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cannot be generalized to different structure of graph.

All the previous approaches are defined in Euclidean space.
However, the underlying anatomical structure of the data often
contains more geometric information in non-Euclidean spaces
, so Euclidean space may not be the best choice for modeling
hierarchical data. Recent studies have proved that complex
types of data (such as graph data) in many fields exhibit topo-
logical structures that are closely related to manifolds. Under
such circumstances, Euclidean space cannot provide maximum
expression ability or meaningful geometric representation. For
example, Sala et al. [15] proves that arbitrary tree structures
cannot be embedded with arbitrary low distortion (i.e. almost
preserving their metric) in the Euclidean space with infinite
dimensions, but this task becomes strikingly easy in the hyper-
bolic space with only two dimensions where the exponential
growth of distances matches the exponential growth of nodes
with the tree depth. Therefore, neural network operations
defined directly in the data-related space [16] may benefit
the learning process. Different from learning joints embedding
directly in Euclidean space, we explore the modeling space of
skeleton graph sequence in non-Euclidean geometry. However,
deep learning in these non-Euclidean spaces has been rather
limited, the main reason being the non-trivial or impossible
principled generalizations of basic operations (e.g. vector addi-
tion, matrix-vector multiplication, vector translation, vector in-
ner product). Thus, classic tools such as feedforward networks
or recurrent networks have no corresponding representations
in these spaces, and it is difficult to find natural mathematical
descriptions for basic operations such as convolution. Inspired
by research [17], we get idea from the bijection between the
hyperbolic space and the tangent space. The classic operations
can be generalized to tangent spaces through logarithmic map.
In this way, the spatio-temporal features can be obtained by
applying Euclidean filters on feature map in tangent space. In
this paper, we construct a 3D action recognition framework
(HMANet) that leverages hyperbolic space to make spatio-
temporal features full of hierarchy. Our contributions can be
summarized as follows:

o To the best of our knowledge, our HMANet introduces
hyperbolic manifold into the field of 3D action recognition
for the first time. It devotes to mining the spatial config-
uration of the skeleton sequence. For features represented
in hyperbolic space, we mix temporal and spatial filters to
extract spatio-temporal features in the tangent space.

« Explain how our network learns the features in the tangent
space from the perspective of differential geometry, and
establish relationship between the metric tensor of the
Riemannian manifold and the features in the tangent space
through mathematical theory. The introduction of manifold
theory into the model makes it more explanatory.

« Propose a hyperbolic aware bias for features in the tangent
space of manifold. It utilizes the parallel transport with
respect to Levi-Civita connection to translate the tangent
vector along the geodesic to make the captured features lie
in different tangent spaces of manifold, such that the model
can automatically aware of underlying manifold.

The rest of this paper is organized as follows. Section 2 re-

2

views the related approaches and discusses their relationships
to the present works. Section 3 gives a detailed description of
our method and the corresponding network architecture, while
supplying a theoretical analysis. Comprehensive experimental
results and analysis are provided in Section IV, and finally, a
conclusion is drawn in Section V.

ITI. RELATED WORK
Skeleton-Based Action Recognition with CNN

Most of the methods based on CNN flatten the 3D skeleton
sequence into pseudo images with joints and frames as differ-
ent dimensions, and the feature learning follows the methods
in image. Li et al.[18] encoded the pairwise distances between
joints into RGB images, and separately trained CNN models in
4 orthogonal planes with empirical fusion schemes account for
view invariance. Banerjee et al. [12] propose a CNN model,
which leverages features estimated from angular information
and kinematics of human to capture complementary character-
istics of the sequence of key joints. The approach mentioned in
[19] is a CNN-based method that utilizes a gating mechanism
for images generated from a specific order of skeletons. The
two-stream attention mask in CNN was reported in [20]. Li
et al.[21] used the features in methods [9] and [18] and
the LSTM network to study the multi-classifier classification
model of the maximum, multiplicative and average decision
score fusion scheme. These methods are not sensitive to subtle
movement changes within the class which can be rectified by
using more specialized features. Huynh-The et al. [22] studied
specialized geometric feature extraction techniques, including
joint orientation, which provided impressive performance.
Recent methods [23] and [24] exploit transition geometric
features alongside frame-wise geometrical features, which
is a very crucial step towards utilizing motion information.
The features learned by these methods treat the data as an
image, and thus fail to effectively express the long-distance
interaction relationship in the skeleton. Although the CNN
operator can indeed form an overall feature representation
through the local convolution kernel, it neglects the interaction
of the longdistance joints. Moreover, the Euclidean distance
between joint coordinates cannot accurately describe their
geometric distance. For the purpose of learning the features
implying underlying manifold, our method attempts to mine
this geometric topology in hyperbolic space, which enables
the distance between coordinates to express their geometric
structure to a certain extent.

Representations in non-Euclidean Space

In order to explore more robust skeleton features in non-
Euclidean space, one approach is to directly emloy manifold
data as the original input. For example, researchers express
rotation relationships as points in the Lie group SO(3), and
describe the skeleton motion information through the rotation
relationships between each pair of 3D vectors, so as to
eliminate the influence of viewing angle changes and learn
more robust features. Vemulapalli et al. [25] first proposed
performing action recognition by using SO(3) to represent
human bones (rotation and translation), LieNet [26] further
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realized deep learning curve clusters by defining rotation map
transformation, vemulapalli et al. [27] introduced the concept
of rolling map in mathematics, which mapped the SO(3)
representation of the human skeleton to the tangent space,
and utilized SVM for linear classification. These methods
manually characterize the data in a specific manifold, which
may lose part of the original information, resulting in poor
results, and networks specially designed for them often bring
a large amount of calculation.

Another more reasonable approach is to generalize the deep
neural network to non-Euclidean geometry. Specifically, it uses
deep learning to automatically embed the data on the Rieman-
nian manifold. For example, in order to construct a model on
a Riemannian manifold, Mathieu et al. [28] proposed Poincaré
variational autoencoder and showed a better generalisation for
hierarchical structures. In this paper, we focus on hyperbolic
manifolds, which is a non-Euclidean space with constant
negative Gaussian curvature and has the ability to efficiently
model hierarchical structures. In machine learning, hyperbolic
representations greatly outperformed Euclidean embeddings
for hierarchical, taxonomic or entailment data recently. Dis-
joint subtrees from the implicit hierarchical structure are well
clustered in the embedding space. However, appropriate deep
learning tools are needed to embed feature data in this space
and use it in downstream tasks. Ganea et al. [29] established
the connection between hyperbolic manifold and Euclidean
space in the context of neural network and deep learning,
and generalizes basic operators, polynomial regression and
feedforward network to the Poincaré model of hyperbolic
manifold. Ungar [30] combined the gyrovector space and the
generalized Mobius transformation with the popular properties
of Riemannian geometric, smoothly parametrize basic opera-
tions and objects in all spaces of constant negative curvature
using a unified framework that depends only on the curvature
value. Then, the Euclidean space and hyperbolic spaces can
be continuously deformed into each other.

Neural Networks on Hyperbolic Manifold

Recently, there have been some attempts to design neural
networks in hyperbolic space. Specifically, the pioneering
research on learning representation in hyperbolic spaces was
reported in [31]. Then, in the research [29], hyperbolic neural
networks were introduced, linking hyperbolic geometry with
deep learning. Subsequent related works provided analogies
on the hyperbolic manifolds of classic operations, or devel-
oped several other algorithms, such as Poincaré GloVe [32]
and hyperbolic aware mechanism networks [17]. In addition,
their method is also more general for graph sequence data
because they are naturally in non-Euclidean space. Chami
et al. [33] utilized hyperbolic geometry to construct a graph
neural network. Considering that there is a bijection between
the hyperbolic space and the tangent space, scholars can first
perform the convolution operation on the tangent space, and
then project the extracted features back as a trajectory on
the manifold. Since the hyperbolic distance between unrelated
samples in a hyperbolic manifold will increase exponentially
than the distance between similar samples, it may be better
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to construct classification model for human skeleton on a
hyperbolic manifold. To this end, we are dedicated to propose
a spatio-temporal manifold-aware network for a specific model
of hyperbolic geometry (i.e. Poincaré model). This network
does not generate node embeddings by inputing human spatio-
temporal graph, but explores more reasonable manifold projec-
tions, such that the projection features are more discriminative
and the network can be generalized to different skeleton
structures. In addition, regarding the interpretability of neural
networks, Hauser et al. [34] took feature transformation as the
transformation of Riemannian metric tensor on manifold from
the perspective of differential geometry. This paper attempts to
study these issues on hyperbolic manifolds, and combines the
network architecture with hyperbolic space, taking advantages
of its good hierarchical structure modeling capabilities to
further strengthen the exploration of hierarchical structures.

III. PROPOSED METHOD

In this section, we describe our classification model
HMANet in details. The framework is shown in Fig.1. The
convolutional layer of our network consists of a spatial filter
and a temporal filter. Such blocks are added to capture the
spatio-temporal features of the skeleton sequence. The model
firstly expands the joint dimension by affine transformation,
leveraging exponential function to map coordinates to hyper-
bolic space and renew position coordinates, then performs
affine transformation in Euclidean space by logarithmic map.
We will describe important components of our framework in
the following sections in details.

TABLE I
NOTATIONS AND DEFINITIONS

Notations Definitions
M a smooth manifold
Ho a 2D Poincaré disc
28 the metric in hyperbolic space
D) the metric in Euclidean space
D" an n-dimensional open unit ball in Euclidean space
Yz the Riemannian metric tensor at point z of manifold
I, the n-order identity matrix
Az the conformal factor on manifold
[45) the Mobius addition on Poincaré model
14 the number of joint points
T the number of frames in one action
Jy the 3D coordinate of the v-th joint in the ¢-th frame
w§ the position vector of the c-th channel in the ¢-th frame
wg the deviation vector of the c-th channel in the t-th frame
TxD"™ the tangent space at point « on manifold D™
Uy, an open set on manifold M
Pz A coordinate function that maps elements in U, to R"™
Ey a set of basis vectors in tangent space
M the cotangent space of the manifold M
Dy the directional derivative of the direction v
£} a set of basis vectors in cotangent space
vt a feature vector of layer [
H! the Jacobian matrix of mapping between two manifolds
J a smooth second order tensor on manifold

A. Poincaré Model of Hyperbolic Geometry

3D human skeleton can be represented as a graph com-
posed of nodes and edges due to the spatial topology of
joints. Traditional Euclidean space is a linear manifold, any
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Fig. 1. Tlustration of our framework (HMANet). There are mainly two stages in our framework, including (a) Coordinate-wise affine transformation, and
(b) Convolution equipped with manifold transaction. At the first stage, we concatenate position tensor with corresponding deviation tensor, and utilize affine
transformation to transform coordinates of joints for each dimension. We stack several layers, at the start of next layer, we map the two to hyperbolic space
and perform Mobius addition, then utilize logarithmic map to map them back to Euclidean space. The bottleneck followed by is to point-wise expand the
dimension. In stage (b), we adopt manifold transaction in convolution layer to make it manifold-aware.
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Fig. 2. Left is the 2D Poincaré disk embedded in Euclidean space, where
the distance between every two points is the geodesic distance. The right is
an illustration of the hand gesture. Embed any two joints into the disk, the
distance between them is converted into hyperbolic distance.

parameterization method does not have the ability to rep-
resent a graph. Nevertheless, Hyperbolic space provides a
more reasonable embedding for human joints due to its
unique metric properties. In [35], Cannon gives five iso-
metric models of hyperbolic space. To represent hyperbolic
space in a simple way, we choose to study in the Poincaré
model. In Fig.2, any two gesture joints can be embedded as
two points x!, 22 in the Poincaré disc Hy. Poincaré disk
Hy := {(z1,22) |27+ a3 <1} is a two-dimensional case
of hyperbolic geometry, wherein the distance metric changes.
Near each joint, the metric is related to the position of the
node, whereas the shortest path between two nodes is not
straight line distances. We show that this distance can reflect
the topological structure of the joints with the help of the
following definitions and formulas.

Hyperbolic space is a Riemannian manifold with constant
positive curvature, which is a curved metric space that does not
have a distance-preserving relationship with Euclidean space.
For nodes represented in hyperbolic space, the metric space
expands exponentially with the distance from the original
point. Thus it is more advantageous to represent hierarchical
information. The Poincaré sphere model (D",~) is an n-

dimensional hyperbolic space equipped with a Riemannian
metric v, defined as D" = {x € R" : ||z|| < 1}. The Rieman-
nian metric vy, : T, D" x T, D™ — R is a family of positive
definite quadratic forms that smoothly vary with point z on
the manifold:

Yo =A2 4" (1

Where )\, = 1_”2—w”2 is the conformal factor and v% =1, is
the Euclidean metric tensor. Therefore, the metric of 2D disc

space is defined as:

9 2

It can be seen from the formula that the closer the point is
to the edge of the disc, the greater the distance represented
by the coordinate difference (Axy,Azs). Take the gesture
skeleton as an example, we illustrate the inspiration for the key
technology of embedding skeleton joints in hyperbolic space.
In Fig.2, we use a geodesic to show the hyperbolic distance

between two points. For the joint points x!, 22 in the disc,
the geodesic distance is defined as:
op (!, 22 2
o ($1,$2) —cosh™ [1+2 E(2 ) 5
(1= 121) (1= f1221?)
(3)

Where 0z represents the hyperbolic distance, and d repre-
sents the Euclidean distance, they can be extended to the case
of the 3D skeleton data. Suppose ||z!| = ||z?|| = 7, there is:

lim 0y (2", 2%) = dm (2,0) + 0n (27,0) )

In other words, the shortest path between z! and z? is
almost the same as the path through the origin. This is
analogous to a tree structure, in which the shortest path
between two sibling node is the path through their parent node.
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The tree-like property of hyperbolic space is a key attribute
for feature embedding. Given any two points on the disc, no
matter how small the angle between them to the center is, this
property can be satisfied. Therefore, the hyperbolic distance
can well reflect the distance in the sense of joint topology, the
natural embedding of the hierarchical structure can be found
in the hyperbolic space.

Hyperbolic space is a non-linear space, thus the addition
defined in hyperbolic space is different from Euclidean space.
It is called Mobius addition, denoted as . For any two points
«, B in disc:

(1+2(a,8) + |B8?) e+ (1 = ||af|?) B
L+ 2{(a, B) + [|a]?]| B]I?

Fig.2 describes the operation from a geometric perspective.
As shown in the figure, a & [ is obtained by translating the
triangle along the side —Oa. Connection can be established
by two congruent triangles:

{ d(—a, B) = d(0,a ® B)
d(0,8) = d(a,a ® )

Therefore, combined with the hyperbolic distance formula,
it can be known that when f is closer to the center, a & (3 is
closer to «, and when S is closer to the edge, the coefficient
in the « direction is greater. Simultaneously, if the directions
of « and f are closer, @ (3 is farther from the center.

adp=

(&)

(6)

B. The Architecture of HMANet

For the input motion coordinates, we propose an end-to-
end deep learning framework. We first represent the skeleton
sequence with V' joints and 7' frames as a tensor of shape
V xT'x3. For the skeleton of a 7person in frame ¢, we formulate
itas J, = (J1,J2,...,JY) , and JP = (J5, J5,, J5) is
the 3D joint coordinates. In this way, the skeleton sequence
is regarded as an image with 3 channels. Considering that:
1) The two dimensions of the image represent joints and
frames, which are usually not equivalent; 2) The movement
of a joint is not only related to the local area, but also related
to the distant joints. We treat each joint of the skeleton as a
channel, and learn the global response of all channels through
affine transformation. However, any two channels of the output
feature are no longer in a parallel relationship, and they share
part of the same information. To this end, we propose a method
of transforming features through hyperbolic space, such that
the distance of features in new space more accurately reflects
their relevance.

Suppose that the coordinate of the human center of grav-
ity in the skeleton is Jtl, the difference of the coordinates
jt = J; — Jt1 is calculated in each frame, and these three-
dimensional vectors form a tensor with the shape of V' xT'x 3,
which is called the deviation tensor. We divide the skeleton
sequence into 3 parts according to the coordinate dimension,
and connect each part with the deviation tensor according to
the corresponding dimension to obtain 3 tensors with the shape
of V x T x 2. After that, we use 3 affine transformations
to independently aggregate the global features of all joints
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for each dimension of the coordinate, and use the batchnorm
to normalize them, then connect the three dimensions. The
obtained tensor is composed of position vectors and deviation
vectors. Repeating the learning of the global features, before
cach subsequent affine transformation, we use the following
method to renew the position vectors.

Let W € REYXTX6 be the output of the first layer,
where C represents the number of channels. The compo-
nent of the output tensor at frame ¢ is written as W, =
(Wi, Wiy, Wiy Wiy, Wiy, Wy,) € REXC, and channel ¢ con-
tains a position vector wi = (w§,, wf,,wy,), and a vector
w§ = (w5, w,,ws,) obtained by affine transformation of the
original tensor. Let A; € RV and b; € RC (j = x,y, 2)
be optimizable parameters, the output of each coordinate
dimension is obtained by affine transformation:

Wiy :AmJtz+bmu Wiy :Azjtm+bz
Wey = AyJey +by, Wy = Ay{ty + by 0
Wtz :Athz+b27 UN}tz :Athz+bz

In order to map them to points in hyperbolic space, we
refer to the bijection of hyperbolic space and tangent space
at one point proposed by Ganea in [29], called exponential
map and logarithmic map. The following are the definitions
of exponential map and logarithmic map. Vo € D™:

exp, (v) =2 ® <tanh (%) (;5(11)) ®)

2
log,.(y) = 1= tanh™ (| —z & y|)d(—z&y) (9

Where ¢(r) = ﬁ represents vector unitization. We pay
attention to case x = 0, use the projection function to map
the position vectors and the deviation vectors to the hyperbolic
space, and perform the Mobius addition to renew the position
vectors. However, using affine transformation for features in
hyperbolic space will destroy its manifold structure. To this
end, we use logarithmic map to project the vectors from the
manifold to the tangent space, such that the loss function in

the Euclidean space can be employed to optimize the model:

wy + logy (expy (wi) @ expy (W) (10)

We use the deviation vectors to renew the position vectors
in the hyperbolic space. Based on the previous discussion,
if the included angle of any two deviation vectors is small,
the newly obtained corresponding position vector angle will
become smaller. Besides, the larger the norm of the deviation
vector, it means that in the corresponding position vector, the
larger weights are more likely derived from the neighboring
points. Therefore, the feature independence is stronger, and the
coefficients of this direction are also larger. This is intuitive
in the feature space.

Finally, we obtain a tensor with a shape of C' x T x 6.
We designate the dimensions of the tangent vectors as chan-
nels by transpose, and use bottleneck to increase the feature
dimensions before sending it to the convolution layer, which
is equivalent to obtaining the coordinate representation of the
high-dimensional manifold through manifold immersion. Then
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we combine the spatial and temporal filters to extract high-
order features. Fig.1 illustrates the entire network framework.

C. Convolution Layer on Tangent Space of Manifold

To discuss the deep convolution block in our model
HMANet, we introduce some knowledge about tangent space
in this section. As mentioned in section A, Riemannian metric
is a quadratic form acting on the tangent space, which can
induce the geodesic distance on the manifold.

Metric ¢ and metric g are conformal when they define the
identical angle. The Poincaré sphere and Euclidean space are
conformal, namely, Yz € D™, u,v € T, D™\{0}, there is

cos(/(u,v)) = g (u:) _ (wv) (11)

V9P (u,u)y/gP (v, 0) vl

Therefore, the length of the tangent vector can be naturally
defined as the length in Euclidean space.

In order to transform the manifold features in deep learning
based on affine transformation, we map the learned manifold
features to the tangent space, thereby obtaining a tangent
vector field on the manifold. Since Riemannian manifold M
has a local European structure, there is a family of coordinate
charts {(U,, ¢)} that form an open cover of M, and each
coordinate function ¢, € C2° is a homeomorphism from U,
to an open set of R"™. Given a point z € M which is mapped
to R™ by coordinate function ¢, its tangent space 7, M has
a set of natural basis F, = 8%1,...,%}. Yo € T, M,
the derivative of the function along the direction v at zx is:
D,[¢] = v-dy, where [p] represents a germ of function at x,
that is, all equal functions in a sufficiently small neighborhood.
We call do the cotangent vector, the space 1y M composed
of cotangent vectors is called the dual space.

The neural network applies linear transformation to the
functional operator in the tangent space through affine trans-
formation. Specifically, considering the cotangent space T,y M,
there is a dual natural basis E} = {dz',... dz"}. We give
a smooth tensor J : T,M x TyM — R of type (1,1)
which contains a family of Riemannian metrics on M, they
can perform inner product on the tangent vector as a special
quadratic form. In addition, the Riemannian metric tensor is an
endomorphism of the tangent bundle (i.e. J : T, M — T, M).
The weight matrix of the neural network implies the metric
tensor J. Generalizing to a more general case, when the
feature dimension is expanded by the network layer, the
underlying manifold of features is immersed into the higher-
dimensional manifold.

D. Hyperbolic Aware Bias Based on Levi-Civita Connection

Since the tangent space at each point of manifold is not
identical, while the captured features are projected to the tan-
gent space of original point (i.e. 7o M) through the logarithmic
map, we introduce the following theorem and propose a bias
in tangent space to transfer the translation along the geodesic
of manifold to the tangent space, converting the tangent vector
v € ToM to a tangent vector v’ € T, M,z # 0.

As referred in [29], in the manifold (D", g), the parallel
transport w.r.t. the Levi-Civita connection of a vector v €

6

Ty D™ to another tangent space 7, D™ is given by the following
isometry:

Pyoso(v) = log,, (z @ expy(v)) = =v = (1 — [[2]*) v
’ (12)
This equation is crucial for defining and optimizing the
parameters shared between different tangent spaces. Back to
our network, the features are regarded as the vectors in tangent
space of original point 7y M through the logarithmic map. A
bias is applied to each feature vector to control the distance
from the origin point. The distance defined according to the
tangent space may reflect its hyperbolic nature. For this reason,
we employ the above function to translate the tangent space
features. Given a feature in vector form vy; € T, D", where ¢
represents the temporal dimension and ¢ represents the spatial
dimension, we set an optimizable bias parameter b € TyD"
to translate the features in tangent space. Combining Equation
8 and Equation 12, the conformal factor of the feature wvy;
mapping onto the manifold can be obtained by the tanh
function. Therefore, the deformation of bias b on each feature
is

Posexpg (via) (b) = (1 = (tanhllcxpo(vti)\\)2) b (13)

Then, we write the convolution operation on the [-th layer in
the network into the following form:

0 = 0 (Pocsexpatot) () + (Fe (vh) + Fi (o)) (14)

where F; and F; represent temporal convolution and spatial
convolution respectively. After adding the deformed bias, we
make features adapt to different tangent spaces, such that the
captured features are located in the tangent space at different
points of the manifold, and the features can be represented in
the manifold space more accurately. We will demonstrate the
effectiveness of this operation by experiments in section IV.

E. Submanifold Immersion and Feature Embedding in Hyper-
bolic Space

In this section, we explain that after the dimensionality of
the features in tangent space is increased by bottleneck, the
obtained features can be regarded as vectors in tangent space
of a high-dimensional manifold. In deep learning based on
Euclidean geometry, the features of the neural network can
be regarded as a set of Cartesian coordinates in Euclidean
space. The tangent space is a local linear approximation of the
manifold, which can be parameterized by the coordinates in
the Euclidean space. For the features in manifold, we project
them to the tangent space by logarithmic map. In this way,
we can learn the tangent space features by performing a linear
transformation on the coordinates. If the dimension of features
in each layer is constant, the coordinates can be renewed by a
full-rank Jacobian matrix, and a positive definite Riemannian
metric is maintained. However, the dimension of features in
the actual network increases as the layers deepens. From the
perspective of differential geometry, if the rank of the map
Jacobian matrix is equal to the dimension before the map, the
manifold can be immersed in a higher-dimensional space.
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In our network, in order to more easily separate the data, we
embed features into higher-dimensional hyperbolic manifolds.
Let M and N be m-dimensional and n-dimensional smooth
manifolds respectively, where m < n. f : M — N is a
smooth map on manifold. Each tangent space feature in the
layer [ is represented as v' = logy(z!) € T,D™ by the
logarithmic map on the manifold M, and v'*! = log,(z!*1) €
ToD™ on the manifold N. Denoting that

R (Ul) = (logo of o loggl) (vl)
= (logg of o expy) (”l)

where v € R™, h! (v') € R", the Jacobian matrix of map f
is given by two coordinate functions:

15)

oy o
vl ovl,
Jacobi (R') = | : .. (16)
ohl, 8hl,
vl ’ ovl,

Denoting this matrix as H!, the network will learn this
matrix to ensure

rank (hl) := rank (’Hl) =m (17)

In this case, Vx € M, the Jacobian matrix of the coor-
dinate function h' is general non-degenerate, then f is an
immersion of smooth manifold M in N. Specific to our
network, we utilize bottleneck to transform the features in
vector form into a higher-dimensional space and project it to
a hyperbolic manifold. This operation can be viewed as the
immersion of the manifold space, which ensures that the high-
dimensional manifold retains local properties of the manifold
of low-dimension, enabling the network to learn the geometric
structure of the data.

IV. EXPERIMENTS AND ANALYSIS

This section describes the experiments in terms of datasets,
the implementation, the training details, the comparison results
and the corresponding analysis.

A. Datasets

We evaluate the performance of HMANet on four bench-
mark skeleton-based action recognition datasets. In all
datasets, we use only the skeleton joint markers.

NTU RGB+D [36]: It is currently one of the largest 3D
action recognition datasets, containing RGB+D videos and
skeleton data for human action recognition. The motion data
was captured from 40 human objects by 3 Microsoft Kinect
V2 cameras. There are 56880 samples with 4 million frames
in 60 categories, and the maximum number of frames in all
samples is 300. Each body skeleton records 25 joints. The
original benchmark provides two evaluation methods, namely
Cross-Subject (CS) and Cross-View (CV) evaluation. In CS
evaluation, the training set contains 40,320 videos from 20
subjects, and the remaining 16,560 videos are used for testing.
In CV evaluation, 37920 videos captured from No. 2 and No.
3 cameras were used for training, and the remaining 18,960
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videos from No. 1 camera were used for testing. We follow
the original two benchmarks and report the accuracy of Top-1.
Gaming-3D (G3D) [37]: It is a gaming dataset collected
with Microsoft Kinect which contains a total of 663 motion
sequences. The dataset consists of 20 actions performed by 10
subjects in a controlled indoor environment. Each people per-
forms several times and each sequence may contain multiple
actions. As this dataset consists of gaming actions, it has many
temporal dependencies and rapid movements of body parts in
the video sequences. The dataset provides RGB video data
and skeleton data. Skeleton data provides the 3D coordinates
of the joints. Each body in a sequence records 20 joints. We
use the same protocol as the other works wherein the first five
subjects are used for training, and the remaining for testing.
SHREC’17 Track Dataset [38]: The dataset is a public
dynamic hand gesture dataset presented for the SHREC’17
Track. It contains sequences of 14 gestures performed between
1 and 10 times by 28 participants in 2 finger configurations,
resulting in 2800 sequences. The data is categorized with two
levels of granularity, presenting 14 and 28 actions respectively.
The coordinates of 22 hand joints in the 3D world space are
provided per frame, forming a full hand skeleton. Following
the evaluation protocol of SHREC’17 track [38], we trained
our model on 1960 samples and evaluated on the other 840
samples.

DHG-14/28 Dataset [38]: The dataset is a public dynamic
hand gesture dataset collected by the Intel RealSense short
range depth camera. It contains sequences of 14 hand gestures
performed 5 times by 20 participants, resulting in 2800 video
sequences. The gestures are performed in two ways: using
one finger, and using the whole hand. The coordinates of
22 hand joints in the 3D world space are provided per
frame, forming a full hand skeleton. Although the DHG-14/28
dataset has the same hand gestures with the SHREC’17 Track
dataset, it is more challenging due to the leave-one-subject-out
experimental protocol.

B. Implementation

Before the data was fed into the networks, we conduct some
pre-processing such that the data structure of each video clip
is unified. Since different actions last for various durations, the
input sequences are normalized to a fixed length (128 for NTU
RGB+D and 64 for others) through bilinear interpolation along
the frame dimension. For the single-person sample in dataset
with two objects, the second body will be padded with all
zeros. Each dimension of the 3D coordinates is put into three
channels as inputs. In order to evaluate the effectiveness of
our framework more purely, we use relatively primitive data
without any preprocessing such as random noise and random
cropping.

The basic framework is as illustrated in Fig.1. Take the
NTU RGB+D dataset as an example. First, We concatenate
each dimension of the three-dimensional position tensor with
the deviation tensor and designate joints as channels to extract
the global response separately. Then, the position vectors
and deviation vectors are mapped to the manifold along the
coordinate dimension. They are summed on the manifold space
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Fig. 3. Illustration of spatio-temporal convolution block equipped with manifold aware bias. Here, the convolution kernel is divided into spatial kernel and
temporal kernel and used on the same feature map, the outputs of the two are summed. Both of them are followed by batch normalization (BN) layer.
Moreover, a changeable bias based on hyperbolic manifold is utilized to parallel transport the feature. The output is followed by activation layer (ReLU) and

Avgpool is fed into next block.

to obtain the new position tensor. To conduct convolution in
manifold space, we use logarithmic map to project manifold
features to Euclidean space. After the original data being
transformed to a 128 x 128 pseudo image with 6 channels,
a bottleneck is utilized to extend the feature to 64D. Then,
the corresponding spatio-temporal Conv layers are built in
tangent space. As shown in Fig.3, in each convolution layer,
5 x 1 temporal convolution and 1 x 3 spatial convolution are
coincident, and a bias adapted to manifold is used to move
the features. We empirically stack 6 layers on this tangent
space and channels at each layer are [64, 64, 128, 256, 256,
256]. Following each layer, a 2 x 2 Avgpooling is utilized
to reduce dimensionality. Finally, the resulted features are
averaged along the temporal dimension to 4 vectors in tangent
space, and a FC layer followed by a softmax function is
utilized to predict a class prediction.

During the training process, the cross-entropy loss is utilized
as the classification loss. The learning rate is set as 0.01 and
is decreased based on a cosine function. A stochastic gradient
descent (SGD) with Nesterov momentum (0.9) is applied as
the optimization algorithm for the network. We set the weight
decay to 0.0002 as regularization. This model will be trained
for 70 epochs and compared to other approaches.

C. Ablation Study

We evaluate the effectiveness of our framework on the
datasets of human body and gesture datasets under given two
evaluation measures. Firstly, we evaluate how much benefit
we obtained from hyperbolic geometry, we implemented our
network without hyperbolic geometry. It works directly in Eu-
clidean space without Mébius addtion with its corresponding
distance tensor. Simultaneously, the changeable bias based on
the hyperbolic manifold is also removed. This network serves
as a baseline for comparison with our improved model. The
comparison results are shown in Fig.4. It can be seen from
our experiments, with the help of hyperbolic space, for a given
evaluation, our HMANet can improve the performance without

100 T T T

I Euclidean
[ Hyperbolic
[ JHyperbolic+bias

95 - A

90 + A

Accuracy

S QA 3 > ™ >
S N A A A
Q Q %\Zi% 62{%

Dataset

Fig. 4. Comparison of recognition accuracy of using and not using hyperbolic
manifold aware mechanism on various datasets.

increasing the parameters. Specifically, under the X-subject
and X-view evaluations in NTU RGB+D, our model can over-
come the baseline by 0.5% and 0.3%, respectively. Similarly,
in SHREC’ 17, the proposed model defined in hyperbolic space
could even outperform it by 1.1% with 28 gesture setting. All
of them proves that defining the model on manifold space
could benefit greatly.

To further evaluate the effectiveness of the proposed Hyper-
bolic aware bias, we remove the bias based on the proposed
network and conduct comparative experiments. The result is
shown by the green bar in the histogram. From the figure, we
can notice that using the proposed bias has a certain accuracy
improvement on all datasets, especially in gesture data. This
is due to the fact that the gesture skeleton is extended from
the wrist, which is more tree-like and has a clearer hierarchy
between joints. To evaluate how much difference between the
original position vectors and that after Mdbius addition, we
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Before Mobius addition After Mobius addition

Fig. 5. Left is the projection of the position vectors in hyperbolic space.
The right is the result of the Mobius addtion of the position vectors and the
deviation vectors.

plotted two spheres containing points distributed in hyperbolic
space respectively, as shown in Fig.5. From the figure, we can
see that after Mobius addition, the points are more dispersed
in the space, and their distribution is more uniform. In other
words, the coupling between features is reduced, features
become more independent.

D. Comparison With State-of-The-Art

1) G3D: Table II shows comparison with previous methods.
Our HMANet is able to achieve superior performance to [39]
which extends the Restricted Boltzmann Machine. We are also
able to outperform [27] which uses rolling map to project data
represented as points on Lie Group to Euclidean space, and
the recent method [40]. Work [9] encodes the 3D skeleton data
into 2D images, and then utilizes the convolutional network
for recognition, increasing the accuracy to 94.24%, which
verifies the effectiveness of the convolutional network. We are
able to outperform other CNN based methods [9, 12] largely,
achieving a state-of-the-art result. It can be seen from the
confusion matrix in Fig.6, the recognition errors concentrate
on punch right and wave, while our HMANet achieves almost

punch right

punch left

kick right

kick left

defend

golf swing

tennis swing forehand
tennis swing backhand
tennis serve

throw bowling ball
aim and fire gun

walk

0.4
run

jump
climb
crouch
0.2
steer a car
wave

0.1
flap

clap

Fig. 6. Confusion matrix of G3D dataset using Cross-Subject protocol.
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100% in all other recognizing actions.

TABLE Il
PERFORMANCE COMPARISON ON G3D USING CROSS-SUBJECT PROTOCOL
| Method | Year | Accuracy(%) |
LRBM]39] 2015 90.50
R3DJ[27] 2016 | 90.94
JTM[9] 2018 | 94.24
CNNI9] 2018 | 96.00
HDM-BG[40] 2019 | 92.00
FIB-CNN[12] 2020 | 93.11
KM+TSC[41] 2021 | 92.91
Proposed HMANet | - 97.16

TABLE III
PERFORMANCE COMPARISON ON NTU RGB+D USING CROSS-SUBJECT
AND CROSS-VIEW PROTOCOL

[ Method | Year [ Cross-Subject(%) | Cross-View(%) |
STA-LSTM[42] 2017 | 73.4 81.2
GCA-LSTM[43] 2017 74.4 82.8
DS-LSTM[44] 2020 | 77.80 87.33
CNN+LSTM[21] 2017 | 82.89 90.10
MTCNN-+Rot.Clips[45] 2018 | 81.09 87.37
HCNJ[46] 2018 86.5 91.1
TSSI+GLAN+SSAN[20] | 2019 | 82.4 89.1
(P+C)Net[19] 2019 | 86.1 93.5
PoF21[22] 2019 82.46 89.53
TSRIJI[47] 2019 | 73.3 80.3
POT2I+Inception v3[23] 2020 83.85 90.33
FIB-CNN[12] 2021 84.22 89.71
LAGA-Net[48] 2021 87.07 93.17
ST-GCN[13] 2018 | 81.5 88.3
GECNN5s[49] 2020 85.4 91.1
Proposed HMANet - 87.1 92.0

2) NTU RGB+D: Table III shows comparison of our HMANet
with past networks. When compared to the LSTM based ap-
proaches [42—44], our network achieves superior performance.
This is due to incorporating spatio-temporal features in our
model which is sensitive to the geometrical information in the
sequence. Furthermore, among all the CNN based methods, we
achieve the best result on cross-subject protocol. Our HMANet
outperforms approach [21] without employing LSTM net-
works and [20] without using a specific depth first traversal.
The CNN method [46] achieves best performance after learn-
ing the tangent space features, which is also considered in
our model. We have further achieved comparable performance
to some GCN-based method [13, 49], and outperforming the
pioneering work [13] on both cross-subject and cross-view
protocol by 5.6% and 3.7% respectively. When compared to
the GCN based methods, the CNN based methods are unable
to take full advantage of the topological structure due to lack
of input graph, hence do not perform well. The GCN-based
methods utilize local information about specific body parts,
while our network does not require any such separate handling
of body parts.

3) SHREC’17 Track and DHG-14/28: Table IV shows the
recognition accuracy of our framework trained and evaluated
on SHREC’17 dataset and DHG-14/28 dataset. It shows that
our HMANet achieves state-of-the-art performance under both
14 gesture and 28 gesture settings on the SHREC’17 dataset,
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drink water

eat meal

brush teeth
brush hair

drop

pick up

throw

sit down

stand up
clapping

reading

writing

tear up paper
put on jacket
take off jacket
puton a shoe
take off a shoe
put on glasses
take off glasses
puton a hat

take off a hat
cheer up

hand waving
kicking something
reach into pocket
hopping

jump up

phone call

play with phone
type on a keyboard
point to something
taking a selfie
check time

rub two hands
nod head/bow
shake head
wipe face

salute

put palms together
cross hands in front
sneeze/cough
staggering

falling down
headache

chest pain

back pain

neck pain
nausea/vomiting
fan self
punch/slap
kicking

pushing

pat on back
point finger
hugging

giving object
touch pocket
shaking hands
walking towards
walking apart

Fig. 7. Confusion matrix of NTU RGB+D dataset in terms of the Cross-Subject protocol.

PERFORMANCE COMPARISON ON HAND GESTURE DATASETS. 14G AND 28G REPRESENT 14 AND 28 GESTURE SETTINGS.

(a) DHG-14/28 dataset using the Leave-One-Subject-Out protocol

(b) SHREC’17 Track dataset using Cross-Subject protocol

IEEE Transactions on Cognitive and Developmental Systems

Method Year ‘f:f éurary(z‘?()} Method Year llA:(c}uralcy(z‘Z;()}
CNN+LSTM[21] 2018 | 85.60 | 81.10 CNN+LSTM][21] 2018 | 89.8 86.3
Res-TCN[50] 2018 | 86.90 | 83.60 Parallel CNN[54] 2018 | 91.3 84.4
STA-Res-TCN[50] 2018 | 89.20 | 85.00 Res-TCNI[50] 2018 | 91.1 87.3
ST-GCN[13] 2018 | 91.20 | 87.10 STA-Res-TCN[50] 2018 | 93.6 90.7
ST-TS-HGR-NETI[51] | 2019 | 87.30 | 83.40 MFA-Net[55] 2019 | 91.3 86.6
SPD-NET[51] 2019 | 92.38 | 86.31 DD-Net[56] 2019 | 94.6 91.9
DG-STA[52] 2019 | 91.90 | 88.00 HPEV+HMM|53] 2020 | 94.88 | 92.26
HPEV+HMM][53] 2020 | 92.54 | 88.86 TCN-Summ([57] 2021 | 93.57 | 91.43
Proposed HMANet - 92.21 | 89.18 Proposed HMANet | - 95.12 | 92.62
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Fig. 8. Confusion matrix of DHG dataset with 14 gestures setting.
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Fig. 9. Confusion matrix of SHREC’17 dataset with 14 gestures setting.

greater accuracy improvement with the more complicated 28
gestures setting, which further validates the effectiveness of
our proposed model. Comparing the performance on DHG-
14/28 dataset, our proposed hierarchical architecture brings
6.61% and 8.08% accuracy improvement respectively for
the 14 gestures setting and 28 gestures setting compared to
CNN+LSTM. As shown in Table IV, our network obtains
92.21% on 14 gesture protocol and 89.18% on 28 gesture
protocol. It is comparable with the state-of-the-art result in
net HPEV+HMM [53] obtaining 92.54% and 88.86% for
experiments with 14 and 28 gestures respectively. Particularly,
the good performance is more notable with 28 gestures setting
than that with 14 gestures setting. Fig.8 and Fig.9 shows
the confusion matrix of our network on DHG dataset and
the SHREC’17 dataset. The recognition errors concentrate
on highly similar actions, e.g. Grap to Pinch. Our network
achieves 100% accuracy on both datasets in recognizing
actions Swipe Right, Swipe +, Swipe-V.
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V. CONCLUSION

In this paper, we propose a skeleton-based action recogni-
tion model using hyperbolic manifold theory. The model is
characterized by obtaining joint interaction from the spatial
domain for the skeleton sequence, and parametrically rep-
resenting it in a hyperbolic space. Capturing the coordinate
information of global joints through affine transformation,
the spatial joint interaction can be fully explored to extract
discriminative spatio-temporal features. Since the excellent
ability of hyperbolic space to represent hierarchical features,
the global interactive features embedded can reflect certain hi-
erarchical relationships. In addition, to extract spatio-temporal
features, our method separately uses temporal filter and spatial
filter to fuse local information and combine them, while a bias
based on hyperbolic manifold is added. On public datasets
including human body and gestures, we conduct experiments
to prove that the proposed method has a certain versatility
while achieving accuracy comparable with mainstream meth-
ods, which shows the method can be generalized to different
skeleton structures.
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