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Locally Minimum-Variance Filtering of 2-D
Systems over Sensor Networks with Measurement
Degradations: A Distributed Recursive Algorithm

Fan Wang, Zidong Wang, Jinling Liang and Jun Yang

Abstract—This paper tackles the recursive filtering problem neighbors through wireless communication channels. Benefit-
for an array of two-dimensional systems over sensor networks ing from such a distinguishing feature, sensors are empowered

with a given topology. Both the measurement degradations y, cq|lahorate with other nodes in a neighbor-wise manner to
of the network outputs and the stochastic perturbations of lish t licated task
network couplings are modeled to reflect engineering practice accomplis _a (_:ommor! yet complicate as_ :
via introducing some random variables with given statistics. ~ One crucial issue with sensor networks is the development

The goal of the addressed problem is to devise the distributed of the distributedfiltering problem, for which the core idea
recursive filters capable of cooperatively estimating the true state s to reconstruct the system state on the basis of available
in order to ensure locally minimal upper bound (UB) on the a5qrements observed from the local and neighboring sen-

second-order moment of the filtering error (also viewed as the . . S ;
general error variance). For this purpose, the general error sors [3], [12], [49]. Comparing with the filtering scheme in a

variance regarding the underlying target plant is first provided —centralized setup, the distributed filtering algorithm possess-
to facilitate the subsequent filter design, and then a certain UB es the merits of consuming less energy and incurring less

on the error variance is constructed by exploiting the stochastic computation cost (at the expense of sacrificing the estimation
analysis and induction approach. Furthermore, in view of the performance within an acceptable range), and is particularly

inherent sparsity of the sensor network, the gain parameters of ttractive | trained . t id d
the desired distributed filters are determined and the proposed altractive In a resource-constrained environment as evidence

recursive filtering algorithm is shown to be scalable. Finally, an DY its widespread applications in engineering practice. Up
illustrative example is given to demonstrate the validity of the to now, the distributed filtering issue has become a popular

established filtering strategy. research topic drawing considerable interest from various
Index Terms—Two-dimensional systems, recursive distributed COmmunities, and a wealth of literature has been published
filtering, sensor networks, measurement degradations, random [15], [18], [21], [31], [33], [50]. For example, the consensus-
couplings. based distributed filtering problem has been studied in [33]
where the asymptotic stability of the error dynamics and the
optimization of the quadratic filtering cost have been analyzed.

) ~ The existing distributed filtering methods can be mainly

Sensor networks have drawn persistent research atteniipissified into two categories. Methodologically, the first cat-
owing fo their great application potentials in various areas sugfory shares the commonalty of suppressing the effect of
as intelligent transportation, military facility and environmengxternal disturbances, optimizing the worst-case estimation
monitoring [4], [7], [22], [34]. Broadly speaking, a representaperformance, and then finding the filter gains by means of the
tive sensor network consists Qf massive smart, inexpensive 3B8sibility of some linear matrix inequalities [37], [42], [47].
low-power sensor nodes which are geographically deployggr instance, the distributed filtering scheme has been investi-
over a certain region [2], [9]. Equipped with a local filtergated in [37] for sector-bounded nonlinear systems with ran-
eat_:h sensor node is competent to sgnse/compute in the prog@ssiy varying sampling periods, where sufficient conditions
of information collection. Unlike a single sensor that merelijaye been provided to guarantee tHe, performance. The
observes its own measurements, a sensor within the senggin idea of the second category is to determine the distributed
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So far, most available results concerning distributed filtehave major impacts on the filtering performance. The third
ing problems have been exclusively on the traditional onehallenge is, therefore, to propose effective approaches to cope
dimensional models whose states broadcast alorgingle with the considered network-induced phenomena and further
direction only [6], [10], [23], [26], [27], [30], [38], [40], parameterize suitable filter gains that optimize the UB in the
[51]. Nonetheless, it is observed from the practical situatiobsce sense.
that evolutions of many system states follow two (or even In this paper, we focus our attention on the 2-D recursive
more) directions with typical examples including, but are ndiitering scheme over sensor networks. In particular, both the
limited to, multi-variable networks, chemical processes, amdeasurement degradations of the network outputs and the
image processing. As such, the so-called two-dimensional 2andom communication links of sensor networks are taken
D) systems exhibit the fascinating property of two-directionahto account in order to reflect the engineering phenomena
transmissions and have thus been introduced to model thoaesed by changeable networked environments. With aid of the
real-world systems with dynamics evolving along two horizoriaductive approach, the desired recursive filters are determined
[16], [17], [19]. For decades, the estimation issues for 20 ensure the guaranteed estimation performaritike main
D systems have been gaining an ongoing research interesntributions are emphasized as follows: 1) a distributed
see e.g. [1], [25], [43], [45] for some representative resultecursive filtering strategy is, for the first time, investigated
Unfortunately, a thorough literature review has disclosed thiatr 2-D systems over sensor networks with degraded mea-
slight research effort has been devoted to the recursive filterisigrements and random couplings; 2) a delicate distributed
problem for 2-D systems over sensor networks where the erfitter is proposed which collects not only the innovation from
variance serves as a crucial criterion. The reason for suclha local sensor but also the complemental information from
problem to remain open yet challenging is mainly the essentthke neighboring nodes; 3) an elaborated design of the 2-D
difficulties resulting from the complicated system dynamiddter gains is provided by making full use of the topology
and the sparsity of the network topology. Therefore, in thiaformation and the stochastic matrix analysis; and 4) a
paper, we are motivated to launch a systematic investigatisatisfactory state estimation is achieved by developing the
on the design issue of 2-D distributed filters in a recursivecally minimal UB on the general error variance.
structure. The remainder of this paper is outlined as follows. Section Il

Despite the low cost and high flexibility of the networkpresents the target plant and the 2-D recursive filtering problem
communication, sensor networks may undergo coupling pés- be investigated. Section 1l shows some preliminaries,
turbations on account of potentially harsh and uncertapmovides the algorithm for finding the locally minimal UB,
wireless environments [41], [48]. The occurrence of randoand gives the filter design scheme. Section IV consists of
couplings is fairly pervasive, which brings about complexsimulation studies to confirm the efficiency of the developed
ties in stochastic analysis of the system dynamics. To dafiétering algorithm. Conclusion is drawn in Section V.
some initial research attention has been paid to the filteringNotations:R™ signifies then-dimensional Euclidean space,
problem concerning sensor networks with random couplingsd 1,, is the n-dimensional vector with all entries being
[13], [42]. Another frequently encountered phenomenon ih For a matrix X, ||X| represents the norm oK with
networked environments is degraded measurements whjck| = /tr{XZX}. For a real and symmetric matriX,
cover the packets dropout as a special case. In consideraion- 0 means that” is real, symmetric and positive definite,
of sensors aging/failure as well as transmission congestiovhilst Y > 0 infers thatY is positive semi-definite. The
measurements may suffer from inevitable degradation trstmbolcol’_; {A} stands for the matrixA? A7 ... AT]T.
might lead to serious performance deterioration if not properly and 0 are respectively the identity and zero matrices of
handled [24], [28], [32], [44]. So far, in presence of randormompatible dimensions. For integeks, ko with &y < ko,
couplings and measurement degradations, the 2-D filterifig k2] denotes the setky, k1+1,...ka}. tr{-} is the trace of
issue has not drawn much attention yet especially in the casetain square matrix antlag{- - - } means the block-diagonal
where the error variance is also of concern. matrix. ‘o’ denotes the Hadamard product ang’‘is the

To summarize the discussions made so far, it is of th&ronecker productE{g} and Var{g3} are respectively the
oretical importance and practical interest to investigate tineathematical expectation and the variance of random variable
recursive filtering problem for 2-D systems with informatiors.
degradations and network coupling perturbations. To address
such an open problem, there appear to be some substantial ||, PROBLEM FORMULATION AND PRELIMINARIES
challenges _that should be overcome. Th_e first challenge We The plant description
are facing is the development of effective techniques that : , . i
can be used to analyze the general error variance in the '2_ConS|der Fhe follgwmg Z_'D syst(_em over a finite_horizon
D framework. Notice that it is literally impossible to acquire’” ¥ € [0 ?] with b being a given positive integer:
the analytical expression of the general error variance based ony(j, k) =f,((j, k — 1), z(j, k — 1)) + w(j, k — 1)
the minimum-variance filtering scheme, especially for systems . . )
with coupling perturbations.g The seconoFI) challyenge yis the +fo((G = 1 k),2( = L R)) (G = 1k) (1)
determination of the tightest UB on the error variance bwherex(j, k) € R™ is the state vectorny(j, k) € R™ is the
resorting to the Kalman-type strategy. It should be pointed opitocess white noise obeying the Gaussian distribution with
that both the degraded measurement and the network topolagyo mean and varianc@(j,k) > 0. For h = 1,2, the
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nonlinear functionsfs((j, k), (j, k)) satisfy f((j, k),0) = 0 + fo(( = 1,k),2s(5 — 1,k)) (4a)
and 254, k) =5 (4, k) + G (5, k) (ys (3, k) — 7 (G, k) Cs (4, k)

I fr((G, k), 1) — ful(4, k), 22) — An(d, k) (21 — z2) || X &5 (3, k) + Y ha(G. k) Ka (5. k)

< ap(j, k)||x1 — 22|, Vai,a € R" (2) teN,

where Ay (j, k) are known shift-varying matrices and (j, k) X (G F) =70 K)Cs G K (. K) (4b)
are given nonnegative scalars. The initial stat¢g 0) and wherei (j,k) € R™ is the prediction of state:(j, k) and
x(0, k) for system (1) are modeled by two white-noise se;(j, k) € R™ is the relevant estimaté&;(j, k) and K (j, k)

quences possessiig{z(j,0)} = n1(j) and E{x(0,k)} = are the filter gains to be designed. The coupling coefficient
na2(k), wheren, (j) andny(k) are known vectors withy, (0) =  h(j, k), which is probably confined to some small variations,
172(0). is denoted ash.(j,k) 2 hs + Ahg(j, k). Here, hy is

Remark 1:In view of the practical need, 2-D systems havéhe nominal parameter of the adjacency matrix whereas
been a powerful tool to model many physical systems withh,,(j, k) represents certain random perturbation acting on
two-directional information propagation. In the real worldh,:. Specifically,Ah.:(j, k) satisfiesSE{Ahs(j,k)} = 0 and
nonlinearities occur frequently in some practical situationE{Ah (5, k)AhL (4, k)} < ms(j, k), where 7y (j, k) is a
especially in the man-made systems and maneuvering targedwn positive scalar wheh,; > 0, elsewiseAhg(j,k) =0
modeling. Moreover, due to the system heterogeneity, systarhen h,, = 0. The initial states related to (4) are set as
parameters may be shift-varying, and the transient behavidtgj,0) = 25(0,k) = 0 for j,k € [0 b].
of the underlying system are of significance. In this regard, Remark 2:For the considered sensor network, each sensor
the 2-D system with shift-varying parameters and nonline&r equipped with a local filter and therefore has the capacities

functions is considered here. of sensing, computing and interacting with the neighboring
nodes. Unlike the case for a single sensor where only its own
B. The measurement over sensor network measurement is utilized to estimate the internal state, in the

sensor network scenario, the updated information of the pro-

Consider a sensor network consisting lofnodes to track , , . :
. . : osed filter comes from both itself and the neighboring nodes
the system states in a cooperative paradigm. The topology.of_ . . f S
. . in a distributed manner. Actually, the updated information in
the sensor network is represented by a directed gaph

(V.€, A), whereV = {1,2,--- . L} is the index set of nodes (4) is composed of two parts from different sources, one is

E CVxVisthe edge set, and = (hyt) 1«1, is the weighted the conventional innovatio (5, k) —7(J; k)Cs (4, k)i (j, k)

. s . .from the sensor itself, and the other is the coupling data
adjacency matrix with nonnegative elements. To be specif

for any s,t € V, the casehs; > 0 holds if and only if node ﬁ?@‘s B“Q”‘“)(yt(j”“) — 75, K)Ca (5, k)2 (5, K)) f_rom_the
s receivejs information from node(that is to say(s, t) € &) neighbors’ measurements. Such a structure, which is shown

otherwisehs; = 0. Besides, self-loops are not allowed hereIn Fig. 1, is adopted in this paper for achieving the state

and the neighbors of nodeis denoted by the set, £ {t € éstimation with an adequate accuracy.
V|(s,t) € £} for brevity.

The measurement model of sensor neds given by Physical System
0o ) =1 G C G, k) + 0, Gik), sev @ [UR TN
: Sensor L }

wherey;(j, k) € R™ is the measured output of theth sensor, A . ,,,
C,(j, k) is a known shift-varying matrixp,(j, k) € R™ is ! .
the measurement noise modeled by the zero-mean Gaussjan lyl (.5)

white sequence with variande;(j, k) > 0, andv;(j,k) e R | v, (j.k) - 1.(,k)
is a random variable taking value on the inter{@l1] that ‘
governs the measurement degradation with known statisties-----f------- | ~ Loeeoo
E{7:(j,k)} = 7(j.k) and Var{~.(j.k)} = 4.(j.k), in ! Ty GR |
which 74(j, k) and4s(j, k) are known scalars.

oo Wireless Channels with oo
C. The distributed filter Random Perturbations \

To pursue a common task, nodes over sensor network share
information with their neighbors through the communication
channels. In this case, each sensor not only measures its SWnt
local signal but also shares the data with its adjacent sensor ] .
thereby cooperatively tracking or monitoring the target stat ﬁ?iemark 3:The random variablé\/.
of interest in a distributed manner.

The following distributed filter concerning node(s € V)
is adopted for system (1):

Schematic diagram of the considered system over seesaork.

st(J, k) is introduced in

?zf) to model the possible perturbations with known statistics.
The rational for such an introduction is the practical need for
reflecting the fact that the communication links might be ran-
domly changeable due mainly to the unideal communication
;G k) =f1((4, k= 1),25(j, k — 1)) interferences. Also, there appear to be unavoidable fluctuations
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on the deterministic couplings, and hence the combined couHereafter, let us defin®,(j, k) = E{e,(j, k)el'(4,k)} and
pling coefficients (both stochastic and deterministic ones) aRe (j, k) = E{e; (4, k)(e; (4, %))} which are, respectively,
used in (4) to characterize the random coupling strengths. termed as the general estimation and prediction error variances
The following assumptions are made for the convenience@dncerning thes-th filter, and further let the second-order
later discussion. moment of the system state B&(j, k) = E{z(j, k)z* (j,k)}.
Assumption 1:For j,,k, € [0 b] with 3 € {1,2,3,4}
ands,t € V), the initial statesc(ji,0), z(0,k1), the noises A Auxiliary lemmas
w(Ja, ko), vs(Js, k3) and the random parametet(jq, k4) are
mutually uncorrelated with each other. of the general error variances
Assumption 2:For j, k € [0 b] and s, t € V, the stochastic L 9 ) O .
! o . ! : emma 1:For the prediction error dynamics (5a), the evo-
perturbationAh (4, k) is a white-noise sequence with respeclhtion of P—(j, k) is given b
to all indicesj, k,s,t in the case ofh,; > 0. Moreover, s \J> 9 y
Ahg (g, k) is uncorrelated with all the other random variables P (j,k) =®; s(j, k — 1) + ®2.5(j — 1, k)

The following fundamental lemmas determine the dynamics

involved in systems (1) and (3). U (Gk=-1).—1.k)+0Q0. k—1
For notational simplicity, let us define (5, k) £ z(j, k) — \D;((Jf i 1)’(], 1’ k)) Q(]f 1 k) 7
#7(j,k) as the prediction error and,(j,k) = z(j,k) — +P (O k=D, 0-1LR)+QG-1LE) (7)

#4(j,k) as the estimation error. Then, the following errofhere, forh = 1,2,

dynamics can be attained from (1) and (3)-(4): ) I ) o ]
o o _ _ O 5 (G, k) = B{fn((G, k), es (G, k) fr (G, ), es (4, k) }
ey (4, k) =fi((d, k — 1), es(4, k — 1)) +w(g, k — 1) (G, k—1),0G —1,k)

+ .]FQ((] - 17k>’65(j - 1’k)) +w(] a 1’k) (53) = E{fl((jvk_1)>es(j>k_1))fg((j_1>k)ves(j_lvk))}'

S '7'14: :s_ '7'14: _GS '7k Ys '7k __S .;kCS '7k . .
es(J k) =e (?_ ) Y )(_y (J_ )= (_] GG k) Proof: For all j,k € [0 b], notice the uncorrelatedness
x &5 (G,k) = D ha (G k) K (j, k) between random variables(j, k) and f((20, 50), €s(10, J0))
teN, with 7= 1,2, s € V and (20, 0) € {(¢, )} € [0 j—1],5 €
X (ye (4, k) — 354, k)Cs (4, k)25 (3, k) (Bb) [0b]}U{(2,7)|2 € [0b],7 € [0 k—1]}U{(j,k)}. Itis concluded
s from (5a) that the statement of this lemma is correct. ®
where forh:172v fﬁ((jvk)aes(ja k)) éfﬁ((jvk)axs(ja k))_ ( )

1) 2 (i b)), By further d inal 21 @ and Lemma 2:For the estimation error dynamics (6), the evo-
(G k), 24(5, k). By further denoting/ =1, ® I an lution of Ps(j, k) obeys the following inequality constraint:

Kolih) 2 (Ka( k) Kialb) - Kas )] PG k) <1 =5,:K) (Goli. k) + K. (. RV HLT) € k)]
H(j, k) = diag{hs1(j, k), hea (4, k), -+, hor (G, k) } @ T x P;(j, k) [I = (Gs(j, k) + Ko (j, k) HLT)
F(.]v k) = diag{vl(ja k)v'yQ(jv k)a T a’yL(jv k)} QI X ’?S(j7 k)cs('% k)]T _ Hs(j7 k) _ 1‘1?(']7 k)

C’(]v k) é COISLZI{OS(j? k)}v U(j, k) é COISLZI{US(j? k)}
we rewrite the error dynamics (5b) as

es( k) =[1 =353, k) (GG k) + Ko (G, k) Hs (3, F)T)
x C(j, k) = 355, k) ICs(4, k) 2 (G, k) + v (5, k)] T IR B B W BT
- GS(J? k) (:YS(Jv k)cs(.]v k)x(]v k) + 'Us(j, k)) where
©) b, = diaglha b b} @1

Wltlh &ﬁ(]vk)é’yke(]vk) _’_YS(]:k)d in desiani he distrib e‘g[s(jvk):dia'g{ﬂ—sl(jak)aﬂ-sQ(jak)a'" aWsL(jvk)}®I
n this paper, we are interested in designing the distributed . ,\ _ .. ... o L

recursive filter (4) with desirable gains, for the 2-D system_(]’.k) . dlag{.%(]’k)’ﬁ(j’k)’ ArG kel
(1) under consideration, to provide an UB on the genera@s(%k) = @sA(Jvk) + R(j, k)

estimation error for each sensor node (namely, a bound on +1'(j, k) o (C(j, k)X (j, k)C" (. k)

E{es(j, k)el (4, k)} with s € V), and further obtain the locally 0,(j, k) = (T, k)C (G, k) — 35 (G, k) IC, (G, k) X (4, k)
minimized UB in the trace sense. o T
X (F(.]v k)C(j, k) - 75(]7 k)ICs (.]7 k))
1. M AIN RESULTS R(j, k) £ diag{R:(j, k), R2(4, k), - , RL(j, k) } @ 1

This section provides certain UB on the error variance ak(j, k) £ diag{¥1(j, k), %2 (j, k), -+ , 7. (j, k)} ® I
each iteration by solving two sets of recursive difference equat i 1y — mL 7~ (i k ) 4 K (i VL (i
tions. Moreover, the desirable distributed filter is acquired for s(, k) = {[ 7(3:K) (Ga (4, k) + K (G E (. R))
each senor, which ensures the locally tightest UB in the trace x Cs(j, k)] ey (4, k)z" (5, k) (T (4, k)C (4, k)
sense. Prior to giving the main results, some preliminaries are RN T =7, . T, .
o e %Gy W)IC G, k) " HE (o) KT (G, k) }.

+ KGR 2GR . k) 0 (0.0, k)
X PC(3,k)CS (G )TT) + Ha(G, k) 0 ©:(j k)
+ .0, k) HT | KL (k) + Gl k) (R (. )
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Proof: The statistics ofAh,. (4, k) indicate that B. Upper bounds (UBs)
E {Ahst(j, )Ahz; (4, k } < 7st(4, k) It is observed from (7)-(8) that the involvement of the cross
E {Ah, (G, K)ARTL, (5, k)Y =0, 1 # ta. terms, the nonlinearities and the second-order moment of the

state in the general error variances adds much difficulty to the
Moreover, based on the expression ®f(j, k), one has filter design, which are to be handled in the following.
E{3s(j, k)} = 0 and E{7s, (4, k)7s, (4. k)} = As, (4, k) for First, the cross terri, (4, k) will be addressed by using the
s1 = s2, while E{7s, (4, k)7s, (j, k) } = 0 otherwise. elementary inequality. For an arbitrary positive scalait is
For a given deterministic matri< > 0, it follows from the derived from the expression 6f,(j, k) in Lemma 2 that
property of Hadamard product that

0 ‘ LG k) - 107 (G, )
E{H.(j,k)ZH] (j.k)} :—E{ (1= 34(j. k (Gé Ko(j, k) Ho(, k)T) Cs (5, )]
_E{dlag{Ahsl(]v )Iv Ah§2(]a k)Ia aAth(]vk)I}OZ} X 66 7, ( 78(]7 )fc’s(.]7 k))T

< dlag{ﬂ51(.]7 )Iv 7TS2(ja k)Iv to aﬂ-SL(jvk)I} °Z

. x H{ (j, k’)KT(Jvk)'*‘Ks(Jka)H (j. k)
=H(j,k)oZ

x (T(j: k)C G k) = 7s(4, k) ICs (4, k) (G, k) (e5 (5, k)T
and X [1= 5.0, K) (G b) + K (G, k) LG, R)T) Cua(, )]
E{T(j,k)ZT7 (j,k)} =T(j, k) o Z Su{[l—’"ys(j7k)(G( k) + K. (j, k HDC 7. k)]
where X P (4, k)[I —7s(5, k) (Gs (4, k) + Ks(j, k)HT)
H,(j, k)2 diag{Ahs (j, k), Ahga (4, k), -+, Ahsp(j, k)Y T x Co(5,0)]" + 72, k) Ko (5, k) [ (5, ) (ICs(4, k)
L@, k) 2 diag{%1(j, k),32(j, k), 3., k)} & I X Py (3, k)C2 (G, k)T | K (G, b }+u YK (), k)
with E{T'(j,k)} = 0 and E{T'(j, k)[T(j,k)} = D(j, k). X (Hs(j,k) 0 ©:(j, k) + HiOu(j, k) H, ) KJ (5, k).

Consequently, it is not difficult to verify the validity of the
following relationships

{526 BB G DIO 15 () PG 1) <1+ 0] [T = 3.G.8) (GaGi k) + KGR L)
% (K )L G RIC, G ke (k)T ) « Culi ﬂpm k) [1_ (€GB + K B)
SV?(JE’“)Ks(_j,k)[f{( k) o (ICs(j, k) Py (4, k) x HI)%s(j, k) ] + 7325, k) K(5, k)
X G G MK o), < (A0, k) 0 ( ( R (.R)CT (5. R)T7)]
)

Consequently, the obtained evolution Bf(j, k) (as shown
in (8)) obeys:

E{ (G, KOG, R) = 32, W)ICL (5, R)a (. k) + v, k)] < KT} + KGR (LG 0 0,6,
< [(T(, k)C(5, k) = 7 (5, k) ICs(5,k)) (7, )+v(J,k)]T} + Hy0,(j, k) HT) KT (j, k) + G4 (j, k) (Rs (. k)
=E{ (D, k)C(j, k) — 7s(j, k) ICL(j, k) X (j, k) + 9503 k) Cs (4, k) X (4, K)CY (4, k) G (5, k) (9)
% (DG K)C G R) = 36, TC, (k) T+ RGR) with
= (L. k)C (5, k) — 75 (4, k) ICs (5, k) X (5, ) 0.(j. k) = (1 + u~1)O,(j. k) + R(j, k)
x (P4, k)C (G, k) = 7s(5, k)ICs (5, k) + R(5, k) +T(, k) o (CU, k)X (G, K)CT(j, k). (10)

+E{T(, K)CG, k)X (4, k)CT (G, k)T (j, k) } . N .
Tk Next, to deal with the nonlinearities, one obtains from (2)
= 0.(j, k) +R(j k)+T (. k) o (C(. K)X (5. K)CT (5, k) and the elementary inequality that

= 0,(J, k). B -

On account of Assumptions 1-2, the definition/f(j, k) and BLn(G k), s G k) (3, K €03, R)) )
equation (6) result in the validity of (8), where part of the= E{ (fﬁ((J, k),es(j, k) — (An(d, k) — Ah(j,k))es(j,k))
detailed technical analysis is omitted for conciseness. ® T

This subsection derives the standard recursions of the generx (fﬁ((J, k),es(d. k) — (An(5, k) — A4, k))es (7, /f)) }
al error variances. Nevertheless, in the considered framework — ) ) )
of (7)-(8), wherein not only the nonlinearities but also the= (1 +6)]E{ ( n((J: k), es(j, k) = Aﬁ(]’k)es(]’k))
random couplings affect the 2-D evolutions, calculation of the s . . . T
exact error variances is inaccessible, which complicates the ™ (fh((]’k)’es(]’k)) B Ah(]’k)es(j’k)) }
design of theoptimal filter gains. In view of this, alternative  + (1 + e 1) A, (4, k)P, (5, k) AT (5, k)
;suboptlmal filtering strat_egles should b_e expl_0|ted, and_ a (1+ e Y An(, k)P, (G, k)AL (G, k)
requently used strategy is to devise the filter gains that achieve 5, . ) P
the locally tightest bounds on the error variances. + (1 + €)ap (4, k) er{Ps (4, k) } = P (5, k) (11)
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for h = 1,2 and a given scalae > 0. Analogously, it is means trivial to design proper gain matrices for each local filter

evident to see that

E{fa((j, k), (4, k) f ((G. k), 2(j, k) }
< (1 + €)ap(j, k)te{ X (j, k) }1

with consideration of the topology information of the sensor
networks. In this case, we would like to apply the stochastic
analysis techniques to acquire certain UBs on the general error
variances. The following result is readily accessible on the

(12) existence of UBs. B
Theorem 1:Let p, € be given positive scalars anx(j, k)

be the solution to (14). Fof, k € [0 b] and s € V, consider

system (1) with filter (4). The general error variances are

bounded by

Pr( k) < Qs(j, k), Ps(j, k) < My(j, k) (15)

Based on (11), matri; (j, k) in (7) satisfies
Pr(j k) <1+ p)Prs(iok — 1) + (L+ p~Y) Py (j — 1, k)

Furthermore, a bound function of matriX(j, k) is derived
by using (12) in the following lemma.

Lemma 3:Let 1. ande be given positive scalars. For systenstatesi(j,0) = Ps(j,0) and M(0,k) =
(1), matrix X (4, k) is bounded by the solution of the followingsolutions of the following recursions

recursion: Qs (G, k) =(1+ p) My 5(, k — 1) + (1 + )Mo s(5 — 1, k)
X(Gk) =L+ mXi(k = 1)+ (L+p7 )Xo (j — LK) +QU. k= 1)+ Q( — 1K), (16)
+QUE-1)+Q(—1,k) (4 a5, k) =(1+u){[1—75(j, k) (Gs(j, k) + Ko (j, k) H,I)

where the matrix sequences (j, k) and M, (j, k) with initial
P;(0,k) are the

whose initial states are set as X Cy (4, k)] Qs Gy k) [T — %(%k)(g (. k)
X(jao):X(j’O)v X(O’k):X(ka) + Ks(j, k) Hs ) s(Js )] +75(]ak)Ks(jak)
with x [Hy(j k) o (1Cs(G, k) (5, k)CT (G, k)TT)]
Xn(j k) 2(1 + e)ai (g, k)tr { X (G, k) } x K (7, )} K (G, k) (Hy(j, k) 0 s (G, k)
+ (1 4+ DHARG, KX (G, k)AL (5, k), h=1,2. + H, Y, (4, )HT)KT( k) + Gs(j, k) (Rs (4, k)
Proof: Recalling the system dynamics (1) and the statis- +3s(3: k)Cs (4, k)X (7, k) CJ (5, k) G (5, k)
tical property ofw(j, k), one has (17)
X k) SO0+ Xa(k— 1)+ (14 p )Xo -1k Ve
+ Q(], k— 1) + Q(] -1, k) Mﬁ,s(jv k) = (1 + E)a’%(ja k)tr{Ms(ja k)}l
where (12) has been used to dispose the considered nonlinear +( t € )AnG k)Ms(j’ READ
functions. DenoteX (j, k) £ X (j, k) — X (j, k) for simplicity. ~ Ys(J:k) = (1 +p7)Ts (5, k) + R(j, k)
Then, the dynamics oK (j, k) satisfies +T(j,k) o (CG, k)X (j,k)CT (4. k)
X0, k) < (14 p)[(1+ €)a2(j, k — V)r{ X (j, k — 1)} Ys(5, k) = (D5, k)C U, k) — 755, k)T Cs (3, ))X( k)
)T

1+ e YA E - 1D)XG k- DALk —1)] x (L, k)C (s k) — 75 (4, k) ICs (j
(14 H[A+ead(j — Lkt {X(—1,k)}] Proof: Subtracting (16) from (13) results in
(14 e A (i — L,k)X( — 1, k)AL (j — 1,k)]. PG k) — Q0. k)

According to the above inequality and the property of trace for < (1 + p) (Phs(j, k—1)— M s(j, k — 1))

positive semi-definite matrix, for certain given integgré < F A+ Y (PoslG—1,k) = Mool —1,k)). 18
[1b], one easily confirms that (5, k) < X (j, k) is true under (At w ) (Posy ) = Moy ). as8)
the conditionsX (j,k — 1) < X(j,k—1) and X (j — 1,k) < On the other hand, it is known from Lemma 3 th(j, k)

X(j — 1,k). Bearing this fact in mind, it is not difficult to is bounded byX (j, k). Then, according to the expressions of
check that O, (4, k) in (10) andY's(j, k), one has

X(j, k) < X(j, k) O,(j, k) — Ts(j, k)

< (T, k)C(j. k) — 3 (4, k)ICs (3. k) (X (4, k) — X (5,k))
x (1+ p~ ) (LG, k)C U, k) — 3Gy ) IC,(, k)T

+T(j, k) o (C(J, k)X (5. k) — X(5,K))CT (j. k) <0.

holds for all j,k € [0 b] by employing the initial states of —

(14) and the induction. Thereforé (4, k) expressed by the

recursion (14) is indeed a bound function &fj, k). [ |
Now, let us consider the state estimation issue of the 2-D

system (1) over sensor network (3). It is worth mentioning !t follows from (9) and (17) that

that the addressed distributed recursive filtering problem ]S( k) — M,(j, k)

much more complicated than the one-dimensional standard _

one or the conventional one with a sole sensor, it is by n& (1 +H){[I—:Ys(i, k) (Gs(4, k) + K (j, k) HoI) Cs (5, k)]
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X (P (7, k) = G, k) [T = (Golio k) + K G HLT) €47, k) 2(355) HICL (G, )9, k)T (G )

X ¥s (4, k)C GoB)] "+ 320 k)KL (G, k) [Bs G k) o (T x B, k) Cs (3, k) (5, k)CT (5. k) TTHY

x Cs(j, k) ( ~(, k) — Qs(j,k)) o, k)jT)}Kg“(j’ k)} The following theorem provides an algorithm to explicitly

A ) design the distributed filter gains.

+ K (J: )[ ( k) o (©s(5, k) — Ts(4,k)) Theorem 2:For j,k € [1 b] ands,t € V, the filter gains
Hy(Os(j, k) — Ys(4, k) HI KT (j, k) + 45 (4, k) that minimize the UBM, (3, k) in the trace sense are given by
(J,k)Cs( )( (7, k) = X (4, k) CJ (4, k)G (4, ). Go(j, k) = As(j, k)B; (. k) (20)

(19)

To validate the conclusion of this theorem, we assume that ~ Kst(j, k) = {

(15) holds for(j,k) € {(¢,7)]1,7 € [L b]; + 4+ 7 = £} with

¢ € [2 2b—1]. Then, the validity of (15) can be checkedwvhereC,(j, k) is thesimplifiedmatrix of C,(j, k) by removing

for (j,k) € {(1,9)]1,7 € [1 b]; 4+ 5 = £+ 1} based on the its zero columns, an®, (7, k) is thesimplifiedone of D (7, k)

induction. Actually, the introduced hypothesis brings about by removing both its zero columns and zero rows. Here, the
A - . symbol Z# denotes the corresponding sub-matrix extracted
Ph,s(5, k) = Mps(3, k) < 0 from a given matrixZ. In this case, the optimal UB is

for (4,k) € {(1,2)|,7€ [1b]; v+y=(}withl e [2 2p—1]. expressed by

This fact, in combination with (18), results in MG k) =(1 + 1) (Qs(j, k) — .0, £)CT (G, k)BI (), k)

(és(ja k)@;l(]’k))ﬂ, hst > 0

21
0, het =0 (21)

P (k) = (. k) <0 X 2 C G, k), R)) = Ko, R)CT (, K).
for (j,k) € {(2,9)[2,7 € [L b]; 24 5 = £+ 1}, which further (22)
yields Proof: Recalling the derived bound in (17) and then
Py(j, k) — Ms(j,k) <0 taking the partial derivatives ofr{M(j, k)} with regard to

Gs(j, k) and K4(j,k), we arrive at

otr{M(j,k)}

: L : 9Gs(j, k)

C. Design of the distributed filter _ _ 901+ ) [I 5 (Gs oK)+ Ko, k)HsD
Note that the UBs of the error variances are presented in T ,

Theorem 1 in a recursive form. Once the initial statégj, 0) x (3, k)] Q2 ( )_Cs U, )+ 2G5 (j, k) (Rs (j. k)

and M, (0, k) are given, the analytical solutions to (16)-(17) -+ %s(j, k)Cs(j, k) X (j, k)CT (4. k)) (23)

can be iteratively calculated with aid of the filter gains, wh|c

can be appropriately designed so as to optimize the derivi dd

bound at each iteration. As for the distributed filter (4), its ke {M,(j, k)}

characteristic lies in that the combined coupling data (coIIected8 s(4, k)

from the neighboring nodes) are used to update the estimate—2(1 + 1)7s(j, k) [1 — 75 (4, k) (Gs(j, k) + K4 (j, k) HI)

value wh_lch in turn, makes the des_,lgn of the dlstnbutgq filter x ¢, (7, k)} ( ) o, )[THT + 2K, (]7/{){(1 + 1)

challenging because of the sparsity of the connectivity for o =2 T

the sensor network. Keeping the above discussions in mind, x 75 (5, k) ( )OS G RT )

the filtering problem needs to be effectively solved through +HsTs(J,k)HT +Hs(17/€) o Ts( k)}- (24)

applying some intriguing techniques. To obtain the filter paramete®,(j, k), we set (23) to be
For convenience of the subsequent developments, we inti@z 24 then have

duce the following notations:

with the help of (19). The proof is now complete. [ |

(s) a 1 _92/ . k Gs(j7 k) [ﬁ/g(]a k)(l +/L)Cs(j, k)Qs(]a k)Cg(]a k)
i S )G ) o 440, K)Cs (KX G R)CT (G ) + Ra(, )]
As (4, k) =(1+ p)7vs (4, )[ Vs (4, k) Ks(J, k) Hs 1Cs (3, k)] = (14 )75, k) (I — 35 (j, k) K (4, k)HSI_CS(j, k))
% 0 I () % 90, K)CT (G, k)
k)

B (), k) AVJ(? 20 k)0 G 705 (U, k) + Rs(5: k) which ascertains the design 6f(j, k) as in (20).
+ 9503, K)Cs (3, k) X (3, K)CT (j, k) Similarly, letting (24) be zero and further applying the
Cs (G, k) 2[1 - ,YJ(S]zQ (G, k)CT (3, k)B; (4, k) Cs (4, k)] relationship (20) to (24), one has
X (14 )7 (3, K)2 (s R)CT (G, k) I HY Ko k) {22, o (TCG ) (G, K)CE (G, )T
D, (j, k) 2913 [, (. k) © (TC, (k) (. )CT (5, 1) TT) + B, (G, k) HE + Hy(, k) 0 Yo (G, k)
+ HIC, (5, k)9, ('k)cT(j,k)fTHST}—Ss(j,k) + SV H IO (G, k), k) (977 (. k) — 750 CT (5. k)

+ HOY (5, k) HT + Ho(j, k) 0 To(j, k) x B (4, k)Cs (4, k) Qs (4, k) CF (7, )ITHST}



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change
prior to final publication. Citation information: DOI10.1109/TCYB.2020.2989207, IEEE Transactions on Cybernetics

FINAL VERSION 8
= [T = 1§09, k)CT (5, k)BS 1 (. k) Cs (5, k)] with h = 1,2, where
X (14 )75 (4, k)2 (4, k) CL (4, k) T HY A E) = { 0.28 0.1 —0.1sin(j) ]
14/ - ’
which can be rewritten as —01 0.3
_ _ . Ao, k) = 0.2 0.1 —0.1cos(k)
K(j, k)Ds(j, k) = Cs(4, k). (25) 2R 0.2 0.25 :
It should be pointed out that the structures Bf and Fi((4, k), 2(j, k)) = 0.016 sin(z(j, k)),
H,(j, k) (reflecting, respectively, the information of the deter- Fy((4,k), z(5,k)) = 0.015sin(z(j, k)).

ministic couplings and the statistics of the random coupling ) ] )
fluctuations associated with sensgrmay lead to the singu- 't1S qt_)wous to_know that the above nonlinear functions meet
larity of matrix D, (j, k). In this scenario,(j, k) cannot be condition (2) witha, (j, k) = 0.016 andas(j, k) = 0.015.
obtained directly from (25). To deal with such kind of sparsity The sensor network is described by a directed and weighted
issue of network communication, the so-calledtrix simpli- 9raphg = (V.€, A), whereV = {1,2,3,4,5,6,7,8}, £ =
ficationtechnique [28] is utilized here to simplitg, (j, k) and  {(1,6),(1,8),(2,4),(3,6),(4,7),(5,1),(6,2),(7,5),(8,3)},

D,(j, k), and it can then be derived that and A = (hst)sxs With hy, = 1 if and only if (s,7) € £.
- - In the case ofhy, = 1 (s,¢ € [1 8]), the random variable
Kalj, k) = (Cs(4, k)DL (4, k), he >0 Ahg(j, k) is assumed to obey a uniform distribution over
st\Js 0, hs = 0. the interval [-0.6,0.6], and the second-order moment of

Ahg(j, k) is thus confined to a scalary(j,k) = 0.12.

The invertibility of matrixD, (j, k) is confirmed in Appendix Moreover, the matrix parameters in (3) are given by
A, which shows that (21) is well-defined. Finally, substituting

(20)-(21) into (17), it is calculated via some routine matrix’'1(j, k) =[0.3 1.2}, Ca(j, k) =[0.8 0.15sin(j)],
manipulations that Cs(j, k) =[0.45 1.6], Cu(j.k)=[0.840.1e7 —1],
Mi(3. k) =(1+ 1) (20 F) = QG RCT G RBS by Gl k) =11 18] Colj k) =[05 = 0.Lsin(k) 0.3,
k) =[-0.6 0.1cos(2k)], Cs(j,k)=[2 0.2cos(j)].

s . . . . C-(1q
X 1 CT (7, k)2 (G k) — K4, K)CT (i, F) "

which accords with (22) (for which the detailed derivations 1h€ measurement degradation is depicted by the random
can be found in Appendix B). The proof is completed. m variablesy;(j, k) (s € [1 8]) whose probability mass functions
Remark 4:Due to the sparsity of the network topology,are set to be

matrix D, (j, k) may be singular, and this gives rise to certain 0.05, =0
obstacle in directly calculating the filer gai;(j, k). To cope (g, k) = 0.1, 1=0.5
with such an issue, in Theorem 2, a matrix simplification 0.85, [=1.

technique has been adopted by taking advantages of the . d4(i
topological structure of the sensor network. It is easy to computéys(j, k) = 0.9 and 4,(, k) = 0.065.

Remark 5:By far, the distributed recursive filtering prob-The process and measurement nois¢s k) andvs (7, k) are .
lem has been addressed for the considered 2-D shift-varymI dele_d by ”?”t“a”y gncorrelated Gaussmh sequences with
systems over sensor networks. Both the degraded measlf pe_ctlve yanance@(g,k) - .OIOQI anc.i.Rs(],k) N 0'16'.
ments and the random couplings have been introduced ks smulatlon purpose,}he |n|t|allcond|t|0ns of (1) are given
depicting the possible sensor failures and random couplin '7'71?(1]) - |772.(k; =[0 (ﬂ Pand;((ﬁo) :I)i(O’ITI) = 0.017,

By means of two sets of recursive matrix equalities, an UB Ic rel_sut n IS(]’O) N hS(O’ )t_ O‘OB 5 or : i€2 [ 8].

the general error covariance has been established in Theo J}ﬁ sca |ng. scaiars a.re chosen l)o;pe -0 ande = 2.

1 for each sensor node. Then, the filter gains have beed©r notational brevity, denotes”(j, k) as the:-th element
determined in Theorem 2 to optimize the obtained UB & ¢s(J:¥) andMSE(j, k) as the mean square error with

each step. It is apparent from (22) that all the information 1M
concerning the system model (i.e., the degradation coefficients, MSE; (4, k) = — Z el'(4,k)es(j, k).
the sensor network topology, and the coupling perturbations) is M =1

reflecte(_j in fche filter design algorithm that has direct inﬂuencWnere the index infers the¢-th individual run, and the index
on the filtering performance. M is the number of the independent repeated runs.
With the above parameters, the UB and the filter gains
IV. NUMERICAL EXAMPLE can be iteratively calculated from Theorems 1 and 2. Only
This section provides an illustrated example to show thart of the simulation results are presented for the first sensor
effectiveness of the filtering method proposed in the malipde due to space limit. Specifically, Figs. 2-3 plot the error
results. trajectoriese(" (5, k) ande'? (4, k), respectively. Fig. 4 shows
Consider the 2-D system (1) defined on a finite horiggos]  the trace of the UBM,(j, k) and Fig. 5 displays the mean
with b = 40. The nonlinear functions in (1) are given by:  square errohMSE, (j, k) averaged over 500 independent runs.

, ) ) ) ) , Figs. 2-5 illustrate that the developed recursive filter works
fﬁ((ja k)v .I'(], k)) = Ah(]a ]{)l’(], k) + Fﬁ((]v k)a ZC(], k)) well.
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Fig. 2. Trajectory of the estimation erreﬁl)(]y k).

Fig. 3. Trajectory of the estimation erreﬁz)(j, k).

’, Al
4 02,/’1»0

il .'/;'.m
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j=0,1,... 40 O

Fig. 4. Trace of the UBM; (4, k).

k=0,1,...

40

9

Fig. 5. The mean square erd{SE; (j, k).

To reflect the effect of the noise amplitudes, the noise
covariances are reset 857,k) = 0.16 and R;(j, k) = 0.81
without changing other parameters. The corresponding simu-
lation result regarding the trace of the UB, (4, k) is given in
Fig. 6. Comparing the trajectory of{ M (j, k)} with the one
in Fig. 4, we can see that the obtained UB becomes bigger
with larger noise amplitudes.

"’ :
/ N7
’. .'l/ 5
'll lllllll: it

Fig. 6. Trace ofM(j, k) with Q(j,k) = 0.16 and Rs(j, k) = 0.81.

To evaluate the influence of the measurement degradation,
the probability mass function is reset as:

0.13, 1=0
pi(j, k) =4 0.74, =05
0.13, I=1.

In this case, it is easily calculated that(j, k) = 0.5 and
4s(j, k) = 0.065. Accordingly, Fig. 7 presents the simulation
result regarding the trace of the UR (j, k) with 75(j, k) =
0.5. In comparison with Fig. 4, it is concluded that a larger
value of 44(j, k) contributes to the tighter trace of the UB,
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namely, a better filtering performance because more use
measurements are available in the statistical sense.

Apart from the examination on the measurement degrad
tion, the effect of the random perturbation couplings on th
filtering performance is also evaluated. Let us first introduc
the ideal case where only the deterministic couplings col
tribute to the process of data exchange between sensors w
out considering the random coupling perturbations (namel
Ahg (5, k) = 0 for all s,¢t € [1 8]). Remaining all the other
parameters, the corresponding UB is denotedi/ds;, k}) The
comparison between the traces of UBS (j, k) and M/ (4, k)
is depicted in Fig. 8. Next, without changing the remainde
parameters, the random variallié.; (j, k) is further reset to
be uniformly distributed over the intervat-0.9,0.9], and the
bound on the second-order moment®h,(j, k) is given as
mst(J, k) = 0.27. In this case, the obtained UB is denotec
as M1(j, k), and the difference between{M}(j, k)} and
tr{Mi(j, k)} is shown in Fig. 9. It is revealed from Figs. 8-, ¢ 1c gifference between { My (4, k)} andtr{ M7 (7, k)}.
9 that the random perturbation couplings will degrade the ’ n
filtering performance. To be more specific, the best filterin~
performance is achieved without any coupling perturbation
and the increased intensity of random perturbation coupliny
leads to the degradation of the filtering performance.

0.025

;? 0.02
g 0.015 "’
‘ i
= oot [II llll’ ll 1 "lll"'
EN ”””””"'1""";7""""'5: ""m
= o M
2
] j=0,1,... 40 O k=0,1,...

Fig. 9. The difference betweetn{Mf (4, k)} andtr{ M1 (j,k)}.

0 k=0,1,...

j=0,1,... 40

The simulation example has also been presented to clarify

the feasibility of our proposed filtering strategy. Our future

research topics would be the extensions of the main results

derived here to other 2-D systems with more complicated

dynamics, such as the state-saturated filtering problem with

V. CONCLUSION cyber-attacks [11], [39] and the protocol-based state estimation

This paper has discussed the recursive filtering problem feroblems [8], [46].

2-D nonlinear system over sensor network in the presence of

degraded measurements and coupling perturbations. Phenom-

ena of measurement degradations and random couplings are

governed by random variables satisfying certain probabiligy. Invertibility of D,(j, k)

distributions.AnoveI distributed filter hgs been proposed.in 2 Noting that matricesQ(j, k) and R.(j,k) are positive

D case to estimate th(_e system state with a guaran_teed f'lterfﬂgmne one obtain€, (j, k) > 0 based on the evolution of

performance. Theoretical results have been established to Cﬁ (j, k) in (16). In this case, the following matrix

struct certain UBs on the general error variances. In addition;

the explicit e_xpre53|_0n of th_e tightest bound has been de_nve@s(j’ k) 20715, k) + ijk)CsT(ja k)(Rs(j, k)

and the desired gain matrices have been carefully designed o o N

by matrix analysis techniques and mathematical induction. +35(5,k)Cs (4, k) X (3, k)OS (5. k) Ci(4, k)

Fig. 7. Trace ofM1(j, k) with 7s(j, k) = 0.5.
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is well-posed and positive definite. According to the well- + K
known matrix inversion lemma, it can be derived that
QG k) =05, K) = 750026, K)CT G k)[R )
55 (G F)C (G, W)X (1, R)CT (G ) + 57
X CL1 R G RICTGR)] Ol R GR)
)

:Qs(j7 ) 7§Sst(ja k)cg(]v k)Bs_l(]v k)
x Cs(4,k)Q(4,k) > 0. (26)

GRS L ICL G k) (G, )Y o) T Y
m,z (s k) o (ICL (1, k) (5. K)CL (. k) IT) + H,
oG, W HY + Hy (k) 0 TG k) P KT (k) = (1+ )
%7 ) { 2, R (G, k) + KGR HLI) O, k)]
+ (GG h) + Ko (G V) Co(5,1)] 2, F) |
+ ARG R)Ca (G, k) G k) (K k) HIC (5, k)
+ UKL, k) H IO (3,
k) + A

Combi . - . k) (5, k)CS (5, k)G (. k)
ombing (26) with the definition of;(j, k), one has . T ]
) = (1+ ), 3 k)BT (G, k) A (5, F) + Ks (5, )
7§f,3HSIOs(j,k)[QS(j,k)—vﬁf@ﬂs(j,k)cf(j,k)lfgl(j,k) X (Ds(G, k) + E(j, k) KX (G, k) — (14 p)7s(j, k)
X C4(j, k)2 G )| €T (. ) T HE % {26 B [(G k) + K (G, R ) O k)]

(@
= YV H IO, k) (5. k)CT (. )T HT — £4(j,k) > 0 + [(Gs (4, k) + K (4, k) Hs

I)C,
which means that the sum of the second and third terms of+7 Sk)G (G, k)Cs(j, k) (G,
D, (4, k) are positive semi-definite. Recall the fact that j, k) () o
is the simplified one ofD,(j, k) by removing both its zero + 7 K (U, k) H 1O (7, k)2

R F) )
><K< KJH.IC.(3,k))"
(G B)CE (G K)GE G k)

columqg and zero rows. The invertibillity a1, (4, k)_ cannow  — (14 )0, (j, k) — (1 + M)%Sk)Q (G, k)YCT (4, k)BI1 (4, k)
E(}ﬁg‘fed from (26) and the sparsity of matriceés and « CT (k)G k) + Ko (G, kYD G, YK (5, k)
B. Proof of (22) = (1 + /1') (Qs(]7 k) PYJ(SIEQS(L k 3(37 k)Bgl(]7 k)

)C
Recall the definitions ofd,(j, k), Bs(j,k), Cs(j,k) and x CL(j,k)Q:(j, k)) — K(j, k)CL (4, k).

Es(j, k). We derive from the filter gairGs(j, k) determined . L
in((JZO))that V I galt?s (7, k) I Consequently, the desired UB is given as (22) under the

designed filter gains (20) and (21).
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