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Abstract. This paper presents a novel end-to-end multi-channel speech
enhancement using complex time-domain operations. To that end, in
time-domain, Hilbert transform is utilized to construct a complex time-
domain analytic signal as the training inputs of the neural network.
The proposed network system is composed of complex adaptive complex
neural network beamforming and complex fully convolutional network
(CNAB-CFCN). The real and imaginary parts (RI) of the clean speech
analytic signal are used as training targets of the CNAB-CFCN network,
and the weights of the CNAB-CFCN network are updated by calculating
the scale invariant signal-to-distortion ratio (SI-SDR) loss function of the
enhanced RI and clean RI. It is fundamentally different from the com-
plex frequency domain single channel approach. The experimental results
show that the proposed method demonstrates a significant improvement
in end-to-end multi-channel speech enhancement scenarios.

Index Terms: end-to-end, multi-channel, speech enhancement, complex oper-
ations

1 Introduction

The purpose of the speech enhancement algorithms is to suppress the background
noise and to improve the quality and intelligibility of speech [1]. Recent studies
show that deep learning based single-channel speech enhancement methods have
achieved a great success, for example, the convolutional recurrent network (CRN)
in [2] and dual-signal transformation LSTM network (DTLN) in [3] demonstrate
promising results. The further studies indicate that these methods can also be
applied to multi-channel speech enhancement. Due to the availability of multi-
ple microphones, multi-channel signals contain spatial information, which can
improve the system performance over single-channel speech enhancement, if uti-
lized properly.
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In supervised learning, the techniques of estimating the time-frequency mask
have become popular in both multi-channel and single-channel scenarios. In [2],
intra-channel and inter-channel features are used as the input of the model to
estimate phase sensitive mask (PSM) [4, 5] and then applied to the reference
channel of dual-channel speech. However, this method ignores the phase infor-
mation and directly uses the phase from the noisy signal to reconstruct the
enhanced speech, which may result in phase distortion of the enhanced speech.
Several methods that utilize phase information have been proposed [5, 6], but
they still operate in the real number domain. This limits the upper limit of speech
enhancement when the phase information estimation is not accurate enough.

To overcome the lack of properly utilizing phase information, deep complex
U-net [7] that combines the advantages of deep complex network and U-net [8]
is developed to process spectrogram with complex values to further improve the
performance of speech enhancement. In [9], a complex number network is de-
signed to simulate complex value operations, termed as deep complex convolution
recurrent network (DCCRN), where both CNN and RNN structures handle the
complex-valued operations. In DCCRN, the real and imaginary (RI) parts of the
complex STFT spectrogram of the mixture are used as the input to the network,
and both the amplitude and phase of the spectrogram can be reconstructed by
the estimated RI. However, this is a single channel based approach and it is
in frequency domain. In 2020, Wang [10] proposed a complex spectral mapping
combined with minimum variance distortion-less response (MVDR) beamform-
ing [11] for multi-channel speech enhancement approach. The enhanced signal
spectrum is predicted in the neural network, and by calculating the covariance
matrix of the signal and noise, the beamforming filter coefficients are produced.
Without computing the covariance matrix, neural network adaptive beamform-
ing (NAB) directly learns beamforming filters from noisy data, which avoids
estimating the direction of arrival (DOA) [12], and the results demonstrate that
NAB outperforms the traditional beamforming methods such as MVDR.

In this work, we propose an end-to-end multi-channel speech enhancement
using complex operations that implicitly explore the phase information. To that
aim, we first develop a complex neural network adaptive beamforming (CNAB)
to predict complex time domain beamforming filter coefficients. It is worth noting
that the coefficient will be updated according to the changes of the noisy dataset
during the training process, which is different from the fixed filter in [13, 14].
After that, the obtained complex beamforming filter coefficients by the CNAB
are convolved with the input of each channel. The resulting signal is now single
channel and to further process the signal, we develop a second time-domain
complex network, called complex full convolutional network (CFCN), to predict
the complex time-domain information of the enhanced speech. The proposed
network is called CNAB-CFCN and results show that the proposed network
demonstrates a superior performance over the current networks.
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Fig. 1: (A) System flowchart. The input of each channel contains RI components.
The entire system is composed of CNAB and CFCN. (B) Complex LSTM. The
operation process of RI feature in complex LSTM.

2 Complex Neural Network Adaptive Beamforming

The proposed end-to-end time-domain multi-channel speech enhancement using
complex value operation network framework is depicted in Figure 1. It is of
interest to point out that the flowchart provides a dual-channel description,
but the extension to multi-channel is straightforward. It consists of complex
neural network adaptive beamforming and a complex fully convolutional network
(CNAB-CFCN). The input is complex time domain waveform, and the CNAB-
CFCN model is updated by calculating scale invariant signal-to-distortion ratio
(SI-SDR) loss [15].
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2.1 The formulation of input signal

Let xc(k)[t], s(k)[t], nc(k)[t] represent noisy, clean speech, and noise, respectively,
where c ∈ {0, 1} is used to distinguish signals from different microphones. Note
that c = 0 indicates the channel of the reference microphone. The relationship
between them in the room is

x0(k)[t] = s(k)[t] ∗ h0(k)[n] + n0(k)[t], (1)

x1(k)[t] = s(k)[t] ∗ h1(k)[n] + n1(k)[t], (2)

where t ∈ {0, 1, . . . , N − 1} is sample index in each frame k ∈ {0, 1, . . . ,M − 1},
h0(k)[n] ∈ RK×1 and h1(k)[n] ∈ RK×1 are the room impulse responses (RIRs)
corresponding to the microphones, R represents the set of real numbers. We
choose the speech received by the reference microphone as the target source for
training the network.

From (1) and (2), we only have real time domain waveform available. The
important step now is to generate the complex time domain signals to prepare the
input of the network. To that end, in this work, Hilbert transform is explored
to construct the analytic function xac(k)[t] ∈ CN×1, where C represents the
complex number set, given by

xa[t] = x[t] +H(x[t])

= x[t] + jx̂[t],
(3)

where H indicates Hilbert operator, and we omit the channel c and the frame
number k for convenience. From (3), it can be found that the imaginary part
x̂[t] ∈ RN×1 is obtained by Hilbert transform of x[t] ∈ RN×1. We now have both
the real and imaginary time domain waveforms for the proposed network.

2.2 Complex adaptive spatial filtering

The dual-channel noisy speech signal is subjected to Hilbert transform to obtain
the sequence of real and imaginary parts as the input of CNAB model architec-
ture. The purpose of CNAB is to estimate the beamforming filters, which also
includes real and imaginary parts. The complex convolution of the beamforming
filter coefficients and the input RI is

ya[t] =(convr(Re(xa[t]))− convi(Im(xa[t])))

+ j(convr(Im(xa[t]) + convi(Re(xa[t])),
(4)

where conv denotes the convolution operation, and the subscripts r and i are
the real and imaginary parts of the CNAB, respectively, ya[t] is the output of
the complex convolution in one channel, and Re(·) and Im(·) respectively takes
the real and imaginary part of a complex signal.

Summing the results of different channels yields the final output

Nout = ya0[t] + ya1[t], (5)

where ya0[t] and ya1[t] respectively represent the beamforming results of two
channels, and Nout is the final output of CNAB.
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2.3 CNAB-CFCN architecture

In our CNAB-CFCN framework, we all use the rules of complex number opera-
tions. In Figure 1, for the CNAB part, complex LSTM is utilized to estimate the
filter coefficients, where the rule of complex LSTM is provided in Figure 1(B).
The first layer of the CNAB is a complex number LSTM, termed as complex
shared-LSTM, which takes complex time domain waveforms generated by Hilbert
transform as input. The next layer has two separated complex LSTMs, which
process two corresponding futures of each channel, called complex splited-LSTM.
Finally, the beamforming filters are produced by complex linear activations, and
the enhanced speech features are estimated through complex convolutions. The
specific operations of complex LSTM is

Lr = LSTMr(Re(xa[t]))− LSTMi(Im(xa[t])), (6)

Li = LSTMr(Re(xa[t])) + LSTMi(Re(xa[t])), (7)

Lout = Lr + jLi, (8)

where LSTMr and LSTMi are two ordinary LSTM networks, representing the
real part and imaginary part of complex LSTM, respectively, Lr ∈ RN×1 and
Li ∈ RN×1 are feature mappings of real part and imaginary part. The feature
mapping output Lout ∈ CN×1 by a complex LSTM is still a complex feature.

The output of CNAB now is a single channel time domain waveform and to
further improve the system performance, we develop another complex network,
called complex fully convolutional network (CFCN). In Figure 1, for the CFCN
part, 1× 1 conv first separately processes the real and imaginary parts of Nout,
and then the output features are stacked together. After that, in partial complex
TCN, we repeat X 1-D convolution blocks with the dilated convolution factor
d = {1, 2, 4, ..., 2X−1} for R times, and the size of kernel is P . Note that only
the last 1-D convolution blocks is a complex network. The operation rules are
as follows.

Cout =(convr(Mr)− convi(Mi))

+ j(convr(Mi) + convi(Mr)),
(9)

where convr represents the feature mapping function corresponding to the real
convolution layer, and convi represents the feature mapping function correspond-
ing to the imaginary convolution layer, M is the feature map output by the upper
layer of the network, and Cout ∈ CT×1 is the output of the CFCN, which is also
the final output of the whole network.

2.4 Loss function

We train CNAB-CFCN to estimate the real and imaginary parts of clean speech
from noisy speech, and the weighted complex SI-SDR as a loss function is utilized
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to train our model, given by

SI-SDR = (1− λ)× 10 log10

‖βr ×Re(sa[t])‖2

‖βr ×Re(sa[t])− R̂t‖2

+ λ× 10 log10

‖βi × Im(sa[t])‖2

‖βi × Im(sa[t])− Ît‖2
,

(10)

βr =
R̂Tt Re(sa(t))

‖sa[t]‖2
= arg min

βr

‖βr ×Re(sa(t))− R̂t‖2, (11)

βi =
ÎTt Im(sa(t))

‖sa[t]‖2
= arg min

βi

‖βi × Im(sa(t))− Ît‖2, (12)

where R̂t ∈ RN×1 and Ît ∈ RN×1 indicate the real and imaginary parts of each
frame estimated by the CNAB-CFCN model, sa[t] is the analytical signal of the
clean speech from the reference channel, λ is a weighting constant in the range
of [0, 1]. When λ = 0, the network only uses the real part information to update
the network parameters, whereas when λ = 1 means that the network uses the
imaginary part information to update the parameters. The experiments indicate
that λ = 0.5 is a good empirical hyperparameter in this work.

Table 1: CNAB-CFCN model parameter configuration, where B is the batch size
and L is the length of the feature mapping.

layer name input size hyperparameters

complex input (B,2,16000)×2 −

complex sh-LSTM (B,2,100,160) (160,512)

complex sp-LSTM×2 (B,2,512) (512,256)

complex linear (B,2,256) (256,25)

Nout (B,2,16000) −

1 × 1 Conv (B,16000)×2 (1,256),40,20

layernorm (B,2,256,L) BatchNorm2d

complex 1 × 1 Conv (B,2,256,L) (1,1),(5,2),(2,1)

1-D Conv×23 (B,256,L) ...

complex 1-D Conv (B,128,L) ...

1 × 1 Conv (B,256,L) (256,512),1,1
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3 Experimental setup

To generate dual-channel speech, image method [16] was used. The azimuth of
the target source is on the same horizontal line as the two microphones and
close to the reference microphone. We define this angle as 0 degree. The noise
direction angle is uniformly distributed between 0 and 90 degrees at a 15 degree
interval. The space between the two microphones is 3 cm and the clean speech
and noise are 1 m away from the microphone. The simulated reverberation room
size is 10×7×3 m. The dual-channel clean and dual-channel noise generated by
the above configuration are randomly mixed from -5 to 10 dB, and the signal-
to-noise ratio (SNR) interval is 1 dB in the training set and the verification set.
Note that noise and clean are also randomly mixed at different directions. The
SNR of speech-noise mixtures include {-5, 0, 5, 10, 20}dB in the test set.

3.1 Production of dual-channel dataset

In this section, we use the dataset provided by deep noise suppression (DNS)
challenge [17] to train and evaluate our speech enhancement model, where all
audio clips are 16 kHz. We use the script provided by the DNS to generate 75 h
audio clips, and the size of each clip is 6 s long. In total, we generate 40400 clips
for training set and 4600 clips for validation set. In addition, we generate 3500
clips for testing, and the speech and noise did not appear in the training set.

Table 2: Number of complex 1-D convolution blocks.

No. 0 3 6 9 12

PESQ 3.257 3.291 2.501 2.497 2.506

3.2 Experimental setting

In this study, we divide 16 kHz speech signal with a duration of 6 s into 1 s
segments, and each segment contains 16000 sampling points. The Hilbert trans-
form is performed on the input speech segments to create complex time-domain
signals. Table 1 summarizes the parameter configurations of the model used,
where the input feature is dual-channel, and sh-LSTM and sp-LSTM are short
for shared-LSTM and split-LSTM, respectively. The format of hyperparameter
LSTM is input and output channels, and the format of Conv is input and output
channels, kernelsize, and stride. The structure of 1-D convolution blocks refers
to [18]. A complex 1-D convolution block is composed of two 1-D convolution
blocks, representing real 1-D Conv and imaginary 1-D conv, respectively. The
input channel size of the complex 1-D convolution block structure is half of 1-D
convolution blocks. To verify the effect of the number of complex 1-D convolu-
tion blocks, in Table 2, the PESQs of the proposed approach versus number of
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complex Conv are provided. It is found that increasing the number of complex
1-D Conv does not always improve the performance of the model, and at the
same time, it will increase the amount of model parameters by using more com-
plex Convs. Therefore, in current work, three complex 1-D Conv are utilized and
remaining Convs are still real.

Table 3: PESQ and STOI(%) on the simulated DNS dataset.

Model Mics Para (M)
PESQ STOI (%)

-5dB 0dB 5dB 10dB 20dB -5dB 0dB 5dB 10dB 20dB

noisy - - 1.37 1.67 1.98 2.32 2.99 66.91 75.57 83.26 89.32 96.43

C-TasNet 1 5.1 2.39 2.75 3.02 3.27 3.65 81.38 88.95 93.17 95.48 98.32
MFMVDR 1 5.3 2.45 2.83 3.08 3.35 3.70 84.73 90.52 93.34 96.25 98.43

CRN-i 2 0.08 1.56 1.89 2.28 2.63 3.24 69.51 78.68 86.27 91.77 97.36
CRN-ii 2 17.6 1.61 1.96 2.33 2.66 3.30 71.06 79.85 87.15 92.30 97.93
Prop. 2 9.2 2.75 3.07 3.32 3.52 3.81 89.22 93.29 95.74 97.27 98.81

3.3 Training baseline and training results

For comparisons, we reproduce CRN [2], Conv-TasNet (C-TasNet) [18], and
MFMVDR [19] based on our dataset for training and testing. Conv-TasNet is
a single-channel speech enhancement, and one channel of our noisy datasets is
used for training and testing. MFMVDR is trained according to the open source
project provided in [19]. Since MFMVDR is also a single-channel speech en-
hancement, the datasets are the same as C-TasNet. The parameters of CRN-i
are selected according to [2], while CRN-ii is the parameter we tuned based on
the dataset with reference to [20]. The experimental results are provided in Table
3, where the best results are highlighted with bold numbers. Compared with the
single-channel speech enhancement MFMVDR, our proposed method has a sig-
nificant improvement, which shows the benefits of multiple channels. Compared
with the dual-channel CRN model, the proposed method also demonstrates a
superior performance, regardless the sizes of the CRN model.

Table 4: The influence of interference sources in different directions on PESQ.

Method
Interference direction

15◦ 30◦ 45◦ 60◦ 75◦ 90◦

noisy 2.07 2.01 1.98 1.97 1.96 1.95
MVDR 2.03 2.02 2.03 2.12 2.21 2.27
Prop. 2.97 3.00 3.15 3.39 4.11 3.37
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Fig. 2: The number of trainable parameters (unit: million).

Table 5: The influence of complex time domain network on speech quality in
terms of PESQ and STOI.

Model Metrics
SNR

-5dB 0dB 5dB 10dB 20dB

NABFCN
PESQ 2.65 2.97 3.21 3.42 3.74

STOI (%) 87.44 92.14 94.98 96.77 98.62

CNAB-CFCN
PESQ 2.75 3.07 3.32 3.52 3.81

STOI (%) 89.22 93.29 95.74 97.27 98.81

In Table 4, we also analyze the effect of interference sources on the per-
formance of CNAB-CFCN model at different azimuths. It indicates that the
denoising performance is different at different directions, which agrees with the
concept of the traditional beamforming. However, compared with traditional
beamforming MVDR, the proposed neural beamforming indeed produces a bet-
ter performance.

Finally, we study the benefits brought by complex operations. The NABFCN
model is the same structure as the proposed CNAB-CFCN, but with real op-
erations. The model sizes of NABFCN and CNAB-CFCN are shown in Figure
2. Under the same scenarios, in Table 5, it is seen that the proposed complex
network outperforms its corresponding real one across all the input SNRs. Due
to the complex operations, the CNAB-CFCN also increases the model size over
the NABFCN, which needs further compression in real-time applications.

4 Conclusions

In this study, we propose a novel complex time domain means to perform an end-
to-end multi-channel speech enhancement network, termed as CNAB-CFCN.
The Hilbert transform is explored to generate complex time-domain waveforms.
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With the introductions of complex operation rules, the proposed model outper-
forms its corresponding real network, and other single- and dual-channel net-
works. In addition, the loss function SI-SDR considers both the real part and
imaginary part of the speech waveform to balance the speech quality. In the
experiments, we only demonstrated the performance of the proposed network
in the case of dual-channel, but the extension to more than two channels is
straightforward, which is our future work.
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