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Abstract

In this paper, the N-step model predictive control problem is investigated for a class of networked control systems with limited
communication capacity. By resorting to the dynamic uniform quantization method, a novel observer-based endec-decoder
is put forward in order to accommodate the digital transmission requirement. In this sense, the state reconstructed by the
observer is coded into certain codewords and then transmitted to the controller via a bandwidth-limited network. The aim of
the problem addressed is to co-design the observer-based endec-decoder and the N-step model predictive controller such that
the underlying system is detectable and asymptotically stable. By solving certain offline “min-max” optimization problems
with matrix inequality constraints, a series of one step sets and the terminal constraint set are derived as well as the desired
offline controller parameters. Then, in order to improve the convergence speed of the closed-loop system, a recursive algorithm
is developed to design the online controller based on the results obtained from the offline optimization problems. Finally, a
numerical example is given to demonstrate the validity of the proposed control scheme.
Key words: N-step model predictive control; networked control systems; dynamic uniform quantization; observer-based
endec-decoder scheme; detectability.

1 Introduction

In the past few decades, model predictive control (M-
PC) strategy has gained much attention from a variety
of engineering fields due to its great potential in han-
dling optimal control problems with hard constraints,
see e.g. [10, 22, 39, 48]. In practical applications, the de-
sired control inputs of the MPC strategy are calculat-
ed by solving a certain moving-horizon online optimiza-
tion problem. Accordingly, the computation complexity
of such an optimization issue plays a crucial role in e-
valuating the performance of the MPC scheme. To this
end, much research effort has been devoted to the top-
ic of developing an efficient MPC strategy to reduce
the online computation burden, thereby leading to the
natural emergence of the so-called N -step MPC strat-
egy [11, 33, 38]. The purpose of N -step MPC scheme is
to design a finite number of control inputs such that the
system states in an initial feasible region can be steered
into a prescribed terminal constraint set within N time
steps. Note that with the increase of the step numberN ,
the initial feasible region becomes large at the cost of the
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computation complexity accordingly. Therefore, how to
develop a simple yet effective N -step MPC strategy to
make a right compromise between the initial feasible re-
gion and the computation complexity constitutes one of
our motivations.

With the rapid development of computer science and
communication technology, networked control system-
s (NCSs) have found successful applications in various
fields owing to their low cost, flexibility and portabili-
ty, see e.g. [3, 8, 12, 21, 27, 41–43, 47]. Nevertheless, the
utilization of communication networks would also pose
great challenges on the controller design due mainly to
the existence of the so-called networked-induced phe-
nomena [4–6, 32, 37]. More specifically, due to the lim-
ited bandwidth of the communication channel, simul-
taneous transmissions of a large amount of data would
lead to heavy network burden, thus inevitably causing
unexpected network-induced phenomena that could de-
teriorate the system performance [16, 17]. In order to
achieve the desired control performance, the underly-
ing network-induced phenomena should be considered in
the design of the controller. In this case, the tradition-
al MPC strategy under the assumption of the perfect
communication environment would be no longer valid
for the bandwidth-constrained NCSs. Recently, a num-
ber of research attempts have been made on MPC for
NCSs with communication constraints and some rep-
resentative achievements have been obtained, see e.g.
[28–30,40].

In NCSs, the inherently limited communication re-
source, however, brings in certain requirements on the
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data delivery, e.g., the amount (bits) of the data trans-
ferred per time unit should not exceed a specified thresh-
old. For this purpose, particular research attention has
been paid on the so-called coding-decoding scheme due
primarily to its three evident merits of 1) compressing
data before being transmitted, 2) reducing the net-
work transmission burden and 3) improving network
security. Therefore, it is both theoretically important
and practically significant to launch an investigation on
the state estimation/control problems subject to the
coding-decoding mechanism, and some elegant results
have been reported, see [9,13,14,18,24,25,31,34,35,44]
and references therein. However, a thorough literature
survey has revealed that the coding-decoding-based M-
PC problem has not been fully investigated yet owing
probably to the difficulties in guaranteeing the recursive
feasibility of the moving-horizon online optimization
and the asymptotical stability of the closed-loop sys-
tem. Consequently, we are motivated to develop a novel
coding-decoding-based MPC technique to ensure the
desired control performance in a resource-constrained
network environment.

Within the coding-decoding scheme framework, since
the coded data usually only carry partial information
of the raw data, the information distortion would in-
evitably occur in the decoded signals. In this case, the
resulting error (also called decoding error) is the main
source of the degradation of the control performance.
From a technical viewpoint, the so-called detectability,
as a primary performance index, has been recently pro-
posed to examine the convergence of the decoding er-
ror. For this purpose, a dynamic-quantizer-based coding-
decoding technique has been developed in [14] by en-
coding the error of the current state (or estimate state)
and the last decoded value. Such a scheme has been ex-
tended in [44] to the descriptor systems and in [34] for
discrete-time dynamical networks with packet dropouts.
It is worth pointing out that, despite the stirred research
interests in developing coding-decoding schemes, there is
still much room for its extensive applications, for exam-
ple, making some improvements on the existing coding-
decoding algorithms suitable for more complicated con-
trol strategies, which constitutes another motivation of
our present research.

According to the above analysis, the technical challenges
of the underlying N -step MPC problem via a coding-
decoding scheme can be identified as the three points: 1)
how to design an appropriate coding-decoding technique
revealing the impact of the decoding error on the resulted
control performance? 2) how to derive the desired con-
trol inputs ensuring that the state can be steered into the
terminal constraint set within the requiredN time step-
s? and 3) how to develop effective methodologies guar-
anteeing the detectability and asymptotical stability of
the addressed closed-loop system?

In response to above identified challenges, we endeavor
to co-design the observer-based coding-decoding scheme
and the N -step MPC strategy such that the expected
control performance is achieved in a limited-bandwidth
network. The main contributions can be highlighted as
follows: 1) the observer-based coding-decoding technique

is, for the first time, proposed for the N -step MPC prob-
lem in a resource-constrained network environment; 2)
the upper bound of the decoding error resulting from the
coding-decoding scheme is thoroughly analyzed, and a
dedicatedly constructed objective function is adopted to
reflect the impact of this norm-bounded decoding error on
the controller design issue; and 3) sufficient condition-
s are provided for guaranteeing the recursive feasibility
of the algorithm and the asymptotical stability of the ad-
dressed system.

Notation The notation used here is fairly standard ex-
cept where otherwise stated. Rn and Rn×m denote, re-
spectively, the n dimensional Euclidean space and the set
of all n×m real matrices. Z≥0(Z>0) and R≥0(R>0) are
used to denote the set of all nonnegative integers (posi-
tive integers) and the set of all nonnegative real numbers
(positive real numbers), respectively. I and 0 represent
the identity and zero matrices of compatible dimension-
s, respectively. PT represents the transpose of P . The
shorthand diag{· · · } denotes a block diagonal matrix.

For x ∈ Rn, ‖x‖ =
√
xTx and ‖x‖∞ = max{|xi|, 1 ≤

i ≤ n}. For a vector y, y > 0 means that every element
of y is greater than 0. In symmetric block matrices, the
symbol “∗” is used as an ellipsis for the terms induced
by symmetry. For two square matrices X,Y , X ≥ Y (e-
specially, X > Y ) where X and Y are symmetric ma-
trices, means that X − Y is positive semi-definite (es-
pecially, positive-definite). For a time-varying variable
x(k) ∈ Rn, x(k+n|k) is the prediction at the future time
instant k+n (n ∈ Z≥0) based on its value at the current

time instant k, and x(k|k) , x(k). λmax{·} (respective-
ly, λmin{·})) means the largest (respectively, smallest)
eigenvalue of “·”. [�]i denotes the ith element of a vector
or the ith row of a matrix. [�]ii denotes the ith diagonal
element of a matrix “�”.

2 Problem Formulation and Preliminaries

2.1 NCSs via an observer-based endec-decoder scheme

Consider the following linear discrete-time system:






x(k + 1) = Ax(k) +Bu(k) (1a)
y(k) = Cx(k) (1b)
x(0) = x0 ∈ X0 (1c)

where x(k) ∈ Rnx is the system state, y(k) ∈ Rny

is the measured output, and u(k) ∈ Rnu is the con-
trol input, respectively. A, B and C are known ma-
trices with appropriate dimensions. x0 is an initial s-
tate which belongs to a known ellipsoid set denoted by
X0 , {x ∈ Rnx |xTΘ−1x ≤ 1}, where Θ is a given
positive-definite matrix.

To better reflect the practice, the following hard con-
straints on system states and inputs are taken into con-
sideration:

{

|[u(k)]s| ≤ [~u]s s ∈ {1, · · · , nu} (2a)
|[Ψ]lx(k)| ≤ [~x]l l ∈ {1, · · · , h} (2b)

where Ψ ∈ Rh×nx is a known matrix; ~u > 0 and ~x > 0
are the known vectors.
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Fig. 1. The structure of the NCS with an observer-based
coding-decoding scheme.

For reducing communication burden as well as guaran-
teeing information security during data transmission,
an observer-based coding-decoding scheme is employed
from the sensor to the controller in a bandwidth-
constrained network circumstance. The state observer
of such a scheme is constructed as follows:
{

x̂(k + 1) = Ax̂(k) +Bu(k) + L (y(k)− Cx̂(k))(3a)
x̂(0) = x̂0 ∈ X0 (3b)

where x̂(k) ∈ Rnx is the state estimate with the given
initial value x̂0 and L is the observer gain to be designed.

In this paper, the difference coding technique is adopted,
which means that the difference between the observer
state and the encoder state (which is calculated based on
the recently generated decoding value). In this sense, to
obtain the decoding value at the encoder side and avoid
the data postback, the encoder side is equipped with
an auxiliary decoder that has the same dynamics as the
actual decoder (the word “actual” will be omitted in the
sequel when no confusion can arise). In particular, the
encoder and the auxiliary decoder, as a whole, are called
“endec”. The structure of the closed-loop system with
the observer-based endec-decoder scheme is depicted in
Fig. 1.

Assumption 1 The coding period is the same as the de-
coding period (denoted as p), and both coding and decod-
ing are operated simultaneously.

According to the above assumptions, the coding-
decoding mechanism is stated by

Coding :

{

x̃(jp) = F (x̌(jp))

f(jp) = F (x̂(jp)− x̃(jp))
(4)

Decoding : ζ(jp) = G (f(jp)) (5)

for j = 1, 2, · · · , where jp (j ∈ Z>0) denotes the cod-
ing/decoding time instants, x̌(jp) and x̃(jp) represent
the states of the auxiliary decoder and the encoder, re-
spectively. At each time instant jp, the error x̂(jp) −
x̃(jp) is coded.F(·) and G(·) are the coding and decoding
functions to be designed, respectively. f(jp) is the code-
word generated by the encoder at the coding time instant
jp, and ζ(jp) is the corresponding decoding value defined

as ζ(jp) ,

[

x̄T (jp) x̄T (jp+ 1) · · · x̄T ((j + 1)p− 1)
]T

where x̄(·) is the output of the decoder. The mappings
F (·), F(·) and G(·) will be designed later.

Remark 1 The observer-based coding-decoding proce-
dure can be divided into the following two steps. Step 1:

at the coding time instant jp (j ∈ Z>0), x̂(jp)− x̃(jp) is
coded into certain codewords and then are transmitted to
the auxiliary decoder and the decoder. Step 2: the decod-
ed value x̄(k) generated by the decoder is transmitted to
the controller.

2.2 N -step MPC scheme

Let us first introduce the offline N -step MPC strategy.
Based on the decoding value, the corresponding control
laws are given by

u(k + n|k) =
{

Knx̄(k + n|k), 0 ≤ n < N

KN x̄(k + n|k), n ≥ N
(6)

where Kn (0 ≤ n ≤ N) are the controller gains to be
designed.

Denoting e(k) , x(k)− x̄(k) as the decoding error , the
following cost function is constructed:

JN (k) ,

N−1
∑

n=0

l(x(k+n|k), u(k+n|k))+VN (x(k+n|k))

(7)
whereN denotes the prediction horizon, the control hori-
zon and the optimization horizon. l(x(k + n|k), u(k +
n|k)) and VN (x(k+N |k)) denote, respectively, the stage
cost and the terminal cost defined by

VN (x(k + n|k)) , xT (k + n|k)PNx(k + n|k) (8)

l(x(k + n|k), u(k + n|k)) , ‖x(k + n|k)‖2Q
+ ‖u(k + n|k)‖2R − τ ‖e(k + n|k)‖2

(9)

where τ > 0 is a known scalar, Q and R are the
known positive-definite weighting matrices, and PN is a
positive-definite matrix to be designed.

According to the approach adopted in [22], the controller
parameters can be solved by suppressing the cost func-
tion (7) subjected to constraints (2a)-(2b), thus giving
rise to the following offline optimization problem (OP).

OP 1a: Calculate the desired controller parameters Ki

(i = 1, 2, · · · , N) by suppressing the cost function JN (k)
subject to the following constraints:



























x(k + n+ 1|k) = Ax(k + n|k)
+Bu(k + n|k), n = 0, · · · , N − 1 (10a)

∣

∣[u(k + n|k)]s
∣

∣ ≤ [~u]s, n = 0, · · · , N − 1 (10b)
∣

∣[Ψ]lx(k + n|k)
∣

∣ ≤ [~x]l, n = 1, · · · , N (10c)

x(k) ∈ ΩN , k ≥ N (10d)

where ΩN is the so-called terminal constraint set to be
designed, which is vitally important to guarantee the
stability of the system by means of the MPC strategy.

OP 1b: Calculate the desired control input u(k) at each
time instant k by suppressing the cost function JN (k)
subject to the constraints (10a)-(10d).
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2.3 Preliminaries

Definition 1 A setX is said to be a positively invariant
(PI) set if, for any x(k) ∈ X and k ∈ Z≥0, there is
x(k + 1) ∈ X.
Definition 2 [38] The set Q(Ω) is called a one-step
set (OSS) if all the states which belong to it can be s-

teered into Ω by an admissible control u, i.e., Q(Ω) ,
{x(k) ∈ Rnx |∃ u ∈ Rnu , x(k + 1) ∈ Ω}.
Definition 3 [38] Let a terminal constraint set Ω be
given. If state predictions x(k+n|k) (0 ≤ n < N), with a
series of constrained controllers determined by the MPC
approach, can be steered into Ω within N steps, i.e. x(k+
N |k) ∈ Ω, then such an MPC strategy is named by N -
step MPC strategy.
Definition 4 System (1a)-(1c) is said to be detectable
with a communication channel of capacity C if there exists
a pair of endec and decoder such that

lim
k→∞

‖e(k)‖ = 0 (11)

for any solution of system (1a)-(1c).
Definition 5 System (1a)-(1c) under the control law
(6) is said to be asymptotically stable with a communica-
tion channel of capacity C if there exists a pair of endec
and decoder such that

lim
k→∞

‖x(k)‖ = 0 (12)

for any solution of system (1a)-(1c).
In this paper, the main purpose is to co-design an
observer-based endec-decoder scheme and a set of de-
sired controllers in the framework of N -step MPC such
that system (1a)-(1c) under the control law (6) with
hard constraints (2a)-(2b) is detectable and asymp-
totically stable. More specifically, the following two
requirements are simultaneously satisfied:
• R1) design an effective observer-based endec-decoder
scheme such that the system (1a)-(1c) is detectable;

• R2) under the condition R1), establish sufficien-
t conditions to guarantee that the system (1a)-(1c)
is asymptotically stable in the framework of offline
N -step MPC strategy and the online N -step MPC
strategy, and the desired controller inputs can be
derived by solving certain optimization problems.

3 Detectability via the observer-based endec-
decoder scheme

3.1 Observer design

Lemma 1 Considering system (1a)-(1c), if there exist
a positive-definite matrix Z, a matrix Y and a positive
scalar 0 < β < 1 such that

[

(1− β)Z ∗
ZA− Y C Z

]

> 0, (13)

then there exist p ∈ Z>0 and a constant α (0 < α < 1)
satisfying

‖x(k + p)− x̂(k + p)‖∞ ≤ α ‖x(k)− x̂(k)‖∞ . (14)

Furthermore, the desired observer gain is obtained by

L = Z−1Y. (15)

Proof: Defining η(k) , x(k) − x̂(k), it follows immedi-
ately from (1a) and (3a) that

η(k + 1) = (A− LC)η(k). (16)

Choose the following Lyapunov function:

V̄ (k) = ηT (k)Zη(k). (17)

Taking the difference along (16) yields

∆V̄ (k) = ηT (k + 1)Zη(k + 1)− ηT (k)Zη(k)

= ηT (k)((A− LC)TZ(A− LC)− Z)η(k). (18)

Adding the term βV̄ (k) (0 < β < 1) to both sides of
(18), we have

∆V̄ (k) + βV̄ (k) = ηT (k)((A − LC)TZ(A− LC)

−(1− β)Z)η(k). (19)

In terms of (13) and (19), the following inequality is true:

∆V̄ (k) + βV̄ (k) ≤ 0, (20)

which implies V̄ (k+1) ≤ (1−β)V̄ (k). Obviously, one has
V̄ (k+p) ≤ (1−β)V̄ (k+p−1) ≤ (1−β)2V̄ (k+p−2) ≤
· · · ≤ (1− β)pV̄ (k).

It is easily seen that

λmin{Z} ‖η(k + p)‖∞ ≤ V̄ (k + p)

≤ nx(1 − β)pλmax{Z} ‖η(k)‖∞ ,
(21)

which implies that

‖η(k + p)‖∞ ≤ α ‖η(k)‖∞ , (22)

where α = nx(1 − β)p λmax{Z}
λmin{Z} , nx is the dimension of

system state x(k). Thus, there exists a proper p such
that 0 < α < 1. The proof is now complete.

3.2 Endec-decoder scheme design

Lemma 2 If there exist a positive-definite matrixW and
a scalar γ > 0 such that

[

W − γI ∗
WA W

]

> 0, (23)

then for any two solutions x1(k) and x2(k) of the system
(1a)-(1c), we have

‖x1(k + 1)− x2(k + 1)‖∞ ≤ µ ‖x1(k)− x2(k)‖∞ (24)

where µ = nx(1−γ)λmax{W}
λmin{W} .

Proof: The proof procedure is similar to that of Lemma
1 and is thus omitted.

To facilitate the design of the endec-decoder scheme, the
uniform quantization method is provided as follows.

For a given scaling parameter a > 0 and a given inte-
ger q ∈ Z>0, denote by Ba = {θ ∈ Rnx : ‖θ‖∞ ≤ a} a
quantization region, which is uniformly partitioned into
qnx hypercubes. By using the similar partition technique
as [25], for each i ∈ {1, 2, · · · , nx}, the corresponding
ith component of the vector θ, i.e. θi, can be partitioned
into the following q segments:
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Hi
1(a) ,

{

θi

∣

∣

∣

∣

θi ∈
[

−a,−a+
2a

q

)}

Hi
2(a) ,

{

θi

∣

∣

∣

∣

θi ∈
[

−a+
2a

q
,−a+

4a

q

)}

...

Hi
q(a) ,

{

θi

∣

∣

∣

∣

θi ∈
[

a− 2a

q
, a

]}

(25)

where each segment Hi
j(a) (j = 1, 2, · · · , q) corresponds

to a certain number j. Then, for any θ ∈ Ba, there ex-
ists a unique set of integers {ν1, ν2, · · · , νnx

} where νi ∈
{1, 2, · · · , q} , i = 1, 2, · · · , nx such that θ ∈ H1

ν1
(a) ×

H2
ν2
(a)× · · · ×Hnx

νnx
(a). With respect to the set of inte-

gers {ν1, ν2, · · · , νnx
}, the vector defined by

ζa(ν1, ν2, · · · , νnx
)

,

[

−a+
a(2ν1 − 1)

q
· · · − a+

a(2νnx
− 1)

q

]T (26)

is the center of the hypercube H1
ν1
(a) ×H2

ν2
(a) × · · · ×

Hnx
νnx

(a). According to the above analysis, it is easily
seen that

‖θ − ζa(ν1, ν2, · · · , νnx
)‖∞ ≤ a

q
. (27)

Next, we are going to consider the design of the endec-
decoder scheme based on the derived scalarsα and µ. For
the subsequent development, as in [44], some necessary
definitions related to the adopted endec-decoder scheme
are presented as follows:


















r0 = sup
x0∈X0

‖x0‖∞
a(p) = (2α+ µp)r0

a ((j + 1) p) =
(

2αj+1 + µpαj
)

r0 + µp a(jp)

q
, j ∈ Z>0.

(28)

Define the error as ẽ(jp) , x̂(jp)− x̃(jp). Next, we are
ready to propose the uniform-quantization-based endec-
decoder scheme.

Endec: For ẽ(jp) ∈ H1
ν1
(a(jp)) × H2

ν2
(a(jp)) × · · · ×

Hnx
νnx

(a(jp)) ⊆ Ba(jp), we have

• Encoder:






x̃(0) = 0

x̃(jp) = Ax̆(jp− 1) +Bu(jp− 1)

f(jp) = {ν1, ν2, · · · , νnx
} .

(29)

• Auxiliary decoder:















x̆(0) = 0

x̆(k + 1) = Ax̆(k) +Bu(k), k 6= jp− 1

x̆(jp) = Ax̆(jp− 1) +Bu(jp− 1)

+ ζa(jp) (ν1, ν2, · · · , νnx
)

(30)

Decoder:







x̄(0) = 0

x̄(k + 1) = Ax̄(k) +Bu(k), k 6= jp− 1

x̄(jp) = x̃(jp) + ζa(jp) (ν1, ν2, · · · , νnx
) .

(31)

Remark 2 In most of the different coding techniques
(see e.g. [25, 36, 44]), it is necessary for the encoders to
obtain the states of decoders via the data postbacks. Such
a resource-consuming transmission manner is unrealis-
tic in practical engineering. To overcome such an obsta-
cle, an endec consisting of an auxiliary decoder and an
encoder is employed to replace the traditional encoder,
where the auxiliary decoder is utilized to generate the re-
quired decoder’s states. In this way, the proposed endec
can not only retain the same advantages as the tradition-
al encoders but also save more communication resources.
Without loss of generality, the initial states of endec and
decoder are assumed to be zero.

Lemma 3 For all j ≥ 1, the endec-decoder scheme de-
scribed by (29)-(31) satisfies

‖ẽ(jp)‖∞ ≤ a(jp). (32)

Proof: The mathematical induction is utilized to prove
this lemma, which is divided into the following two steps.

i) For the case j = 1, it follows from Lemmas 1 and 2
that

‖ẽ(p)‖∞ = ‖x̂(p)− x̃(p)‖∞
≤ ‖x̂(p)− x(p)‖∞ + ‖x(p)− x̃(p)‖∞
≤ 2αr0 + µp ‖x(0)− x̆(0)‖∞
≤ (2α+ µp)r0 = a(p).

(33)

ii) Assume that (32) holds for j, we need to prove that it
also holds for j+1. From Lemmas 1 and 2, it is inferred
from (27) that:

‖ẽ((j + 1)p)‖∞
= ‖x̂((j + 1)p)− x̃((j + 1)p)‖∞
≤ ‖x̂((j + 1)p)− x((j + 1)p)‖∞

+ ‖x((j + 1)p)− x̃((j + 1)p)‖∞
≤ 2αj+1r0 + µpαjr0 + µp a(jp)

q
= a((j + 1)p).

(34)

Thus, (32) holds for all j ≥ 1, which completes the proof.

Theorem 1 Suppose that there exist two positive scalars
β and γ, two positive-definite matrices Z and W , and a
matrix Y such that the matrix inequalities (13) and (23)
are solvable. Then, then system (1a)-(1c) is detectable
via the proposed endec-decoder scheme (29)-(31) if the
following condition holds

q > µp (35)

where µ is defined in Lemma 2.

Proof: i) For k = jp, j ≥ 1, one easily obtains from
0 < α < 1 and condition (35) that limj→∞ a(jp) = 0.
On the other hand, it follows from (29)-(31), Lemmas 1
and 3 that
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‖e(jp)‖∞
= ‖(x(jp)− x̂(jp)) + (x̂(jp)− x̃(jp))

+ (x̃(jp)− x̄(jp))‖∞
≤ ‖x(jp)− x̂(jp)‖∞ + ‖ẽ(jp)‖∞
+ ‖x̃(jp)− x̆(jp)‖∞

≤ 2αjr0 + ‖ẽ(jp)‖∞ +
a(jp)

q
.

(36)

Since x0 ∈ X0 from (1c) and r0 = supx0∈X0
‖x0‖∞ from

(28), r0 has an upper bound. Thus, based on 0 < α < 1
in Lemma 1, we have limj→∞ a(jp) = 0. In addition, the
coding/decoding period p and the scalar µ are bounded,
it can be easily obtained from (28) that limj→∞ a((j +

1)p) = limj→∞ µp a(jp)
q

. Due to q > µp in (35), we have

limj→∞ a(jp) = 0. According to the above discussions,
and with the help of ‖ẽ(jp)‖∞ ≤ a(jp) in Lemma 3, we

can conclude that limj→∞(2αjr0 + ‖ẽ(jp)‖∞ + a(jp)
q

) =

0, which implies limj→∞ ‖e(jp)‖∞ = 0.

ii) For k ∈ (jp, (j + 1)p), it is easily seen that x(k) and
x̄(k) are two solutions of system (1a)-(1c). In terms of
Lemma 2, one has ‖e(k)‖∞ ≤ µk−jp ‖e(jp)‖∞, which
means that the decoding error ‖e(k)‖∞ is also bounded
at the non-coding time instant and approaches zerowhen
k goes to infinity, i.e. limk→∞ ‖e(k)‖∞ = 0.

According to the above analysis, we conclude that
system (1a)-(1c) is detectable via the proposed endec-
decoder (29)-(31) if the condition (35) holds. The proof
is thus complete.

Let’s discuss the upper bound of ‖e(k)‖2. For k = jp,
j > 1, based on (28), 0 < α < 1 and (35), we have

a(jp) =
(

2αj + µpαj−1
)

r0 +
µp

q
a((j − 1)p)

= αj−1a(p) +
µp

q
a((j − 1)p) ≤ a(p)

1− α
.

(37)

Then, keeping 0 < α < 1, (32) and (37) in mind, it can
be learned from (36) that

‖e(jp)‖∞ ≤ 2αjr0 + ‖ẽ(jp)‖∞ +
a(jp)

q

≤ 2r0 +
q + 1

q(1− α)
(2α+ µp)r0.

(38)

For k ∈ (jp, (j + 1)p), with the help of Lemma 2 and
(38), we obtain

‖e(k)‖∞ ≤ µk−jp ‖e(jp)‖∞
≤ µ̃

(

2r0 +
q + 1

q(1− α)
(2α+ µp) r0

)

(39)

where µ̃ = max{µp, 1}. Thus, it can be inferred from
(38) and (39) that

‖e(k)‖2 ≤ nx (‖e(k)‖∞)
2

≤ nxµ̃

(

2r0 +
q + 1

q(1 − α)
(2α+ µp) r0

)

≤ χ

(40)

where χ ,

⌈

nxµ̃
(

2r0 +
q+1

q(1−α) (2α+ µp) r0

)⌉

with ⌈·⌉
denoting an operation to round up “·” to an integer.

4 N-step MPC strategy

The design of the offlineN -step MPC strategy is divided
into two steps in this section: Step 1: establish sufficient
conditions to ensure the existence of the required termi-
nal constraint set; Step 2: design the controller param-
eters to guarantee that the system state can be steered
into the proposed terminal constraint set with N steps.
Substituting (6) into (1a)-(1c) results in the following
closed-loop system:

x(k + n+ 1|k) = (A+BKn)x(k + n|k)
−BKne(k + n|k). (41)

Note that the decoding error on prediction horizon sat-
isfies the constraint (40), i.e., ‖e(k + n|k)‖2 ≤ χ.

4.1 Terminal constraint set

As suggested by [22,38], the set ΩN is said to be a termi-
nal constraint set for system (1a)-(1c) under the control
law (6) if the following two requirements are satisfied:
i) under the constraints (10b)-(10c), ΩN is a PI set;
ii) for any x(k + n|k) ∈ ΩN , the terminal cost function
is a local Lyapunov-like function satisfying

VN (x(k + n+ 1|k))− VN (x(k + n|k))
≤ −l (x(k + n|k), u(k + n|k)) .

Lemma 4 Define a set ΩN ,
{

x ∈ Rnx

∣

∣xTΦ−1
N x ≤ 1

}

.
ΩN is a PI set if the following condition

VN (x (k + n+ 1|k))− VN (x(k + n|k) ≤ 0 (42)

holds under the constraint
1

χ
‖e(k + n|k)‖2 ≤ 1

ρ
‖x(k + n|k)‖2PN

.

Proof:The above lemma can be easily obtained along the
similar line of [1], and thus is omitted for space saving.
Lemma 5 Let a matrix Ψ be given. Considering system
(41) via the endec-decoder scheme (29)-(31), if there exist
positive-definite matrices XN , UN , a matrix WN , and
two scalars ρ > 0, 0 < ξ < 1 such that









(1− ξ)ΦN ∗ ∗
0 2ΦN − χ

ξ
I ∗

AΦN +BWN −BWN ΦN









≥ 0, (43)









UN ∗ ∗
WT

N ΦN ∗
WT

N 0 2ΦN − χI









≥ 0, [UN ]ss ≤ [~u]2s, (44)

[

XN ∗
(ΨΦN )T ΦN

]

≥ 0, [XN ]ll ≤ [~x]2l (45)

where ΦN = ρP−1
N , then the set ΩN is a PI set. Further-

more, the desired feedback gain is given by

KN = WNΦ−1
N . (46)

Proof: This lemma can be obtained along the similar line
of [30], and thus is omitted for space saving.
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4.1.1 Terminal cost function

Lemma 6 Let weighting matrices Q > 0, R > 0 and a
scalar τ > 0 be given. For system (41) via the observer-
based endec-decoder scheme (29)-(31), assume that the
matrix inequality



















ΦN ∗ ∗ ∗ ∗
0 τΥN ∗ ∗ ∗
ΓN −BWN ΦN ∗ ∗√
RWN −

√
RWN 0 ρI ∗

√
QΦN 0 0 0 ρI



















> 0 (47)

holds, where WN , ΦN and ρ are defined in Lemma 5,
ΓN = AΦN +BWN and ΥN = 2ΦN − ρI, then one has

VN (x(k + n+ 1|k))− VN (x(k + n|k))
+l (x(k + n|k), u(k + n|k)) < 0. (48)

Proof: This lemma can be obtained along the similar line
of [30], and thus is omitted for space saving.

Based on the achievements in Lemmas 5 and 6, the de-
sired controller parameter KN is derived by

OP2 min
ρ>0,WN

trace(ΦN )

s.t. (43)− (45) and (47).

4.2 Approximating sets of OSSs

Based on the derived terminal constraint set ΩN , define
a sequence of OSSs as follows:

Ωi , Q(Ωi+1), i = 0, 1, · · · , N − 1

where the mapping Q(· · · ) is defined in Definition 2.
Then, as stated in [38], the state constraint x(k+N |k) ∈
ΩN can be ensured by certain admissible control inputs
u(k + i|k) (i = 0, 1, · · · , N − 1) if xk|k ∈ Ω0. Note that
it is always very difficult to achieve these exact OSSs.
Accordingly, in this paper, we use a sequence of ellip-
soid sets to “approximate” these desired OSSs. These
approximating ellipsoid sets are defined as follows:

Pi ,
{

x(k + i|k)
∣

∣xT (k + i|k)Φ−1
i x(k + i|k) ≤ 1

}

,

i = 0, 1, · · · , N,

where the matrices Φi (i = 0, 1, · · · , N − 1) are positive-
definite matrices to be determined later.

One objective of this paper is to design the a sequence
of controller parameters Ki (i = 0, 1, · · · , N − 1) such
that xk+i|k ∈ Pi holds for all i = 1, 2, · · · , N under the
condition xk|k ∈ P0. Obviously, it is easy to find that
PN = ΩN . Furthermore, it is easy to see that Pi ⊆
Qui(Pi+1) (i = 0, 1, · · · , N − 1).

Lemma 7 Let a matrix Ψ and scalars τ̃n ≤ τ (n =
0, 1, 2, · · · , N) be given. Considering system (41) via the
observer-based endec-decoder scheme (29)-(31), if there

exist positive-definite matrices Pn, X̃n, Un, a matrix Wn

and a scalar 0 < ξ̃ < 1, for any 0 ≤ n ≤ N − 1 such that









(1− ξ̃)Φn ∗ ∗
0 2Φn − χ

ξ̃
I ∗

AΦn +BWn −BWn Φn+1









≥ 0, (49)



















Φn ∗ ∗ ∗ ∗
0 τ̃n(2Φn − ρI) ∗ ∗ ∗

AΦn +BWn −BWn Φn+1 ∗ ∗√
RWn −

√
RWn 0 ρI ∗

√
QΦn 0 0 0 ρI



















> 0, (50)









Un ∗ ∗
WT

n Φn ∗
WT

n 0 2Φn − χI









≥ 0, [Un]ss ≤ [~u]2s, (51)

[

X̃n ∗
(ΨΦn)

T Φn

]

≥ 0,
[

X̃n

]

ll
≤ [~x]2l (52)

Φ0 ≥ Θ (53)

where s = 1, 2, · · · , nu, l = 1, 2, · · · , h and Φn = ρP−1
n ,

ρ is defined Lemma 5, then the set Pn is an ellipsoidal ap-
proximating set of the OSSQun(Pn+1). Furthermore, the

condition
N−1
∑

i=0

l(x(k+i|k), u(k+i|k)) < xT (k|k)Pnx(k|k)
holds for any n ∈ {0, 1, · · · , N − 1}. The corresponding
feedback gain is given by

Kn = WnΦ
−1
n . (54)

Proof: The similar line with Lemma 5 can be used to
conduct the proof. Due to the limitation of the space,
the proof is omitted.

Based on Lemma 7, the following offline optimization
problem is proposed to calculate the “best” controller
parameters Ki (i = 0, 1, · · · , N − 1):

OP3 min
{Pn,ρ}>0,Wn

trace(P0)

s.t. (49)− (53).

4.3 Online optimization algorithms

For system (1a), the prediction model is given by

x(k + n+ 1|k) = Ax(k + n|k) +Bu(k + n|k). (55)

Let M , argminn{x(k) ∈ Pn} and M̄ , min{M +
1, N}. Then, it is easy to see from Lemmas 6-7 that there
exist a sequence of control inputs u(k + i|k) such that

xT (k + i+ 1|k)PM̄x(k + i+ 1|k)− xT (k + i|k)
× PMx(k + i|k) ≤ l(x(k + i|k), u(k + i|k)) (56)

holds for any i = 0, 1, · · · , N under the constraints (2a)
and (2b) if the matrix inequalities in Lemma 6 and
Lemma 7 are solvable. Accordingly, it is easy to derive

from Lemma 7 that
∑N

n=1 l(x(k + n|k), u(k + n|k)) ≤
xT (k+1|k)PM̄x(k+1|k), holds for all n = 0, 1, · · · , N−1,
which means that
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JN (k) , σ(k) +

N
∑

n=1

l(x(k + n|k), u(k + n|k))

< σ(k) + xT (k + 1|k)PM̄x(k + 1|k) (57)

where σ(k) , xT (k)Qx(k) + uT (k)Ru(k). In this case,
at each time instant k, the cost function JN (k) can
be suppressed by minimizing the term σ(k) + xT (k +
1|k)PM̄x(k + 1|k) with the optimal control input u(k).

Assume that the matrix inequalities in Lemma 6 and
Lemma 7 are solvable. Letting ϕ be a certain upper
bound of JN (k), the following auxiliary optimization
problem can be formulated to solve u(k) [38]:

OP4







































min
u(k)

ϕ (58a)

s.t.σ(k) + xT (k + 1|k)PM̄x(k + 1|k) ≤ ϕ,(58b)
x(k + 1|k) ∈ PM̄ , (58c)

Ṽ1(k)− Ṽ0(k) ≤ −l(x(k|k), u(k)), (58d)

|[u(k)]s| ≤ [~u]s, (58e)
|[Ψ]lx(k + 1|k)| ≤ [~x]l. (58f)

where Ṽ1(k) , xT (k + 1|k)PM̄x(k + 1|k) and Ṽ0(k) ,

xT (k|k)PMx(k|k). Noting that some parameters inOP4
(e.g. Pn, n = 0, 1, · · · , N) are derived based on the re-
sults of OP2 and OP3, the feasibility of the online op-
timization algorithm depends on the conditions given in
Lemmas 5-7. Obviously, OP4 cannot be directly imple-
mented since the corresponding constraints are state-
dependent. Next, we transform the conditions of OP4
into some solvable linear matrix inequalities which can
be directly adopted for the controller.

Let us first establish a sufficient condition to guarantee
the constraint (58b). By employing x(k) = e(k) + x̄(k)
and inequality property, (58b) can be guaranteed by

2x̄T (k)
(

Q+ 2ATPM̄A
)

x̄(k) + 2eT (k)
(

Q+ 2ATPM̄A
)

× e(k) + uT (k)
(

R+ 2BTPM̄B
)

u(k) ≤ ϕ.
(59)

By virtue of (4), (59) holds if

2x̄T (k)
(

Q+ 2ATPM̄A
)

x̄(k) + 2λmax{Θ}χ
+ uT (k)

(

R+ 2BTPM̄B
)

u(k) ≤ ϕ
(60)

where Θ = Q + 2ATPM̄A. By using the Schur Comple-
ment Lemma, (60) holds if and only if









ϕ− 2λmax{Θ}χ ∗ ∗
(

R+ 2BTPM̄B
)

1

2 u(k) I ∗
(

2
(

Q+ 2ATPM̄A
))

1

2 x̄(k) 0 I









≥ 0. (61)

Thus, (61) suffices (58b). Furthermore, (58c) implies

xT (k + 1|k)Φ−1
M̄

x(k + 1|k) ≤ 1. (62)

By means of the S-procedure technique, (62) holds if
and only if the following inequality

xT (k + 1|k)Φ−1
M̄

x(k + 1|k)− 1− ς
(

eT (k)e(k)− χ
)

≤ 0
(63)

is true with ς > 0 under the condition eT (k)e(k) ≤ χ.

Substituting (55) and x(k) = e(k)+ x̄(k) into (63) yields

(Ae(k) +Ax̄(k) +Bu(k))
T
Φ−1

M̄
(Ae(k) +Ax̄(k)

+Bu(k))− 1− ς
(

eT (k)e(k)− χ
)

≤ 0.
(64)

By resorting to the Schur Complement Lemma, (64) is
true if and only if

[

1 eT (k)
]









1− ςχ ∗ ∗
0 ς ∗

Ax̄(k) +Bu(k) A ΦM̄









[

1

e(k)

]

≥ 0. (65)

Obviously, (65) is true if








1− ςχ ∗ ∗
0 ς ∗

Ax̄(k) +Bu(k) A ΦM̄









≥ 0. (66)

Thus, (66) guarantees (58c).

On the other hand, along the similar lines, it can be
found that the condition (58d) is achieved if the following
inequality holds:









2λmax{Θ̂}χ ∗ ∗
(R+ 2BTPM̄B)

1

2 u(k) −I ∗
(2(Q+ 2ATPM̄A− PM ))

1

2 x̄(k) 0 −I









≤ 0 (67)

where Θ̂ = Q+ 2ATPM̄A− PM − τI.

It can be seen that (58e) and (58f) are satisfied if the
following inequalities are true:
[

F ∗
uT (k) I

]

≥ 0, [F]ss ≤ [~u]2s, s = 1, 2, · · · , nu (68)

[

G ∗
(ΨΦM̄ )

T
ΦM̄

]

≥ 0, [G]ll ≤ [~x]2l , l = 1, · · · , h. (69)

According to the above analysis, OP4 can be trans-
formed into the following optimization problem:

OP5 min
u(k)

ϕ

s.t. (61), (66), (67), (68), (69) and (50).
(70)

4.4 Stability analysis

Theorem 2 Assume that conditions (13), (23) and (35)
are satisfied, and (P0

⋃

P1

⋃

· · ·
⋃

PN−1

⋃

ΩN )
⋂

X0 6=
∅, where∅ denotes a set containing no element. For sys-
tem (1a)-(1b), if the offline optimization problems OP2
and OP3 are feasible, then for any initial state x0 sat-
isfying x0 ∈ (P0

⋃

P1

⋃ · · ·⋃PN−1

⋃

ΩN )
⋂X0, the on-

line optimization problem OP5 is feasible, and the sys-
tem state can be steered into the terminal constraint set
within N steps. Furthermore, the closed-loop system is
asymptotically stable.
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Proof: Let us prove this theorem in two steps.

i) Feasibility: Noticing (50) is equivalent to (58b),
it can be easily found from (59)-(60) that (61) can
be guaranteed by choosing a sufficiently big ϕ. (66)
can be guaranteed by (49) with a proper ς . Con-
straints (68) and (69) can be guaranteed by hard
constraints (61) and (52). Since OP3 is feasible and
x(k + 1|k) = x(k + 1), for any initial state x0 satisfy-
ing x0 ∈ (P0

⋃

P1

⋃

· · ·
⋃

PN−1

⋃

ΩN )
⋂

X0, the online
optimization problem OP5 is feasible at k = 1. Such a
procedure can be conducted to all the future instants,
thenOP5 is feasible for any k > 0. Furthermore, in sub-
section 4.3, we have shown that a feasible control u(k)
can steer the state x(k) ∈ PM \PM+1. Thus, even in the
worst case, i.e., x(k) ∈ P0 \ P1, the state can be steered
into the terminal constraint set no more than N steps.

ii) Asymptotical stability:We only need to prove that the
system is asymptotically stable under the feedback gain
KN after it enters the terminal constraint set.

Denote ṼN (x(k)) , xT (k)PNx(k). SinceOP2 is feasible
and x(k + 1|k) = x(k + 1), it can be derived from (48)
that

ṼN (x(k + 1))− ṼN (x(k))

< −
(

‖x(k)‖2Q + ‖u(k)‖2R
)

+ τ ‖e(k)‖2 , (71)

which implies that ṼN (x(k + 1)) − ṼN (x(k)) < 0 hold-
s under the constraint ‖x(k)‖2Q > τ‖e(k)‖2. Accord-
ingly, we have ṼN (x(k + 1)) − ṼN (x(k)) < 0 for al-

l x /∈ Ω̃k , {x|‖x‖2Q ≤ τ‖e(k)‖2}. All the state out-

side the set Ω̃k will be steered into the time-varying set
Ω̃k asymptotically. Owing to the detectability of system
(1a)-(1c), it can be concluded from Definition 4 that

limk→∞ ‖e(k)‖ = 0, which implies that limk→∞ Ω̃k =
{0}. Thus, it can be concluded that limk→∞ x(k) =
0, which guarantees the asymptotical stability of the
closed-loop system. The proof is thus complete.

Next, we are going to find an implementation problem
of OP5 based on the available information (i.e. x̄(k)).
Considering the definition of Pn, the constraint of Pn is
rewritten as follows:

(e(k) + x̄(k))T Φ−1
n (e(k) + x̄(k)) ≤ 1. (72)

Since

2x̄T (k)Φ−1
n e(k) ≤ x̄T (k)Φ−1

n x̄(k)+eT (k)Φ−1
n e(k) (73)

(72) holds if the following equality is true:

x̄T (k)Φ−1
n x̄(k) + eT (k)Φ−1

n e(k) ≤ 0.5. (74)

By virtue of (4), (74) is ensured by

x̄T (k)Φ−1
n x̄(k) ≤ 0.5− λmax{Φ−1

n }χ. (75)

Thus, the constraint of Pn can be guaranteed by (75).

Define the set

Qn ,
{

x̄(k)
∣

∣x̄T (k)Φ−1
n x̄(k) ≤ 0.5− λmax{Φ−1

n }χ
}

.

Obviously, x(k) ∈ Pn can be guaranteed if x̄(k) ∈ Qn,
n = 0, 1, · · · , N .

Algorithm 1

Offline part:
Step 1. Solve the observer gain L and scalars α and β

by Lemma 1, and solve the scalar µ by Lemma 2.
Step 2. Compute the terminal constraint set ΩN and the

corresponding feedback gain KN by OP2. Then,
calculate QN .

Step 3. Obtain the approximating sets of OSSs Pi and the
corresponding feedback gain Ki (i = 0, · · · , N − 1)
by OP3. Then, derive the set Qi according to the
proposed OSSs Pi.

Online part:
Step 1. Set the initial instant k = 0 and x̄(0) = 0.
Step 2. According to n , argmini{x̄(k) ∈ Qi}, compute

the value of n.
Step 3. Derive the desired control input u(k) by solving

OP5. Set k = k + 1 and go to Step 2.

Remark 3 So far, we have discussed the N -step MPC
problem for a class of linear time-invariant systems vi-
a an observer-based coding-decoding scheme. Obvious-
ly, the proposed N -step MPC strategy is an offline-to-
online synthetic algorithm. Compared with the zero-step
MPC [28, 29], the N -step MPC can reduce the online
computation burden and obtain better practical applica-
bility at a very little sacrifice of the control performance.
Noting that the offline part is of great importance for the
online implementation of Algorithm 1, since the online
part is implemented based on the parameters derived by
the offline part (e.g. Pn, n = 0, 1, · · · , N). It can be ob-
served that, in the co-design of the observer-based endec-
decoder scheme and theN -step MPC strategy, Algorithm
1 covers all important factors contributing to the com-
plexities: 1) coding/decoding period p, 2) quantization
density a, 3) step size N and 4) terminal constraint set
ΩN .

5 Numerical Examples

Consider the following discrete-time system:


































x(k + 1) =

[

0.94 −0.72

0.96 0.93

]

x(k) +

[

0.15 1.6

1.6 −1

]

u(k)

, Ax(k) +Bu(k)

y(k) =

[

1 0

0 1

]

x(k) , Cx(k).

The upper bounds for hard constraints and the weighting
matrices are given by

~u =

[

30

30

]

, ~x =

[

50

50

]

, Q =

[

0.005 0

0 0.005

]

,

R =

[

0.1 0

0 0.6

]

, Ψ =

[

1 2

2 1

]

.

Choose the initially feasible scalars ξ∗ = 0.5 and ξ̃∗ =
0.55, the positive scalars τ̃n = τ = 0.8. From Lemma 1,
we can obtain β = 0.5 and the observer gain is calculated
as

9



L =

[

0.9334 −0.0309

−0.0462 0.9366

]

.

By setting the decoding period as p = 2, one derives
from Lemmas 1 and 2 that α = 0.7471, µ = 2.7290,
r0 = 0.086 and q = 30. The norm bound of the decoding
error is calculated by χ = 50. By solving OP2, the ter-
minal constraint set ΩN =

{

x ∈ Rn|xTΦ−1
N x ≤ 1

}

and
the corresponding feedback gain are obtained as follows:

ΦN =

[

101.8069 6.1059

6.1059 138.0573

]

,

KN =

[

−0.5607 −0.1748

−0.2875 0.2811

]

.

By solving the offline optimizationOP3 backwards, it is
verified thatOP3 is feasible by lettingN = 17. Then, we
derive a sequence of approximating sets for OSSs. Thus,
the number of approximation sets of OSSs is 16. The
initial state and its estimate are, respectively, selected

as x(0) =
[

−20 10
]T

and x̂(0) =
[

−10 7
]T

.

In the simulation results, Fig. 2 plots the responses of
system states and decoder states without control input.
Fig. 3 depicts the response of system states with the
N -step MPC approach via the observer-based endec-
decoder scheme. It is easily seen from Fig. 3 that system
states belonging to the initial feasible region are steered
into the terminal constraint set quickly and stay inside.
Fig. 4 shows the responses of system states, observer s-
tates and decoder states, respectively, and Fig. 5 draws
the response of decoding errors, which effectively veri-
fies the detectability and the asymptotical stability of
the closed-loop system. This example demonstrates the
effectiveness of the proposed endec-decoder scheme and
the N -step MPC algorithm.
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Fig. 2. Responses of plant states and decoder states without
control.

6 Conclusion And Future Work

6.1 Conclusion

This paper has addressed theN -stepMPC problem for a
class of NCSs via a communication channel with limited
bandwidths. In order to reduce the communication bur-
den as well as guarantee the security of the data trans-
mission, an endec-decoder scheme has been proposed in

Fig. 3. Response of plant states.
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Fig. 4. Responses of plant states, observer states and decoder
states, respectively.
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Fig. 5. Response of decoding errors.

the backward channel, where an auxiliary decoder with
the same dynamic behavior as the decoder has been uti-
lized in order to obtain the decoding value at the encoder
side. By co-designing an observer-based endec-decoder
scheme and an N -step MPC strategy, sufficient condi-
tions have been established such that the underlying sys-
tem is detectable and asymptotically stable. An algo-
rithm including both offline and online parts has been
presented to derive a set of desired control laws. In the
end, an illustrative example has been utilized to demon-
strate the effectiveness of the proposed controller design
scheme.

6.2 Future work

In this paper, we have focused on the investigation of the
MPC problems for NCSs subject to the limited amount
(bits) of data transmission. In our future work, the re-

10



search topics would include the extension of the main
results to 1)the MPC problems of more general system-
s like uncertain stochastic nonlinear systems [2, 7, 26];
2) the MPC problems of NCSs with network-induced
phenomena like time delay and packet loss [15, 23, 28];
3) the moving-horizon estimation problem of networked
systems [45,46]; and 4) the improvement of the state es-
timation performance by using some latest optimization
algorithms [19, 20].
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