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Abstract. Dual-channel speech enhancement based on traditional beam-
forming is difficult to effectively suppress noise. In recent years, it is
promising to replace beamforming with a neural network that learns
spectral characteristic. This paper proposes a neural network adaptive
beamforming end-to-end dual-channel model for speech enhancement
task. First, the LSTM layer is used to directly process the original speech
waveform to estimate the time-domain beamforming filter coefficients of
each channel and convolve and sum it with the input speech. Second,
we modified a fully-convolutional time-domain audio separation network
(Conv-TasNet) into a network suitable for speech enhancement which is
called Denoising-TasNet to further enhance the output of the beamform-
ing. The experimental results show that the proposed method is better
than convolutional recurrent network (CRN) model and several popular
noise reduction methods.
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1 Introduction

Speech enhancement algorithm is an important technology to process speech in
noisy environments to improve speech quality and intelligibility [1]. In terms
of number of channels available, speech enhancements are divided into multi-
channel and single-channel cases. Because multi-channel methods exploit spatial
information, their performances are often better than that of the singlechannel
methods. Beamforming is often used in multi-channel speech enhancement.

The traditional beamformer needs a set of beamforming filters that are
convolved with signals from each channel before summation. The filters are
designed to enhance speech and suppress interfrence noise. The famous tra-
ditional beamforming approaches include minimum variance distortionless re-
sponse (MVDR) [2] and its generalized sidelobe canceller (GSC) formulation [3],
which minimizes the energy of the signal at the beamformer output. The beam-
former generally requires a steering vector that points beamformer to the target
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Fig. 1: NABDTN block diagram.

direction [4]. Generally speaking, the method of estimating the steering vector is
direction of arrival (DOA) estimation [5]. However, the performance of the DOA
algorithms is usually affected in complex acoustic environments, resulting in an
inaccurate steering vector estimation, which in turn degrades the performance
of beamforming.

In recent years, neural networks have been used to replace traditional beam-
forming methods and the results are very promising. It not only makes up for
the shortcomings of beamforming that cannot be applied to complex acoustic
environments, but also has a better performance than beamforming. The model
based on neural network beamforming has achieved good results in multi-channel
speech separation [6, 7] and speech recognition [8, 9]. Recently, beamforming
based on DNNs [10] has been applied in the field of multi-channel speech en-
hancement. The amplitude spectrum of the short-time Fourier transform of the
multi-channel speech signal is used as the input of the neural network, and the
beamforming filter coefficients are calculated by estimating the covariance ma-
trix of the target signal and the noise. The realization principle is complicated,
and a simple end-to-end system is of importance.

In this work, we propose adaptive neural network beamforming (NAB) and
Denoising-TasNet model (NABDTN) for speech enhancement in Fig.1. The pur-
pose of NAB is to estimate a series of beamforming spatial-temporal filters, and
then they are respectively convolved the speech signals of microphones before
summing. This network mimics delay-and-sum (DS) technology [11]. However,
NAB does not need to estimate the time delay of each microphone, which is dif-
ficult to accurately estimate in a complex acoustic environment. After that, the
Denoising-TasNet network is developed to further enhance the performance by
minimizing scale-invariant signal-to-distortion ratio (SI-SDR). This means that
the time delay can be learned implicitly by the neural network. Therefore, the
model has a strong applicability for different complex acoustic scenarios. The
temporal convolutional network (TCN) in Denoising-TasNet has strong time-
domain sequence modeling capability [12], so we use this network to further
enhance the NAB output to generate clean speech.
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2 Algorithm Description

2.1 Problem formulation

Let xc(k), sc(k) and nc(k) denote noisy speech, clean speech and background
noise, respectively, and c ∈ {0, 1, · · · , C − 1} is the index of the channel, where
C is the number of channels. It should be noted that c = 0 is the reference
channel, and its corresponding clean speech is the label during network training.
The noisy speech is written as

x0(k) = s0(k) + n0(k), (1)

xc(k) = sc(k) + nc(k) = s0(k) ∗ h0c(k) + nc(k), (2)

where s0(k) denotes target clean speech which can be divided into overlapping
segments of length L, and k ∈ {0, 1, ..., T} denotes the total number of segments
in the input, and * denotes the convolution operation. The impulse response of
clean speech between channels is represented by h0c(k). In a short-distance call
scenario, the distance between the main microphone and the mouth is small,
and we take the clean speech on the main channel as the target clean speech.

The general finite impulse response (FIR) filter beamformer is

y(t) =

C−1∑
c=0

N−1∑
n=0

hc[n]xc[t− n− τc], (3)

where hc[n] is the n-th tap of the beamforming filter related to microphone c,
xc[t] is the noisy speech received by microphone c at time t, and τc is the align-
ment steering delay between the speech received by another microphone and the
speech received by the reference microphone, y(t) is the output of beamforming
speech, and N is the length of the filter.

Since the target speech arrives at each microphone at a different time, the
speech in each microphone needs to be aligned with the speech of the refer-
ence microphone to perform traditional beamforming. The estimation accuracy
of steering delay τc presents a great influence on the performance of speech
enhancement. However, the proposed NABDTN model estimates the filter co-
efficients by minimizing the loss function of the enhanced speech and the clean
speech. Therefore, steering delay estimation of τc is hidden in the estimated filter
coefficients. The output result of the kth frame of the NAB model is

y(k)[t] =

C−1∑
c=0

N−1∑
n=0

hc(k)[n]xc(k)[t− n], (4)

where hc(k)[t] is the estimated filter coefficient of channel c in the kth frame.
To estimate hc(k)[t], we jointly train the entire NABDTN network to predict
the filter coefficients of each channel. The beamforming filter coefficients can
be continuously adjusted according to the dataset during the training process.
The more complex the dataset, the wider the adaptability of the model. This
is similar to traditional adaptive beamforming, which adjusts filter coefficients
according to changes in data.
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Fig. 2: Illustration of the NABDTN architecture.

2.2 NABDTN architecture

The frame structure of NABDTN containing two parts is shown in Fig.2, where
two-channel case is illustrated. The NAB model consists of three LSTMs and
two linear layers, where one 512-cell LSTM layer and two 256-cell LSTM layers
are utilized. In our experiments, the segment length of the input noisy speech
L = 16100, and we set the output of the linear layer as N = 26, which is the
length of the filter coefficient. The hyperparameters are determined by measuring
the PESQ metric of the trained model. To convolve the noisy speech of each
frame with the filter coefficients, we use a kernel size of 1 × 26 to implement
the convolution of xc(k)[t] and hc(k)[t] to efficiently calculate the convolution
operation of multiple batches of data. It should be noted that there are two
channels of noisy speech in each frame. We respectively input the speech of each
channel into the 512-cell LSTM, and the two outputs are generated as the inputs
for two 256-cell LSTMs.

For the model of the Denoising-TasNet, we employ the similar structure of
Conv-TasNet [12], which is the encoder/TCN/decoder pipeline. The amplitude
of each frequency in the spectrogram reflects the energy of the frequency com-
ponent in the frequency domain processing. However, the amplitude of a sample
point in the time domain does not provide much information, and it needs to be
combined with adjacent samples to represent specific frequency components [13].
For example, if it is a high-frequency signal, and then in time, the amplitude of
adjacent samples will vary greatly, and vice versa. Therefore, when processing
time-domain waveforms, in order to allow the neural network to better learn the
features provided by adjacent samples, we use one-dimensional (1-D) convolu-
tional blocks with dilated convolution factors in the TCN network. As shown
in Fig.3, we repeat X 1-D convolution blocks with the dilated convolution fac-
tor d = {1, 2, 4, ..., 2M−1} for R times, and the size of kernel is P . In addition,
TCN estimation is no longer the original speech separation mask, but a speech
enhancement mask so that the model has only one enhanced speech output. In
order to avoid gradient exploding or vanish, each 1-D convolutional block in
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Fig. 3: Architecture of TCN. The parameters are denoted as follows: (p1,p2)
Conv p3, where p1 is the kernel size, p2 is the dilated rate, and p3 is the number
of filters.

TCN normalizes the input features. The normalization process is

gLN(F ) =
F − E[F ]√
V ar[F ] + ε

⊙
γ + β, (5)

E[F ] =
1

NT

∑
NT

F, (6)

V ar[F ] =
1

NT

∑
NT

(F − E[F ])2, (7)

where F ∈ RK×T is the input feature, ε is a small constant to prevent the
denominator from being zero, γ, β ∈ RK×1 are trainable parameters, E[F ] and
V ar[F ] are the mean and variance of F , respectively, and

⊙
denotes element-

wise multiplication.

2.3 Loss functions

The studies show that, for speech enhancement in the time domain, the SI-SDR
as the loss function presents a superior performance, and it is defined by [14]

SI-SDR = 10 log10

‖βs‖2

‖βs− ŝ‖2
, (8)

β =
ŝT s

‖s‖2
= arg min

β
‖βs− ŝ‖2, (9)

where s ∈ R1×T and ŝ ∈ R1×T are the clean speech and enhanced speech, re-
spectively. The scaling of the target speech s ensures that the SI-SDR measure
is invariant to the scale of ŝ. It is seen from Eqs. (8) and Eqs. (9), that SI-SDR
is simply the signal-to-noise(SNR) ratio between the weighted clean speech sig-
nal defined as ‖βs‖2 and the residual noise defined as‖βs − ŝ‖2. The network
maximizes the correlation between s and ŝ by maximizing SI-SDR, so that the
model obtains a higher SNR.
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Fig. 4: Experimental settings.

3 Experimental Results

3.1 Setups

Fig.4 shows the position relationship between the microphone array and the tar-
get sound source and interference source in our experiments. In this experiment,
the number of microphones is C = 2. The location of the target sound source
is 1 m in the front of the microphone array that has a space interval of 3 cm.
Based on this setting, the azimuth angle of our target source is 0 degree. We
set an interference source at a distance of 1 m from the microphone array. To
cover all the angles, the direction angle of interference ranges from -90 degree to
90 degree with an interval of 15 degree, and the similar setting is also utilized
in [15].

To generate the dataset, we use 10,000 speech and 9,100 noise utterances
from the MS-SNSD dataset, in which each speech and noise durations are 31s
and 10s, respectively, and the sampling rate is 16 kHz. We randomly select 8500
speech and 8000 noise utterances from the dataset to generate a 200h training
set, and then select 1500 speech and 1100 noise utterances from the remaining
dataset to generate a 20h validation set, and finally the cafeteria, street and
babble noises are used to generate test set. The image method [16] is used to
generate a dual-channel dataset. In order to test the denoising ability of the
NABDTN model and reduce the impact of the room impulse response, we use
the clean speech generated by the reference microphone as our target source,
and the room size is 10m× 7m× 3m.

For interference sources with different azimuth angles, we also have produced
training and validation sets with different signal-to-noise ratios (SNRs) ranging
from -5 dB to 5 dB at an interval of 1 dB, and produced a test set of {-5dB,
0dB, 5dB}. Our training set includes 120000 mixtures that are segmented into
16100 sample points as the input of the model.
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3.2 Results

In the experiments, we use two objective metrics of short-time objective intelli-
gibility (STOI) and perceptual evaluation of speech quality (PESQ) [14] to mea-
sure the denoising performance of different models. In addition, we also use the
subjective metric of deep noise suppression mean opinion score (DNSMOS) [17]
to evaluate enhanced speech. We randomly select 180 speech and noise files from
the test set to average the results. The interference sources of the test dataset
produced by the image method include three directions of 15◦, 45◦, and 90◦

and gradually deviate from the target source, so as to avoid the same distribu-
tion with the training dataset. The STOI and PESQ of the noisy and enhanced
speeches at -5 dB, 0 dB, and 5 dB are measured , respectively. As shown in
Table 1, compared with the MMSE-based approch [18], dual-microphone DNN
speech enhancement [19], CRN model [20] and MFMVDR model [21] the pro-
posed method significantly improve the performance. For example, at SNR = 0
dB, the NABDTN method increased STOI by 12.7% and PESQ by 1.08, whereas
the MFMVDR only improved STOI by 10.42% and PESQ by 1.02.

Table 1: STOIs and PESQs of different methods. The value is an average of 15◦,
45◦, and 90◦ interference sources.

method STOI(%) PESQ

SNR -5dB 0dB 5dB -5dB 0dB 5dB
noisy 71.13 80.10 87.80 1.48 1.81 2.19
MMSE 70.54 79.13 84.62 1.48 1.90 2.27
DNN 79.80 84.67 90.21 2.03 2.45 2.74
CRN 81.02 89.06 91.87 2.23 2.62 2.85
MFMVDR 84.73 90.52 93.34 2.45 2.83 3.08
Prop. 88.13 92.89 96.32 2.58 2.89 3.18

As shown in Fig.5, we choose a section of noisy containing stationary noise
and non-stationary noise to analyze the noise reduction performance from the
spectrogram. Comparing the noisy and enhanced spectrograms, it can be found
that the stationary noise and non-stationary noise marked by the red rectangular
box have been removed. From the blue and white rectangles marked by enhanced
and clean spectrograms, there are only slight distortions in the unvoiced audio
at low and high frequencies, while the voiced distortion is even smaller.

In Table 1, the results are an average of interferences at three directions.
However, interference at each angle may contribute to the system performance
differently. To demonstrate this effect, we also listed the denoised performance of
the NABDTN model at different azimuths. As shown in Table 2, the SNRs of the
mixed speech in each direction include -5 dB, 0 dB, and 5 dB, which indicates
STOI and PESQ are an average of different SNRs. We found that system perfor-
mance increases first and then decreases as the azimuth of the interference source
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Fig. 5: Example of noise suppression for stationary noise and non-stationary
noise at 5 dB SNR. The ordinate and abscissa represent frequency and time
respectively. The color bar on the right represents power/frequency.

Table 2: The performance of the proposed method when interference sources at
different directions, where STOI and PESQ are the average of -5 dB, 0 dB, and
5 dB.

metrics
Interference direction

15◦ 30◦ 45◦ 60◦ 75◦ 90◦

noisy STOI 80.52
noisy PESQ 1.86
noisy DNSMOS 2.76

STOI(%) 91.35 94.86 98.69 95.64 96.82 92.65
PESQ 2.67 3.15 3.68 3.20 3.35 2.74
DNSMOS 3.12 3.23 3.50 3.34 3.51 2.90

varies. Nonetheless, the average PESQ and STOI of noisy have been greatly im-
proved, which means the NABDTN model is not greatly affected by the azimuth
of the interference source. Therefore, the proposed model is more adaptable to
complex acoustic scenes. In addition, since the objective measurement indicators
STOI and PESQ cannot fully reflect the quality of human auditory perception,
we also use DNSMOS provided by DNS-Challenge as a performance measure as
shown in the last row of Table 2.

4 Conclusion

In this study, we proposed a neural network adaptive beamforming (NAB) and
developed Conv-TasNet structure for dual-channel speech noise reduction. The
Conv-TasNet was originally tasked of processing time-domain speech separation,
but we produced a denoising mask instead to achieve single-channel speech de-
noising. The NAB takes multiple inputs to perform beamforming in suppressing
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the interferences, and after that, Denoising-TasNet is utilized to finally output
the denoised signals. Experimental results show that our proposed method is su-
perior to DNN and recently proposed CRN model. Additionally, we found that
the NABDTN model is resistant to interferences from different directions.
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