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Abstract. With the advent of deep learning, research on noise-robust
sound event detection (SED) has progressed rapidly. However, SED per-
formance in noisy conditions of single-channel systems remains unsatis-
factory. Recently, there were several speech enhancement (SE) methods
for the SED front-end to reduce the noise effect, which are completely two
models that handle two tasks separately. In this work, we introduced a
network trained by a two-stage method to simultaneously perform signal
denoising and SED, where denoising and SED are conducted sequentially
using neural network method. In addition, we designed a new objective
function that takes into account the Euclidean distance between the out-
put of the denoising block and the corresponding clean audio amplitude
spectrum, which can better limit the distortion of the output features.
The two-stage model is then jointly trained to optimize the proposed
objective function. The results show that the proposed network presents
a better performance compared with single-stage network without noise
suppression. Compared with other recent state-of-the-art networks in the
SED field, the performance of the proposed network model is competi-
tive, especially in noisy environments.

Keywords: sound event detection, denoising block, two-stage method,
neural network.

1 Introduction

Sound event detection (SED) is currently an important research topic in the
field of acoustic signal processing. The purpose of SED is to detect specific sound
events in different scenes and to locate the onset and offset times of target sound
events present in an audio recording. This technique has great influences in many
fields, such as anomaly detection, acoustic surveillance, and smart house [1–3].
To promote SED, the Acoustic Scene and Event Detection and Classification
(DCASE) Challenge was launched as an international challenge in 2013.

Since DCASE released Task 2 in 2017, rare sound event detection has re-
ceived more and more attention [4–6]. In [7], Lim et al. introduced a rare sound
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event detection system using the combination of one-dimensional (1D) convolu-
tional neural network (1D ConvNet) and recurrent neural network (RNN) with
long short-term memory units (LSTM), and ranked the first place in DCASE
task 2. Kao et al. proposed a Region-based CRNN (R-CRNN) [8] to improve
previous work. In [9], Zhang et al. proposed a multiscale time-frequency CRNN
(MTF-CRNN) with low parameter counts for SED. In [10], He et al. proposed
a time-frequency attention model for sound event detection to alleviate the
problems caused by data imbalance. These models achieve excellent perfor-
mance.hongqingliu@outlook.com

The negative impact of uncorrelated environmental noise on the performance
of the SED system has attracted increasing attentions. With the developments
of speech enhancement technology, in the field of acoustic signal processing,
many researchers have conducted noise suppression preprocessing before training
their model [11–13]. In the past single-channel SED tasks, similar methods have
also been used. In response to this problem, Zhou et al. proposed robust sound
event detection through noise estimation and source separation using NMF [14].
Later, Feng et al. proposed an adaptive noise reduction method for sound event
detection based on non-negative matrix factorization (NMF) [15]. Wan et al.
proposed noise robust sound event detection using deep learning and audio en-
hancement [16]. In wan’s method, first, the noisy speech is denoised using the
Log Spectrum Amplitude Estimation (OMLSA) audio enhancement method.
Then the denoised audio is used as the input of the SED network. This scheme
can improve the performance of the SED system, but at the same time there
are some shortcomings in two aspects. First, two different models are used to
handle two different tasks separately. Especially during the inference period, it
is also necessary to run the two models separately in sequence, which is rela-
tively redundant and complicated. Second, during training, the audio distortion
caused by the denoising system will cause the performance of the SED system to
seriously degrade. A method should be found to punish the degree of distortion
caused by the denoising system during training. In this way, the two systems
before and after can be related to each other.

To mitigate this problem, in this paper, inspired by a two-stage enhancement
strategy [17] for impaired speech, we propose a two-stage deep learning network
for SED. In the proposed network, we first train denoising network and the SED
network separately so that the network learns the weights of the corresponding
tasks. After that, we jointly train the two modules to make the network learn
the ability to handle two tasks at the same time, which is relatively difficult for
combining essentially two different tasks. Finally, an optimized system that can
perform denoising and SED tasks at the same time is obtained. In addition, we
propose a new weighted loss function, which can punish the distortion caused by
the denoising network to associate the front and back models. This loss function
plays an important role in the improvement of model performance.

The remainder of this paper is organized as follows. In Section 2, we first
introduce the single-task signal model separately, and then, the proposed two-
stage deep learning network is presented. The dataset, experimental setups, and
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evaluation metrics are illustrated in Section 3. The results and analysis are given
in Section 4. Finally, we conclude our work in Section 5.

2 Methods

In this section, we first introduce the notations and then describe the frequency-
domain denoising networks that we use in our experiments. Figure 1 shows a
schematic diagram of the proposed system, which consists of a denoising block
and a SED block.

2.1 Signal Model

Fig. 1. System diagram of the proposed two-stage model.

Let us consider a single-channel microphone signal, denoted by y(t)

y(t) = s(t) + n(t), (1)

where s(t) is the clean signal (the target event), n(t) is background noise, and
t is a time index. In this paper, the background noise does not include obvious
target detection events. The purpose of the first level of the two-stage system is
to recover a clean signal s(t) from the corresponding noisy observations y(t) to
prepare for the SED.

2.2 Denoising block

The denoising block in Figure 1 is a schematic diagram of the denoising NN
framework in the frequency domain. The denoising block is performed by 2
steps, (1) STFT, (2) mask estimation.

(1) STFT: When working in the frequency-domain [18], we usually compute
the amplitude of the STFT coefficients to work on real numbers before inputting
them to the mask estimation network. After the microphone signal is transformed
by STFT, the time-frequency spectrum can be obtained, denoted by xy, where
xy is the amplitude spectrum of the noise signal y(t).
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(2) Mask estimation: We estimate a denoising mask using a mask esti-
mation network. The structure of this mask estimation network is similar to
the U-Net, which is a well known architecture composed as a convolutional au-
toencoder with skip-connections [19]. The mask estimation NN should account
for the time context of the signal to distinguish speech from noise. This can be
achieved by using BLSTM layers. In mask estimation, convolutional encoder is
stacked by convolutional layers and pooling layers. It is used to extract high-
level features from the original input signals. The structure of the decoder is
basically the same as the encoder, but the order is reversed. The decoder maps
the low-resolution feature map at the output of the encoder to the full feature
map of the input size. The symmetrical encoder-decoder structure ensures that
the output has the same shape as the input. Because the detection network only
needs a clean sound spectrum with no change in size, this better prepares the
conditions for the input of the latter stage.

The output of the mask estimation network is a single mask used to predict
speech as

ms = MSnet(xy), (2)

where MSnet(·) is a mask estimation network, and ms is the masks associated
with speech.

We apply ELUs [20] to all convolutional and deconvolutional layers except
the output layer. In the output layer, we use softmax activation [21], which
can constrain the network output to always be positive. The input size and
output size of each layer are unified in the form of Feature Maps × Time Step
× Frequency Channel.

For frequency-domain networks, we use the mean square error loss (MSE) as
the loss

 Ls,y(θ) =
1

M
(‖xs −ms � xy‖2), (3)

where xs is the amplitude spectrum of the target speech (the clean speech)
signal, � is an element-wise multiplication, θ is the parameter of the denoising
network, ‖ · ‖2 is Euclidean norm (L2 norm), M is the total number of pixels,
and its size is Batch Size × Time Step × Frequency Channel.

2.3 SED block

For SED, we follow the state-of-the-art CRNN framework as a baseline [10]. In
the SED block of Figure 1, the CRNN structure consists of three parts of CNN,
RNN and Fully Connected Layer .

The convolution part of the network consists of four convolution layers, and
each layer is followed by batch normalization [22], ReLU activation unit, and
dropout layer [23]. Since we believe that the early convolutional layer is essential
for feature learning, the first two convolutions of the network are stacked back
to back. In order to maintain the most important information on each feature
map, we use the max pooling layer on the time axis and frequency axis. The
final feature map is reduced by four times in the time axis to match the frame



Robust Sound Event Detection by a Two-stage Network 5

resolution (80 ms) for computing the evaluation metrics. In the end of the CNN,
the features extracted on different convolution channels are superimposed along
the frequency axis.

In the RNN part, we use a bi-directional gated recurrent unit (bi-GRU) layer,
which can better extract the time structure of acoustic events compared with uni-
directional GRU. Bi-GRU encodes sequence feature into a sequence of feature
vectors of size (375, U), where U is the number of GRU units. The returned
features from the GRU layer is maintained and sent to a fully-connected layer
(FCL) with an output size of C, where C is the number of event classes. After the
FCL, sigmoid activation is used to produce classification result for each frame
(80 ms), of which output represents the probability of the presence of the target
sound event.

Finally, we set a binary prediction to a constant threshold of 0.5 for each
frame. These predictions are post-processed through a median filter of length 240
ms. We choose the longest continuous forward prediction sequence to produce
the start and offset of the target event.

2.4 Weighted multi-task loss

In many cases, the denoised audio will have a small amount of signal distortion
compared with the clean target signal. Therefore, the target sound event in the
denoised audio may be distorted, which will seriously affect the accuracy of the
SED system in estimating the onset and offset of the target event. To mitigate
this problem, in this paper, we propose an improved weighted multi-task loss
function. Our weighted multi-task(WMT) loss  Lwmt(θ) is defined as,

 Lwmt(θ) = λE(‖ xs − f(xy) ‖2) +  Lbce(q ‖ p) (4)

where f function represents denoising block, ‖ · ‖2 is Euclidean norm (L2 norm),
λ denotes the penalty factor of the denoising block,  Lbce represents cross-entropy
loss function, p and q are the output probability and label of the proposed model,
respectively.

Our experiments have shown that penalizing the denoised block by measur-
ing the Euclidean distance between the spectrogram of the clean speech and the
amplitude spectrum of the denoised speech can solve this problem. This is also
in full compliance with our assumptions. When the denoising block produces
large distortion,  Lwmt(θ) will punish the denoising block and force the network
to learn in the correct direction so that the effect of distortion is minimized. Con-
versely, when the denoising block produces less distortion, the penalty produced
by  Lwmt(θ) will become smaller.

2.5 Two-stage Network

In Figure 1, we connect the denoising block and SED block into a larger net-
work for joint optimization. In the denoising stage, we transform signal (noisy
and clean) to 883-dimensional STFT. The obtained amplitude spectrum is used
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as the input feature. In the detection stage, 128 Mel-scale filters are applied
to the amplitude spectrum output by denoising block on each frame, covering
the frequency range of 300 to 22050 Hz. We add a batch normalization layer
before sending the estimated features to the next level network to ensure that
the input of the SED block is correctly normalized. During training, this layer
keeps exponentially moving averages on the mean and standard deviation of
each mini-batch. During testing, such running mean and standard deviation are
fixed to perform normalization. By using the features processed by normaliza-
tion and log-mel filters, we expect closer coupling between the separately trained
denoising stage and SED stage, which can benefit joint training. After that, the
normalized log-Mel features are directly sent to the SED block for detection.
Since each step above is differentiable, we can derive the error gradients to
jointly train the whole system.

Before joint training, the denoising block and SED block are trained sepa-
rately, and the obtained parameters are used for the initializations of the two-
level SED system.This network is considered to be a large network that can
handle the dual tasks of removing noise and sound event detection at the same
time, which is different from other methods.

3 Experiments

3.1 Data

We demonstrate the proposed model on DCASE 2017 Challenge task 2 [24]. The
task dataset consists of isolated sound events for each target class and recordings
of everyday acoustic scenes to serve as background. The task dataset consists
of three target event categories: baby crying, breaking glass, and shooting. A
synthesizer for creating mixtures at different event-to-background ratios (EBRs)
is also provided. The dataset comprised of development dataset and evaluation
dataset. The environmental noise and target sound format in the evaluation
data set did not appear in the training data set. The development dataset also
includes two parts: training subset and test subset. The detailed information
about this task and dataset can be found in [24,25].

We use the provided synthesizer to generate 5000 mixtures for each tar-
get class and generate the clean signal corresponding to each mixed audio as a
label for denoising block pre-training. In order to simulate different EBR envi-
ronments, we set EBR to three situations of -6dB, 0dB, and 6dB. In order to
obtain more positive samples and alleviate the problem of data imbalance, the
probability of occurrence of the event is set to 0.9 (the default value is 0.5).

3.2 Experimental setup

The training is divided into pre-training and joint training. Before joint training,
the denoising block and SED block need to be pre-trained separately. For the
pre-training of the denoising block, the amplitude spectrum feature of the noisy



Robust Sound Event Detection by a Two-stage Network 7

speech is used as the input of the denoising network, and the amplitude spectrum
corresponding to the clean speech is used as the label. The number of GRU
units U is 32 in SED block. During the joint training, the pre-trained neural
networks are used to initialize the weights of the joint network to achieve a better
optimization and accelerate the optimization process. The two-stage network
block is trained with the Adam optimizer [26]. λ is set to 0.2. The learning rate
is 0.001 for the first 60 epochs and is then decayed by 10 % after each epoch that
follows. The training stops after 100 epochs. The batch size is 16 and sigmoid
activation is used on the last layer of the FCL for our classification model. The
output probability distribution is in the continuous range of [0, 1].

3.3 Metrics

We follow the official evaluation metrics of DCASE Challenge. There are two
types of event-based metrics: event-based error rate (ER) and event-based F-
score. The definition of these two evaluation calculations can be found in [27].
The correct prediction only needs to consider the existence of the target event
and its onset time. If the output accurately predicts the presence and onset
of the target event, we express it as correct detection. The onset detection is
considered accurate only when it is predicted within the range of 500 ms of the
actual onset time. The ER is the sum of deletion error and insertion error, and
F-score is the harmonic average of precision and recall.

4 Results

4.1 Experimental results

Table 1. Performance of the proposed model, baseline method, and noise robust net-
works, ∗∗∗ indicates that class-wise results are not given in related paper. We compared
other noise robust networks and there is no denoising block in the baseline.

Model Metric
Development Dataset Evaluation Dataset

babycry glassbreak gunshot average babycry glassbreak gunshot average

supervised NMF [14] ER|F-score ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ 0.17| 91.4 0.22| 89.1 0.55 |72.0 0.31|84.2

Subband-Weighted NMF [15] ER|F-score ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ 0.10|94.8 0.06|96.9 0.46|76.2 0.21|89.3

Baseline ER|F-score 0.16|88.4 0.06|92.2 0.24|85.9 0.15|88.3 0.32|83.2 0.22|87.3 0.37|80.2 0.30| 83.5

Proposed ER|F-score 0.09|95.8 0.03|98.6 0.04|96.7 0.05|97.0 0.16|91.3 0.06|97.1 0.12|94.1 0.11|94.2

Proposed+MWT ER|F-score 0.07|96.5 0.02|99.0 0.04|97.1 0.04|97.5 0.14|92.9 0.04|97.8 0.09|95.0 0.09|95.2

The ER and F-score of the proposed model and other models are shown in
Table 1. Results show that the proposed outperforms the baseline due to the noise
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Table 2. Performance of the proposed model and other state-of-the-art methods,
∗ ∗ ∗ indicates that class-wise results are not given in related paper. We compare
the following models:(1)1d-CRNN: DCASE 1st place model;(2)R-CRNN: Region-
based CRNN;(3)MTF-CRNN: Multi-scale CRNN.(4)TFA: temporal-frequential atten-
tion CRNN;

Model Metric
Development Dataset Evaluation Dataset

babycry glassbreak gunshot average babycry glassbreak gunshot average

1d-CRNN [7] ER |F-score 0.05 |97.6 0.01|99.6 0.16|91.6 0.07|96.3 0.15|92.2 0.05|97.6 0.19|89.6 0.13|93.1

R-CRNN [8] ER|F-score 0.09|∗ ∗ ∗ 0.04|∗ ∗ ∗ 0.14|∗ ∗ ∗ 0.09|95.5 ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ 0.23|87.9

MTF-CRNN [9] ER|F-score 0.13|91.8 0.04|97.6 0.11|93.3 0.09|94.2 0.15|89.7 0.08|95.1 0.28|83.9 0.17|89.2

TFA [10] ER|F-score 0.10|95.1 0.01|99.4 0.16|91.5 0.09|95.3 0.18|91.3 0.04|98.2 0.17|90.8 0.13|93.4

Proposed+MWT ER|F-score 0.07|96.5 0.02|99.0 0.04|97.1 0.04|97.5 0.14|92.9 0.04|97.8 0.09|95.0 0.09|95.2

suppression. Compared with other noise robustness models, the performance of
the proposed two-stage is also superior on evaluation datasets, which indicates
that the proposed network is more robust to noise. In addition, using WMT
as the loss function can further improve the performance of the proposed SED
system, which verifies that the WMT mentioned above can reduce the distortion
caused by the denoising block. We point out that the final model we get is a
complete model, which is fundamentally different from the two models proposed
by Wan et al., especially during model testing.

Table 2 shows performance comparisons of the proposed model and other
state-of-the-art SED methods in terms of ER and F-score. Compared with other
approaches, the performance of our model is also competitive. The average ER
(0.09) and average F-score (95.2%) of the proposed model are better than those of
all models. Note that of the top 1 teams adopt ensemble method. Although Lim
et al. [7] achieves relatively good results, its final decision is made by combining
the output probabilities of more than four models with different time steps and
different data mixtures. However, the proposed model is treated as a single
model.

4.2 Denoising block visualization

To better understand our proposed network, We visualized the output of the
denoising block in the two-level network. Figure 2 shows that the two-stage
model we proposed has actually learned how to suppress noise. We selected an
audio with a baby crying to visualize and the baby’s crying occurs from 20.49
seconds to 21.43 seconds, which is marked by a blue frame. The target event
is under park noise. After noise suppression, the target sound becomes clearer.
This confirms that our proposed network achieves the dual tasks of denoising
and detection at the same time.
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(a)

(b)

Fig. 2. Visualization of denoising block output.(a) spectrogram of an noisy speech,
where the blue box denotes target event. (b) spectrogram of denoising block output.

5 Conclusion

In order to solve the impact of noise on SED, in this work, we propose a two-
stage model to perform the joint task of signal denoising and SED. In addition,
we propose a loss function that is conducive to network optimization. Our sys-
tem can achieve the best performance on DCASE evaluation dataset. Compared
with other noise robust networks, the joint network performance is better. Com-
pared with other networks, the proposed model also outperforms them thanks
to the noise suppression. The large improvement demonstrates the benefits of
introducing the denoising block.
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