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Abstract—Photovoltaic (PV) generation is increasing in 
distribution systems following policies and incentives to promote 
zero-carbon emission societies. Most residential PV systems are 
installed behind-the-meter (BTM). Due to single meter 
deployment that measures the net load only, this PV generation is 
invisible to distribution system operators causing a negative 
impact on the distribution system planning and local supply and 
demand balance. This paper proposes a novel data-driven BTM 
PV generation disaggregation method using only net load and 
weather data, without relying on other PV proxies and PV panels’ 
physical models.  Long Short-Term Memory (LSTM) is employed 
to build a generation difference fitted model (GDFM) and a 
consumption difference fitted model (CDFM) derived from 
weather data.  Both difference fitted models are refined by a cross-
iteration with mutual output. Finally, considering the 
photoelectric conversion properties, the disaggregated generation 
results are acquired by the refined GDFM of changing input. The 
proposed method has been tested with actual smart meter data of 
Austin, Texas and proves to increase the disaggregated accuracy 
as compared to current state-of-the-art methods. The proposed 
method is also applicable to disaggregate BTM PV systems of 
different manufacturing processes and types. 

Index Terms—Data-Driven, behind-the-meter, photovoltaic 
generation disaggregation, machine learning. 
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PV Photovoltaic 
SAM System advisor model 

Parameters 
D  Array of date set 
D Number of elements in D  
iteration  Number of cross-iterations 
l Time step lags

d n×M Matrix of date index of d days with n most similar 
electricity consumption behavior 
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×M Array of all the elements of row i of matrix d n×M

d n×L  Matrix of date index of d days with n most similar 
solar radiation 
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d n
i
×L Array of all the elements of row i of matrix d n×L  

T  Array of hour set 
T Number of elements in T  

Variables 
,D TC Matrix of consumption data of hour set T , date set

D in kW 

,
ˆ

i l−TC Array of estimated consumption of hour set T , 
date i for l time step lags in kW 

DHI Matrix of direct normal irradiance in 2kW m−⋅  
DNI  Matrix of diffuse horizontal irradiance in

2kW m−⋅  
,D TG Matrix of PV generation data of hour set T , date 

set D in kW 

,
ˆ

i TG Array of estimated generation of hour set T , date
i in kW 

,D TN Matrix of net load data of hour set T , date set D in 
kW 

2R  Coefficient of determination 
,D Tτ  Matrix of temperature data of hour set T , date set

D in kW 
X  Matrix concatenation of PV-related data 
Y  Matrix concatenation of load-related data 
Z Matrix concatenation of X and estimated lagged 

historical consumption 
C∆ Consumption difference in kW 

∆C  Matrix of consumption difference in kW 
,ij∆ TC  Array of consumption difference of hour set T

between date i and date j in kW 

,
ˆ

ij∆ TC Array of estimated consumption difference of 
hour set T between date i and date j in kW 

G∆ Generation difference in kW 
∆G Matrix of generation difference in kW 

,ij∆ TG  Array of generation difference of hour set T
between date i and date j in kW 

,
ˆ

ij∆ TG Array of estimated generation difference of hour 
set T between date i and date j in kW 

N∆ Net load difference in kW 
,ij∆ TN Array of net load difference of hour set T between 

date i and date j in kW 

Functions 
( )Cf ⋅ Function of consumption difference fitted model 

( )Gf ⋅ Function of generation difference fitted model 

( )L ⋅ Loss function of the neural network 

I. INTRODUCTION

XTREME weather caused by excessive greenhouse gas 
emissions has urged the adoption of measures to combat 

climate change.  In the past decade over 100 countries have set 
or are considering net-zero Greenhouse Gas (GHG) emissions 
or neutrality targets and have accelerated the penetration of 
renewable energy systems in their energy mix [1]. Photovoltaic 
(PV) technology is one of the most promising sources of green 
and sustainable energy with low levelized cost of energy 
(LCOE) [2]. As utility-scale PV installations have slowed down 
in 2020, distributed PV continues to increase, driven by steady 
interest in self-consumption, the benefits of net metering and 
technical advantages in improving reliability and reducing 
network losses [3], [4]. Most distributed PVs are installed 
behind-the-meter (BTM), with only net load visible to utility 
operators due to single meter deployment restrictions [5] and 
power information privacy issues of customers [6]. The 
unavailability of separate generation and consumption can 
cause several problems to distribution system operators, such as 
inaccurate load forecasting and baseline load estimation [7], [8], 
suboptimal distribution systems planning [9], [10] and incorrect 
hosting capacity analysis [11]. To avoid these problems, several 
BTM net load disaggregation methods have been proposed. 

The existing BTM net load disaggregation methods can be 
divided into data-driven and model based methods. Data-driven 
methods can be further divided into energy-proxy-dependent 
and energy-proxy-independent ones.  

Energy-proxy-dependent data-driven methods: Because of 
the invisibility of BTM PV, some researchers utilize the 
generation and consumption characteristics of the 
representative energy agents to explain the target BTM 
customers, indirectly obtaining the disaggregation results. By 
inputting the target capacity into the fitted function trained by 
installation capacity and PV generation of publicly available 
PV sites proxy, the BTM PV is disaggregated in [12], [13]. With 
the help of multiple linear models regression strategy, [14] the 
consumption and generation, represented by phasor 
measurement unit (PMU) recorded reactive power and output 
of nearby PV sites proxy are estimated, by minimizing the 
errors between the estimated and monitored net load of feeder 
level. In [15], the installation capacity of BTM PV was firstly 
inferred by a support vector regression model trained by the 
output characteristics of a nearby unit capacity PV site proxy. 
Then the generation of BTM PV is approximated by its capacity 
multiplied by the output power of the standard PV sites. Instead 
of utilizing PV sites proxy, the “consumption” proxy was 
introduced in [16] and [17]. By assuming that the consumption 
behavior of a consumer is a mixture of latent behaviors, this 
method infers the full-day consumption of the BTM customer 
through a linear function fitted by the nighttime load of mixture 
proxy customers. In [18], [5], by utilizing contextually 
supervised source separation, a PV disaggregation model was 
designed solving a simplified linear problem with scale 
generation and consumption data of proxy customers as 
additional input. Based on the high correlation of load among 
neighboring customers, when approximated by environmental 
and social factors, and the high correlation of neighboring PV 
sites, when approximated by meteorological factors, [19] the 
residential BTM PV generation is estimated employing 
spatiotemporal graph with neighboring net load as input which E 
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can be considered as specific proxies. 
Disaggregation methods based on energy-proxy-dependent 

sites have an easy-to-understand model basis, but they require 
a consistent behavior of consumption and generation 
characteristics between energy proxies and target users. In 
practice, there are collection time requirements of data after 
setting the proxies, making the disaggregation methods not 
immediately available. 

Energy-proxy-independent data-driven methods: Some data-
driven methods do not use a proxy-based approach in order to 
avoid the defective disaggregation results caused by 
heterogeneous data distribution. In [20], a small number of 
representative solar sites was selected according to a four-
month PV generation data of all sites using a dimension 
reduction method. The aggregated generation estimation is 
obtained by a supervised learning method built by the 
representative data and external variables, such as weather and 
locational information. In the case of known historical BTM PV 
generation data, an exemplar library composed of fully 
observable customers is established in [21]. The disaggregation 
of PV is obtained by the combination of typical customer 
generation patterns optimized by game-theoretic approaches. 
With partial BTM generation data being labeled, the BTM net 
load is disaggregated in a dictionary learning manner in [22]. In 
[23], when the approximate installation time of the PV sites is 
known, the BTM consumption can be obtained from the load 
data before the PV installation determined by the time stamp 
comparison of relevant factors such as weather, day type, etc., 
and further combined with net load estimate of BTM PV 
generation.  

The above-mentioned methods adopt their own historical 
separate metering data for disaggregation, which to a certain 
extent avoids the problem of data heterogeneity brought by 
setting proxies, but in reality, their implementation suffers from 
hindrances. These are caused by factors such as the large 
number of small-distributed PV systems (DPVS) that use net 
metering or changes in consumption behaviors after the 
installation of DPVS. Hence, the study reported in [24] has 
developed an unsupervised disaggregation method that does not 
rely on separate historical consumption and generation data. By 
taking demand and irradiance-generation transposition 
parameters as the unknown variables and minimizing the 
estimated net load and actual net load as the goal, this method 
disaggregates the BTM PV using multiple linear programming. 

Model based methods: In [25], the BTM PV disaggregation 
results were obtained according to the clear sky generation 
modified by the universal weather-solar effect. This considers 
that under the same meteorological conditions, reduction of the 
maximum clear sky irradiation is the same. The construction of 
the disaggregation model requires a search for the installation 
angle of PV equipment, and the minimum power consumption 
floor for users based on insufficient assumptions. In [7], 
depending on the PV system geometry, the estimated output 
distribution was first obtained by combining different 
equivalent parameters of capacity, tilt angle and azimuth. Then, 
the disaggregated PV results inferred according to the optimal 
equivalent parameter combination is determined, when the 

estimated PV generation has the least correlation with the 
estimated residual. In [26], the estimated generation and 
residential consumption were calculated by customized PV 
system physical model and hidden Markov regression model, 
respectively. The estimation results of the generation and 
consumption are combined with net load to feed the mutual 
model for iterative updating of the model parameters. Further 
improvements of [26] were presented in [27], where hidden 
Markov model is changed to mixed hidden Markov model to 
enable modelling the general load consumption behavior 
present in population-level, while acknowledging the 
differences of individual loads. This method can also estimate 
the parameters of multiple strings of solar panels and different 
types of sites. 

Model-based algorithms are less data-dependent, which is 
advantageous for implementation, but the assumptions of the 
physical model must be realistic. However, different PV panel 
manufacturing processes (mono-c-Si, multi-c-Si and thin film) 
and different types of PV system (monofacial, bifacial, tracking 
or hybrid) can both cause the physical model to vary. At the 
same time, it is difficult to know the specific PV system 
information of the customer in advance, because it involves 
personal privacy issues and there may be misinformation, self-
installation, and aging of the DPVS. The advantages and 

disadvantages of the different categories of BTM net load 
disaggregation methods are summarized in Table I 

From the algorithmic point of view, data-driven methods of 
[14], [16], [18], and [24] apply a simplified linear model in the 
calculation process, which is difficult to fully reflect the 
relationship between the variables. In model-based methods of 
[7], [26], and [27], the determination of the optimal solution and 
the iterative update of the methods are based on the model error 
decision of the constructed regression algorithm. The iterative 
process of the methods lacks feedback on model updates, which 
can lead to long computation times and falling into local 

 TABLE I 
THE ADVANTAGES AND DISADVANTAGES OF EXISTING BTM NET LOAD 

DISAGGREGATION METHODS 

Category Advantages Disadvantages 

Energy proxy-
dependent data-
driven methods 

Knowledge of physical 
models not necessary; 
easy to understand and 
model; supervised 
learning feasible; strong 
generalization ability 

Setting of the proxies 
needs to be 
representative; time 
costs of the collection 
data of proxies 

Energy proxy-
independent 
data-driven 
methods 

Most methods require 
sub-metering of data 

Model based 
method 

Less data-dependent; 
changes in behaviors of 
customers have less 
impact on disaggregation 
results 

Prior knowledge of 
physical model; physical 
model assumptions are 
prone to inconsistencies 
with target customers; 
highly influenced by 
physical changes in the 
PV system 
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optimum. For ease of comparison, the model properties of 

different methods are summarized in Table II. 
Data-driven methods have the advantage over model-based 

methods of not being bound by the assumptions of a PV 
physical model. As seen from Table II, all data-driven BTM PV 
disaggregation methods require either proxies setup or 
historical separate metering data. However, in BTM PV 
installations, historical separate metering data is frequently 
unknown, thus it is difficult to employ supervised learning for 
acquiring disaggregation results without setting up an energy 
proxy. A proxy setup has the same quandary as in the model 
based methods, namely whether the energy proxies or the 
physical model assumptions can effectively represent the target 
to be disaggregated. To avoid these difficulties, this paper 
proposes a novel data-driven BTM PV generation 
disaggregation approach using only net load and weather data, 
without relying on PV proxies and physical models 
assumptions of PV panels. 

More specifically, for a prosumer, characterized by the same 
approximate consumption behavior under similar weather 
conditions and day types, and the same approximate PV 
generation under the same meteorological conditions, the deep 
learning based initial consumption difference fitted model 
(CDFM) and generation difference fitted model (GDFM) are 
constructed. The pairwise net load difference is obtained as 
output, while their exogenous variables data is used as input. 
Since it is difficult to find identical days of consumption 
behavior or meteorological conditions, the offset in 
consumption and generation of the net load data is compensated 
according to the exogenous variables. The outputs of the CDFM 
are used to correct the supervised target of the GDFM and vice 
versa. This process will continue to update mutual fitted models 

in a cross-iteration ways until the disaggregation results no 

longer change significantly. After iterations, a "pure" GDFM is 
obtained. The model is converted to a generation disaggregation 
model (GDM) by changing the inputs to obtain estimated BTM 
PV generation results based on the characteristic that the PV 
output is zero, when the irradiation is zero. 

The original contributions of this paper are as follows: 
1) A novel BTM GDM is obtained from the GDFM by

transfer from net load difference regression to generation 
disaggregation changing the model inputs. The proposed data-
driven method requires only net load and nearby weather data, 
avoiding the problem of performance inconsistency between 
the assumed physical PV model and the target BTM one, 
typically found in model-based disaggregation methods. Also, 
the proposed method does not need an energy-proxy nor 
historical separate metering data. The exogenous variables are 
directly passed to the disaggregation target through the LSTM 
network, avoiding transposition errors. 

2) In the proposed method,  supervised targets of GDFM and
CDFM are extracted by only net load data. . GDFM and CDFM 
are trained with supervised learning by pairwise net load 
differences according to the weather and day type data. Both 
fitted models are refined by cross-iteration to enhance their 
practical interpretability. In the iterative process, the estimated 
historical consumption is calculated from the estimated PV 
generation obtained from the GDM and used as time lags load 
sequences features for input to obtain a CDFM with stronger 
interpretation and higher accuracy. 

3) Based on a data-driven approach and without prior
knowledge of the number of PV sites, installation 
configurations and physical models; the proposed method can 
disaggregate the net load with DPVS installation of different 

TABLE II 
THE MODEL PROPERTIES OF EXISTING BTM NET LOAD DISAGGREGATION METHODS  

Model properties 
Methods 

[5], 
[18] [7] [12] [13], 

[15] [14] [16], 
[17] [19] [20] [21], 

[22] [23] [24] [25] [26], 
[27] 

Proposed 
Method 

Energy-proxy-dependent data-driven 
method √ × √ √ √ √ √ × × × × × × ×

Energy-proxy-independent data-driven 
method × × × × × × × √ √ √ √ × × √

Model based method × √ × × × × × × × × × √ √ ×
PV sites proxy √ × √ √ √ × √ × × × × × × ×

“Consumption” proxy √ × × × × √ √ × × × × × × ×
Need historical separate metering data ×  × × × × ×  ×  √ √ √ × × × ×

Need meteorological data √ √ × √ × √ × × × √ √ √ √ √

Need PV physical model parameters ×  √ √ √ × × × × × × × √ × ×
Need the installation information ×  ×  × × × × × √ × × √ × × ×

Need searching for the installation 
parameters of PV system geometry × √ × × × × × × × × × √ √ ×

Simplified linear relationship model √ × × × √ √ × × × √ √ × × ×
Machining learning based model ×  √ × √ × ×  √ √ √ ×  ×  × √ √

Application of BTM disaggregation to a 
hybrid of different PV panel 

manufacturing processes and different 
types of PV system scenarios without 
prior knowledge of specific situation 

× × × × × × × × × × × × × √
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panel manufacturing processes (mono-c-Si, multi-c-Si and thin 
film), different types (monofacial, bifacial, not tracking and 
tracking) or hybrid types, which can be conveniently applied 
for various scenarios. 

The paper is organized as follows: Section II presents the 
disaggregation methodology. Section III presents the case study 
results and discusses the model performance. Section IV 
provides conclusions and future work. 

II. METHODOLOGY

In a BTM system, PV generation data ,D TG ( )kW is invisible,

while only net load dataset ,D TN ( )kW  is known. This equals

the consumption ,D TC ( )kW minus the PV generation ,D TG .

, , ,= −D T D T D TN C G  (1) 

The subscripts D and T represent the set of date and set of 
hour, respectively. ,D TC is unknown and not negligible, 
therefore, it is impossible to directly build a neural network 
model without training targets, i.e., the relationship between 
PV-related input and ,D TG . 

When the consumption difference between two days ∆C
( )kW is known (one of the key problems to be solved in this 

research), the generation difference∆G ( )kW between the two 
days can be calculated as in (2): 

, , , ,       , ,ij ij ij i j i j∆ = ∆ −∆ ∈ ∈ ≠T T TG C N D D  (2) 

, , ,

, , ,

, , ,

ij i j

ij i j

ij i j

∆ = −
 ∆ = −
∆ = −

T T T

T T T

T T T

G G G

C C C

N N N
(3) 

A GDFM ( )Gf ⋅ can be built by neural networks with input
the irradiance data and output the estimated difference of PV 
generation ˆ

ij∆G ( )kW :

, , ,
ˆ ( , )ij G i jf∆ =T T TG X X (4) 

, , ,

, , ,

=[ , ]
=[ , ]

i i i

j j j





T T T

T T T

X DNI DHI
X DNI DHI

(5) 

where DNI and DHI ( )2kW m−⋅ represent the direct normal

irradiance (DNI) and diffuse horizontal irradiance (DHI) at the 
corresponding time, respectively. 

The loss function ( )L ⋅ of the neural network can be 

calculated from ,ij∆ TG and ,
ˆ

ij∆ TG as shown in (6).

( )2, , , ,
,

ˆ ˆ( , )ij ij ij ij
i j

L
∈

∆ ∆ = ∆ −∆∑T T T T
D

G G G G (6) 

Due to the photoelectric conversion properties of PV panels, 
the PV generation is zero, when DNI and DHI are zero [28]. By 
changing ,j TX to 0 , the estimated PV generation ,

ˆ
i TG can be

obtained through GDM converted by GDFM from (4) as 
follows: 

, , ,

, ,

ˆ ˆ ( , )
ˆ . .,  

i ij G i

j j

f

s t

 = ∆ =


= =

T T T

T T

G G X 0

G 0 X 0
(7) 

It is worth mentioning that the input features of ( )Gf ⋅ are not

limited to ,i TX and ,j TX ; it can be extended to other PV-related 

inputs. 
Regarding the unknown ∆C in (2), there are several methods 

to obtain the solutions, as described in the following 
subsections. 

A. Method A
For the unknown ∆C , we first consider a net load difference

of two days with similar electricity consumption behaviors. 
According to the continuity of electricity consumption 
behaviors of customers, we assume that the net load curves with 
similar shape at nighttime will also have similar shape during 
the daytime. In order to eliminate the influence of generation 
information on the day matching of electricity consumption 
behavior, the n days with most similar electricity consumption 
behavior at nighttime among d days are searched using the k-
nearest neighbor (KNN) algorithm, and the corresponding date 
index is recorded in the matrix d n×M . When training GDFM, 
the date index of day i is denoted as d n

i
×M , which represents all 

the elements of row i of matrix d n×M . 
Thus, the GDFM can be modeled according to (8) with the 

loss function (6): 

, , ,

, ,

,

ˆ ( , )

. . 

ij G i j

ij ij

ij

f

s t

∆ =
 ∆ = −∆
 ∆ =

T T T

T T

T

G X X

G N

C 0

, , d n
ii j ×∈ ∈D M (8) 

When the PV penetration is relatively high, this 
approximation is reasonable, and satisfactory disaggregation 
results can be obtained. Fig. 1(a) demonstrates ∆C , which is 
negligible at high PV penetration. 

(a) Scenario of 150% PV penetration

(b) Scenario of 30% PV penetration
Fig. 1.  Profiles of N∆ , C∆ and G∆ in Method A. 
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B. Method B
In low PV penetration scenarios, the influence of ∆C is

significant, see Fig. 1(b). Thus, a neural network for CDFM is 
developed, which can refine the GDFM by compensating for
∆C . 

Similar to GDFM, (9) can be obtained by rewriting (2): 

, , , ,       , ,ij ij ij i j i j∆ = ∆ + ∆ ∈ ∈ ≠T T TC G N D D  (9) 

Since the PV generation is highly related to solar radiation, it 
can be considered that when the irradiation conditions are 
similar in two days, the PV generation is also similar. By 
finding the days with similar irradiation, the n most similar PV 
generation days among d days are searched through KNN 
according to DHI and DNI, and the corresponding date index is 
recorded in the matrix d n×L . When training the CDFM, the date 
index of day i is denoted as d n

i
×L , which represents all the 

elements of row i of matrix d n×L . 
To build the CDFM, ∆G is offset by obtaining a net load 

difference of two days with similar PV generation according to 
the date index of d n×L . CDFM is modelled as (10), by using 
neural networks with the loss function (11): 

, , ,

, ,

,

ˆ ( , )

. .

ij C i j

ij ij

ij

f

s t

∆ =
 ∆ = ∆
 ∆ =

T T T

T T

T

C Y Y

C N

G 0

, , d n
ii j ×∈ ∈D L (10) 

Y is load-related exogenous data, such as temperature (C )

and date type. It is worth mentioning that there is no fixed 
standard for the input features of CDFM. Similar to load 
forecasting, the selection of input features can be done in the 
same way as existing load forecasting models, except that the 
CDFM model solves for the regression of consumption 
differences, rather than the regression of consumption. 

The loss function in the neural network of CDFM can be 
calculated from ,ij∆ TC and the estimated consumption 

difference ,
ˆ

ij∆ TC ( )kW :

( )2, , , ,
,

ˆ ˆ( , )ij ij ij ij
i j

L
∈

∆ ∆ = ∆ −∆∑T T T T
D

C C C C (11) 

The GDFM can be compensated by CDFM to calculate ∆C
according to the load-related features with the same date index 
of d n×M . Thus, the GDFM can still be modelled as (12) with 
the loss function (6): 

, , ,

, , ,

, , ,

ˆ ( , )
ˆ

ˆ. . ( , )

ij G i j

ij ij ij

ij C i j

f

s t f

 ∆ =
 ∆ = −∆ + ∆


∆ =

T T T

T T T

T T T

G X X

G N C

C Y Y

, , d n
ii j ×∈ ∈D M  (12) 

C. Method C
Similar to GDFM in Method A, the CDFM in Method B of

(10) assumes that 0∆ =G , which is acceptable at low PV
penetration, as shown in Fig. 2(b). In the case of high PV

penetration, the influence of ∆G is important, see Fig. 2(a). 

Therefore, after the initial GDFM is obtained from Method 
A, the output of CDFM can be compensated by GDFM, in turn, 
in a form similar to (12): 
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The estimated PV generation values Ĝ of (7) are used 
directly in (13) instead of the∆G in GDFM. Since, they directly 
correspond to the final generation target, the final estimated 
generation results have higher robustness. 

It needs to be emphasized that, in Method B, the CDFM can 
only be constructed from load-related exogenous data 
(temperature and data type) due to the invisible historical 
consumption data C , which is difficult to adequately account 
for the variation in load difference. However, in Method C, 
since Ĝ is first estimated from (7), the estimated consumption
Ĉ can be obtained from (1) and used for the model building of 
CDFM in Method C by rewriting (13). 
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where l represents the number of time step lag. The CDFM of 
(14) constructed by additionally considering the continuous
time lags sequences of estimated historical consumption Ĉ
itself can track and learn the temporal relationship of energy
consumption difference, has a higher quality of regression of

(a) Scenario of 150% PV penetration

(b) Scenario of 30% PV penetration
Fig. 2.  Profiles of N∆ , C∆ and G∆ in Method B. 
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the estimated consumption difference values compared to 
CDFM of (13). 

A cross-iteration process can be formed by combining (7), 
(12) and (14). This process can be initialized by (8), that is, the
outputs of GDM compensate for the supervised targets of
CDFM, and the outputs of CDFM are used as compensation of
supervised targets of GDFM at the next stage. It is worth noting
that in Method C, due to the presence of cross-iterations, the
pairwise net load can be randomly selected for matching and
the indices of the most similar consumption behavior days

d n×M and irradiation days d n×L are not necessary. The 
compensation of supervised targets will gradually refine GDFM 
and CDFM simplifying the overall modelling process. 

The algorithm of Method C is summarized below. 
Algorithm 1: Algorithm for solar generation disaggregation 
with cross-iteration refinement 
Input: Net load dataset ,D TN , weather dataset ,D TDNI ,

,D TDHI  and ,D Tτ . 

Output: Estimated PV generation ,
ˆ

D TG ,
1: Randomly match the net load and generate date indices

d n×M and d n×L for GDFM and CDFM respectively. 
2: Train the initial GDFM model according to Equation 

(8) with d n×M to obtain ( ) ( )0
Gf ⋅ .

3: Obtain the estimated PV generation ( )0
,

ˆ
D TG from ( ) ( )0

Gf ⋅

according to Equation (7). 
4: for 1k = to iteration do 
5: Train CDFM according to Equation (13) with d n×L , 

obtain ( ) ( )k
Cf ⋅ .

6: Obtain ,
ˆ∆ D TC from ( ) ( )k

Cf ⋅ with d n×M in Equation (14).

7: Train GDFM according to Equation (12) with d n×M , 

obtain ( ) ( )k
Gf ⋅ .

8: Obtain the estimated PV generation ( )
,

ˆ k
D TG from ( ) ( )k

Gf ⋅

according to Equation (7). 
9: end for 

10: return ( )
,

ˆ epoch
D TG

III. CASE STUDIES

A. Dataset and Experimental Setting
To verify the effectiveness of the proposed method in real-

life applications, open source residential net load data in Austin 
Texas [29] are used. The PV generation was recorded 
separately. After data filtering and complementing, the data of 
24 (originally 25, the consumption of a customer was metered 
negative numbers) customers are retained for the 
disaggregation experiments. The metering time of the dataset is 
from 01/01/2018 to 30/12/2018 with a 30-minute interval and 
the total nameplate capacity is 102.53kWp. Due to customers’ 
privacy issues, the specific geographic coordinates of the 

residence are not given. The required meteorological data for 
the corresponding period are obtained from the National Solar 
Radiation Database (NSRDB) [30] of Austin, Texas at 
approximate latitude of 30.25 N and longitude of -97.74 E . To 
test the disaggregation effect of the proposed approach, this is 
applied to net loads with DPVS of different manufacturing 
processes and types; semi-synthesized data are introduced by 
eliminating the generation part of the data obtained from [29] 
and adding the customized PV data calculated by System 
Advisor Model (SAM) [31]. 

The experiments in case studies are implemented by Python 
3.7.7 on a server with NVIDIA Geforce RTX 2080Ti GPU and 
64 GB of RAM. Deep learning model is implemented based on 
the TensorFlow 1.13.1 framework. 

GDFM and CDFM are essentially time series regression 
modelling. To improve the explanatory ability of these models 
without losing generality, the LSTM is implemented for 
modeling [32]. The hyperparameters of LSTM for GDFM and 
CDFM are listed in the Appendix. The mean squared error 
(MSE) and the coefficient of variation (CV) are used as 
evaluation metrics of disaggregation accuracy. Considering that 
small disaggregation errors can cause great fluctuations of 
mean absolute percentage error (MAPE) when the output is 
close to zero (e.g., cloudy days or sunrise and sunset), CV is 
used instead of MAPE [18]. The MSE and CV are defined as: 

( )2, ,
1 ˆ

d t d t
d t

MSE G G
∈ ∈

= −∑∑
D TD T

(17) 

( )2, ,

,

ˆ
1

d t d t
t

d td
t

G G

CV
G

∈

∈
∈

 
− 

 =  
 
 
 

∑
∑ ∑

T

D
T

D
(18) 

where D and T represent the number of the elements of array
D and array T . 

B. Learning Task Migration
The key point of the proposed data-driven disaggregation

algorithm is whether GDFM can be converted into GDM by 
setting the unconcerned irradiation values of the pairwise inputs 
to zero. To illustrate the feasibility of “migration”, we build the 
GDFM using generation data only and excluding the effect of 
consumption in net load. Fig. 3 illustrates the scatter plot 
between the real generation and disaggregation generation 
obtained by migration. Coefficient of determination 2R is used 
to explain the model regression ability. 
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The regression performance is shown in Fig. 3 after GDFM is 
converted to GDM. A comparison between Fig. 3(a) and Fig. 
3(b) shows that the R2 value improves from 0.82 to 0.99 by 
adding unilateral variables as input variables. This effectively 
improves the regression accuracy and demonstrates the value of 
adding PV-related variables to the concerned side, as shown in 
Equation (7). 

C. Methods Performance and Comparison
The core idea behind the improvement of Methods A and B

to obtain C is the reasonable elimination of C∆ , in the 
supervised targets of GDFM corrected by the CDFM output. In 
Method B, C∆ is estimated by CDFM in terms of temperature. 
However the constructed CDFM does not consider that the 
temperature only dominates approximately 40% of the 
residential consumption behavior [33], and that the CDFM also 
needs to eliminate the influence of G∆ . In Method C, 
continuous time lags sequences of estimated historical 
consumption calculated by the estimated PV generation of 
GDM and temperature data are further added as features in the 
construction of CDFM, to model the continuity of electricity 
consumption behaviors and the cumulative effect [34]. The time 
step of the LSTM is set to 7 of CDFM in this experiment. To 
resolve the latter defect of failure to eliminate the influence of

G∆ , GDFM is invoked to calculate G∆ caused by the 
irradiation difference on the pairwise net load to correct the 
supervised targets of the CDFM. GDFM and CDFM correct 
their own supervised targets with mutual outputs until obtaining 
“purer” model in a cross-iteration fashion. The input features of 

the two models are summarized in Table III. 
Fig. 4 gives a comparison of the test error of compensatory 
consumption difference C∆ of GDFM and compensatory 
generation difference G∆ of CDFM of the three proposed 
methods. The number of the iteration for the GDFM model of 
Method C is 20.  

In the left subplot of Fig. 4(a), the test error of consumption 
difference C∆  is presented. In Method A this appears as a 
straight line, because there is no correction of C∆ . Comparing 
to Method B, Method C shows the lowest test error. The first 
iterations of the red line represent the first iterative update point 
of Method C, which demonstrates a significant consumption 
compensation effect, and the error in the subsequent iterations 
is then maintained in a low range. The reason for the strong 
explanatory ability of C∆ in Method C of GDFM is that, in 
addition to the temperature, the CDFM is built using the paired 
continuous time lags sequences of estimated historical 
consumption itself. The model  
mechanism is more like an online forecasting, except that the 
variable being explained is the load difference rather than the 
load. In the left subplot of Fig. 4(b), G∆ also decreases 
significantly through iterative updates and always remains at a 
low error level. The local iterative results are also presented in 
the right subplots in Fig. 4(a) and Fig. 4(b), and the gradually 
decreasing curves trend shows that the subsequent iterative 
processes are still gradually reducing the test error of GDFM 
and CDFM, illustrating the effectiveness of cross-iteration 
mechanism of the proposed method. 

In order to analyze the performance of the proposed methods, 
they are compared with a data-driven based method [24] and a 
physical model based method [7]. The MSE and CV of various 
net load disaggregation methods of the real-world dataset are 
presented in Table IV. 

(a) DNI and DHI as input feature (b) DNI, DHI, hour angle as input
feature 

Fig. 3.  Scatter plot between the real generation and disaggregation generation 
of different input feature. 
  

 TABLE IV 
MSE AND CV OF VARIOUS NET LOAD DISAGGREGATION METHODS 

Evaluation 
metrics 

Method 
[24] 

Method 
[7] 

Method 
A 

Method 
B 

Method 
C 

MSE (kW2) 144.05 101.32 107.01 82.73 63.77 
CV (%) 9.79 8.70 9.11 8.14 7.49 

(a) Test error of consumption difference C∆ of GDFM

(b) Test error of generation difference G∆ of CDFM
Fig. 4.  Test error of compensatory consumption difference C∆ of GDFM and 
compensatory generation difference G∆ of CDFM. 

 TABLE III 
INPUT FEATURES AND OUTPUT OF GDFM AND CDFM 

Model Input Features Output 
GDFM 
(Method A) 

DNI, DHI, hour angle of 
the sun and day of the 
year 

Generation difference 

GDFM 
(Methods B and 
C) 

Generation difference 
with C∆ elimination 

CDFM 
(Method B) 

Ambient temperature, 
day of the year, day of 
the week and month of 
year 

Consumption 
difference 

CDFM 
(Method C) 

Ambient temperature, 
day of the year, day of 
the week, month of year, 
and continuous time lags 
sequences of estimated 
historical consumption 

Consumption 
difference with G∆
elimination 

GDM DNI, DHI, hour angle of 
the sun, and day of the 
year 

Disaggregation 
generation 
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 GDM built by Method A has the worst performance due to 1)
the assumption of the ideal state of 0C∆ = ; 2) lack of 
correction for the consumption difference. Both GDM model 
built by Method B and Method C have lower MSE and CV 
compared to methods in [24] and [7], and Method C has the best 
performance due to the refinement of the GDFM and CDFM by 
the cross-iteration on the supervised targets of net load 
difference. Compared to methods in [24] and [7], Method C 
exhibits a decreased MSE by 80.28kW2 and 37.55kW2, 
respectively, and a decreased CV by 2.30% and 1.21%, 
respectively. Corresponding global horizontal irradiation (GHI) 
and more detailed disaggregation results of the five methods for 
typical clear sky and non-clear sky conditions are shown in Figs. 
5 and 6. 

The proposed Method C has the highest disaggregation 
accuracy even under non-clear sky conditions. It is worth noting 
that the method in [7] assumes a physical model, which has a 
fixed shape of the generation curve compared to irradiation 
curve. The method makes it difficult to reflect the transposition 
error caused by the distance of the collected meteorological data 
and the customers to be disaggregated when they are spatially 
different. The lower disaggregation accuracy of the method in 
[24] may be caused by the poor explanation ability of its

simplified linear formulation to the complex multi-factor driven 
consumption behavior. Fig. 7 presents a box plot comparison of 
the disaggregation accuracy of the various proposed methods 
for each month. It is shown that the proposed Method C has the 
lowest CV with a particularly significant improvement in 
disaggregation accuracy in the summer months, when the 
temperature-sensitive loads are more prevalent. 

Since the specific geographic coordinates of the customers are 
unknown and the meteorological data used are from a certain 
weather station in Austin, it is likely that the PV generation data 
of customers and the solar radiation data collected by the 
weather station are not exactly matched. This can also explain 
that the proposed method can have satisfied disaggregation 
results even using adjacent meteorological data, which can be 
the case in practical scenarios. 

To further investigate the robustness of the proposed method, 
normal distribution noise is added to the original net load data 
for each data point. The maximum value of net load data is 
96.72kW. The mean of the normal distribution error is set from 
-10kW to 10kW at intervals of 5kW, and the standard deviation
is set from 0% to 50% of the maximum value of the original net
load at intervals of 10% (when the standard deviation is set to
0, the normal distribution error can be seen as uniform
distribution error). The MSE and CV results of the proposed
method with different normal distribution noise additions are
shown in Tables V and VI respectively.

From Tables V and VI, it can be seen that in general there is 
a slight increase in the disaggregation MSE and CV of the 

 TABLE V 
MSE (kW2) WITH DIFFERENT NORMAL DISTRIBUTION NOISE ADDITIONS 
Standard deviation 
(percentage of the 
maximum net load 

value) 

Mean 

-10kW -5kW 0kW 5kW 10kW 

0% 62.41 64.09 63.77 63.51 63.74 
10% 55.00 57.05 65.61 57.60 53.58 
20% 61.26 68.75 65.45 62.23 60.12 
30% 82.84 71.81 67.74 62.96 66.25 
40% 61.98 68.83 64.81 63.55 97.37 
50% 95.87 74.38 63.88 83.19 74.70 

TABLE VI 
CV (%) WITH DIFFERENT NORMAL DISTRIBUTION NOISE ADDITIONS 

Standard deviation 
(percentage of the 
maximum net load 

value) 

Mean 

-10kW -5kW 0kW 5kW 10kW 

0% 7.64 7.64 7.49 7.55 7.58 
10% 7.87 7.70 7.80 7.66 7.73 
20% 8.30 7.82 7.81 7.60 8.10 
30% 8.54 8.89 8.28 8.51 8.45 
40% 8.52 8.04 8.83 8.99 8.68 
50% 10.80 8.84 7.81 9.55 8.29 

(a) GHI of typical clear sky condition 

(b) GHI of non-typical clear sky condition
Fig. 5.  Irradiation profiles of typical clear sky and non-clear sky conditions. 

(a) Disaggregation generation of typical clear sky condition 

(b) Disaggregation generation of non-typical clear sky condition 
Fig. 6.  Disaggregation profiles of typical clear sky and non-clear sky 
conditions of different methods. 

Fig. 7.  Disaggregation accuracy of the proposed methods for each month. 



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change 
prior to final publication. Citation information: DOI10.1109/TSG.2022.3171656, IEEE Transactions on Smart Grid

10 

proposed method when the mean value of the added error 
distribution is fixed and the standard deviation gradually 
increases, except in the results of the added error of standard 
deviation 40% mean -5kW, standard deviation 50% mean 0kW 
and standard deviation 50% mean 10kW. The disaggregation 
results of Tables V and VI also reflect an intriguing 
phenomenon that the disaggregation performance of the 
proposed method has less change at the same standard deviation, 
regardless of the mean value of the error. This is particularly 
evident when the standard deviation is zero (uniform 
distribution error). This is because the method is based on the 
PV differences and consumption differences obtained from the 
matched net load differences. The kernel of the modelling 
essentially reflects the relationship between the changes in the 
dependent variable difference caused by the changes in the 
independent variable difference. Thus, the error of the same 
distribution will be substantially offset in the net load difference 
processing (this can also be used to explain the occasional 
phenomenon in Table VI that the disaggregation results become 
better as the added error increases). This shows the high 
robustness of the proposed algorithm. This is particularly 
effective in cases there is an overall net load uniform 
distribution deviation caused by poor meter pointer calibration. 

D. Scenario of Different DPVS Penetration
Different PV penetration causes different degrees of alteration

in the net load curve. The net load curves with high penetration 
DPVS better reflects the morphological features of PV 
generation, while it is more likely that the net load curves with 
low penetration hide the energy fluctuations caused by PV 
generation. To investigate the disaggregation performance of 
each method at different PV penetration levels, semi-synthetic 
data (PV penetration of 30%, 60%, 90%, 120% and 150%) are 
produced by SAM using meteorological data of NSRDB, and 
the penetration of PV is calculated based on the ratio between 
total generation and consumption [35]. Disaggregation results 
at different penetration levels are presented in Tables VII and 
VIII.  

The proposed Method C exhibits the lowest CV and MSE at 
all PV penetrations of the experiment, indicating superior 
performance at different scenarios of PV penetrations. 
Interestingly, there is not much improvement over Method B as 

compared to Method A at high PV penetration due to the small 
values of C∆ , as demonstrated in Fig. 2(a). Therefore, Method 
A may be a simple and efficient method to disaggregate BTM 
generation at high penetration levels. 

E. Scenario of Different Manufacturing Processes and
Technologies
Solar cells can be classified into three generations of 

manufacturing processes. Currently only the first generation 
technologies of crystalline silicon wafer-based cells and the 
second generation technologies of thin-film are used in 
residential installations [36]. To improve the economic 
efficiency of DPVS installation, the mainstream practice is to 1) 
install bifacial modules to improve irradiation absorption or 2) 
install tracking systems to increase the time of normal 
irradiation. Both technologies are increasingly popular. Since 
2015, about 70% of newly installed utility-scale PV systems 
have implemented solar tracking [37], [38], while bifacial 
modules are expected to reach a 40% market share [39]. 

Differences in manufacturing processes or manufacturers can 
lead to variations in the solar module characteristics e.g., 
nominal efficiency, temperature coefficients, etc. and 
irradiation reception of the PV panels. In order to test the 
applicability of the proposed algorithm in multiple scenarios, 
the disaggregation study was conducted on PV systems of 
mono-c-Si, multi-c-Si, thin film, bifacial mono-c-Si, mono-c-Si 
with tracking and hybrid. The desired capacity of all the six PV 
systems is set to 102.53kWp, namely the same nameplate 
capacity of the real-world data. The generation data of the 
hybrid system comprises the addition of one-fifth of the 
generation data of each of the first five PV systems. Daily 
generation results profiles of the six types of PV systems are 
shown in Fig. 8. 

Fig. 8 shows that the PV system of monofacial Mono-c-Si, 
Multi-c-Si and thin film without tracking exhibit a conventional 
generation form. In order to fully demonstrate the wide 
applicability of the proposed method, PV system of bifacial is 
set to be installed East-West vertical and South-facing tilted, 
which has been proven to have the optimal generation 
efficiency in certain scenarios [38]. The generation 
characteristic of this installation configuration appears as a 
bimodal state. The PV system with tracking has a longer peak 
duration because the PV panels are, as much as possible, 
orthogonal to the irradiation. Since the hybrid PV system is a 
combination of multiple PV systems, the generation profiles 
present its own unique form. The disaggregation results of 
different systems for a week are presented in Fig. 9. 

It is shown that the proposed method has a good performance 
of disaggregation for special scenarios, such as tracking, 

Fig. 8.  Daily generation results profiles of six types of PV systems. 

 TABLE VII 
MSE (kW2) OF DIFFERENT PV PENETRATION 

Penetration Method 
[24] 

Method 
[7] 

Method 
A 

Method 
B 

Method 
C 

30% 21.15 10.97 18.80 3.27 1.79 
60% 65.43 44.92 25.45 5.84 5.13 
90% 137.14 95.12 28.72 14.86 13.02 
120% 234.90 174.36 36.54 27.27 18.04 
150% 359.06 271.19 49.08 44.87 28.26 

TABLE VIII 
CV (%) OF DIFFERENT PV PENETRATION 

Penetration Method 
[24] 

Method 
[7] 

Method 
A 

Method 
B 

Method 
C 

30% 10.19 6.80 9.51 5.28 3.23 
60% 8.88 6.43 6.06 3.67 3.20 
90% 8.53 6.87 4.70 3.56 3.07 
120% 8.35 7.14 4.02 3.82 2.79 
150% 8.25 7.10 3.68 3.76 2.80 
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bifacial and hybrid systems, and the corresponding flat-peaked, 
bimodal and mixed patterns are well reflected. The numerical 
disaggregation results of the six PV systems for a whole year 
are shown in Table IX. 

The disaggregation accuracy for various PV systems proves 
that the proposed method has a strong general applicability of 
the BTM PV disaggregation problem, even for hybrid energy 
systems. Its data-driven nature gives it the ability to 
disaggregate net load without prior knowledge of the 
corresponding configurations, e.g., installation number of PV 
systems, type of PV systems, etc., and the combination of PV 
systems, which is not possible with model-based disaggregation 
methods.  

IV. CONCLUSIONS

A novel data-driven method for BTM PV disaggregation 
based on GDFM and CDFM without relying on any energy 
proxy is proposed in this paper. The proposed algorithm has the 
following advantages: 
1) The proposed method can effectively reduce errors caused

by model assumptions that do not conform to actual
conditions. Besides, their energy proxy independent
characteristic enables the proposed method to effectively
avoid the transposition error introduced by the spatial
difference and the mismatched energy output
characteristics between the target system and proxies.

2) The innovative conversion of GDFM to GDM makes it
possible to use supervised learning without knowing the
energy data of separate metering of PV and load. By using
deep LSTM, the effects of generation difference and
consumption difference caused by meteorological data and
historical net load data can be captured when building
GDFM and CDFM, respectively; the cross-iteration update
further refines the disaggregation process.

3) The performance of the proposed BTM generation
disaggregation method under various penetration scenarios
and PV system types using real-world data is satisfactory,
proving its practical application value.

Future work will focus on the disaggregation of BTM energy 
systems with various technologies, such as energy storage and 
electric vehicles. The extensibility of the proposed model 
allows the possibility of exploring higher disaggregation 
accuracy utilizing more advanced supervised learning methods. 
We  also have an interest to infer the PV installation capacity 
while estimating the PV generation disaggregation results, and 
in exploring the performance of the application in case of high 
resolution metering data. 

APPENDIX 
HYPERPARAMETERS OF GDFM AND CDFM 

Both the GDFM and CDFM are optimized by Adam 
algorithm [40]. The hyperparameters of GDFM and CDFM are 
listed in Table X. 

 TABLE IX 
NUMERICAL DISAGGREGATION RESULTS OF THE SIX PV SYSTEMS FOR A 

WHOLE YEAR 

Type of PV panels Evaluation Metrics 
MSE (kW2) CV (%) 

Mono-c-Si 21.75 2.93 
Multi-c-Si 10.74 2.32 
Thin film 15.15 2.51 

Mono-c-Si (tracking) 11.41 2.06 
Mono-c-Si (bifacial) 21.38 4.04 

Hybrid 26.99 3.39 

(a) Mono-c-Si

(b) Multi-c-Si

(c) Thin film

(d) Mono-c-Si (tracking) 

(e) Mono-c-Si (bifacial) 

(f) Hybrid
Fig. 9.  Disaggregation results of six types of PV systems for a week. 

 TABLE X 
HYPERPARAMETERS OF GDFM AND CDFM 

Model Hidden layers 
Time 

step of 
LSTM 

Batch 
size Epochsb 

GDFM 
(Methods A, 

B and C) 

150a-150a-150-100-
50 1 4096 50-20 

CDFM 
(Method B) 100-20 / 4096 50 

CDFM 
(Method C) 

Input branch 1: 
150a-150a-150a 

Input branch 2: 50 
Concatc: 100-20 

7 4096 30-10 

a: The units are LSTM units and the others are dense units 
b: The first number represents the training epoch at the first iteration; the 
second number represents the training epoch when the number of iterations is 
greater than 1, and the weight of new iteration is initialized by the weight 
saved at the end of the previous iteration. 
c: Concat means the concatenates of outputs of Input branch 1 and Input 
branch 2. 
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