data and the year 2019 the classifier has the highest AUC values of 99.04% and 99.35% 

(respectively).  
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Figure 4.17: ROC curve for DPL classifier 

Figure 4.9 shows the reliability diagrams of all datasets using DPL classifier. The classifier has 

the optimal shape, with prediction lines close to the diagonal line. This indicates the high 

classification performance of the classifier.  
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Figure 4.18: Reliability diagram for DPL classifier 

4.4. Analysis and Discussion 

This section analyses and discusses all classifiers’ results to reveal the optimal classifier for 

classifying firm status. It is important to pin each classifier’s strengths and weaknesses, to 

understand how they performed based on all measurement parameters. Tables 4.10 to 4.13 

illustrate the classification performance of all classifiers related to each dataset used in this 

study.  

The LDA classifier clearly had the worst results, with only 75% accuracy rate for the All-Data 

dataset, which is far below the other classifiers’ results. The classifier was able to classify 2019 

firms with an average accuracy of 71.5%, an increase of 2% in comparison to the outcomes for 

2017 dataset. Moreover, its higher Brier score and AURC combined with lower AUC results 

show that the model has higher error for classifying companies for all years. Although the 

model has a balanced classification rate for both failed and active company status (based on its 

specificity and sensitivity rates), it only beat KNN classifier in terms of classifying failed firms 
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for the year 2019 dataset. However, the model achieved bad performance that resulted in it 

having the lowest rank as a classifier.  

The LR classifier, the traditional classification method in the field of business failure, had 

similar results to KNN, in comparison to which it had superior ability to correctly classify 

failed companies for all years, but KNN sharply outperformed LR in classifying active 

companies. Both classifiers have relatively similar classification error values in total, based on 

their Brier scores and AURC values. Moreover, in comparison with other classifiers, both LR 

and KNN have low performance in classifying failed companies, as shown by their higher Type 

I Error rates and lower specificity rates (except for LDA).  

NN classifier exhibited generally improved classification accuracy in comparison with LD, LR, 

and KNN. However, the majority of performance improvements were due to its powerful 

classification of active companies, when it is more important in this context to improve the 

classification of failed firms. For example, LR classifier has approximately similar specificity 

results to NN, and surprisingly it outperforms NN in predicting failed companies in year 2018 

dataset.  

SVM classifier performed substantially well in classifying failed companies. Despite having a 

lower average accuracy rate than NB, DT, ENS-DT, and DPL classifiers, it had a higher 

specificity rate with lower Type I Error, which reflects the true classification of failed 

companies. Therefore, SVM is considered as a more powerful classifier for detecting failed 

companies than LR, LD, KNN, NN, and NB classifiers. Moreover, it improved the 

classification of active companies, for which it ranked higher than NN. Its higher sensitivity 

and lower Type II Error rates among all year datasets represent a substantial improvement on 

the overall performance of previous classifiers. However, it is still more important to improve 

the classification of failed companies, which is useful for flagging concern about companies’ 

health.  

As the main purpose of the classifier to correctly identify failed companies and distinguish 

them from healthy ones, DT classifier, as a successor of SVM, had substantially improved 

classification of failed companies, achieving the highest specificity rates except for ENS-DT 

and DPL. It achieved a rate of 95.5% for the All-Data dataset, accompanied with a relatively 

higher sensitivity rates, which were higher than the other classifiers except for ENS-DT and 

DPL. Hence, DT classifier performance was more powerful and balanced than LR, LD, KNN, 

NN, SVM, and NB in classifying business status. Moreover, its Brier score had the lowest 
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values range from 0.0373 to 0.061, which is inversely related with the accuracy rates achieved. 

Therefore, DT classifier is more reliable in terms of classifying companies’ health.  

On the other hand, to improve weak classification of DT classifier, ENS_DT classifier achieved 

these improvements by increasing the accuracy of predicting companies’ health, especially for 

failed ones. The model outperformed DT for all years’ datasets and was the most balanced 

classifier discussed so far in this section. Also, the classifier showed an improvement in the 

Brier score. This overall outperformance of the classifier made it the most reliable classifier to 

be used for classifying companies’ health overall for the abovementioned classifiers except for 

DPL.  

DPL classifier outperformed all other individual classifiers based on all measurement 

parameters. The classifier had the highest average accuracy rate of 97.2% for All-Data, and 

96.3%, 95.1%, and 95.3% for the years 2019, 2018, and 2017, respectively. Also, the model 

achieved the lowest Type I and Type II Error over all years’ datasets. Tables 4.10 to 4.12 show 

the yearly classifier results for 2017-2019 (respectively), and Table 4.13 shows the All-Data 

results for all classifiers. It can be seen that DPL had the best classification accuracy rate of 

failed companies, and specificity rates, as well as the lowest Brier score, reflecting the model’s 

low classification error. Therefore, it was ranked first as an individual classifier to be reliably 

used to classify the status of firms in the UK datasets.  

Table 4.10: All classifiers 2017 results 

 

Year 2017 Dataset 

Aver 

Acc. 

Type II 

Err 

Type I 

Err 
Sensitivity Specificity AUC 

Brier 

Score 
AURC 

LR 77% 26.3% 19.7% 73.7% 80.3% 86% 0.1531 6.85% 

LD 69.5% 30.8% 30.1% 69.2% 69.9% 75% 0.2059 7.72% 

KNN  79.4% 15.7% 25.5% 84.3% 74.5% 88% 0.1428 4.46% 

NN 81.5% 18.8% 18.2% 81.2% 81.8% 90% 0.1454 11.3% 

SVM 85.3% 13% 16.3% 87% 83.7% 93% 0.1845 28.25% 

NB 86.8% 7.1% 19.3% 92.9% 80.7% 95% 0.1090 25.38% 

DT 93% 5.2% 8.7% 94.8% 91.3% 97% 0.0576 12.03% 

ESM 94% 4% 8% 96% 92% 99% 0.0470 12.6% 

DPL 95.3% 3% 6.3% 97% 93.7% 98.82% 0.0374 4.5% 
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Table 4.11: All classifiers 2018 results 

 

Year 2018 Dataset 

Aver 

Acc. 

Type II 

Err 

Type I 

Err 
Sensitivity Specificity AUC 

Brier 

Score 
AURC 

LR 83.9% 16.5% 15.7% 83.5% 84.3% 92% 0.1170 9.67% 

LD 70.5% 30.4% 28.5% 69.6% 71.5% 76% 0.215 7.99% 

KNN  80.4% 15.6% 23.5% 84.4% 76.5% 89% 0.1362 4.7% 

NN 82.5% 17.5% 17.4% 82.5% 82.6% 91.2% 0.1212 8.81% 

SVM 86.8% 11% 15.4% 89% 84.6% 94% 0.995 14.61% 

NB 87% 7.8% 18.2% 92.2% 81.8% 95% 0.1090 25.4% 

DT 93.6% 5.1% 7.6% 94.9% 92.4% 98% 0.4880 6.36% 

ESM 94.4% 3.8% 7.5% 96.2% 92.5% 99% 0.440 12.13% 

DPL 95.1% 3.9% 5.9% 96.1% 94% 98.9% 0.0370 4.14% 

 

Table 4.12: All classifiers 2019 results 

 

Year 2019 Dataset 

Aver 

Acc. 

Type II 

Err 

Type I 

Err 
Sensitivity Specificity AUC 

Brier 

Score 
AURC 

LR 80.15 22% 17.8% 78% 82.2% 89% 0.1328 5.74% 

LD 71.5% 28.75 28.3% 71.3% 71.7% 77% 0.1978 8.25% 

KNN  81.2% 14.7% 22.9% 85.3% 77.1% 90% 0.1311 5.34% 

NN 83.1% 16.4% 17.4% 83.6% 82.6% 92.02% 0.1155 8.67% 

SVM 86.7% 11.6% 14.9% 88.4% 85.1% 94% 0.1063 16.94% 

NB 86.3% 8.5% 17.95% 91.5% 82.1% 95% 0.1098 29.08% 

DT 94.2% 5.5% 6.5% 94.5% 93.5% 98% 0.0460 10.35% 

ESM 94.8% 4.2% 6.2% 95.8% 93.8% 99% 0.0414 11.94% 

DPL 96.3% 2.8% 4.5% 97.2% 95.5% 99.35% 0.0282 4.05% 

Source: Author 
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Table 4.13: All classifiers’ All-Data results 

 

All-Data Dataset 

Aver 

Acc. 

Type II 

Err 

Type I 

Err 
Sensitivity Specificity AUC 

Brier 

Score 
AURC 

LR 81.8% 18.8% 17.6% 81.2% 82.4% 91% 0.1211 3.85% 

LD 75% 24.6% 25.4% 75.4% 74.6% 80% 0.1825 10.28% 

KNN  82.9% 12.7% 21.6% 87.3% 78.4% 91% 0.1194 5.92% 

NN 84.9% 13.7% 16.5% 86.3% 83.5% 93% 0.1073 9.58% 

SVM 87.7% 10.9% 13.7% 89.1% 86.3% 95% 0.0843 7.96% 

NB 89% 6.6% 15.3% 93.4% 84.7% 97% 0.0926 33.74% 

DT 95.3 4.9% 4.5% 95.1% 95.5% 99% 0.0373 6.13% 

ESM 96.2% 4.8% 3.5% 95.2% 96.5% 99% 0.0346 16.81% 

DPL 97.2 3% 2.6% 97% 97.4% 99.04% 0.0237 4.12% 

 

4.5. Summary 

In this chapter, nine individual classifiers were used and demonstrated in an attempt to discover 

best classification model. Financial data related to 20,000 companies, divided equally into 

active and inactive, were used to develop and evaluate the classifiers based on eight 

performance measurements. At the beginning, data were pre-processed and cleaned from 

missing values. They were then fed to the classifier based on partition techniques, consisting 

of training and testing, using 10 × 5 cross-validation and holdout method. Finally, classifier 

parameters were set in order to achieve the optimal classification results out of 50 runs.  

Based on each classifier results, LR as a benchmark was outperformed by all machine learning 

classifiers, and LDA classifier had the worst results. Classifiers’ results varied from classifier 

to classifier, with some showing more capability in classifying one of the classes and less for 

others. However, DPL showed the best performance overall, and ranked first as the best 

classifier among the group, representing a major improvement in classification accuracy in 

comparison to LR. In the next chapter, the committee machine approaches are used in order to 

enhance classification performance using classifier outputs.   
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Chapter 5  
Business Failure Classification using Committee Machine 

Classifiers  

5.1. Introduction 

As single classifier was implemented to classify business failure in the previous chapter. The 

current chapter addresses the question of how to combine and use classifier outputs to enhance 

classification performance. This can be done through combining functions, to convert single 

classifiers’ predictions into new output classifications. There are different types of functions to 

convert single classifier classification results as input data 8<, to be fed to a new combining 

classification model in the form of 6 (81. 82. 83. 84. 85) = 8∗. In an attempt to explore how single 

classifiers could work together, committee machine learners are implemented using the 

following rules algorithms:  

• Min Rule (MIN) 

• Max Rule (MAX) 

• Median  

• Consensus (Cons) 

• Majority Voting 

• Weighted Average 

• Fuzzy Combiner  

5.2. Committee Machine Classifiers 

This section demonstrates the used combiners and their mathematical combining functions, 

noting their strengths and weaknesses in terms of classification performance for the studied 

data type. Each combiner is illustrated in a mathematical diagram representing each step of the 

model. Thereafter, some recommendations are discussed to address the fitting of the model 

deployed. 

5.2.1. Min Rule 

The operation rule of Min combiner allocates the minimal value among all single classifier 

predictions for a single company. According to Figure 5.1, the model selects predictions that 

are considered to have the lowest value among all classifiers, and then compares them with the 
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optimal threshold of Max Rule. Therefore, the final output for each company is the lowest 

prediction value extracted from all single classifiers’ results for that company. Although it is a 

simple rule for combining and selecting each company classification, the model is highly 

affected by the predictions of classifiers with low sensitivity rate performance. For example, if 

a company’s actual status is active, with a class of 1, and it has been correctly classified by all 

single classifiers except one classifier, which misclassified it as failed, with a class of 0, the 

Min Rule will select the latest value as the lowest among all predictions to be the final 

prediction output, therefore it will incorrectly classify the company as failed. As a result, in 

most cases Min Rule predicts failed companies much better than active companies.  

In order to overcome this weakness in the model, two crucial steps should be considered and 

implemented: omitting the predictions of all classifiers with low sensitivity rates, to avoid 

allocating false negative predictions (0 class); and adjusting the predictions threshold using 

threshold lowering, by which all classifiers’ predictions is scaled based on a lower threshold in 

an attempt to avoid misclassifying of active companies. Only the latter was implemented in 

this work to enhance combiner predictions, using the optimal threshold. 
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Figure 5.1: MIN combiner example 

5.2.2. Max Rule 

The combiner operates by selecting the maximal prediction value of all classifier predictions 

for each company as a final prediction output. Based on Figure 5.2, the Max Rule combiner 

takes the highest classification value among all classifier prediction values and then compares 

it to the optimal threshold obtained for training set using Min Rule. Its function is similar to 

Min Rule, but in the converse, whereby the combiner is more affected by the results of the 

classifiers with the lowest specificity rates. Using the default threshold, the combiner classifies 

active companies better than failed ones, which it results in higher sensitivity performance but 

very low specificity. For instance, if a failed company been classified correctly with a class of 

‘0’ (True Negative) based on all classifiers except for one, in which it was classified as active 

(False Positive), the Max combiner will select the false positive vale as the final prediction, 

and consequently misclassify the company as active. Therefore, the predictions of the 

classifiers with low specificity rate should be removed, and a higher threshold needs to be 

implemented to overcome the biased of the combiner. In this case, MAX combiner is 

favourable when the number of active companies is higher than that of failed ones.  
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Figure 5.2: MAX combiner example 

5.2.3. Average Rule 

The combiner is developed by taking the mean value of all classifier predictions to be the final 

output classification. According to Figure 5.3, AVG combiner sums all single classifier 

predictions of a single company and then divides this by the number of classifiers used, to 

compare the output result with the default threshold. Unlike Min and Max combiner, adjusting 

the threshold for the predictions is unnecessary when it stays at its default value (0.5). AVG is 

a more reliable combiner than MAX and MIN, since it includes all classifier predictions in the 

mathematical calculation of the final output. Moreover, another advantage of the combiner is 

its balanced performance for sensitivity and specificity rates, when the data has a balanced 

input of both classes. On the other hand, a disadvantage of using AVG combiner appears when 

the predictions of single classifiers significantly vary in values, in which case the calculation 

of the mean could be biased because of outliers, resulting in wrong classification.  
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Figure 5.3: AVG combiner example 

5.2.4. Median Rule 

Median Rule combiner ranks all classifier predictions in ascending order and takes the value 

of the median prediction. Based on Figure 5.4, after sorting each company’s predictions for all 

classifiers in an ascending order, the combiner takes the midpoint to be the final answer. Similar 

to AVG combiner, changing the threshold is an unnecessary step, and it also has a default value 

of 0.5. An advantage of using Median rule is that the final output is unaffected by the 

prediction’s outliers (extreme low or high scores), since these scores is out of the calculation 

of the final output, as the combiner focuses only on the middle scores. However, a disadvantage 

appears when the number of the input values (number of classifiers) is even, whereby more 

calculation is needed to get the final result. This disadvantage is considered insignificant, since 

the number of classifiers is odd (9), and the median score needs no extra calculation. Median 

combiner is considered to be less reliable than AVG, as it ignores most classifier prediction 

values and focuses only on the middle-ranked prediction.  
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Figure 5.4: Median combiner example 

5.2.5. Weighted Average Rule 

The combiner rule here takes the average score of all classifier predictions in terms of each 

classifier’s associated weight, based on the overall performance of the classifier. According to 

Figure 5.5, the WAVG combiner has similar calculations to AVG; while both combiners 

calculate and take the average of the classifiers scores, there is a difference in relying on the 

enhancement of WAVG final results, resulting from the allocation of higher weight to 

classifiers with higher accuracy, and lower weight to those with lower accuracy. Hence, 

weights’ coefficients are evaluated based on each single classifier’s performance, which allows 

more accurate classifiers to contribute more to the final output; conversely, less accurate 

classifiers contribute less. Due to these features, WAVG combiner is considered more reliable 

than the normal AVG combiner, and it performs with higher accuracy.  
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Figure 5.5: Weighted AVG combiner example 

5.2.6. Majority Voting Rule 

Majority voting combiner calculates the final output result based on voting method, in which 

the final prediction for a company is made based on the most frequent score or class on which 

the majority of classifiers agree. As displayed in Figure 5.6, the combiner firstly rounds all 

prediction values to the nearest integer (0 or 1), and then selects the most agreed class as the 

final answer for each company. An advantage of using this combiner is that it incorporates 

classes unlikely be misclassified by most single classifiers. Therefore, its results comply with 

those with higher accuracy rates, and are less affected by bad efficiency classifier predictions 

when the majority of classifiers classify the same company correctly. Moreover, the combiner 

does not require changing the threshold, since final results are based on comparing the numbers 

of votes given for each score of the classifiers.  

NN 

SVM 

DT 

KNN 

NB 

LR 

LD 

ENS-DT 

DPL 

Weighted 
Average Value 
1
9 ∗$%& ∗ &&

'

&()
 

0.53 
Threshold 
Passing  

0.53 < 0.5 ? 
0:1 

Final 
Result 

1 

0.35 

0.45 

0.56 

0.67 

0.24 

0.37 

0.71 

0.26 

0.63 

Where w represents classifiers’ 
weights calculated based on 

accuracy 



110 

 

Figure 5.6: Majority voting combiner example 

5.2.7. Consensus Combiner 

The aim of the combiner is to minimise the uncertainty of the decisions made by all classifiers 

through a discourse process between each classifier and other classifiers involved in the 

ensemble. This combiner mechanism enables each classifier to check its results in regard to 

other classifiers’ results, in order to calculate the certainty of its results, based on which weights 

are assigned to be part of the calculation of the final output. Consensus algorithm is considered 

a powerful decision-making technique to enhance heterogeneous classifier performance. 

Figure 5.7 shows the design of the Consensus combiner and explains the recursive process of 

a linear function for adjusting classifier weights to reach final decisions.  
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Figure 5.7: Cons combiner example 

The combiner algorithm operates the following steps, explained in detail in the following 

subsections (based on MATLAB coding): 

• Build a Profile Decision for each classifier.  

• Calculate the uncertainty of each classifier’s output, then create an uncertainty matrix 

with the results.  

• Calculate new classifier weights based on uncertainty levels.  

• Update weights. 

5.2.7.1. Step 1: Decision Profiles  

The Consensus combiner combines the nine single classifiers’ outputs to generate the final 

output classifications. The first step is to build a decision profile for all classifiers. To explain 

the process, the nine individual classifiers are denoted by Ci = C1, C2, C3, ..., C9, which generate 

classification outputs of possible answers R = (y1, …., ym). For each possible output of the single 

classifier, an estimate Ai function is assigned to all answers. The estimates of Ai take values 
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between ‘0’ and ‘1’, to represent the desirability of the corresponding output (weights). The 

calculation of the initial weighted values of each classifier is based on the following equations:  

 HA5(y?) = 1		∀i	 ∈ 	 {1. . N}	

@

?0%

 (5.1) 

 HAi(γk|Γj) =	

@

?0%

1		∀i	 ∈ 	 {1. . N} (5.2) 

Once all classifiers been given initial weights, the decision profile is represented by:  

 DP =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
A%(r%) A%(r&) A%(r7) … A%(r;)
A&(r%) A&(r&) A&(r7) … A&(r;)
A7(	r%) A7(r&) A7(r7) … A7(r;)
AA(r%) AA(r&) AA(r7) … AA(r;)
AB(r%) AB(r&) AB(r7) … AB(r;)
AC(r%) AC(r&) AC(r7) … AC(r;)
AD(r%) AD(r&) AD(r7) … AD(r;)
AE(r%) AE(r&) AE(r7) … AE(r;)
A>(r%) A>(r&) A>(r7) … A>(r;)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5.3) 

where n is the number of companies on the dataset, ri is the i-th classifiers predictions, and Aj 

(ri);j ∈ 1…9 is the j-th weighted value of each prediction of each classifier included in the 

combiner. The resulting DP matrix is considered the initial stage of the combiner, and the next 

step is to calculate the uncertainty between classifiers using this DP matrix.  

5.2.7.2. Step 2: Calculating Uncertainty  

After generating the initial Decision Profile matrix for all companies point by point, the next 

step is to calculate the uncertainty of these observation using an appropriate calculation 

function. Thereafter, weights are calculated using uncertainty values, and are assigned to each 

classifier decision, with higher weights assigned to more certain classifier decisions. Matrix 

creation at this point involves local and global uncertainty. Local uncertainty evaluates the level 

of certainty of each classifier about their decisions, whereas global uncertainty evaluates the 

level of certainty of the classifier decisions after knowing other classifiers’ decision in the 

combiner. Hence, a new collaborated decision profile exchange is generated in which each 
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classifier is able to reveal its uncertainty level, in an attempt to produce more certain result 

about a company’s status of all classifiers together. These calculations allow each classifier to 

improve its decision in regard to other classifiers’ performance. The outcome of this process is 

an uncertainty matrix that includes all classifiers’ uncertainty values, which are later used to 

calculate the new weights in succeeding steps. The form of the uncertainty matrix is displayed 

below:  

 U =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
U%% U%& U%7 … U%6
U&% U&& U&7 … U&6
U7% U7& U77 … U76
UA% UA& UA7 … UA6
UB% UB& UB7 … UB6
UC% UC& UC7 … UC6
UD% UD& UD7 … UD6
UE% UE& UE7 … UE6
U>% U>& U>7 … U>6⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5.4) 

where local uncertainty is donated by Uij, i, j ∈1…9 for the i-th classifier when i = j; and global 

uncertainty is donated by Uij, i, j ∈1…9 for the ith classifier when i ≠ j. To illustrate the 

evaluation of the uncertainty levels on the matrix, assume A(C)) is the weighted output of a 

single classifier decision, and Ai (C)|Γ%) is the weighted output of a single classifier decision 

when it knows the decision of another classifier j on the combiner. Based on that, the following 

equations are used to calculate both local and global uncertainty: 

 Uii = HAi(γk)logM(Ai(γk))	

;

?0%

 (5.5) 

 Uij = HAi(γk|Γj)logM(Ai(γk|Γj))	

;

?0%

 (5.6) 

Eq. 5.5 represents the calculation of local uncertainty of i-th classifiers in the combiner, and 

Eq. 5.6 represents global uncertainty based on another classifier’s output. These two equations 

are applied after equations 5.5 and 5.6 are fulfilled. For binary classification output ‘0’ and ‘1’, 

where M = 2, the above equations are converted into the following:  
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 Ai(0) +	A5(1) = 	1, Ai(0|Γj) + 	Ai(1|Γj) = 1 (5.7) 

where A(1) is the weight of class ‘1’ decision of i-th classifier, and A(0) is the weight of class 

‘0’ decision. If Ai = A(1) and A(Γj) = Ai(1|Γ%), then Ai(0) = 1 – Ai, and Ai(0|Γ%) = 1 − Ai(Γ%). 

The resulting equations are as follows:  

 Uii	 = −Ailog2(Ai) 	−	(1	 − 	Ai)log2(1	 − 	Ai) (5.8) 

 Uij	 = −Ai(Γj)log2(Ai(Γj)) 	−	(1	 − 	Ai(Γj))log2(1	 − 	Ai(Γj)) (5.9) 

Uncertainties are calculated in the above equations using a logarithm to the base ‘2’ (number 

of classes). Based on equation 5.1 and 5.2, the more the ranking value of the classifier decision 

is close to the edges of [0,1] interval, the less the uncertainty value with values almost near 

zero. In contrast, the closer the classifier ranking is to the threshold (0.5 by default), the higher 

the uncertainty. Figure 5.8 illustrates the relationship between classifier ranking and 

uncertainty level.  
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Figure 5.8: Uncertainty value íii as a function of the parameter ìi 

5.2.7.3. Step 3: Calculating Weights  

Once all uncertainty values of the classifiers have been calculated and presented in a matrix, 

the next step is to calculate the new weights of the classifiers. The calculation of the new 

weights depends on the uncertainty level of the classifier, as included in the calculation 

equation. The new weights are presented in a matrix the same as the uncertainty matrix. The 

following equation shows the weights calculation:  

 W5F =
1

U5F
&S?ÎGU?5

'& (5.10) 

After applying the equation to all classifier decisions, these new weights are assigned to each 

related classifier.  

5.2.7.4. Step 4: Aggregating the Combiner Scores to Calculate the Decision  

To generate the final decision of the combiner when all classifiers obtain their decisions based 

on uncertainty-adjusted weights, all these decisions are summed together, given adjusted 

weights, and the aggregation of these weights equals ‘1’. The aggregation is calculated using 

the following equation:  
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 AH(γ?) = HA5(γ?) ∗ w5F

;

?0$

 (5.11) 

Moreover, these weights are updated and adjusted based on an error modification factor, in 

order to improve the final decision of the combiner on the following final step. 

5.2.7.5. Step 4: Updating Classifiers’ Weights 

After all weights been calculated and assigned to all classifiers and a decision is made using 

the aggregation equation, the weights go through another updating step based on the weights 

modification factor. These updates are executed based on the iteration process of the algorithm. 

The error is calculated by taking the difference between each decision of the combiner inside 

the iteration loop. The weights modification factor ‘sigma’ is calculated for each classifier, 

taking the percentage of error values to the total aggregated errors of all classifiers. The 

following equations illustrate the updating weights process: 

 E5F = 1 −H|A5(γ?) − consA5(γ?)|

;

50%

 (5.12) 

 
Sigma5F =

0.1 ∗ E5F

|H E5F|
;

?05

 
(5.13) 

 W;IJ = W5F + Sigma? (5.14) 

where Eij is the predication error between previous and adjusted weight predictions of the 

classifier, and Sigma is the adjusted modification error.  

5.2.8. Fuzzy Logic Combiner 

Fuzzy Logic is a convenient method to map input to output data. It is conceptually germane to 

an easy decision-making process, based on its simplicity of mathematical computations. 

Flexibility and less complexity allow more functionality to be added to it without having to 

start again from scratch. Moreover, it builds more understanding of the data space, such as 

modelling nonlinear functions of arbitrary complexity, in which it allows for more tolerance of 
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imprecise data that can match any set of input-output data. This is justifies its usefulness in 

application as a classifier to classify companies’ status. Therefore, a fuzzy logic algorithm is 

implemented using single classifiers’ outputs (predictions) as input data space, to be mapped 

with actual companies’ status, in an attempt to improve companies’ classification. The 

following subsections illustrate the development steps of the proposed classification model. 

5.2.8.1. Step 1: Calculating Single Classifiers’ Means and Standard Deviation 

The initial step to build the fuzzy logic algorithm is the calculation of means and standard 

deviation values for both predictions and actual targets of single classifiers. These calculations 

are calculated using reliability functions, whereby predictions are assigned to 20 bins based on 

their values, then the means and standard deviation values are calculated based on predictions 

and targets values in each bin. After these values have been calculated and assigned to each 

classifier, confidence level and pooled standard deviation can be calculated. 

5.2.8.2. Step 2: Calculating Confidence Levels and Pooled Standard Deviation 

In this step the confidence level and pooled standard deviation is calculated in order to measure 

how much each classifier is confident about its predictions. As the purpose of the fuzzy logic 

is to map input data space to an output data space, these values are considered as the parameters 

to measure how close input classifiers’ predictions are to the targets. The following equations 

show the calculation of these values:  

 ó = 1 −	ò
(P- − D)^2	 + (ö- − 2)^2

w
	 (5.15) 

 UKL = ò
UM& + UL

&

w
 (5.16) 

where A is the confidence level, Pi  and Ti are the i-th classifier prediction and target value 

(respectively), x is the optimal mean for the same prediction bin, and σPT is the pooled standard 

deviation of the prediction and the target laying in the same bin. The next step is calculating 

the predictions fuzzy sets using these parameters and the classifiers predictions. 
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5.2.8.3. Step 3: Applying Fuzzy Function 

After assigning all prediction and target means and standard deviation values related to each 

classifier, and all confidence level and pooled standard deviation calculations are set 

accordingly, a membership function is applied to define how each point in the input space is 

mapped to the output by giving prediction a membership value. The input data comprise the 

classifiers’ predictions values, referred to as the universe of discourse. The output of the 

membership function is a number known as the membership value, between 0 and 1, which is 

designated μ.  

To satisfy the purpose of the membership function, assume a dataset set F is expressed as F = 

{x | x > 0.05}. A fuzzy set is an extension of this set and is expressed as F = {x, μF(x) | x ∈ X}, 

where μF(x) is the membership function of x in F, when X is the universe discourse whose 

elements are donated by x. The results are mapped for each value of the X universe to a 

membership value between 0 and 1.  

There are 11 built-in membership function types available on MATLAB based on the following 

four basic functions: Piecewise Linear Functions, Gaussian Distribution Function, Sigmoid 

Curve, and Quadratic and Cubic Polynomial Curves. The piecewise linear distribution creates 

a nonparametric representation of the cumulative distribution function (cdf) by linearly 

connecting the known cdf values from the sample data. This function defined by different 

functions for each part of the range of the entire function that has a discontinuity at one or more 

values mainly because of the denominator of a function is being zero at those points.  

The sigmoidal membership function, which is either open left, right, and Asymmetric and 

closed (i.e. not open to the left or right) membership functions can be synthesized using 

sigmoidal functions. Using this function is not beneficial in the case since it is biased to one of 

the edges of the function either the left side or the right side of the function.  

The Polynomial based curves account for several of the membership functions in the toolbox. 

Three related membership functions are the Z, S, and Pi curves, all named because of their 

shape. The function zmf is the asymmetrical polynomial curve open to the left, smf is the 

mirror-image function that opens to the right, and pimf is zero on both extremes with a rise in 

the middle. However, the Polynomial models have poor extrapolatory properties. Polynomials 

may provide good fits within the range of data, but they will frequently deteriorate rapidly 

outside the range of the data which increase the uncertainty. 
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 However, in our case, a simple Gaussian distribution function is selected to calculate all 

classifiers’ membership function values. This function has the advantage over the piecewise 

function in our case due to the smoothness of the shape of the function and the continuity of 

the function. Another advantage of the Gaussian function is that the data is in the centre instead 

of the left and right edges as in the sigmoidal function. Moreover, it has less uncertainty than 

polynomial function which make it more beneficial for the datasets used to classify business 

failure. This function computes fuzzy membership values using a Gaussian membership 

function. The following equation shows the Gaussian function deployed:  

 GúCFù = EXPü
−úX	–	CFù.&

2 ∗ σPT	F
& ° (5.17) 

where C is classifiers’ predictions, and X, is the discourse universe. It is crucial to take into 

consideration the rule’s weights. In this algorithm, the weights are defined by the confidence 

level values of each single classifier element, added to the equation as in the following: 

 GúCFù = EXPü
−úX	–	CFù.&

2 ∗ σPTF
& ° ∗ A(cF) (5.18) 

This is to take into consideration the effect of confidence in each classifier’s output. After all 

elements of all classifiers been given a membership function value, an average function is 

performed to assign the final decision set of the fuzzy function for all classifiers in the 

combiner. 

5.2.8.4. Step 4: Aggregating All Outputs 

The step represents the unify process of all classifiers’ fuzzy sets by joining their parallel 

threads. This is done through taking all fuzzy sets of each single classifier on the algorithm and 

combining them into a single fuzzy set. The following equation shows the aggregation process: 

 Combined	Fuzzy	Set =
H G(CF)

F

?0%

J
 (5.19) 
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The process only occurs once for each element of all the classifiers. The inputs for the 

aggregation function are the truncated output functions returned by the implication process for 

each classifier. The result of the aggregation is one fuzzy set, in preparation for the fifth and 

final step, defuzzification. 

5.2.8.5. Step 5: Defuzzifying Output  

In this step, as the final step of the algorithm, the aggregated output fuzzy set becomes the input 

for the defuzzification process, and the results are single numbers (whereby crispness is 

recovered from fuzziness at last). During the intermediate steps, fuzziness enables the model 

to evaluate the outcomes and encompasses them in a range of output values of each element, 

whereby the defuzzification helps to assign the final output of it as a single value, to be the 

final prediction answer for each company. The following shows the defuzzify command: 

 Final_Predictions = defuzz(x,mf, type) (5.20) 

The results are defuzzified value out, of a membership function mf positioned at associated 

variable value x based on defuzzification strategies, according to the argument and type. The 

variable type can be set according to the following methods: 

• centroid: centroid of area method. 

• bisector: bisector of area method. 

• MOM: mean of maximum method. 

• SOM: smallest of maximum method. 

• LOM: largest of maximum method. 
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Figure 5.9: Example of defuzzification methods 

 

According to Figure 5.9, the centroid method calculation is the most popular method for 

defuzzification; it returns the centre of area under the curve (centre of gravity). However, the 

Bisector method select the output in the area under the output fuzzy set and finds the vertical 

line that divides the fuzzy set into two sub-regions of equal area. MOM, SOM, and LOM stand 

for middle, smallest, and largest of maximum, respectively, in which MOM is the mean of the 

values for which the output fuzzy set is maximum, LOM is Largest value for which the output 

fuzzy set is maximum, and SOM is the smallest value for which the output fuzzy set is 

maximum as shown in the Figure above. After applying all of the above methods to classify 

companies’ status, centroid method was found to achieve the highest balanced accuracy rate in 

which the output is the centre of the area under the output fuzzy set. The following example 

illustrates this method: 

x = -10:0.1:10 

mf = trapmf(x,[-10 -8 -4 7]) 

xx = defuzz(x,mf,’centroid’) 



122 

5.3. Experimental Results 

In this section, all of the results of testing data are generated using six traditional combiners, 

and are evaluated based on eight performance measures. These results are measured by using 

10 x 5 cross-validation, in which the result is the average of 50 testing sets. The input data 

comprises the base single classifier predictions generated in the previous chapter, whose 

combination (using combination rules) enhances prediction performance. Tables 5.1 to 5.6 

demonstrate the results of each combination method used across all data sets.  

5.3.1. Min Rule Results 

Table 5.1 illustrates the classification results achieved by the MIN combiner. The average 

accuracy rates achieved by the datasets were as follows: All-Data (95.5%), 2019 (94.4%), 2018 

(94.1), and 2017 (93.8). Obviously, the combiner gives better results for active company 

classification than for failed companies, as indicated in higher sensitivity rates over specificity. 

The reason for the imbalance between sensitivity and specificity rates is due to adjusting the 

threshold. Consequently, this combiner rule is favourable when there are more active 

companies than failed ones in the dataset. 

Table 5.1: MIN combiner results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 94.4% 94.1% 93.8% 95.5% 

Type I Error 7.3% 7.7% 8.4% 5.6% 

Type II Error 3.8% 4.2% 4.1% 3.5% 

Sensitivity 96.2% 95.8% 95.9% 96.5% 

Specificity 92.7% 92.3% 91.6% 94.4% 

AUC 98.54% 98.16% 98.17% 99.19% 

Brier Score 0.0664 0.0688 0.0736 0.0430 

Area Under Reliability 

Curve 
0.1497 0.1393 0.1337 0.1362 

 

Figure 5.9 shows the ROC curve representing the classification performance of the combiner 

model across yearly and All-Data datasets. It is clearly that All-Data has the best curve, shifted 

up with a higher gap between it and the 2019 curve. The AUC values evaluating the gap 

difference between these curves indicate that All-Data achieved the largest value. Moreover, 

the shifting upward movement of the curve across years from 2017 to 2019 reflects increasing 

AUC values.  
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Figure 5.9: ROC curve for MIN combiner 

In Figure 5.10, the reliability diagram indicates a highly calibrated curve for All-Data, and all 

years’ datasets have relatively similar line shapes. However, the part of the curve above the 0.5 

threshold has a better shape than those below it, illustrating the imbalanced accuracy rates 

between classifying active and failed companies. The All-Data dataset has higher Type I Error, 

pertaining to misclassifying failed companies, which results in the wide area between the 

reliability and diagonal lines. Moreover, it has higher AURC values, representing the amount 

of the misclassification of the combiner.  
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Figure 5.10: Reliability diagram for MIN combiner 

5.3.2. Max Rule Results  

Max Rule combiner is similar to Min Rule combiner, but it calculates final predictions in the 

opposite way, and it is better to describe and analyse their results together. Both combiners 

strongly rely on the outperformance of single classifiers and how well they have been trained. 

According to Table 5.2, the average accuracy rate of MAX combiner is relatively close to those 

achieved by the Min combiner, with 96% for All-Data, and 94.1%, 93%, and 92.7% for year 

2019, 2018, and 2017, respectively. Also, in contrast to Min Rule, Max Rule combiner works 

better in classifying failed companies, which is shown in its higher specificity rates. However, 

the combiner has less gap between specificity and sensitivity rates in comparison with Min 

Rule results. On the other hand, its Brier scores are higher, especially for All Data, indicating 

higher classification errors.  
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Table 5.2: MAX combiner results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 94.1% 93% 92.7% 96% 

Type I Error 4.4% 5.5% 6.6% 3.1% 

Type II Error 7.3% 9.5% 8% 4.9% 

Sensitivity 92.7% 91.5% 92% 95.1% 

Specificity 95.6% 94.5% 93.4% 96.9% 

AUC 97.51% 97.29% 97.21% 99.34% 

Brier Score 0.0724 0.0781 0.0837 0.0411 

Area Under Reliability 

Curve 
0.1699 0.1534 0.1642 0.1378 

 

According to Figure 5.11, the ROC has a good shape for all datasets. The curve shifted up 

across the years, showing higher movement than the Max Rule ROC. This is shown in Table 

5.2, where the combiner achieved higher AUC values in comparison with Max Rule. 

 

Figure 5.11: ROC curve for MAX combiner 

Source: Author 
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Figure 5.12 demonstrates the reliability diagram for the Max Rule. The line has a perfect shape 

for companies with the ‘0’ class (failed). This can be explained by the higher specificity rate 

achieved by the rule, which is reflecting the combiner performance of classifying failed 

companies correctly. The shape of the diagram illustrates the favourability of the Min Rule to 

classify ‘0’ class in contrast with the Max Rule.  

 

Figure 5.12: Reliability diagram for MAX combiner 
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companies than failed ones. Moreover, based on the All-Data results, the combiner has a better 

Brier score value than both Max and Min combiners, reflecting lower error of classification. 

Table 5.3: Median combiner results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 92.6% 92.5% 91.5% 96.5% 

Type I Error 8.1% 8.8% 10.1% 3.3% 

Type II Error 6.7% 6.3% 6.8% 3.7% 

Sensitivity 93.3% 93.7% 93.2% 93.3% 

Specificity 91.9% 91.2% 89.9% 96.7% 

AUC 98.15% 98.07% 97.72% 99.53% 

Brier Score 0.619 0.0623 0.0743 0.0342 

Area Under Reliability 

Curve 
0.1458 0.1399 0.1852 0.1734 

Source: Author 

Figure 5.13 shows the ROC graph for the Median rule combiner. The combiner produced a 

better curve for All-Data than the Max and Min Rule combiners. Moreover, the curve 

outperformed those curves related to the year 2018 and 2017 datasets.  
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Figure 5.13: ROC curve for Median combiner 

According to Figure 5.14, the Median rule combiner has an approximately an optimal line 

shape in the reliability diagram. Data is equally assigned to its designated bins in a balance, 

whereby half of the data falls in the first 10 bins, which refer to failed data; and the other half 

falls in the remaining 10 bins, related to active companies.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 P
os

itiv
e 

Ra
te

ROC

All-Data

2019

2018

2017



129 

 

Figure 5.14: Reliability diagram for Median combiner 

5.3.4. Average Rule Results 

Table 5.4 shows the performance results for the Average rule combiner. The combiner achieved 

96.2% in average accuracy for All-Data, and 94.5%, 94.1%, and 94% for 2019, 2018, and 2017, 
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of average accuracy.  
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Table 5.4: AVG combiner results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 94.5% 94.1% 94% 96.2% 

Type I Error 6.5% 7.4% 8.1% 4% 

Type II Error 4.6% 4.3% 3.8% 3.5% 

Sensitivity 95.4% 95.7% 96.2% 96.5% 

Specificity 93.5% 92.6% 91.9% 96% 

AUC 98.7% 98.55% 98.51% 99.5% 

Brier Score 0.0646 0.0662 0.0777 0.0451 

Area Under Reliability 

Curve 
0.1982 0.1956 0.2217 0.2010 

 

Figure 5.15 shows the ROC graph for the Average rule combiner. The curves show the good 

performance of the combiner in classifying companies in the dataset in general. The combiner 

achieved higher AUC values in comparison with Min, Max, and Median combiners.  



131 

 

Figure 5.15: ROC curve for AVG combiner 

Figure 5.16 shows the reliability diagram for the Average rule combiner. Similar to the Median, 

the combiner has an optimal shape with All-Data dataset, with the closest line to the diagonal.  
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Figure 5.16: Reliability diagram for AVG combiner 

5.3.5. Majority Rule Result   
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Table 5.5: Majority combiner results 

 Year 2 Year 3 Year 4 All-Data 

Average Accuracy 96.3% 93.8% 92.6% 96.3% 

Type I Error 3.2% 7.5% 9.9% 3.2% 

Type II Error 4.3% 4.9%% 5.4% 4.3% 

Sensitivity 95.7% 95.1% 94.6% 95.7% 

Specificity 96.8% 92.5% 90.6% 96.8% 

AUC 99.48% 97.94% 97.21% 99.48% 

Brier Score 0.0342 0.0487 0.0576 0.0342 

Area Under Reliability 

Curve 
0.1681 0.0682 0.1209 0.1681 

 

Figure 5.17 shows that the Majority Rule combiner achieved good performance. The curve 

shifts up as it moves from the year 2017 dataset to the following years’ datasets. This can be 

noticed in the increase of AUC values across years’ datasets in Table 5.5.  
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Figure 5.17: ROC curve for Majority Voting combiner 

Figure 5.5 shows the reliability diagram for Majority rule combiner. The graph indicates 

outstanding performance for the All-Data dataset. Additionally, it can be seen that the lines lay 

very close to the optimal diagonal line, which reflects good reliability of the combiner 

classifications.  
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Figure 5.18: Reliability diagram for Majority Voting combiner 
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Table 5.6: Weighted-AVG combiner results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 95.7% 95.1% 94.1% 96.7% 

Type I Error 4.5% 4.9% 6.9% 4.1% 

Type II Error 4.5% 4.9% 2.9% 2.5% 

Sensitivity 95.5% 95.1% 95.1% 97.5% 

Specificity 95.9% 95.1% 93.1% 95.9% 

AUC 99.51% 99.3% 99.27% 99.78% 

Brier Score 0.0221 0.0316 0.0318 0.0205 

Area Under Reliability 

Curve 
0.1299 0.1154 0.1218 0.1249 

 

Figure 5.19 shows the ROC curve for weighted average combiner, indicating the high 

performance of the classifier for all years, with minor gaps between each year’s dataset.  
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Figure 5.19: ROC curve for Weighted AVG combiner 

Based on Figure 5.20, the Weighted Average combiner showed good performance, as all the 

lines lay very close to the optimal diagonal line.  
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Figure 5.20: Reliability diagram for Weighted AVG combiner 

5.3.7. Fuzzy Logic Combiner 

Table 5.7 demonstrates the performance results for the Fuzzy Logic combiner. The average 
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Table 5.7: Fuzzy combiner results 

 Year 2 Year 3 Year 4 All-Data 

Average Accuracy 90.8% 90.2% 89.3% 94.7% 

Type I Error 10.6% 11% 12.5% 5.2% 

Type II Error 7.7% 8.7% 8.9% 5.4% 

Sensitivity 92.3% 91.3% 91.1% 94.6% 

Specificity 89.4% 89% 87.5% 94.8% 

AUC 97.7% 97.38% 97% 99.09% 

Brier Score 0.0604 0.0659 0.0698 0.0369 

Area Under Reliability 

Curve 
0.0501 0.0416 0.0477 0.0513 

 

Figure 5.21 show the ROC curve for the Fuzzy Logic combiner, and Figure 5.22 shows its 

reliability diagram.  
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Figure 5.21: ROC curve for Fuzzy combiner 

 

Figure 5.22: Reliability diagram for Fuzzy combiner 
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5.3.8. Consensus Combiner  

According to Table 5.8, the Consensus (Cons) combiner outperformed all other combiners 

based on all performance measurements. An average accuracy rate of 97.7% was the highest 

rate achieved using the All-Data dataset. Albeit this rate showed a slight decrease for the yearly 

datasets, it remained relatively higher level than all other combiners. The combiner shows 

outstanding performance in classifying failed companies across all data based on the studied 

performance measurements.  

Table 5.8: Cons combiner results 

 Year 2019 Year 2018 Year 2017 All-Data 

Average Accuracy 96.7% 96.1% 96.1% 97.7% 

Type I Error 4% 4.9% 5.5% 2.1% 

Type II Error 2.5% 2.9% 2.3% 2.4% 

Sensitivity 97.5% 97.1% 97.1% 97.5% 

Specificity 96% 95.1% 94.5% 97.9% 

AUC 99.51% 99.3% 99.27% 99.78% 

Brier Score 0.0221 0.0316 0.0318 0.0205 

Area Under Reliability 

Curve 

0.1299 0.1154 0.1218 0.1249 

 

Figure 5.23 shows the ROC curve for the Consensus combiner. Approximately all curves lay 

close to each other, with very small gaps, reflecting the AUC ratios in Table 5.8.  
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Figure 5.23: ROC curve for Cons combiner 

Figure 5.15 shows the reliability diagram for the Consensus combiner. Obviously, the shape of 

the lines for all years’ data indicates the high certainty of the combiner to classify companies 
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Figure 5.24: Reliability diagram for Cons combiner 
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classifier performance, with relatively close average accuracy to those achieved by the 

Consensus and the Weighted Average combiner. However, the Fuzzy Logic combiner achieved 

the worst average accuracy, with less improvement over single classifiers, in comparison with 

all other combiners. Despite taking the confidence level and the standard deviation of all single 

classifiers into consideration when calculating all fuzzy sets, the defuzzification process 

contributes critically to the final answers, as it uses Centre of Gravity as the defuzzification 

method, by which results are too sensitive to the threshold.  

In terms of accuracy, Consensus again ranked first, followed by the Weighted Average, and 

the other classifiers had the same ranking as above. The initial accuracy rate was higher for 

2019 than for 2018 and 2017, but the differences varied among combiners. The Consensus and 

Weighted Average classifiers had lower gaps between average accuracy rates than the other 

combiners and showed more stability over the years. This illustrates the robustness of these 

combiners to correctly classify failed companies using their financial performance information.  

For the All-Data dataset, all combiners achieved relatively good performance in terms of 

classifying failed companies, reflected in their specificity and Type I Error. The ranking of the 

combiners’ performance based on these parameters was different than for average accuracy. 

However, the Consensus Combiner still has the highest performance rates among all combiners 

and ranked first. It shows more capability to classify failed companies than active companies, 

based on its higher specificity than sensitivity rate. Surprisingly, Max combiner ranked second 

as in terms of classifying failed companies; it was enhanced by adjusting the threshold, which 

reflected inversely on its sensitivity rate and Type II Error. This combiner was followed in 

ranking by Majority Voting, Median, Average, and Weighted Average, respectively. Fuzzy 

logic was considered to be the worst combiner in terms of classifying failed companies.  

Cons had the highest specificity and sensitivity rates among all of the yearly datasets. Based 

on Brier scores parameter, Consensus, Weighted Average, and Majority voting achieved the 

lowest scores among all years’ datasets, and Fuzzy Logic and Max had the highest.  

In conclusion, Consensus Combiner achieved outstanding performance, combining all single 

classifiers’ predictions based on all measurements, and it is more accurate than traditional 

combiners. However, in comparison with LR, all combiners achieved better classification 

results. This justifies the usefulness of these combiners to classify companies’ status based on 

their financial performance.  
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Table 5.9: All combiners’ All-Data results 

 All-Data Dataset 

Aver 

Acc. 

Type 

II Err 

Type 

I Err 

Sensitivity Specificity AUC Brier 

score 

AURC 

Fuzzy Combiner 94.7% 5.4% 5.2% 94.6% 94.8% 99.09% 0.0369 5.13% 

Minimum 95.5% 3.5% 6.4% 96.5% 94.4% 99.19% 0.043 13.62% 

Maximum 96% 4.9% 3.1% 95.1% 96.9% 99.34% 0.0411 13.78% 

Average  96.2% 3.5% 4% 95.4% 96% 99.5% 0.0451 20.1% 

Maj_Vote 96.3% 4.3% 3.2% 95.7% 96.8% 99.48% 0.0342 16.81% 

Median 96.5% 3.7% 3.3% 96.3% 96.7% 99.53% .0342 17.34% 

Weighted_Avg 96.7% 2.5% 4.1% 97.5% 95.9% 99.78% 0.0351 12.1% 

Cons 97.7% 2.1% 2.4% 97.5% 97.9% 99.78% 0.0205 12.49% 

 

Table 5.10: All combiners’ Year 2019 results 

 2019 Dataset 

Aver 

Acc. 

Type 

II Err 

Type 

I Err 
Sensitivity Specificity AUC Brier 

score 
AURC 

Fuzzy Combiner 90.8% 10.6% 7.7% 92.3% 89.4% 97.7% 0.0604 5.01% 

Minimum 94.1% 4.4% 7.3% 92.7% 95.6% 97.51% 0.0724 16.99% 

Maximum 94.4% 7.3% 3.8% 96.2% 92.7% 98.54% 0.0664 14.97% 

Average  94.5% 6.5% 4.6% 93.4% 93.5% 98.7% 0.0646 19.82% 

Maj_Vote 96.3% 3.2% 4.3% 95.1% 96.8% 99.48% 0.0342 16.81% 

Median 92.6% 8.1% 6.7% 93.3% 91.9% 98.15% 0.0619 14.58% 

Weighted_Avg 95.7% 4.5% 4.5% 95.9% 95.5% 98.7% 0.0346 12.99% 

Cons 96.7% 4% 2.5% 97.5% 96% 99.51% 0.0221 12.99% 
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Table 5.11: All combiners’ Year 2018 results 

 2018 Dataset 

Aver 

Acc. 

Type 

II Err 

Type 

I Err 

Sensitivity Specificity AUC Brier 

score 

AURC 

Fuzzy Combiner 90.2% 11% 8.7% 91.3% 89% 97.38% 0.0659 4.16% 

Minimum 93% 5.5% 9.5% 91.5% 94.5% 97.29% 0.0781 15.34% 

Maximum 93% 5.5% 9.5% 91.5% 94.5% 97.29% 0.0781 15.34% 

Average  94.1% 7.4% 4.3% 95.75 92.6% 98.55% 0.0662 19.56% 

Maj_Vote 93.8% 7.5% 4.9% 95.1% 92.5% 97.94% 0.487 16.82% 

Median 92.5% 8.8% 6.7% 93.7% 91.2% 98.07% 0.0623 13.995% 

Weighted_Avg 95.1% 5% 4.5% 95% 95.1% 98.55% 0.0362 11.54% 

Cons 96.1% 4.9% 2.9% 97.1% 95.1% 99.3% 0.0361 12.99% 

 

Table 5.12: All combiners’ Year 2017 results 

 2017 Dataset 

Aver 

Acc. 

Type 

II Err 

Type 

I Err 
Sensitivity Specificity AUC Brier 

score 
AURC 

Fuzzy 

Combiner 
89.3% 12.5% 8.9% 91.1% 87.5% 97% 0.0698 4.77% 

Minimum 93.8% 8.4% 4.1% 95.9% 91.6% 98.17% 0.0736 13.37% 

Maximum 92.7% 6.6% 8% 92% 93.4% 97.21% 0.0837 16.42% 

Average  94% 8.1% 3.8% 96.2% 91.9% 98.51% 0.0770 22.1% 

Maj_Vote 92.6% 9.4% 5.4% 94.6% 90.6% 97.21% 0.0576 12.09% 

Median 91.5% 10.1% 6.8% 93.2% 89.9% 97.72% 0.0743 18.52% 

Weighted_Avg 94.1% 6.9% 2.9% 95.1% 93.1% 98.51% 0.0370 12.1% 

Cons 96.1% 5.5% 2.3% 97.7% 94.5% 99.27% 0.0318 12.18% 

5.5. Statistical Significance Testing 

This section shows Friedman statistical test results for all implemented models, to prove that 

Cons classifier is the best classification method not only for all UK year dataset in this study; 

there is a high probability that this applied for all datasets with a similar structure to those used 

in this study. Bonferroni-Dunn test is conducted to rank all classification methods from best to 

worst, and they are divided based on a critical value at a certain alpha level into two groups: 

(1) a group of classifiers the best classifiers (Cons and its potential rivals – WAVG, Median, 

DPL, ENS-DT, and DT); and (2) a group of classifiers that are definitely worse than Cons. The 

former (n = 6) were used for comparative purposes. 
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The Friedman test performed over all datasets for all classifiers and for the six best-ranking 

classifiers, accompanied with a pairwise comparison for these classifiers. The reason behind 

using first six ranked classifiers is that including all classifier results in the test would be render 

it very complex without contributing to the demonstration of whether the Cons method is the 

best classifier. Table 5.13 demonstrates the results of Friedman test of these classifiers over all 

datasets. 

Table 5.13: Friedman test – all classifiers and best six 

Dataset All-Data 2019 2018 2017 

Friedman ¶2 (all classifiers) 49592.44 7308.05 17184.974 17320.741 

Friedman ¶2 (best six 

classifiers) 

1303.306 255.175 690.397 645.058 

 

According to the statistical testing explained in section 3.6, a null-hypothesis means that there 

is no difference between the 6 classifiers ranking. Based on critical value from Chi-Square 

distribution table with C-1 degrees of freedom, A null-hypothesis is accepted with significance 

levels of: 

• 0.05 if the Friedman test statistic F < (8#.#%" (5) 	= 	11.07).  

• 0.10 if the Friedman test statistic F < (8#.&#" (5) = 9.24). 

After testing the hypothesis on 0.10 and 0.05 significance levels, pairwise comparison results 

for the six best classifiers are demonstrated in Tables 5.14 to 5.17 across all datasets.  
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Table 5.14: Friedman test – comparison of best six classifiers (All-Data) 

Friedman ¶2 = 
Accuracy WAVG Median DPL ENS-DT DT 

Cons 97.7% 0 0.065 0 0 0 

WAVG 96.7% - 0 0 0 0 

Median 96.5% - - 0 0.002 0 

DPL 97.2% - - - 0 0.011 

ENS-DT 96.2% -  - - 0.008 

DT 95.3% - - - - - 

 

Table 5.15: Friedman test – comparison of best six classifiers (2019) 

Friedman ¶2 = 
Accuracy WAVG Median DPL ENS-DT DT 

Cons 96.7% 0 0.479 0.015 0.015 0 

WAVG 95.7% - 0 0 0 0 

Median 92.6% - - 0.083 0.002 0 

DPL 96.3% - - - 0 0 

ENS-DT 94.8% - - - - 0 

DT 94.2% - - - - - 

 

Table 5.16: Friedman test – comparison of best six classifiers (2018) 

Friedman ¶2 = 
Accuracy WAVG Median DPL ENS-DT DT 

Cons 96.1% 0 0.391 .0865 0 0 

WAVG 95.1% - 0 0 0 0 

Median 92.5% - - 0.304 0 0 

DPL 95.3% - - - 0 0 

ENS-DT 94.4% - - - - 0 

DT 93.6% - - - - - 
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Table 5.17: Friedman test – comparison of best six classifiers (2017) 

Friedman ¶2 = 
Accuracy WAVG Median DPL ENS-DT DT 

Cons 96.1% 0 0.12 0 0 0 

WAVG 94.1% - 0 0 0 0 

Median 91.5% - - 0 0 0 

DPL 95.3% - - - 0 0 

ENS-DT 94% - - - - 0.094 

DT 93% - - - - - 

 

Based on the results of the Friedman significance test for the six best classifiers, the null-

hypothesis is rejected for all datasets at both significance levels (0.05 and 0.10). Pairwise t-test 

results show if a pair of classifiers has performed in the similar way. The obtained data shows 

low p-value for all pairs of the six classifiers across all datasets, and hence the performance of 

each classifier is distinct and proportional to its accuracy.  

To evaluate the ranking of all classifiers, Bonferroni-Dunn two tailed test was conducted based 

on the significance levels 0.05 and 0.10 using the following equation:  

 xß = ®Nò
©(© + 1)
6w

 (5.21) 

where k =17 represents number of classifiers, N = 4 represents the number of datasets, qa 

represents the studentised statistic calculated based on confidence level a / (k-1) which in this 

case is a / 17, divided by √2. The obtained results gave values of q0.05 = 3.5036 and q0.10 = 

3.1747, resulting in CD0.05 =12.510 and CD0.10 = 11.335.  

These calculated values at each significance level, plus the lowest rank, are represented in the 

two horizontal lines in Figure 5.25, which shows the height that represents the threshold for 

the best classifiers. The results clearly show that Cons classifier is better than all of the 

individual classifiers and traditional combiners. DPL classifier holds the second rank for all 

datasets, with good and stable results. Although Fuzzy, MIN, and MAX combiners show good 

performance, they are ranked as the worst combining methods. However, based on the 

evaluated critical value at the significant levels a = 0.05 and a = 0.10, it can be concluded that 
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NB, LR, KNN, and LD are significantly worse than Cons method classifier, and SVM is worse 

only at the significant level a = 0.10.  

 

Figure 5.25: Significance Ranking for the Bonferroni-Dunn two-tailed test with a=0.05 and a=0.10 

 

5.6. Classification Model Computational Time 

According to Tables 5.18 and 5.19, the computational training time required to train all the models are 

shown. As can be seen from the tables, the computational time are displayed in seconds. For the 

individual classifiers, DPL classifier required a longer tunning time in comparison with all single 

classifiers and the other combiner method used in the study. This can be justified by its greater 

construction complexity and its ability to ignore insignificant attributes on the data. However, LDA and 

DT classifiers have completed the training process more quickly than other individual classifiers, as it 

completed the process in 17.41, and 12.17 seconds for All-Data dataset. Other individual classifiers 

took more time to process the datasets.  

As the final stage is to evaluate the computational time for the combining methods used, it is worth 

mentioning that its computational time are computed after computing all base individual classifiers. As 

seen in Table 5.5, traditional combining methods took less training time than other individual classifiers, 
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due its simplicity of calculation. The Cons model relatively took more training time than other combiner 

used due to its training complexity. However, it was selected the best classification method among both 

individual and combining classifiers, as it can expediently offer new business failure classification in a 

relatively short time.   

Table 5.18 Training time for single models in seconds 

Dataset Year 2019 Year 2018 Year 2017 All-Data 

LR 12.313 12.942 12.062 42.46 

LDA 7.792 7.2802 7.3601 17.41 

ANN 20.1 23.49 12.4 82.92 

K-NN 595.99 582.24 593.34 859.5 

NB 345.11 405.14 385.94 566.9 

SVM 2397.3 1938.32 2265.41 3426.5 

DT 8.0062 9.61 9.6362 12.17 

BEC 647.371 589.181 635.86 987.7 

DPL 3694 3964 3793.35 5800 

 

Table 5.19 Training time for committee combiner model in seconds 

Dataset Year 2019 Year 2018 Year 2017 All-Data 

MIN 7.71 7.6 7.73 10.34 

MAX 7.35 7.64 7.57 10.42 

MED 6.1 6.4 6.7 8.1 

MajVot 5.86 5.93 6.27 9.1 

AVG 7.3 7.1 7.39 8.46 

WAVG 75.5 75.3 76.8 121.71 

FC 133 134.5 127.89 280.32 

CON 640.6 642.8 619.84 859.1 

5.7. Summary  

Based on the results of this chapter, it has been proven that combining single classifiers 

predictions can produce more accurate classification of firms’ status. Clearly the Consensus 

combiner is the best method, due to its computational capabilities, which take into 

consideration single classifiers’ uncertainty levels about their answers.  

The combiners used in this chapter could be considered as robust methods, producing more 

stable results for companies across all years’ datasets. An advantage of using traditional 
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combiners is their simple mathematical computation structures, despite the need to adjust 

thresholds for some combiners (Min and Max). Compared with single classifiers, combination 

methods achieved more stable results and provided enhancement over individual classifier 

performance.  

It is sufficient to use combiner methods to enhance companies’ status classification based on 

their overall performance on all measurements. The next chapter focuses on predicting 

companies’ status one step ahead, using dynamic time series classifiers.  
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Chapter 6  
Development of Insolvency Prediction Model 

6.1. Introduction  

Chapters 4 and 5 demonstrated that committee machine combiners have enhanced individual 

model classification performance. The combination method using Cons model achieved the 

best classification result for business failure for the studied UK datasets. However, these 

classifiers, both individual and combiners, used static dataset to classify business activity, 

which can be called a static classifier. This chapter proposes a new modelling approach using 

dynamic classifiers to predict business failure one step ahead (before it happens). The 

modelling techniques adopted in this chapter are DPL-SA, NARX, and NAR. The experiments 

of this study are conducted using MATLAB 2019a version on an 8 GB RAM personal 

computer with 3.4 GHz, Intel CORE i7, and Microsoft Windows 10 operating system. 

The aim is to predict business failure one year before it happens using time series data for UK 

firms for the year 2019. The dataset used to develop the models consists of the 2019 dataset 

with an additional four datasets for the four consecutive years before business failure. The 

model is considered an early warning classifier that can provide users with early information 

about on-going businesses. The model was trained and tested on the datasets to validate its 

prediction performance. After modelling and testing, each of the prediction classifier results 

was compared with the results achieved by the best static individual classifier in this study 

(DPL). Finally, significance testing is presented to evaluate the best model. 

The next section illustrates the dynamic modelling development of each prediction classifier, 

followed by the experimental results and then the discussion of the outcomes.  

6.2. Data Clustering  

Data clustering is defined as a grouping process in which a large number of data in a dataset 

are divided into a certain number of groups, in order to make data points in the same groups 

more similar than those in other groups (Hammouda and Karray, 2000). In simple words, the 

aim is to put data with similar traits in a single group and assign them into clusters. The 

clustering method used in this study is the Fuzzy C-means, based on its fast implementation 

and credibility (Suganya and Shanthi, 2012). To fit the large number of data into the dynamic 

modelling techniques, each one of the two classes of the dataset were clustered into 200 
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representative input data clusters using the Fuzzy C-means method. The result is a dataset 

consisting of 400 input clusters.  

6.3. Nonlinear Autoregressive with Exogenous Input (NARX) 

Recurrent neural network is widely used in different fields as a nonlinear dynamic approach to 

predict the next step in time series data. It is a useful tool for modelling the input dynamical 

order, number of neurons, and number of delays. A suitable training and testing algorithm has 

to be selected to enhance the performance of the prediction, and the final (output) layer consists 

of the predicted target output, which in this case companies’ status y(t). Time series data 

outputs are fed to the model to predict the next output values of the data. In this case, it is 

assumed to be the first time this method has been used to predict companies’ status one year 

before failure in order to investigate early warning potential of models for companies’ health. 

NARX is a dynamic recurrent neural network used to predict next value of the target output by 

regression of the latest values of the dependent variable ny over the latest value of the 

independent variables nx. These values represent the dynamic order of both the dependent and 

independent variables in the model, where ny is the companies’ status for four years and nx are 

the financial variables related to the same companies. The following nonlinear mathematical 

function is used for NARX modelling. 

J'(& = 6	(J' , J('*&), … , J('*,),8' , 8('*&), … , 8('*,)) 

Similar to neural network topography, the NARX network consists of three main layers, the 

first of which is the input layer, followed by the hidden layer and the final output layer. The 

input layer includes the input data (financial variables) and the current output (companies’ 

status). These inputs are fed into the hidden layer, which consists of a certain number of neurons 

and number of delays, in order to map input data using nonlinear function, which assigns 

weights and biases to these data in an open loop network. Figure 6.1 displays the NARX view 

command function. 
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Figure 6.1: NARX view command 

 

After training the network in an open loop based on training, testing, and validating data 

segmentations, the network is converted into a closed loop one. Here the output of the open 

loop network is fed back again to the network to produce multi-step ahead predictions of the 

data. In a closed loop network, the function CLOSELOOP replaces the feedback input with a 

direct connection from the output layer, as shown in Figure 6.2. To perform the multi-step 

prediction, it is crucial to simulate a network in open-loop form as long as there is known output 

data, and then switch to closed-loop form while providing only the external inputs. Next, the 

network and its final states are converted to closed loop form, to make multi-step predictions 

with only the inputs provided.  

 

Figure 6.2: NARX close loop 

 

Finally, to generate one step ahead predictions of companies’ status as an early alert of its next-

year situation, the network returns the predicted y(t+1) at the same time it is given y(t+1). It is 

always beneficial for decision making when early predictions about companies’ health are 
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available. As shown in Figure 6.3, the network can be made to return its output a timestep early, 

and provide important information by removing one delay (to be zero) where outputs are 

shifted one more timestep.  

 

Figure 6.3: NARX predict one step ahead 

 

A NARX network can thus provide early information or prediction about companies’ status 

when provided with data on its previous financial performance, which is considered a 

substantial contribution in the decision-making process for users.  

6.4. Nonlinear Autoregressive Neural Network (NAR) 

For most cases, time series applications are characterised by variation in transient periods. 

Therefore, it is difficult to use linear models for time series predictions, and nonlinear approach 

are more suitable in such cases. A NAR can be applied to predict one step ahead in time series 

forecasting using nonlinear autoregressive model as follows:  

 y(t) = T(y(t − 1), y(t − 2), I, y(t − p)) + ε(t) (6.1) 

This formula shows how NAR network uses the p past values of y to predict the next step ahead 

value of y at time t, y(t), where y represents the financial variables for each company for a time 

series of four years. The function f(.) is set through the training of the neural network, 

determined by means of the optimisation of the network weights and neuron bias. ε(t) is the 

error of the approximation of the values of the financial variables at time t+1.  

To solve Autoregression time-series prediction using NAR network, there are substantial steps 

that the network should go through. First, the variable is defined as the 24 financial ratios of 
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companies for four years. The second step is choosing the training function from a list of 

function, trainlm, trainbr, and trainscg. To build the network, trainlm (Levenberg-Marquardt 

backpropagation) is selected, as it is the most commonly used training rule for the NAR 

network, and it is the fastest learning function to train a backpropagation model. The network 

is created with feedback 1:2, 10 hidden layers, and an open-loop network form. It is crucial to 

use the optimal number of neurons, since increasing the number to a high level makes the 

network more complex, while lower numbers may restrict the computing power of the system 

and make it less generalised.  

The next step is to prepare the data for training and simulation using the function PREPARETS, 

which minimises time shifts to fill input states and layer states. This maintains the original time 

series data unchanged, while customising it for networks with different numbers of delays in 

both open and closed loop feedback modes.  

Figure 6.4 shows the topology of the view command. To train and test the network, the data is 

divided into training, and testing sets, with the ratios 80%, and 20%, respectively. The 

performance function is selected as mean squared error.  

 

Figure 6.4: NAR view command 

After training the network in an open-loop form, the next step is to convert the network to a 

closed-loop form, to do multi-step predictions, as shown in Figure 6.5. Here the function closed 

loop replaces the feedback input with a direct connection from the output layer. In multi-step 

prediction, the network is first simulated using the open-loop form, as long as there is known 

data for the variables, then the network switches to closed-loop to perform multistep 

predictions.  
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Figure 6.5: NAR close loop 

 

As the aim of the algorithm is to get the predictions of companies’ status a timestep early, 

whereby the original network returns predicted y(t+1) at the same time it is given y(t+1). It 

would be helpful to predict y(t+1) once y(t) is available, but before the actual y(t+1) occurs. 

According to Figure 6.6, the network can be made to return its output a timestep early by 

removing one delay, so that its minimal tap delay is now 0 instead of 1. The network returns 

the same outputs as the original network, but outputs are shifted left one timestep, so the output 

predicts companies’ variables one year ahead.  

 

Figure 6.6: NAR one step ahead prediction 

Unlike NARX network, where the final output is the prediction of companies’ status, the output 

predictions of the NAR network is all financial variables values one year ahead. As a final step, 

these new variables are used as an input in a DPL single classifier model to measure how these 

predictions can be informative about companies’ classification. The aim is to compare the 

performance of these new variables with actual financial variables achieved by the companies 

in the dataset for year five.  

6.5. Deep Learning Time Series 

A robust forecasting one step ahead algorithm can be built using deep learning to solve binary 

classification using multiple layers that progressively extract information from the raw input 
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data. Deep learning methods are commonly used to train data using supervised learning when 

providing input data to predict and forecast binary classification. The architecture of the model 

consists of building a layer-by-layer model. The model is built using LSTM, in which the core 

components of the network are a sequence input layer. For network creation, a layer containing 

a sequence input layer is implemented, followed by an LSTM layer fully connected to a 

Softmax layer, linked to a classification output layer. SofMax activation function is selected 

because of its ability to handle multiple classes and its usefulness for output neurons.  

The input size is set as 24, representing the number of features of the input data used to feed 

the sequence input layer in the network. The number of hidden units is set as 24, and the number 

of classes is set as 2, representing the two classes of the target output. The maximum epochs 

are set as 200, and the minimum batch size is 100. After creating the optimal model structure, 

the model is trained and tested using a training and testing dataset extracted from the original 

dataset, with a percentage of 80% and 20%, respectively. The Predict and Update State 

functions are used to predict the next time step using the observed value of the previous time 

step. The forecasted output is then compared with year five actual companies’ status in order 

to measure forecasting accuracy. The DL time series framework is displayed in Figure 6.7.  

 

Figure 6.7: DL time series framework 

Source: Fawaz et al. (2019) 

6.6. Experimental Results 

6.6.1. NARX Results 

Table 6.1 demonstrates NARX results in comparison with Cons single classifier results for the 

year 2019 based on all performance measures. NARX predictions, for one-year step ahead, 

achieved 83.6% average accuracy, while DPL single classifier achieved 96.3%. Type I and 

Type II Error are significantly higher than for Cons, but with a lower gap between the two 

measurements. The specificity rate for NARX is 82.5%, which is approximately 13% lower 
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than DPL. The AUC measurement for NARX shows a relatively lower value in comparison 

with Cons, as this measurement has a positive relationship with average accuracy. Brier score 

is higher, indicating higher error in predicting companies’ status using previous data rather than 

the same year dataset.  

Table 6.1: NARX results 

 NARX DPL 

Average Accuracy 83.6% 96.3% 

Type I Error 17.5% 2.8% 

Type II Error 15.3% 4.5% 

Sensitivity 84.7% 97.2% 

Specificity 82.5% 95.5% 

AUC 87.85% 99.35% 

Brier Score 0.0728 0.0282 

Area Under Reliability 

Curve 
0.1427 

0.0405 

 

Figure 6.8 shows the ROC curve for NARX and compares it with the Cons combiner curve. 

The NARX curve indicates worse performance than the single classifier for the same year 

dataset. The curve shifts down, resulting in a lower AUC value than Cons.  
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Figure 6.8: ROC curve for NARX classifier 

 

Figure 6.9 shows the reliability diagram for the NARX compared with Cons combiner. The 

shape of the diagram indicates that NARX is less reliable, due to its fluctuating line.  
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Figure 6.9: Reliability diagram for NARX classifier 

6.6.2. NAR Results 

The one step ahead results shown in Table 6.2 indicate that NAR shows a substantial 

improvement for all performance measurements in comparison with NARX classifier. Average 

accuracy increased to 89.15%, reducing the gap between the actual year data classifier DPL. 

Sensitivity and specificity rate were enhanced to 91% and 87.3%, respectively. Both Tyoe I 

and Type II Error decreased, showing more capability of the classifier to predict companies’ 

status more accurately than NARX, albeit it is still outperformed by the Cons combiner. Brier 

score results are better than NARX, with a value of 0.0628, and are higher than the Cons result. 

The AUC value increased to 92.48%, showing an improvement in classifier prediction 

performance over the NARX.  
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Table 6.2: NAR results 

 NAR DPL 

Average Accuracy 89.15% 96.3% 

Type I Error 12.7% 2.8% 

Type II Error 9% 4.5% 

Sensitivity 91% 97.2% 

Specificity 87.3% 95.5% 

AUC 92.48% 99.35% 

Brier Score 0.0628 0.0282 

Area Under Reliability 

Curve 
0.2144 

0.0405 

 

Figure 6.10 shows the ROC curve for the NAR classifier compared to DPL single classifier 

curve. The NAR curve shows relatively lower performance than the Cons curve, but better 

performance than the NARX one.  
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Figure 6.10: ROC curve for NAR classifier 

Figure 6.11 shows the reliability diagram for NAR compared with DPL single classifier. The 

diagram shows bad performance in comparison with DPL.  
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Figure 6.11: Reliability diagram for NAR classifier 

6.6.3. DPL-SA Results  

Based on Table 6.3, DPL-SA achieved better results than NAR and NARX, and the average 

accuracy rate of 91.35% is the highest among the three approaches. According to the results, a 

major enhancement to the classifier performance resulted from its higher sensitivity rate, with 

a value of 94.7%. Moreover, the specificity rate of 88% indicates reduced Type I Error. The 

Brier score of 0.0534 and AUC value of 93.43% indicate how DPL-SA has enhanced prediction 

results when predicting one step ahead, but it is still outperformed by Cons results using same 

year dataset.  
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Table 6.3: DPL-SA results 

 DPL-SA DPL 

Average Accuracy 91.35% 96.3% 

Type I Error 12% 2.8% 

Type II Error 5.3% 4.5% 

Sensitivity 94.7% 97.2% 

Specificity 88% 95.5% 

AUC 93.43% 99.35% 

Brier Score 0.0534 0.0282 

Area Under Reliability 

Curve 
0.1402 

0.0405 

 

Figure 6.12 shows the ROC curve for the DPL-SA classifier compared to DPL single classifier 

curve. The curve outperformed both NAR and NARX based on AUC values, as it achieved the 

highest value. However, single classifier DPL curve has better performance in predicting 

company status than DPL-SA using the same year dataset (instead of predicting one year 

ahead). 
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Figure 6.12: ROC curve for DPL-SA classifier 

Figure 6.13 shows the reliability diagram for DPL-SA compared to DPL classifier. DPL-SA 

has relatively better performance than NAR and NARX, but it is still worse than the DPL single 

classifier.  
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Figure 6.13: Reliability diagram for DPL-SA classifier 

6.7. Discussion and Analysis 

In this section the results of each classifier for one step ahead prediction are analysed and 

discussed based on all performance results, in addition to the reliability diagrams and ROC 

curves of each classifier.  

Average accuracy rate is considered to be the most obvious measurement to compare 

classifiers’ performance, which shows how accurately the classifier is capable to classify 

companies’ status based on their financial inputs. Whilst conducting the experiment to predict 

one year ahead about companies’ status, the average accuracy rate declined in comparison with 

the best single classifier, Cons. Using actual input data in year five, Cons classifier achieved 

96.7% average accuracy, while step ahead models achieved 83.6%, 89.5%, and 91.35% using 

NARX, NAR, and DPL-SA, respectively. The difference between DPL single classifier and 

NARX is the largest, and it is considered to be the worst performer in this regard. However, 

NARX average accuracy is considered to be acceptable for a model predicting companies’ 

status one year in advance. Both NAR and DPL-SA outperformed NARX based on all 
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performance measures, and showed higher average accuracy rates. Here, it should be noted that 

the NAR model output is different from that of NARX and DPL-SA, as it predicts the next 

year’s financial variables as an output. These financial variables are used as inputs in a DPL 

single classifier model to classify companies’ status, which revealed enhanced prediction 

performance compared to NARX. Obviously, DPL-SA achieved the highest average accuracy 

and provided an outstanding capability to accurately classify companies one year in advance.  

Based on specificity and sensitivity rates, DPL-SA is ranked first, with the best performance 

results of 88% and 94.7%, respectively. NARX method achieved the worst results, with 82.5% 

specificity rate and 84.7% sensitivity rate while NAR fell in the middle, with 87.3% and 91% 

(respectively). Obviously, it is more efficient to use NAR approach than NARX when 

predicting companies’ status in advance, as it shows substantial improvements in correctly 

classifying failed firms. It can be seen from the sensitivity rates that using DPL-SA improved 

active companies’ prediction by 3.7% compared to the NAR method. However, the specificity 

rate is only enhanced by 0.7% by DPL-SA, which means that both methods have similar 

capability of correctly predicting failed companies.  

DPL-SA has the lowest Type I and Type II Error rates as a step ahead prediction model, with 

5.3% and 12% (respectively), and it considered to be the closest to the actual year data result 

achieved by the DPL classifier. DPL-SA outperformed NAR and NARX based on Brier score, 

AUC, and AURC values, and showed itself to be a more reliable classifier. Its values 

considered to be the closest to the actual yearly data results.  

Table 6.4: One step ahead classifiers’ results. 

 One Step Ahead 

Aver 

Acc. 

Type II 

Err 

Type I 

Err 
Sensitivity Specificity AUC Brier 

score 
AURC 

NARX 83.6% 15.3% 17.5% 84.7% 82.5% 87.85% 0.0958 14.27% 

NAR 89.5% 9% 12.7% 91% 87.3% 92.48% 0.0876 21.44% 

DPL-SA 91.35% 5.3% 12% 94.7% 88% 93.4% 0.0789 14.02% 

DPL 94.1% 3.6% 8.2% 96.4% 91.8% 98% 0.0664 13.34% 

6.8. Dynamic Modelling Training Time 

Table 6.5 shows the computational time required for each dynamic classifier to train the dataset. It can 

be seen from the table that DPL-SA has achieved the higher training time due to its computational 

complexity at 1060.18 seconds. NARX model had the lowest training time at 56.98, indicating that this 
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is the fastest training model for classifying business failure one step ahead. However, due to higher 

average accuracy rate achieved by DPL-ST, it still considered the best prediction method despite its 

higher training time.  

Table 6.5: Dynamic model training times in seconds 

Dataset Training time 
(seconds) 

DPL-LSTM 1060.18 

NARX 56.98 

NAR 95.37 

 

6.9. Summary 

In summary, the DPL-SA shows the best performance in predicting business status one year 

ahead. It achieved the best prediction results based on all performance measurements. On the 

other hand, the performance measurements indicate that NARX model achieved the lowest 

average accuracy rate in predicting business failure a year ahead. The model had relatively low 

performance in predicting both classes of business activity, with high rates of Type I and Type 

II Error. The NAR model was more accurate, with better prediction capability, than the NARX 

model, based on average accuracy. The model was able to predict business status 4.8% more 

accurately than NARX.  

DPL-SA as a modelling technique has revealed a substantial capability of predicting business 

failure and has outperformed NARX and NAR based on all performance measurements. The 

model result is relatively close to the results of the static DPL classifier, indicating reliable 

prediction performance. The model can reliably be deployed on real time series data to help 

users of financial statement from different backgrounds to have early signs about firms’ health 

and operational status as on-going concerns.   
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Chapter 7  
Conclusions and Future Work 

7.1. Conclusions 

The main aim of this thesis was to explore the deployment of multiple data mining modelling 

techniques to solve business failure prediction problems for UK firms by investigating which 

modelling techniques can achieve the best prediction performance based on specific 

measurements. The modelling process started by collecting financial data of businesses in the 

UK for both failed and active firms. Individual base classifiers were then built using both 

machine learning and statistical modelling approach as a benchmark. More advanced data 

mining techniques were used to determine the extent to which machine learning models can 

outperform traditional methods in predicting business failure in the UK. To investigate 

improvements for single classifiers’ results, ensemble classifiers were developed by applying 

traditional combiners. Finally, time series modelling techniques were proposed for the first 

time in the field of business failure prediction to predict failure one step ahead (before it 

occurs). All proposed models were validated using eight performance measurements that 

reflect classifiers’ prediction capability. After all proposed classifiers were developed and 

tested, their results were statistically tested to investigate their significance against other 

classifiers to determine the best performer.  

Chapter 2 explained the theoretical background of business failure analysis, including 

definitions and pertinent issues. It reviewed the data sources used to construct and develop 

prediction models, which in most cases comprise financial information related to each business 

included in the dataset. Another step was reviewing related literature on business failure 

modelling techniques and algorithms used to achieve a good prediction performance. The 

literature was analysed thoroughly, and several findings were drawn that helped investigate 

how to improve business failure prediction for UK firms.  

Chapter 3 focused on the methodological approach used in this study, explaining the main 

stages of the experimental design adopted on business failure modelling. Several issues were 

considered in developing the proposed model, such as:  

• Modelling techniques used to build the classification and prediction model. 

• The database collection process, focusing on the size and type of data. 
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• Data pre-processing and partitioning techniques. 

• Performance measurements used to assess model’s prediction results, accompanied 

with statistical significance testing.  

These considerations were necessary to demonstrate the stages that highly affect the prediction 

performance of the proposed models adopted in this thesis, to help in developing an appropriate 

and comprehensive business failure model for the UK dataset.  

Chapter 4 expounded on the individual classifying approaches used for the UK dataset. 

Initially, LR classifier was implemented and applied as a benchmark classifier against which 

all other data mining classifiers were compared. The analysed data mining classifiers were: 

NN, DT, SVM, NB, KNN, DPL, and ENS-DT. Each classifier behaves differently and has its 

own strengths and weaknesses in classifying and predicting business failure in the UK. In 

general, the best classification performance was achieved by DPL, followed by ENS-DT and 

then DT. It was proven that data mining techniques outperformed statistical methods (LDA 

and LR) in terms of all performance measurements.  

Chapter 5 demonstrated several experimental approaches using traditional committee machine 

combiners in an attempt to enhance individual classifiers’ classification performance. The 

traditional combining methods adopted were MIN, MAX, AVG, MajVot, and WAVG. For the 

first time in business failure modelling, two new combiners were used to enhance prediction 

performance: Consensus (Cons) and fuzzy logic. The experimental results showed that the best 

traditional combiners were WAVG and AVG combiner, which outperformed ENS-DT and DT 

individual classifiers, as well as combining methods using fuzzy logic method, but they could 

not outperform DPL. The main contribution of the chapter was to demonstrate the superior 

performance of the Cons classifier, which achieved the best results in correctly classifying 

failed firms.  

Chapter 6 focused on developing dynamic prediction models capable to predict business failure 

one step ahead. Three main modelling techniques were adopted in this thesis: NARX, DPL-

SA, and NAR. The first two methods focused on predicting business status one year ahead 

(before failure), while NAR was used to forecast the next values of the financial variables used 

to predict firm’s status, then these new variables were fed to a DPL single classifier to produce 

business predictions. Based on the classification results of each classifier, the DPL-SA method 

outperformed the NARX classifier, but the NAR classifier achieved the best results when used 

to predict the next values of the financial variables used to classify businesses.  
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In conclusion, it has been proven that machine learning classification methods have 

outperformed traditional statistical techniques in terms of all performance measurements. LDA 

and LR as statistical classifiers, have achieved the lowest average accuracy rates for all data 

dataset with only 81.8%, and 75%, respectively. Where the best single classifiers, DT, ENS-

DT, and DPL are considered as the best individual classifiers among all other classifiers used 

in the study and have shown higher average accuracy rate of 95.3%, 96.2%, and 97.2%, 

respectively. Therefore, it can be seen that deep learning methodology for classifying business 

failure is considered the best method can be used for UK datasets. This advantage of this 

methods relies on the capability of the classifier to assign more weights to the best features on 

the datasets where it forgets the features with the lowest classification capability.  

For the combining methods that used all single classifiers output to enhance the final 

classification result of business failure, traditional mathematical combiners (MIN, MAX, 

AVG, Maj_vote, Median, and WAVG) have shown good results in term of accuracy rates. 

However, the best method among these combiners, which is the WAVG, still has achieved 

lower accuracy than the individual deep learning classifier with 96.7% accuracy rate. 

Therefore, the fuzzy logic and the consensus (Cons) methods were developed to achieve  better 

results.  

The Cons model of business failure is considered the best static classification method in this 

study, and has the advantage over traditional combiners as it uses a fusion of individual 

classifiers’ predictions rather than combining these predictions using logical, arithmetical or 

other mathematical functions. The model mimics the behaviour of a real expert group who they 

are constantly exchanging their opinions and adjusting their estimates of possible outcomes 

based on the advice of other experts. However, just as experts sometimes cannot agree on a 

decision, sometimes the Cons model cannot converge. In order to overcome this obstacle, the 

least square error methodology was adopted in the model instead of iteration procedure. In 

conclusion, consensus combiner has improved business failure classification performance in 

terms of accuracy and achieved the highest classification rate with 97.7%. Moreover, due its 

lower type I error of 2.4%, that’s reflects its ability to correctly classifies failure businesses, 

the method is considered the best among all classifiers in this study.   

The model was tested on three UK datasets, for the years 2019, 2018, and 2017, with the aim 

of correctly classify business failure, in addition to the All-Data dataset, which included the 

three individual yearly datasets. It was found from all classifiers’ results that Big Data can 
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enhance classifiers’ predictions and classifications. Based on all performance measurements, 

Cons outperformed the alternative models, with good specificity rates and Type I Error, 

reflecting the best failure classification performance.  

Another substantial contribution is the deployment of the dynamic model to predict business 

failure one step ahead, before it occurs. DPL-SA as a modelling technique revealed a 

substantial capability of predicting business failure, and it outperformed NARX and NAR 

based on all performance measurements. The model results are relatively close to the result of 

the static DPL classifier results, indicating reliable prediction performance. The model can 

reliably be deployed on real time series data to help users of financial statement and 

stakeholders from various background to have early signs about firms’ health and operational 

status as on-going concerns. 

7.2. Limitations 

Similar to every research, this research comes with some limitations. Perpetrators in most cases 

fully understand bankruptcy laws, and the responsibility to declare bankruptcy when their 

financial variables indicate insolvency business. Thus, the inclusion of insolvent businesses in 

the data would be wrong and could affect the classification accuracy performance of the 

classification model.  

The best combiner method Cons has limitations mostly with processor duration needed to train 

all single classifiers and the processor time needed to adjusting Cons combiner parameters to 

properly fit the data.   

In the case of the dynamic prediction classifier, the original data has to be clustered and reduce 

to a small representative dataset. In which the classifier could not separately predict all 

instances included in the original dataset.  

7.3. Future Works 

In order to improve model’s classification performance for bankrupt businesses, future research 

should take into consideration the inclusion of qualitative variables in the data, which can be 

developed to serve as an indicator of possible insolvency. Such documentation can be 

completed annually by firms, similar to financial reporting systems. Such data can be combined 

with financial variables to develop more reliable and robust prediction models. Moreover, 

qualitative data based on a questionnaire based on theoretical factors in insolvency can be 
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collect from failed companies to be added to the financial data, in order to further improve 

prediction capabilities.  

Also, the proposed model could be enhanced by: 

• Considering the combination of the top three classifiers (Cons, DPL, ENS-DT) to 

produce better classification results.  

• Investigating the extent to which Cons classification can change when combining 

different homogenous classifiers or heterogeneous classifiers.  

• Applying new pre-processing techniques, such as new feature-selection or data 

filtering, and accordingly investigating how these methods could affect Cons results.   



176 

References  

Abraham, A. (2004) ‘A model of financial performance analysis adapted for non-profit 

organisations’. 

Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O. and 

Bilal, M. (2018) ‘Systematic review of bankruptcy prediction models: Towards a framework 

for tool selection’, Expert Systems with Applications, 94, pp. 164-184. doi: 

10.1016/j.eswa.2017.10.040. 

Alasadi, S. A. and Bhaya, W. S. (2017) ‘Review of data pre-processing techniques in data 

mining’, Journal of Engineering and Applied Sciences, 12(16), pp. 4102-4107. 

Albashrawi, M. (2016) ‘Detecting financial fraud using data mining techniques: A decade 

review from 2004 to 2015’, Journal of Data Science, 14(3), pp. 553-569. 

Aljawazneh, H., Mora, A. M., Garcia-Sanchez, P. and Castillo-Valdivieso, P. A. (2021) 

‘Comparing the performance of deep learning methods to predict companies’ financial failure’, 

IEEE Access, 9, pp. 97010-97038. doi: 10.1109/ACCESS.2021.3093461. 

Alles, M. and Gray, G. L. (2015) The pros and cons of using Big Data in auditing: A synthesis 

of the literature and a research agenda. Available at: http://jebcl.com/symposium/wp-

content/uploads/2015/09/The-Pros-and-Cons-of-Using-Big-Data-in-Auditing-A-Synthesis-of-

the-Literature-UWCISA-Revised.pdf (Accessed: 9 June, 2021). 

Altman, E.I. (1968) ‘Financial Ratios, Discriminant Analysis and The Prediction of Corporate 

Bankruptcy’, The Journal of Finance (New York), vol. 23, no. 4, pp. 589-609 ISSN 0022-1082. 

DOI 10.1111/j.1540-6261.1968.tb00843.x. 

Amani, F. A. and Fadlalla, A. M. (2017) ‘Data mining applications in accounting: A review of 

the literature and organizing framework’, International Journal of Accounting Information 

Systems, 24, pp. 32-58. 

Arieshanti, I., Purwananto, Y., Ramadhani, A., Nuha, M. U. and Ulinnuha, N. (2013) 

‘Comparative study of bankruptcy prediction models’, Telkomnika, 11(3), pp. 591. 

Azayite, F. Z. and Achchab, S. (2016) ‘Hybrid discriminant neural networks for bankruptcy 

prediction and risk scoring’, Procedia Computer Science, 83, pp. 670-674. 



177 

Aziz, M. A. and Dar, H. A. (2006) ‘Predicting corporate bankruptcy: Where we stand?’, 

Corporate Governance, 6(1), pp. 18-33. doi: 10.1108/14720700610649436. 

Bai, C., Liu, Q., Lu, J., Song, F.M. and Zhang, J. (2006) ‘An empirical study on corporate 

governance and market valuation in China’, Frontiers of Economics in China, vol. 1, no. 1, pp. 

83-111 ISSN 1673-3444. DOI 10.1016/j.resp.2005.07.001. 

Ball, R. (2006) ‘International Financial Reporting Standards (IFRS): Pros and cons for 

investors’, Accounting and Business Research, 36(S1), pp. 5-27. 

Ball, R., Li, X.I. and Shivakumar, L. (2015) ‘Contractibility and Transparency of Financial 

Statement Information Prepared Under IFRS: Evidence from Debt Contracts Around IFRS 

Adoption’, Journal of Accounting Research, vol. 53, no. 5, pp. 915-963 ISSN 0021-8456. Doi: 

10.1111/1475-679X.12095. 

Barboza, F., Kimura, H. and Altman, E. (2017) ‘Machine learning models and bankruptcy 

prediction’, Expert Systems with Applications, 83, pp. 405-417. 

Barth, M. E., Landsman, W. R. and Lang, M. H. (2008) ‘International accounting standards 

and accounting quality’, Journal of Accounting Research, 46(3), pp. 467-498. doi: 

10.1111/j.1475-679X.2008.00287.x. 

Barua, B., Barua, S. and Rana, R.H. (2018) ‘Determining the Financial Performance of Non-

Life Insurers: Static and Dynamic Panel Evidence from an Emerging Economy’, The Journal 

of Developing Areas, vol. 52, no. 3, pp. 153-167 ISSN 0022-037X. DOI 

10.1353/jda.2018.0043. 

Bateni, L. and Asghari, F. (2020) ‘Bankruptcy prediction using logit and genetic algorithm 

models: A comparative analysis’, Computational Economics, 55(1), pp. 335-348. 

Beaver, W.H. (1966) ‘Financial ratios as predictors of failure’, Journal of Accounting 

Research, pp. 71-111. 

Beaver, W.H. (1968) ‘Market prices, financial ratios, and the prediction of failure’, Journal of 

Accounting Research, pp. 179-192. 

Behn, B. K., Kaplan, S. E. and Krumwiede, K. R. (2001) ‘Further evidence on the auditor’s 

going‐concern report: The influence of management plans’, Auditing: A Journal of Practice & 

Theory, 20(1), pp. 13-28. 



178 

Bell, T. B. and Tabor, R. H. (1991) ‘Empirical analysis of audit uncertainty qualifications’, 

Journal of Accounting Research, 29(2), pp. 350-370. 

Benyoussef, N. and Khan, S. (2017) ‘Identifying fraud using restatement information’, Journal 

of Financial Crime. 

Bertsimas, D. and Kallus, N. (2014) From predictive to prescriptive analytics. Available at: 

https://arxiv.org/pdf/1402.5481.pdf (Accessed: 9 June, 2021). 

Bešlić Obradović, D., Jakšić, D., Bešlić Rupić, I. and Andrić, M. (2018) ‘Insolvency prediction 

model of the company: The case of the Republic of Serbia’, Economic Research-Ekonomska 

Istraživanja, 31(1), pp. 139-157. 

Bhargava, M., Bhardwaj, A. and Rathore, A.P.S. (2017) ‘Prediction model for telecom postpaid 

customer churn using Six-Sigma methodology’, International Journal of Manufacturing 

Technology and Management, vol. 31, no. 5, pp. 387-401 ISSN 1368-2148. Doi: 

10.1504/IJMTM.2017.088448. 

Bischl, B., Mersmann, O., Trautmann, H. and Weihs, C. (2012) ‘Resampling methods for meta-

model validation with recommendations for evolutionary computation’, Evolutionary 

Computation, 20(2), pp. 249-275. 

Boritz, J. E. and Kennedy, D. B. (1995) ‘Effectiveness of neural network types for prediction 

of business failure’, Expert Systems with Applications, 9(4), pp. 503-512. 

Boritz, J. E., Kennedy, D. B. and Albuquerque, Augusto De Miranda E (1995) ‘Predicting 

corporate failure using a neural network approach’, Intelligent Systems in Accounting, Finance 

and Management, 4(2), pp. 95-111. 

Bozsik, J. (2010) ‘Artificial neural networks in default forecast’, Proceedings of the 8th 

International Conference on Applied Informatics, 1, pp. 31–39. Available at: 

http://icai.ektf.hu/pdf/ICAI2010-vol1-pp31-39.pdf (Accessed: 9 June, 2021). 

Brier, G. W. (1950) ‘Verification of forecasts expressed in terms of probability’, Monthly 

Weather Review, 78(1), pp. 1-3. 

Brown, I. and Mues, C. (2012) ‘An experimental comparison of classification algorithms for 

imbalanced credit scoring data sets’, Expert Systems with Applications, 39(3), pp. 3446-3453. 



179 

Charitou, A., Neophytou, E. and Charalambous, C. (2004) ‘Predicting corporate failure: 

Empirical evidence for the UK’, European Accounting Review, 13(3), pp. 465-497. doi: 

10.1080/0963818042000216811. 

Chava, S. and Jarrow, R.A. (2004) ‘Bankruptcy prediction with industry effects’, Review of 

Finance, vol. 8, no. 4, pp. 537-569. 

Chen, H., Yang, B., Wang, G., Liu, J., Xu, X., Wang, S. and Liu, D. (2011) ‘A novel bankruptcy 

prediction model based on an adaptive fuzzy k-nearest neighbor method’, Knowledge-Based 

Systems, 24(8), pp. 1348-1359. 

Chen, K. C. and Church, B. K. (1992) ‘Default on debt obligations and the issuance of going-

concern opinions’, Auditing, 11(2), pp. 30. 

Chen, N., Ribeiro, B., Vieira, A. S., Duarte, J. and Neves, J. C. (2011) ‘A genetic algorithm-

based approach to cost-sensitive bankruptcy prediction’, Expert Systems with Applications, 

38(10), pp. 12939-12945. 

Chen, S. (2016) ‘Detection of fraudulent financial statements using the hybrid data mining 

approach’, SpringerPlus, 5(1), pp. 1-16. doi: 10.1186/s40064-016-1707-6. 

Chiu, C., Ku, Y., Lie, T. and Chen, Y. (2011) ‘Internet auction fraud detection using social 

network analysis and classification tree approaches’, International Journal of Electronic 

Commerce, 15(3), pp. 123-147. doi: 10.2753/JEC1086-4415150306. 

Cho, S., Hong, H. and Ha, B. (2010) ‘A hybrid approach based on the combination of variable 

selection using decision trees and case-based reasoning using the Mahalanobis distance: For 

bankruptcy prediction’, Expert Systems with Applications, 37(4), pp. 3482-3488. 

Choi, H., Son, H. and Kim, C. (2018) ‘Predicting financial distress of contractors in the 

construction industry using ensemble learning’, Expert Systems with Applications, 110, pp. 1-

10. 

Clarkson, P. M., Li, Y., Richardson, G. D. and Vasvari, F. P. (2011) ‘Does it really pay to be 

green? Determinants and consequences of proactive environmental strategies’, Journal of 

Accounting and Public Policy, 30(2), pp. 122-144. doi: 10.1016/j.jaccpubpol.2010.09.013. 

Coats, P.K. and Fant, L.F. (1991) ‘A neural network approach to forecasting financial distress’, 

The Journal of Business Forecasting, vol. 10, no. 4, pp. 9. 



180 

Dakovic, R., Czado, C. and Berg, D. (2010) ‘Bankruptcy prediction in Norway: a comparison 

study’, Applied Economics Letters, vol. 17, no. 17, pp. 1739-1746. 

Dalnial, H., Kamaluddin, A., Sanusi, Z. M. and Khairuddin, K. S. (2014) ‘Detecting fraudulent 

financial reporting through financial statement analysis’, Journal of Advanced Management 

Science, 2, pp. 17-22. 

De Andrés, J., Lorca, P., De Cos Juez, Francisco Javier and Sánchez-Lasheras, F. (2011) 

‘Bankruptcy forecasting: A hybrid approach using fuzzy c-means clustering and Multivariate 

Adaptive Regression Splines (MARS)’, Expert Systems with Applications, 38(3), pp. 1866-

1875. 

De Bock, K. W. (2017) ‘The best of two worlds: Balancing model strength and 

comprehensibility in business failure prediction using spline-rule ensembles’, Expert Systems 

with Applications, 90, pp. 23-39. doi: 10.1016/j.eswa.2017.07.036. 

De Bock, K.W. (2017) ‘The best of two worlds: Balancing model strength and 

comprehensibility in business failure prediction using spline-rule ensembles’, Available 

from:http://www.sciencedirect.com.ezproxy.brunel.ac.uk/science/article/pii/S0957417417305

122. 

Demšar, J. (2006) ‘Statistical comparisons of classifiers over multiple data sets’, Journal of 

Machine Learning Research, 7, pp. 1-30. 

Diebold, F. X. (2012) On the origin(s) and development of the term ‘Big Data’. PIER Working 

Paper No. 12-037. doi: 10.2139/ssrn.2152421. 

Du Jardin, P. (2010) ‘Predicting bankruptcy using neural networks and other classification 

methods: The influence of variable selection techniques on model accuracy’, Neurocomputing 

(Amsterdam), 73(10), pp. 2047-2060. doi: 10.1016/j.neucom.2009.11.034. 

Du Jardin, P. (2015) ‘Bankruptcy prediction using terminal failure processes’, European 

Journal of Operational Research, 242(1), pp. 286-303. 

Du Jardin, P. (2021) ‘Forecasting bankruptcy using biclustering and neural network-based 

ensembles’, Annals of Operations Research, 299(1), pp. 531-566. 

Du Jardin, P. and Séverin, E. (2012) ‘Forecasting financial failure using a Kohonen map: A 

comparative study to improve model stability over time’, European Journal of Operational 

Research, 221(2), pp. 378-396. 



181 

Eng, L.L., Tian, X. and Robert Yu, T. (2018) ‘Financial statement analysis: Evidence from 

Chinese firms’, Review of Pacific Basin Financial Markets and Policies, vol. 21, no. 4, pp. 

1850027 ISSN 0219-0915. DOI 10.1142/S0219091518500273. 

Falangis, K. and Glen, J. J. (2010) ‘Heuristics for feature selection in mathematical 

programming discriminant analysis models’, Journal of the Operational Research Society, 

61(5), pp. 804-812. 

Falavigna, G. and Ippoliti, R. (2018) ‘Industrial spatial dynamics, financial health and 

bankruptcy: Evidence from Italian manufacturing industry’, Economia E Politica Industriale, 

45(4), pp. 533-554. 

FAME (2019) Forecasting Analysis and Modelling Environment. Available at: 

https://fame.bvdinfo.com/version-20211216/fame/1/Companies/Search. 

Fan, S., Liu, G. and Chen, Z. (2017) ‘Anomaly detection methods for bankruptcy prediction’, 

4th International Conference on Systems and Informatics (ICSAI), 17, pp. 1456-1460. doi: 

10.1109/ICSAI.2017.8248515. 

Fan, W. and Bifet, A. (2013) ‘Mining Big Data: Current status, and forecast to the future’, 

ACM SIGKDD Explorations Newsletter, 14(2), pp. 1-5. 

Fitzpatrick, P.J. (1932) ‘A comparison of the ratios of successful industrial enterprises with 

those of failed companies’. 

Fletcher, D. and Goss, E. (1993) ‘Forecasting with neural networks: An application using 

bankruptcy data’, Information & Management, 24(3), pp. 159-167. 

Freund, Y. and Schapire, R. E. (1997) ‘A decision-theoretic generalization of on-line learning 

and an application to boosting’, Journal of Computer and System Sciences, 55(1), pp. 119-139. 

Friedman, M. (1940) ‘A comparison of alternative tests of significance for the problem of m 

rankings’, Annals of Mathematical Statistics, 11(1), pp. 86-92. 

Gaeremynck, A. and Willekens, M. (2003) ‘The endogenous relationship between audit-report 

type and business termination: Evidence on private firms in a non-litigious environment’, 

Accounting and Business Research, 33(1), pp. 65-79. 



182 

García, V., Marqués, A. I. and Sánchez, J. S. (2015) ‘An insight into the experimental design 

for credit risk and corporate bankruptcy prediction systems’, Journal of Intelligent Information 

Systems, 44(1), pp. 159-189. 

Garrison, R.H., Noreen, E.W., Brewer, P.C. and Mcgowan, A. (2010) ‘Managerial 

Accounting’, Issues in Accounting Education, vol. 25, no. 4, pp. 792-793 ISSN 0739-3172. 

DOI 10.2308/iace.2010.25.4.792. 

Geng, R., Bose, I. and Chen, X. (2015) ‘Prediction of financial distress: An empirical study of 

listed Chinese companies using data mining’, European Journal of Operational Research, 

241(1), pp. 236-247. 

Goo, Y. J., Chi, D. and Shen, Z. (2016) ‘Improving the prediction of going concern of 

Taiwanese listed companies using a hybrid of LASSO with data mining techniques’, 

SpringerPlus, 5(1), pp. 1-18. 

Gordini, N. (2014) ‘A genetic algorithm approach for SMEs bankruptcy prediction: Empirical 

evidence from Italy’, Expert Systems with Applications, 41(14), pp. 6433-6445. 

Gov.uk. (2019) Applying to become bankrupt. Available at: https://www.gov.uk/bankruptcy 

(Accessed: 7 June, 2021). 

Gray, G. L. and Debreceny, R. S. (2014) ‘A taxonomy to guide research on the application of 

data mining to fraud detection in financial statement audits’, International Journal of 

Accounting Information Systems, 15(4), pp. 357-380. 

Guang-Bin Huang, Qin-Yu Zhu and Chee-Kheong Siew (2004) ‘Extreme learning machine: a 

new learning scheme of feedforward neural networks Anonymous’, IEEE International Joint 

Conference on Neural Networks (IEEE Cat. No.04CH37541), 2004. 

Guyon, I. and Elisseeff, A. (2003) ‘An introduction to variable and feature selection’, Journal 

of Machine Learning Research, 3, no’, Mar, pp. 1157-1182. 

Hajek, P. and Henriques, R. (2017) ‘Mining corporate annual reports for intelligent detection 

of financial statement fraud: A comparative study of machine learning methods’, Knowledge-

Based Systems, 128, pp. 139-152. 

Härdle, W.K., Prastyo, D. and Hafner, C. (2012) ‘Support vector machines with evolutionary 

feature selection for default prediction’. 



183 

Heo, J. and Yang, J. Y. (2014) ‘AdaBoost based bankruptcy forecasting of Korean construction 

companies’, Applied Soft Computing, 24, pp. 494-499. 

Hitzler, P. and Janowicz, K. (2013) ‘Linked data, Big Data, and the 4th Paradigm’, Semantic 

Web, 4(3), pp. 233-235. 

Holsapple, C., Lee-Post, A. and Pakath, R. (2014) ‘A unified foundation for business analytics’, 

Decision Support Systems, 64, pp. 130-141. 

Huang, S., Tsaih, R. and Yu, F. (2014) ‘Topological pattern discovery and feature extraction 

for fraudulent financial reporting’, Expert Systems with Applications, 41(9), pp. 4360-4372. 

doi: 10.1016/j.eswa.2014.01.012. 

Huang, Y. and Yen, M. (2019) ‘A new perspective of performance comparison among machine 

learning algorithms for financial distress prediction’, Applied Soft Computing, 83, pp. 105663. 

doi: 10.1016/j.asoc.2019.105663. 

Huynh, T. L. D., Wu, J. and Duong, A. T. (2020) ‘Information asymmetry and firm value: Is 

Vietnam different?’, Journal of Economic Asymmetries, 21, pp. e00147. doi: 

10.1016/j.jeca.2019.e00147. 

Iatridis, G. (2010a) ‘IFRS adoption and financial statement effects: The UK case’, 

International Research Journal of Finance and Economics, 38, pp. 165-172. 

Iatridis, G. (2010b) ‘International Financial Reporting Standards and the quality of financial 

statement information’, International Review of Financial Analysis, 19(3), pp. 193-204. 

Ikpefan, O. A. and Akande, A. O. (2012) ‘International Financial Reporting Standards (IFRS): 

Benefits, obstacles and intrigues for implementation in Nigeria’, Business Intelligence Journal, 

5(2), pp. 299-307. 

Iturriaga, F. J. L. and Sanz, I. P. (2015) ‘Bankruptcy visualization and prediction using neural 

networks: A study of US commercial banks’, Expert Systems with Applications, 42(6), pp. 

2857-2869. 

Jabeur, S. B., Gharib, C., Mefteh-Wali, S. and Arfi, W. B. (2021) ‘CatBoost model and artificial 

intelligence techniques for corporate failure prediction’, Technological Forecasting and Social 

Change, 166, pp. 120658. doi: 10.1016/j.techfore.2021.120658. 



184 

Jacobs, A. (2009) ‘The pathologies of Big Data: Scale up your datasets enough and all your 

apps will come undone – What are the typical problems and where do the bottlenecks generally 

surface?’, Queue, 7(6), pp. 10-19. 

Jan, C. L. (2021) ‘Using deep learning algorithms for CPAs’ going concern prediction’, 

Information, 12(2), pp. 73. doi: 10.3390/info12020073. 

Jang, Y., Jeong, I., Cho, Y. K. and Ahn, Y. (2019) ‘Predicting business failure of construction 

contractors using long short-term memory recurrent neural network’, Journal of Construction 

Engineering and Management, 145(11), pp. 04019067. 

Jeong, C., Min, J. H. and Kim, M. S. (2012) ‘A tuning method for the architecture of neural 

network models incorporating GAM and GA as applied to bankruptcy prediction’, Expert 

Systems with Applications, 39(3), pp. 3650-3658. 

Jing, Z. and Fang, Y. (2018) ‘Predicting US bank failures: A comparison of logit and data 

mining models’, Journal of Forecasting, 37(2), pp. 235-256. 

Jones, S. (2017) ‘Corporate bankruptcy prediction: A high dimensional analysis’, Review of 

Accounting Studies, 22(3), pp. 1366-1422. 

Joy, M.O. (1975) ‘On the Financial Applications of Discriminant Analysis’, Journal of 

Financial and Quantitative Analysis (December 1975), pp. 723-739. 

Kanapickienė, R. and Grundienė, Ž. (2015) ‘The Model of Fraud Detection in Financial 

Statements by Means of Financial Ratio’, Procedia - Social and Behavioral Sciences, vol. 213, 

pp. 321-327 ISSN 1877-0428. DOI 10.1016/j.sbspro.2015.11.545. 

Karas, M. and Režňáková, M. (2014) ‘A parametric or nonparametric approach for creating a 

new bankruptcy prediction model: The Evidence from the Czech Republic’, International 

Journal of Mathematical Models and Methods in Applied Sciences, 8(1), pp. 214-223. 

Kasgari, A. A., Divsalar, M., Javid, M. R. and Ebrahimian, S. J. (2013) ‘Prediction of 

bankruptcy Iranian corporations through artificial neural network and Probit-based analyses’, 

Neural Computing and Applications, 23(3), pp. 927-936. 

Kristóf, T. and Virág, M. (2012) ‘Data reduction and univariate splitting: Do they together 

provide better corporate bankruptcy prediction?’, Acta Oeconomica, 62(2), pp. 205-228. doi: 

10.1556/AOecon.62.2012.2.4. 



185 

Kukuk, M. and Rönnberg, M. (2013) ‘Corporate credit default models: A mixed logit 

approach’, Review of Quantitative Finance and Accounting, 40(3), pp. 467-483. 

Kulustayeva, A., Jondelbayeva, A., Nurmagambetova, A., Dossayeva, A. and Bikteubayeva, 

A. (2020) ‘Financial data reporting analysis of the factors influencing on profitability for 

insurance companies’, Entrepreneurship and Sustainability, Issues, vol. 7, no. 3, pp. 2394-2406 

ISSN 2345-0282. DOI 10.9770/jesi.2020.7.3(62). 

Kuruppu, N., Laswad, F. and Oyelere, P. (2003) ‘The efficacy of liquidation and bankruptcy 

prediction models for assessing going concern’, Managerial Auditing Journal, 18(6/7), pp. 

577-590. doi: 10.1108/02686900310482713. 

Laitinen, E. K. (2007) ‘Classification accuracy and correlation: LDA in failure prediction’, 

European Journal of Operational Research, 183(1), pp. 210-225. doi: 

10.1016/j.ejor.2006.09.054. 

Larivière, B. and Van Den Poel, D. (2005) ‘Predicting customer retention and profitability by 

using random forests and regression forests techniques’, Expert Systems with Applications, 

29(2), pp. 472-484. 

Lavalle, S., Lesser, E., Shockley, R., Hopkins, M. S. and Kruschwitz, N. (2011) ‘Big Data, 

analytics and the path from insights to value’, MIT Sloan Management Review, 52(2), pp. 21-

32. 

Lee, S. and Choi, W. S. (2013) ‘A multi-industry bankruptcy prediction model using back-

propagation neural network and multivariate discriminant analysis’, Expert Systems with 

Applications, 40(8), pp. 2941-2946. doi: 10.1016/j.eswa.2012.12.009. 

Lee, T. and Chen, I. (2005) ‘A two-stage hybrid credit scoring model using artificial neural 

networks and multivariate adaptive regression splines’, Expert Systems with Applications, 

28(4), pp. 743-752. 

Lessmann, S., Baesens, B., Seow, H. and Thomas, L. C. (2015) ‘Benchmarking state-of-the-

art classification algorithms for credit scoring: An update of research’, European Journal of 

Operational Research, 247(1), pp. 124-136. 

Leuz, C. and Wysocki, P.D. (2016) ‘The Economics of Disclosure and Financial Reporting 

Regulation: Evidence and Suggestions for Future Research’, Journal of Accounting Research, 

vol. 54, no. 2, pp. 525-622 ISSN 0021-8456. DOI 10.1111/1475-679X.12115. 



186 

Levitan, A. S. and Knoblett, J. A. (1985) ‘Indicators of exceptions to the going concern 

assumption’, Auditing, 5(1), pp. 26-39. 

Lewellen, J. (2004) ‘Predicting returns with financial ratios’, Journal of Financial Economics, 

vol. 74, no. 2, pp. 209-235 ISSN 0304-405X. Doi: 10.1016/j.jfineco.2002.11.002. 

Li, H. and Sun, J. (2009) ‘Forecasting business failure in China using hybrid case-based 

reasoning’, Journal of Forecasting, pp. n/a ISSN 0277-6693. DOI 10.1002/for.1149. 

Li, H. and Sun, J. (2011) ‘Predicting business failure using support vector machines with 

straightforward wrapper: A re-sampling study’, Expert Systems with Applications, 38(10), pp. 

12747-12756. doi: 10.1016/j.eswa.2011.04.064. 

Li, M. L. and Miu, P. (2010) ‘A hybrid bankruptcy prediction model with dynamic loadings 

on accounting-ratio-based and market-based information: A binary quantile regression 

approach’, Journal of Empirical Finance, 17(4), pp. 818-833. 

Liang, D., Lu, C., Tsai, C. and Shih, G. (2016) ‘Financial ratios and corporate governance 

indicators in bankruptcy prediction: A comprehensive study’, European Journal of 

Operational Research, 252(2), pp. 561-572. doi: 10.1016/j.ejor.2016.01.012. 

Lin, J. Y. (2008) ‘The impact of the financial crisis on developing countries’, SSRN Electronic 

Journal, 1(13S), pp. 7-14. doi: 10.2139/ssrn.1523363. 

Lisic, L. L., Silveri, S., Song, Y. and Wang, K. (2015) ‘Accounting fraud, auditing, and the 

role of government sanctions in China’, Journal of Business Research, 68(6), pp. 1186-1195. 

doi: 10.1016/j.jbusres.2014.11.013. 

Mackenzie, B., Coetsee, D., Njikizana, T., Chamboko, R., Colyvas, B. and Hanekom, B. (2012) 

Wiley IFRS 2013: Interpretation and application of international financial reporting 

standards. London: John Wiley & Sons. 

Martens, D., Bruynseels, L., Baesens, B., Willekens, M. and Vanthienen, J. (2008) ‘Predicting 

going concern opinion with data mining’, Decision Support Systems, 45(4), pp. 765-777. 

Matin, R., Hansen, C., Hansen, C. and Mølgaard, P. (2019) ‘Predicting distresses using deep 

learning of text segments in annual reports’, Expert Systems with Applications, 132, pp. 199-

208. 



187 

Mbona, R.M. and Yusheng, K. (2019) ‘Financial statement analysis: Principal component 

analysis (PCA) approach case study on China telecoms industry’, AJAR (Asian Journal of 

Accounting Research) (Online), vol. 4, no. 2, pp. 233-245 ISSN 2443-4175. DOI 

10.1108/AJAR-05-2019-0037. 

Mccrum-Gardner, E. (2008) ‘Which is the correct statistical test to use?’, British Journal of 

Oral and Maxillofacial Surgery, 46(1), pp. 38-41. 

Menon, K. and Schwartz, K. B. (1987) ‘An empirical investigation of audit qualification 

decisions in the presence of going concern uncertainties’, Contemporary Accounting Research, 

3(2), pp. 302-315. 

Mesak, D. (2019) ‘Financial Ratio Analysis in Predicting Financial Conditions Distress IN 

Indonesia Stock Exchange’, Russian Journal of Agricultural and Socio-Economic Sciences, 

vol. 86, no. 2, pp. 155-165 ISSN 2226-1184. DOI 10.18551/rjoas.2019-02.18. 

Messier, W. F. Jr., and Hansen, J. V. (1988) ‘Inducing rules for expert system development: 

An example using default and bankruptcy data’, Management Science, 34(12), pp. 1403-1415. 

doi: 10.1287/mnsc.34.12.1403. 

Mutchler, J. F. (1985) ‘A multivariate analysis of the auditor’s going-concern opinion 

decision’, Journal of Accounting Research, 23(2), pp. 668-682. doi: 10.2307/2490832. 

Mutchler, J. F., Hopwood, W. and Mckeown, J. M. (1997) ‘The influence of contrary 

information and mitigating factors on audit opinion decisions on bankrupt companies’, Journal 

of Accounting Research, 35(2), pp. 295-310. 

Nam, C.W., Kim, T.S., Park, N.J. and Lee, H.K.  (2008) ‘Bankruptcy prediction using a 

discrete‐time duration model incorporating temporal and macroeconomic dependencies’ 

Journal of Forecasting, vol. 27, no. 6, pp. 493-506. 

Noreen, E.W., Brewer, P.C. and Garrison, R.H. (2011) ‘Managerial accounting for manager’, 

Includes index. 

Odom, M. D. and Sharda, R. (1990) ‘A neural network model for bankruptcy prediction’, 

IJCNN International Joint Conference on Neural Networks, 2, pp. 163-168. 

Ohlhorst, F. J. (2012) Big Data analytics: Turning Big Data into big money. London: John 

Wiley & Sons. 



188 

Ohlson, J.A. (1980) ‘Financial ratios and the probabilistic prediction of bankruptcy’, Journal 

of Accounting Research, pp. 109-131. 

Olson, D. L., Delen, D. and Meng, Y. (2012) ‘Comparative analysis of data mining methods 

for bankruptcy prediction’, Decision Support Systems, 52(2), pp. 464-473. 

Prati, R. C., Batista, G. E. A. P. A. and Monard, M. C. (2011) ‘A survey on graphical methods 

for classification predictive performance evaluation’, IEEE Transactions on Knowledge and 

Data Engineering, 23(11), pp. 1601-1618. doi: 10.1109/TKDE.2011.59. 

Priego, A. M., Lizano, M. M. and Madrid, E. M. (2014) ‘Business failure: Incidence of 

stakeholders’ behavior’, Academia Revista Latinoamericana De Administración, 27(1), pp. 75-

91. doi: 10.1108/ARLA-12-2013-0188. 

Prusak, B. (2018) ‘Review of research into enterprise bankruptcy prediction in selected central 

and eastern European countries’, International Journal of Financial Studies, 6(3), pp. 60. doi: 

10.3390/ijfs6030060. 

Rafiei, F. M., Manzari, S. M. and Bostanian, S. (2011) ‘Financial health prediction models 

using artificial neural networks, genetic algorithm and multivariate discriminant analysis: 

Iranian evidence’, Expert Systems with Applications, 38(8), pp. 10210-10217. 

Raghunandan, K. and Rama, D. V. (1995) ‘Audit reports for companies in financial distress: 

Before and after SAS No. 59’, Auditing, 14(1), pp. 50-63. 

Rashid, C. A. (2018) ‘Efficiency of financial ratios analysis for evaluating companies’ 

liquidity’, International Journal of Social Sciences & Educational Studies, 4(4), pp. 11. doi: 

10.23918/ijsses.v4i4p110. 

Richardson, F.M. and Davidson, L.F. (1984) ‘On linear discrimination with accounting ratios’, 

Journal of Business Finance & Accounting, vol. 11, no. 4, pp. 511-525. 

Richins, G., Stapleton, A., Stratopoulos, T. C. and Wong, C. (2017) ‘Big Data analytics: 

Opportunity or threat for the accounting profession?’, Journal of Information Systems, 31(3), 

pp. 63-79. 

Rita W. Y. Yip and Young, D. (2012) ‘Does mandatory IFRS adoption improve information 

comparability?’, Accounting Review, 87(5), pp. 1767-1789. doi: 10.2308/accr-50192. 



189 

Salehi, M. and Fard, F. Z. (2013) ‘Data mining approach using practical swarm optimization 

(PSO) to predicting going concern: Evidence from Iranian Companies’, Journal of Distribution 

Science, 11(3), pp. 5-11. 

Salehi, M., Shiri, M. M. and Pasikhani, M. B. (2016) ‘Predicting corporate financial distress 

using data mining techniques: An application in Tehran Stock Exchange’, International 

Journal of Law and Management, 58(2), pp. 216-230. doi: 10.1108/IJLMA-06-2015-0028. 

Samman, H.A. and Al-Jafari, M.K. (2015) ‘Trading volume and stock returns volatility: 

Evidence from industrial firms of Oman’, Asian Social Science, vol. 11, no. 24, pp. 139-146 

ISSN 1911-2017. DOI 10.5539/ass.v11n24p139. 

Samuel, A.L. (1959)  ‘Some studies in machine learning using the game of checkers’, IBM 

Journal of Research and Development, vol. 3, no. 3, pp. 210-229. 

Serrano-Cinca, C. (1997) ‘Feedforward neural networks in the classification of financial 

information’, The European Journal of Finance, vol. 3, no. 3, pp. 183-202. 

Sharma, H. and Kumar, S. (2016) ‘A survey on decision tree algorithms of classification in 

data mining’, International Journal of Science and Research (IJSR), 5(4), pp. 2094-2097. 

Shin, K. and Lee, Y. (2002) ‘A genetic algorithm application in bankruptcy prediction 

modelling’,  Expert Systems with Applications, vol. 23, no. 3, pp. 321-328. 

Shin, K., Lee, T. S. and Kim, H. (2005) ‘An application of support vector machines in 

bankruptcy prediction model’, Expert Systems with Applications, 28(1), pp. 127-135. 

Shumway, T. (2001) ‘Forecasting bankruptcy more accurately: A simple hazard model’, The 

Journal of Business, vol. 74, no. 1, pp. 101-124. 

Shumway, T. (2001) ‘Forecasting bankruptcy more accurately: A simple hazard model’, The 

Journal of Business, vol. 74, no. 1, pp. 101-124. 

Singh, D. and Singh, B. (2020) ‘Investigating the impact of data normalization on classification 

performance’, Applied Soft Computing, 97, pp. 105524. 

Smith, R.F. (1935) ‘Changes in the financial structure of unsuccessful corporations’, 

University of Illinois. 

Smiti, S. and Soui, M. (2020) ‘Bankruptcy prediction using deep learning approach based on 

borderline SMOTE’, Information Systems Frontiers, 22(5), pp. 1067-1083. 



190 

Sokolova, M. and Lapalme, G. (2009) ‘A systematic analysis of performance measures for 

classification tasks’, Information Processing & Management, 45(4), pp. 427-437. doi: 

10.1016/j.ipm.2009.03.002. 

Son, H., Hyun, C., Phan, D. and Hwang, H. J. (2019) ‘Data analytic approach for bankruptcy 

prediction’, Expert Systems with Applications, 138, pp. 112816. doi: 

10.1016/j.eswa.2019.07.033. 

Suthaharan, S. (2014) ‘Big Data classification: Problems and challenges in network intrusion 

prediction with machine learning’, ACM SIGMETRICS Performance Evaluation Review, 

41(4), pp. 70-73. 

Taffler, R.J. (1982) ‘Forecasting company failure in the UK using discriminant analysis and 

financial ratio data’, Journal of the Royal Statistical Society: Series A (General), vol. 145, no. 

3, pp. 342-358. 

Talia, D. (2013) ‘Clouds for scalable Big Data analytics’, Computer, 46(05), pp. 98-101. 

Tam, K. Y. and Kiang, M. Y. (1992) ‘Managerial applications of neural networks: The case of 

bank failure predictions’, Management Science, 38(7), pp. 926-947. 

Teng, S., Du, H., Wu, N., Zhang, W. and Su, J. (2010) ‘A cooperative network intrusion 

detection based on fuzzy SVMs’, Journal of Networks, 5(4), pp. 475-484. 

Tian, S., Yu, Y. and Guo, H. (2015) ‘Variable selection and corporate bankruptcy forecasts’, 

Journal of Banking & Finance, vol. 52, pp. 89-100. 

Traczynski, J. (2017) ‘Firm default prediction: A Bayesian model-averaging approach’, 

Journal of Financial and Quantitative Analysis, vol. 52, no. 3, pp. 1211-1245. 

Tsai, C. and Cheng, K. (2012) ‘Simple instance selection for bankruptcy prediction’, 

Knowledge-Based Systems, 27, pp. 333-342. doi: 10.1016/j.knosys.2011.09.017. 

Tsai, C., Hsu, Y. and Yen, D. C. (2014) ‘A comparative study of classifier ensembles for 

bankruptcy prediction’, Applied Soft Computing, 24, pp. 977-984. 

Tseng, F. and Hu, Y. (2010) ‘Comparing four bankruptcy prediction models: Logit, quadratic 

interval logit, neural and fuzzy neural networks’, Expert Systems with Applications, 37(3), pp. 

1846-1853. 



191 

Uthayakumar, J., Metawa, N., Shankar, K. and Lakshmanaprabu, S. K. (2020) ‘Financial crisis 

prediction model using ant colony optimization’, International Journal of Information 

Management, 50, pp. 538-556. 

Veganzones, D. and Séverin, E. (2018) ‘An investigation of bankruptcy prediction in 

imbalanced datasets’, Decision Support Systems, 112, pp. 111-124. 

Vuran, B. (2009) ‘Prediction of business failure: A comparison of discriminant and logistic 

regression analyses. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 38(1), pp. 47-63. 

Wang, G., Ma, J. and Yang, S. (2014) ‘An improved boosting based on feature selection for 

corporate bankruptcy prediction’, Expert Systems with Applications, 41(5), pp. 2353-2361. 

Watson, J. and Everett, J. (1993) ‘Defining small business failure’, International Small 

Business Journal, 11(3), pp. 35-48. 

Whitehead, J. (1980) ‘Fitting Cox's regression model to survival data using GLIM’, Journal of 

the Royal Statistical Society: Series C (Applied Statistics), vol. 29, no. 3, pp. 268-275. 

Williams, D. A. (2016) ‘Can neural networks predict business failure? Evidence from small 

high tech firms in the UK’, Journal of Developmental Entrepreneurship, 21(1), pp. 1650005. 

doi: 10.1142/S1084946716500059. 

Wilson, R. L. and Sharda, R. (1994) ‘Bankruptcy prediction using neural networks’, Decision 

Support Systems, 11(5), pp. 545-557. 

Wruck, K.H. (1990) ‘Financial distress, reorganization, and organizational efficiency’, Journal 

of Financial Economics, vol. 27, no. 2, pp. 419-444. 

Yang, Z. R., Platt, M. B. and Platt, H. D. (1999) ‘Probabilistic neural networks in bankruptcy 

prediction’, Journal of Business Research, 44(2), pp. 67-74. 

Yeh, C., Chi, D. and Lin, Y. (2014) ‘Going-concern prediction using hybrid random forests 

and rough set approach’, Information Sciences, 254, pp. 98-110. 

Yoon, J. S. and Kwon, Y. S. (2010) ‘A practical approach to bankruptcy prediction for small 

businesses: Substituting the unavailable financial data for credit card sales information’, Expert 

Systems with Applications, 37(5), pp. 3624-3629. doi: 10.1016/j.eswa.2009.10.029. 



192 

Youn, H. and Gu, Z. (2010) ‘Predicting Korean lodging firm failures: An artificial neural 

network model along with a logistic regression model’, International Journal of Hospitality 

Management, 29(1), pp. 120-127. doi: 10.1016/j.ijhm.2009.06.007. 

Zavgren, C. V. (1985) ‘Assessing the vulnerability to failure of American industrial firms: A 

logistic analysis’, Journal of Business Finance & Accounting, 12(1), pp. 19-45. 

Zhang, Y.D. and L.N. WU. (2011) ‘Bankruptcy prediction by genetic ant colony algorithm 

Anonymous Advanced Materials Research’. 

Zhou, L. (2013) ‘Performance of corporate bankruptcy prediction models on imbalanced 

dataset: The effect of sampling methods’, Knowledge-Based Systems, 41, pp. 16-25. 

Zhou, L., Lai, K. K. and Yen, J. (2014) ‘Bankruptcy prediction using SVM models with a new 

approach to combine features selection and parameter optimisation’, International Journal of 

Systems Science, 45(3), pp. 241-253. doi: 10.1080/00207721.2012.720293. 

Zięba, M., Tomczak, S. K. and Tomczak, J. M. (2016) ‘Ensemble boosted trees with synthetic 

features generation in application to bankruptcy prediction’, Expert Systems with Applications, 

58, pp. 93-101. 

Zikopoulos, P. and Eaton, C. (2011) Understanding Big Data: Analytics for enterprise class 

hadoop and streaming data. New York: McGraw-Hill Osborne Media. 

 


