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ON THE FAVORITE POINTS OF SYMMETRIC LÉVY PROCESSES

BO LI, YIMIN XIAO, AND XIAOCHUAN YANG

Abstract. This paper is concerned with asymptotic behavior (at zero and at infinity) of the
favorite points of Lévy processes. By exploring Molchan’s idea for deriving lower tail probabilities
of Gaussian processes with stationary increments, we extend the result of Marcus (2001) on the
favorite points to a larger class of symmetric Lévy processes.

1. Introduction

Let X = {Xt, t ≥ 0, Px} be a real-valued Lévy process with characteristic exponent ψ which

is given by

E
0[eiλXt ] = e−tψ(λ).

Many sample path properties of X, including the existence and regularity of local times, can be

described explicitly in terms of ψ. Building upon the seminal results of Kesten [14], Hawkes [12]

showed that the local times of X, denoted by {Lxt , t ≥ 0, x ∈ R}, exist as the Radon-Nikodym

derivative of the occupation measure with respect to the Lebesgue measure on R, namely, for all

t ≥ 0 and all Borel measurable functions f : R → R,
∫ t

0
f(Xs)ds =

∫

R

f(x)Lxt dx,

if and only if Re
(
1/(1 + ψ)

)
∈ L1(R). See also Bertoin [6, p.126] for more information. Several

authors have studied the a.s. joint continuity of (t, x) 7→ Lxt and, finally, Barlow and Hawkes [2],

Barlow [1], Marcus and Rosen [17] established sufficient and necessary conditions for the joint

continuity of the local times of Lévy processes in terms of their 1-potential kernel densities. They

also determined the exact uniform and local moduli of continuity for the local time Lxt in the space

variable x. The approaches in [2, 1] and [17] are different. [2, 1] considered general Lévy processes

and their method was based on Dudley’s metric entropy method; while [17] considered strongly

symmetric Markov processes and made use of an isomorphism theorem of Dynkin, which relates

sample path behavior of local times of a symmetric Markov process with those of the associated

Gaussian processes. An extension of the results in [17] to local times of non-symmetric Markov

processes was established by Eisenbaum and Kaspi [8]. Recently, Marcus and Rosen [19] extended

the sufficiency part for the joint continuity of local times in [17] to Markov processes which are

not necessarily symmetric. Their arguments are based on an isomorphism theorem of Eisenbaum

and Kaspi [9] which relates local times of Markov processes with permanental processes. We

refer to the book of Marcus and Rosen [18] for a systematic account on connections between local

times of Markov processes and Gaussian processes.
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This paper is concerned with asymptotic properties of the local times of a class of symmetric

Lévy processes. Let X = {Xt, t ≥ 0} be a real-valued symmetric Lévy process. Recall that from

[3] the set of favorite points (or most visited sites) of X up to time t is defined by

Vt = {x ∈ R : Lxt = sup
y∈R

Lyt

}

and the favorite points process of X is defined by

Vt = inf
{
|x| ∈ R : Lxt = sup

y∈R
Lyt

}
.

As pointed out by Bass et al. [3] (see also Marcus [16]) the choice of Vt is not significant. The

results on Vt mentioned in this paper are still valid if it is replaced by any other element of Vt.
Bass and Griffin [4] initiated the study of favorite points and established a quite surprising result

for Brownian motion. Indeed one might expect that a real-valued Brownian motion starting from

zero admits zero as one of its favorite points in the long run, but Bass and Griffin showed that

the favorite points process of a Brownian motion is actually transient, namely, lim
t→∞

Vt = ∞.

Their proof relies on the Ray-Knight Theorem. Later, Bass et al. [3] proved that when X

is a symmetric stable Lévy process in R of index α ∈ (1, 2), its favorite points process is still

transient. They appealed to a generalized Ray-Knight Theorem [10] and made a clever use of

Slepian’s Lemma. Marcus [16] adopted the approach of [3] and extended their result to a large

class of symmetric Lévy processes. On the other hand, Eisenbaum and Khoshnevisan [11] studied

the hitting probability of the set of favorite points Vt. More specifically, they call a compact set

K ⊂ R polar for V :=
⋃
t>0 Vt if

P
(
∃t > 0 : Vt ∩K 6= ∅

)
= 0.

It has been an open problem to establish a criterion for a general compact set K to be polar.

However, Eisenbaum and Khoshnevisan [11] proved that all singletons are polar for a large class

of symmetric Markov processes, including symmetric stable Lévy processes in R with α ∈ (1, 2).

The present paper is mainly motivated by Marcus [16] and a remark of Marcus and Rosen

[18, p.527]. In his study of the asymptotic behavior of the favorite points process {Vt, t ≥ 0} as

t→ ∞, Marcus [16] assumed that the characteristic exponent ψ(λ) of a symmetric Lévy process

X in R satisfies the following two conditions:

(i) ψ(λ) is regularly varying at zero with index 1 < α ≤ 2 and 1/(1 + ψ(λ)) ∈ L1(R, dλ);

(ii) σ20(x) is increasing on [0,∞), where

σ20(x) =
2

π

∫ ∞

0

(
1− cos(λx)

) dλ

ψ(λ)
, x ∈ R. (1.1)

We remark first that the regularly varying condition in (i) is somewhat restrictive (e.g., as shown

by Choi [7, Proposition 2.4], the characteristic exponent of a general semi-stable Lévy process

may not be regularly varying. See Section 5 below for more examples.) Secondly, condition (ii)

is not easy to verify even if condition (i) is satisfied. This issue was also noticed by Marcus and

Rosen [18, p.527] who suggested to generalize the change of measure argument due to Molchan

[20, 21] to obtain a key estimate instead of using Slepian’s Lemma which requires the monotonicity

condition (ii). In this paper, we will relax the conditions (i) and (ii) significantly and study the

asymptotic properties of {Vt, t ≥ 0} not only as t → ∞, but also as t → 0. Moreover, our

results also show that Theorem 1.3 and Proposition 1.4 of Eisenbaum and Khoshnevisan [11] are

applicable to Lévy processes that satisfy Condition (C1). Hence all singletons are polar for the

set of favorite points of such a Lévy process.
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Now we introduce the conditions used in this paper. Recall that for a symmetric Lévy process

X in R, its characteristic exponent ψ is nonnegative and has the following Lévy-Khintchine

representation:

ψ(λ) = A2λ2 +

∫ ∞

0

(
1− cos(xλ)

)
ν(dx), (1.2)

where ν is a Borel measure on (0,∞) that satisfies
∫∞
0 (1 ∧ x2)ν(dx) <∞ and is called the Lévy

measure of X. Except in Section 6.1, we tacitly assume that the following holds:
∫ ∞

1

dλ

ψ(λ)
<∞ and

∫ 1

0

dλ

ψ(λ)
= ∞. (1.3)

The convergence of the first integral in (1.3) is equivalent to the existence of local times [12],

while the second condition in (1.3) is equivalent to the recurrence of X (see Port and Stone [22,

Thm 16.2]).

As in Bass et al. [3] and Marcus [16], we will focus on symmetric, pure-jump Lévy processes,

i.e., we assume that A = 0. Some results for symmetric Lévy processes with a Brownian motion

part can be derived from those for the pure jump part, see Section 6.

We will further assume that the Lévy measure ν is absolutely continuous ν(dx) = dx/θ(x). It

is possible to consider the case when ν is discrete or singular using the methods in Berman [5] or

Luan and Xiao [15], respectively. Since this will increase the size of the paper and most of the

deviation is of technical nature, we do not carry it out here.

Our conditions are on the asymptotic behavior of the Lévy measure ν.

(C1) There exist constants α and α such that

1 < α = lim inf
x→0

x/θ(x)

ν(z : |z| ≥ x)
≤ lim sup

x→0

x/θ(x)

ν(z : |z| ≥ x)
= α < 2.

(C2) There exist constants β and β such that

1 < β = lim inf
x→∞

x/θ(x)

ν(z : |z| ≥ x)
≤ lim sup

x→∞

x/θ(x)

ν(z : |z| ≥ x)
= β < 2.

Remark 1.1. Some comments about Conditions (C1) and (C2) are in order.

• Berman [5] used (C2) type conditions to prove local nondeterminism property for a cen-

tered Gaussian process Y = {Y (t), t ∈ R} with stationary increments whose variance

of increment E
[
(Y (t + λ) − Y (t))2

]
can be represented (up to a constant) by (1.2) with

A = 0. Xiao [26] extended Berman’s argument to the random field setting and proved that

a similar condition implies strong local nondeterminism for Gaussian random fields. Here

we show that Conditions (C1) and (C2) imply asymptotic properties of the characteristic

exponent ψ(λ) of X as λ→ ∞ and λ→ 0; see Lemma 2.1 and 2.5 below.

• It follows from Lemma 2.3 that, under Condition (C1), the function σ20(x) decays at a

power rate as x→ 0. Then, by applying the criterion of Barlow and Hawkes [2] or Marcus

and Rosen [17], one can show that X has a jointly continuous local time.

• It follows from Condition (C2) and Lemma 2.5 that
∫ 1
0

dλ
ψ(λ) = ∞. Hence X is recurrent

thanks to the Spitzer-type criterion (see [22, Thm 16.2] or [6, p.33]). By [18, p.140], the

0-potential density of X satisfies

u(0, 0) =

∫ ∞

0

dλ

ψ(λ)
= ∞,
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and P
x(T0 < ∞) = 1 for all x ∈ R, where T0 = inf{t > 0 : Xt = 0} is the first hitting

time of zero by X.

Let us explain the novelty of our techniques. The function σ20(x) in (1.1) plays an important

role in characterizing the joint continuity and other analytic properties of the local times of X.

Set the tail function

φ(x) = 2

∫ ∞

1/x

dλ

ψ(λ)
, x ≥ 0.

It is clear that φ(x) is nondecreasing in x. It follows from Lemma 2.3 and Theorem 2.5 in [26]

that, under Condition (C1), the functions φ(x) and σ20(x) are comparable as x→ 0. In Section 2,

we establish further connections between the asymptotic behaviors of σ20(x) with those of ψ(λ).

These allow us to remove the monotonicity assumption (ii) on σ20(x) in Marcus [16]. Following [3],

through the generalized Ray-Knight Theorem we transfer some important estimates for the local

times to certain estimates of the associated Gaussian processes. In [3, 16], the Gaussian estimates

were obtained by Slepian’s Lemma. Here we obtain these estimates by applying the Cameron-

Martin change of measure formula, together with a uniform upper bound for the maximum

location of Gaussian processes with stationary increments.

The following are the main results of this paper. Part (ii) of Theorem 1.2 is an extension of

Theorem 1.1 of Marcus [16] and Theorem 1.4 is an extension of Theorem 5.2 of Eisenbaum and

Khoshnevisan [11].

Theorem 1.2. Let X be a symmetric Lévy process with characteristic exponent ψ that satisfies

(1.3).

(i) Assume that (C1) holds. For all a > 2(α− 1)/(2 − α),

lim
t→0

Vt

φ−1
(

L0
t

(logL0
t )

a

) = ∞ P
0-a.s.

(ii) Assume that (C2) holds. For all a > 2(β − 1)/(2 − β),

lim
t→∞

Vt

φ−1
(

L0
t

(logL0
t )

a

) = ∞ P
0-a.s.

Remark 1.3. Our conditions impose certain asymptotic behavior of the Lévy measure, which in

turn implies certain asymptotic behavior of the characteristic exponent and a ratio control for

the tail function of the Lévy measure, see (2.1)-(2.2) and (2.10)-(2.11) in Section 2. In fact,

from the proofs below we may see that Part (i) of Theorem 1.2 (resp. Part (ii)) is valid as long

as (2.1)-(2.2) (resp. (2.10)-(2.11)) hold. Both sets of conditions are useful since Lévy processes

encountered in the literature may be specified explicitly either by the Lévy measure or by the

characteristic exponent. From this and Proposition 2.4 of Choi [7], it follows that Theorem 1.2

holds for any symmetric semi-stable Lévy process in R with index α ∈ (1, 2]. In Section 5, we also

present an example where (C1) fails, but (2.1)-(2.2) hold, thus Part (i) of Theorem 1.2 continues

to hold.

Theorem 1.4. If Conditions (1.3) and (C1) hold, then all singletons are polar for the set V of

favorite points. Namely, for every x ∈ R,

P
x
(
∃t > 0 such that x ∈ Vt

)
= 0.
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The rest of the paper is organized as follows. Some preliminary results are presented in Section

2. We obtain upper and lower tail estimates for the maxima of Gaussian processes in Section 3.

Using these estimates, we prove Theorems 1.2 and 1.4 in Section 4. Some examples are given in

Section 5. Possible extensions are discussed in Section 6.

We end the Introduction with some notations. We use P
x and E

x to denote the law and the

expectation of any Lévy process with starting point x ∈ R. For simplicity, we write P and E

when x = 0. In Sections 3 and 4, the law and the expectation of any auxiliary Gaussian process

are denoted by P and E. We use c, C to denote generic constants whose value may change from

line to line.

2. Preliminaries

2.1. General facts

Introduce the tail function of the Lévy measure ν:

π(x) = 2

∫ ∞

1/x

dz

θ(z)
, ∀x > 0.

The function π(x) is important because, under our condition, it is equivalent to ψ(λ) around

infinity and has the advantage of being a monotone function. More precisely, the following

lemma which is a reminiscence of [26, Lem 2.3 and Thm 2.5] gathers useful facts derived from

(C1).

Lemma 2.1. Assume that (C1) holds. For any ε ∈ (0,min(α − 1, 2 − α)), there exists a finite

positive constant K0 such that for all y > x > K0,

(
x

y

)α+ε
≤ π(x)

π(y)
≤
(
x

y

)α−ε
. (2.1)

Moreover,

0 < lim inf
λ→∞

ψ(λ)

π(λ)
≤ lim sup

λ→∞

ψ(λ)

π(λ)
<∞. (2.2)

Proof. The proof which led to [26, Lem. 2.3] yields plainly (2.1) by considering x, y around

infinity. Using similar arguments that led to [26, Thm. 2.5], but for large λ rather than for small

ones, entails (2.2). Let us prove (2.2) for the sake of completeness. By (1.2), we can write ψ(λ)

as

ψ(λ) =

∫ 1/λ

0
(1− cos(λx))

dx

θ(x)
+

∫ ∞

1/λ
(1− cos(λx))

dx

θ(x)
:= I1 + I2.

By (C1), there exists 0 < r0 < 1/K0 such that for any x < r0,

α− ε ≤ x/θ(x)

π(1/x)
≤ α+ ε.
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So for λ > K0, it follows from (2.1) that

I1
π(λ)

≥ (α− ε)

∫ 1/λ

0
(1− cos(λx))

π(1/x)

π(λ)

dx

x

≥ (α− ε)

∫ 1/λ

0
(1− cos(λx))

(
1

xλ

)α−ε dx
x

= (α− ε)

∫ 1

0
(1− cos x)

dx

xα+1−ε
= c > 0.

This proves the left inequality in (2.2).

To prove the right inequality in (2.2), we control both I1 and I2. Firstly, for λ > K0, we still

use (2.1) and derive

I1
π(λ)

≤ (α+ ε)

∫ 1/λ

0
(1− cos(λx))

π(1/x)

π(λ)

dx

x

≤ (α+ ε)

∫ 1/λ

0
(1− cos(λx))

(
1

xλ

)α+ε dx
x

= (α+ ε)

∫ 1

0
(1− cos x)

dx

xα+1+ε
= c <∞,

where we have used the fact α+ ε < 2. Next, bounding from above the integrand by 1, we obtain

I2/π(λ) ≤ 1 for all λ. Combining the two bounds completes the proof. � �

Next we show that the ratio control (2.1) and the equivalence (2.2) on ψ as λ → ∞ imply

similar properties of φ(x) and the maxima of σ20(x) as x→ 0. The tool is [13, Prop. 1], see also

[24].

Lemma 2.2 ([13, Prop. 1]). Let

H(x) =

∫
1 ∧

(
λ

x

)2 dλ

ψ(λ)

and σ̂20(h) = max|x|≤h σ
2
0(x). There exists a constant c > 0 such that for all x > 0,

c

∫ 1/x

0
(λx)2

dλ

ψ(λ)
≤ σ20(x) ≤ 2H(1/x),

cH(1/x) ≤ σ̂20(x) ≤ 2H(1/x).

Lemma 2.3. Assume that (C1) holds. There are positive finite constants α1 < α2 such that for

any 0 < ε < α1, there exists r0 > 0 such that for 0 < x < y < r0,
(
x

y

)α2+ε

≤ φ(x)

φ(y)
≤
(
x

y

)α1−ε

. (2.3)

Further, one has

0 < lim inf
x→0

σ̂20(x)

φ(x)
≤ lim sup

x→0

σ̂20(x)

φ(x)
<∞. (2.4)

Proof. A direct application of [26, Lem. 2.3] yields (2.3) as long as we show

0 < α1 = lim inf
λ→∞

λ/ψ(λ)

φ(1/λ)
≤ lim sup

λ→∞

λ/ψ(λ)

φ(1/λ)
= α2 <∞. (2.5)
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Let us start with the left inequality in (2.5). By Lemma 2.1, there exist constants 0 < c, C <∞
such that for all λ > C,

λ/ψ(λ)

φ(1/λ)
=

λ

2
∫∞
λ

ψ(λ)
ψ(z)dz

≥ cλ
∫∞
λ

π(λ)
π(z)dz

≥ cλ∫∞
λ (λ/z)α−εdz

:= c0 > 0.

Similarly, there exists c′ <∞ such that for λ > C,

λ/ψ(λ)

φ(1/λ)
≤ c′λ
∫∞
λ

π(λ)
π(z)dz

≤ c′λ∫∞
λ (λ/z)α+εdz

:= c′0 <∞,

which implies the desired right inequality in (2.5).

Next we show (2.4). Thanks to Lemma 2.2, it suffices to show (2.4) with σ̂20(x) replaced by

H(1/x). Observe that

H

(
1

x

)
= 2

∫ 1/x

0
(λx)2

dλ

ψ(λ)
+ 2

∫ ∞

1/x

dλ

ψ(λ)
. (2.6)

Thus, the left inequality in (2.4) holds trivially. On the other hand, for x < 1/C,
∫ 1/x

0
(λx)2

dλ

ψ(λ)
= x2

(∫ C

0
λ2

dλ

ψ(λ)
+

∫ 1/x

C
λ2

dλ

ψ(λ)

)
.

The first integral in the parenthesis is finite and the second integral goes to infinity as x → 0

([18, Lem.4.2.2]). Therefore,
∫ 1/x

0
(λx)2

dλ

ψ(λ)
≤ cx2

∫ 1/x

C
λ2

dλ

ψ(λ)
=

cx2

ψ(1/x)

∫ 1/x

C

ψ(1/x)

ψ(λ)
λ2dλ

which by Lemma 2.1 is bounded from above by

cx2

ψ(1/x)

∫ 1/x

C

π(1/x)

π(λ)
λ2dλ ≤ cx2

ψ(1/x)

∫ 1/x

C

(
1

xλ

)α+ε
λ2dλ

≤ c

ψ(1/x)x

∫ 1

0

(
1

λ

)α+ε−2

dλ. (2.7)

We can assemble the last integral in (2.7) into the constant c since α > 1 and ε is small. To finish

the proof of the right inequality in (2.4), it remains to show that

1

xψ(1/x)
≤ c

∫ ∞

1/x

dλ

ψ(λ)
. (2.8)

for all x > 0 small. Indeed, combining (2.6), (2.7) and (2.8), together with Lemma 2.2, shows

that σ̂20(x) ≤ cφ(x) for all x > 0 sufficiently small, as desired. By Lemma 2.1, for all 0 < x < 1/C,
∫ ∞

1/x

ψ(1/x)

ψ(λ)
dλ ≥ c

∫ ∞

1/x

(
1

λx

)α+ε
dλ =

c

x

∫ ∞

1

dλ

λα+ε
(2.9)

from which (2.8) follows. The proof is now complete. � �

Remark 2.4. In fact, the two terms in (2.6) are of the same order under Condition (C1). To

see this, it remains to prove that there exists c > 0 such that

x2
∫ 1/x

C
λ2

dλ

ψ(λ)
≥ c

∫ ∞

1/x

dλ

ψ(λ)
= cφ(x).

This is true since one can reverse inequalities in (2.7) and (2.9) if we replace all α+ ε by α− ε.

Consequently, σ20(x) ≍ φ(x) as |x| → 0 by the first inequality in Lemma 2.2.
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Interchanging the roles of zero and infinity, one deduces similar facts under (C2).

Lemma 2.5. Assume that (C2) holds. For any ε ∈ (0,min(β − 1, 2 − β)), there exists a finite

positive constant r1 such that for all 0 < x < y < r1,

(
x

y

)β+ε
≤ π(x)

π(y)
≤
(
x

y

)β−ε
. (2.10)

Moreover,

0 < lim inf
λ→0

ψ(λ)

π(λ)
≤ lim sup

λ→0

ψ(λ)

π(λ)
<∞. (2.11)

Lemma 2.6. Assume that (C2) holds. There are positive finite constants β1 < β2 such that for

any 0 < ε < β1, there exists K1 > 0 such that for all y > x > K1,
(
x

y

)β2+ε
≤ φ(x)

φ(y)
≤
(
x

y

)β1−ε
. (2.12)

Further, one has

0 < lim inf
x→∞

σ̂20(x)

φ(x)
≤ lim sup

x→∞

σ̂20(x)

φ(x)
<∞. (2.13)

Proof of Lemmas 2.5 and 2.6 The ratio control (2.10) is exactly [26, Lem. 2.3], and the equivalence

(2.11) is [26, Thm. 2.5]. To prove (2.12), it suffices to show that

0 < β1 = lim inf
λ→0

λ/ψ(λ)

φ(1/λ)
≤ lim sup

λ→0

λ/ψ(λ)

φ(1/λ)
= β2 <∞.

This can be handled in exactly the same way as (2.5) is proved, with an application of Lemma

2.5 instead of Lemma 2.1. Let us prove (2.13). Since there is no obvious way to control the value

of β2, one cannot apply directly Lemma 2.1 to derive (2.13). But Lemma 2.2 which holds for all

x > 0 is still applicable. Observe that the left inequality of (2.13) follows from (2.6). On the

other hand, for x > 1/r1,
∫ 1/x

0
(λx)2

dλ

ψ(λ)
=

1

xψ(1/x)

∫ 1

0
λ2
ψ(1/x)

ψ(λ/x)
dλ

≤ c

xψ(1/x)

∫ 1

0
λ2
(
1

λ

)β+ε
dλ =

c

xψ(1/x)
,

where we have used Lemma 2.5 in the second inequality and β < 2. To finish the proof, it remains

to show (2.8) for all large x. For x > 2/r1, write
∫ ∞

1/x

dλ

ψ(λ)
=

∫ r1

1/x

dλ

ψ(λ)
+

∫ ∞

r1

dλ

ψ(λ)
:= J1 + J2.

Observe that J2 < ∞ by assumption (which is the necessary and sufficient condition for the

existence of local times). Using again Lemma 2.5, one has for x > 2/r1

J1 =
1

ψ(1/x)

∫ r1

1/x

ψ(1/x)

ψ(λ)
dλ

≥ c

ψ(1/x)

∫ r1

1/x

(
1

xλ

)β+ε
dλ ≥ c

xψ(1/x)

∫ 2

1

(
1

λ

)β+ε
dλ =

c

xψ(1/x)
,

as desired. This finishes the proof. �
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2.2. An isomorphism theorem

We recall a generalized second Ray-Knight Theorem due to Eisenbaum et al. [10]; see also

Marcus and Rosen [18]. Let X = {Xt, t ≥ 0} be a strongly symmetric Borel right process with

values in R with continuous α-potential densities uα(x, y). Then the local times {Lxt , t ≥ 0, x ∈ R}
exist and satisfy

E
x

[∫ ∞

0
e−αtdLyt

]
= uα(x, y). (2.14)

Denote uT0(x, y) = E
x[LyT0 ] which is the 0-potential density of X killed at the first time it hits

zero. Set τ(t) = inf{s ≥ 0 : L0
s > t}. We state the generalized second Ray-Knight Theorem in

the recurrent case from [10, Thm 1.1] or [18, Thm 8.2.2].

Theorem 2.7. Assume that the 0-potential density of X satisfies u(0, 0) = ∞ and P
x(T0 <

∞) > 0 for all x. Let η = {ηx, x ∈ R} be a mean-zero Gaussian process on a probability space

(Ωη,Fη,Pη) with covariance function uT0(x, y). Then for any t > 0 and any countable subset

D ⊂ R, under P× Pη, in law
{
Lxτ(t) +

η2x
2
;x ∈ D

}
=

{
1

2
(ηx +

√
2t)2;x ∈ D

}
. (2.15)

As we have mentioned earlier, we will write the probability Pη as P and its expectation as E.

It follows from Theorem 6.1 of Eisenbaum et al. [10] that, for a recurrent symmetric Lévy

process with characteristic exponent ψ(λ), the associated Gaussian process η is centered with

stationary increments such that its covariance uT0(x, y) is given by

uT0(x, y) =
1

2
(σ20(x) + σ20(y)− σ20(x− y)). (2.16)

or equivalently it has variogram E[(η(x)− η(y))2] = σ20(x− y). Here, σ20(x) is defined in (1.1).

The following is the Cameron-Martin (change of measure) formula for Gaussian processes.

Theorem 2.8 ([18, Thm 11.4.1]). Let {Gt; t ∈ S} be a mean zero Gaussian process with contin-

uous covariance Γ(x, y) and let H(Γ) be the reproducing kernel Hilbert space generated by Γ. Let

f ∈ H(Γ). Then for any measurable functional F ,

E[F (G. + f(·))] = e−‖f‖2/2E[F (G.)e
G(f)],

where ‖ · ‖ is the norm on H(Γ) and G(f) is a Gaussian random variable with mean zero and

variance ‖f‖2.

For the Gaussian process associated to a Lévy process with characteristic exponent ψ(λ) in

Theorem 2.7, the reproducing kernel Hilbert space is endowed with the norm

‖f − f(0)‖2 =
1

2π

∫ ∞

0
|ψ(λ)||f̂ (λ)|2dλ,

where f̂ is the Fourier transform of f , see [18, Sec 11.7].

2.3. Location of the leftmost maximum

The next lemma is adapted from Theorem 3.1(b) of Samorodnitsky and Shen [23], see also

[25].
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Lemma 2.9. Let η be a continuous process with stationary increments. Define τ[a,b] to be the

leftmost maximum location for η on the interval [a, b], that is

τ[a,b] = inf
{
x ∈ [a, b] : η(x) = max

u∈[a,b]
η(u)

}
.

Then the distribution function of τ[a,b] satisfies

F[a,b](x) = F[0,b−a](x− a), ∀x ∈ R.

Further, the law of τ[0,T ] restricted to (0, T ) is absolutely continuous with respect to the Lebesgue

measure on R and its density has the following universal upper bound

fT (t) ≤ max
{1
t
,

1

T − t

}
, 0 < t < T.

3. Gaussian tail estimates

In this section, we estimate the upper and lower tail probabilities for the associated Gauss-

ian processes {η(x), x ∈ R} in the second Ray-Knight Theorem. Recall that {η(x), x ∈ R} is a

centered Gaussian process with stationary increments satisfying

E[(η(x) − η(y))2] = σ20(x− y).

The first two lemmas give upper tail estimates for the maxima of η.

Lemma 3.1. Assume that (C1) holds. There exist finite positive constants c0, c1, c2, c3, r1 such

that for all 0 < h < r1 and u ≥ c3σ0(h),

E

(
sup
|x|≤h

|η(x)|
)

≤ c0σ̂0(h),

P

(
sup
|x|≤h

|η(x)| > u

)
≤ c1 exp

(
− u2

c2σ̂20(h)

)
.

Proof. By Marcus and Rosen [18, Lem 7.2.2], for any increasing σ̃(x) satisfying σ̃(0) = 0 and

σ0(x) ≤ σ̃(x),

E

(
sup
|x|≤h

|η(x)|
)

≤ C

(
σ̃(h) +

∫ 1/2

0

σ̃(hu)

u
√

log 1/u
du

)
. (3.1)

Actually, (3.1) holds with σ̃(·) replaced by σ̂0(·) = max|x|≤|·| σ0(x) (see [18, p.301]). Applying

Lemma 2.3 yields that

∫ 1/2

0

σ̂0(hu)

u
√

log 1/u
du ≤ cσ̂0(h)

∫ 1/2

0

u(α1−ε)/2

u
√

log 1/u
du ≤ cσ̂0(h) (3.2)

for all h > 0 sufficiently small. Combining (3.1) and (3.2) yields the first moment estimate.

To derive the upper tail probability, consider u > 3c0σ̂0(h) (we take c0 ≥ 1/
√
2π) and let a be

the median of sup|x|≤h η(x) which satisfies

∣∣∣a− E sup
|x|≤h

η(x)
∣∣∣ ≤ σ̂0(h)/

√
2π,
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see [18, Cor. 5.4.5]. Using the concentration inequality (cf. [18, Rem. 5.4.4]) in the third

inequality below, one gets

P

(
sup
|x|≤δ

|η(x)| > u

)
≤ P

(
sup
|x|≤δ

|η(x)| − a > u− c0σ̂0(h)− σ̂0(h)/
√
2π

)

≤ P

(∣∣∣ sup
|x|≤δ

|η(x)| − a
∣∣∣ ≥ u/3

)
≤ 3

(
1− Φ(

u

3σ̂0(δ)
)

)

≤ 3 exp

(
− u2

18σ̂20(δ)

)
,

where Φ is the distribution function of N(0, 1). For smaller u, this inequality holds trivially with

3 replaced by some generic constant. � �

Lemma 3.2. Assume that (C2) holds. There exists K > 0 such that for all h > K, the conclusion

in Lemma 3.1 holds with possibly different constants c0, c1, c2, c3.

Proof. Let K1 be the constant in Lemma 2.6 and h > K1. As was shown in the proof of Lemma

3.1, the upper tail probability estimate follows once we establish the first moment estimate for

the maxima of {η(x), x ∈ R}. Following Marcus [16], we use Dudley’s entropy bound ([18, Thm.

6.1.2])

E

(
sup
|x|≤h

η(x)

)
≤ 16

√
2

∫ σ̂0(h)

0

√
logN([−h, h], dη , u) du,

where dη(x, y) = σ0(x − y) is the canonical metric of the Gaussian process {η(x); x ∈ R} and

N([−h, h], dη , u) is the minimal number of balls with radius at most u in the metric dη to cover the

interval [−h, h]. Observe that by the stationarity of the increments, dη(x, y) = dη(x− y, 0), thus

N([−h, h], dη , u) ≤ (h/K1)N([−K1,K1], dη , u]). For any increasing function σ̃(x) that satisfies

σ0(x) ≤ σ̃(x), one has by the subadditivity of the square root function

∫ σ̃(K1)

0

√
logN([−h, h], dη , u)du

≤ σ̃(K1)
√

log(h/K1) +

∫ σ̃(K1)

0

√
logN([−1, 1], dη , u)du.

That the last integral is finite follows from Fernique’s Theorem [18, Thm. 6.2.2]. Also, a dη-

ball of radius u covers at least an interval of Euclidean length σ̃−1(u) because [0, σ̃−1(u)] =

{x ≥ 0 : σ̃(x) ≤ u} ⊂ {x ≥ 0 : σ0(x) ≤ u}. Hence,

∫ σ̃(h)

σ̃(K1)

√
logN([−h, h], dη , u)du ≤

∫ σ̃(h)

σ̃(K1)

√
log

2h

σ̃−1(u)
du

=

∫ h

K1

√
log

2h

s
dσ̃(s) ≤ σ̃(h)(log 2)1/2 +

1

2

∫ 1/2

K1/(2h)

σ̃(2hs)

s
√
log(1/s)

ds. (3.3)

Since σ0(x−y) = dη(x, y) ≤ dη(x, (x+y)/2)+dη((x+y)/2, y) = 2σ0((x−y)/2) ≤ 2σ̂0((x−y)/2),
one gets for all x,

σ̂0(2x) ≤ 2σ̂0(x).
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Taking limits (through a sequence of finite measures dσ̃n on [1, h] that converges to dσ̂0), one

obtains (3.3) with σ̃ replaced by σ̂0. To summarize, we have proved that

E

(
sup
|x|≤h

η(x)

)
≤ C

(
√

log h+ σ̂0(h) +

∫ 1/2

K1/(2h)

σ̂0(hs)

s
√
log 1/s

ds

)

:= C(A1 +A2 +A3).

It follows from Lemma 2.6 that A1 < cA2. Similarly,

A3 ≤ cσ̂0(h)

∫ 1/2

0

sβ1−ε

s
√

log 1/s
ds ≤ cσ̂0(h).

This ends the proof. � �

Next, we consider the lower tail probability for the maxima of {η(x), x ∈ R}. Lemma 3.3 is the

key technical estimate of this paper. As suggested by Marcus and Rosen [18, p.527], we explore

Molchan’s idea [20, 21] without using scaling.

Lemma 3.3. Assume that (C1) holds. For all γ < 1/(α − 1), there exists a finite constant K2

such that for any h < 1 and δ < 1,

P
(
η(x) <

√
hσ̂20(δ); for all |x| ≤ δ

)
≤ K2h

γ .

Proof. Set

ξδ(x) =
η(δx)

σ̂0(δ)
; |x| ≤ 1.

The probability in question becomes

P(ξδ(x) <
√
h; for all |x| ≤ 1).

It is plain that for each 0 < δ < 1, the mean zero Gaussian process {ξδ(x), |x| ≤ 1} has stationary

increments. Furthermore, its variogram has the following spectral representation:

E
[
(ξδ(y + x)− ξδ(y))

2
]
=
σ20(δx)

σ̂20(δ)
=

2

π

∫ ∞

0

1− cos(xλ)

δσ̂20(δ)ψ(λ/δ)
dλ.

Thus, by Section 11.7 in Marcus and Rosen [18] the reproducing kernel Hilbert space of {ξδ(x), |x| ≤
1} is endowed with the norm

‖f − f(0)‖2 = 1

2π

∫
|δσ̂20(δ)ψ(λ/δ)| |f̂ (λ)|2dλ.

Let f be a non negative smooth function with support in [−1, 1] and f(0) = 1. Set fh(x) =√
hf(x/ha) and f̄h(x) :=

√
h − fh(x) = fh(0) − fh(x), where a > 1 is to be chosen later. The

Cameron-Martin formula (Theorem 2.8) applied to {ξδ(x), |x| ≤ 1} yields

P
(
ξδ(x) <

√
h; |x| ≤ 1

)

= P
(
ξδ(x)− f̄h(x) < fh(x); |x| ≤ 1

)

= e−‖f̄h‖
2/2E

[
e−ξδ(f̄h)1{ξδ(x)<fh(x);|x|≤1}

]
,

where 1F is the indicator of the event F . By using Hölder’s inequality, one bounds the last term

from above by

e(p−1)‖f̄h‖
2/2P

(
ξδ(x) < fh(x); |x| ≤ 1

)1/q
, (3.4)
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where 1/p + 1/q = 1 with p, q > 1.

Below we show that there exists a finite constant M (depending only on f) such that

‖f̄h‖2 ≤M (3.5)

and

P
(
ξδ(x) < fh(x); |x| ≤ 1

)
≤Mha with a = 1/(α + ε− 1) (3.6)

for all δ, h < 1. As q can be chosen arbitrarily close to 1, and ε arbitrarily small, the desired

estimate follows.

To show (3.5), observe that f̂h(λ) = h
1
2
+af̂(λha) and ‖f̄h‖ = ‖fh − fh(0)‖, thus

‖f̄h‖2 =
1

π

∫ ∞

0
|δσ̂20(δ)ψ(λ/δ)| |f̂h(λ)|2dλ

=
1

π
δσ̂20(δ)h

1+2a

∫ ∞

0
ψ(λ/δ)|f̂ (λha)|2dλ

=
1

π
δσ̂20(δ)h

1+a

∫ ∞

0
ψ

(
λ

δha

)
|f̂(λ)|2dλ. (3.7)

We split the last integral into two parts. For λ ≤ K0δh
a (recalling that K0 is the constant in

Lemma 2.1), the integrand concerning ψ is bounded due to the continuity of ψ, then

∫ K0δha

0
ψ

(
λ

δha

)
|f̂(λ)|2dλ ≤ c

∫ ∞

0
|f̂(λ)|2dλ = c‖f‖L2 ,

since Fourier transform is an isometry from L2(R) to L2(R). For λ > K0δh
a, we use Lemma 2.1,

∫ ∞

K0δha
ψ

(
λ

δha

)
|f̂(λ)|2dλ ≤ cψ

(
1

δha

)∫ ∞

0
|λ|α+ε|f̂(λ)|2dλ,

where we can assemble the last integral into the constant c because f̂ is a Scharwz function.

Therefore, one obtains for h < 1 and δ sufficiently small,

‖f̄h‖2 ≤ cδσ̂20(δ)h
1+aψ

(
1

δha

)
≤ cδσ̂20(δ)ψ(1/δ)h

1+a−a(α+ε),

where we used again Lemma 2.1 in the second inequality.

By Lemma 2.3, one has

δσ̂20(δ)ψ(1/δ) ≤ cδ

∫ ∞

1/δ

ψ(1/δ)

ψ(λ)
dλ ≤ cδ

∫ ∞

1/δ

(
1

δλ

)α−ε
dλ = c.

Letting a = 1/(α+ ε− 1) yields (3.5).

Now we prove (3.6). Denote by τδ the leftmost maximum location of the process {ξδ(x), |x| ≤
1}. Since fh vanishes outside of [−h1/(β−1), h1/(β−1)], one has

P
(
ξδ(x) < fh(x); |x| ≤ 1

)
≤ P

(
|τδ| ≤ h1/(β−1)

)
.

By Lemma 2.9, the density at zero of the law of each τδ is bounded from above by 2, uniformly

for all δ > 0. This implies (3.6) and completes the proof of the lemma. � �

We end this section with a similar lower tail estimate, but for large δ.
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Lemma 3.4. Assume that (C2) holds. For all γ < 1/(β−1), there exists a finite constant K3 > 1

such that for any δ > 1 and h < 1 so that δh1/(β+ε−1) > 1/r1 (the constant defined in Lemma

2.5),

P
(
η(x) <

√
hσ̂20(δ); |x| ≤ δ

)
≤ K3h

γ .

Remark 3.5. This lemma merely says that when h→ 0 and δ → ∞ in such a way that δha → ∞
for some a < 1/(β − 1), the lower tail probability behaves like a power function of h.

Proof of Lemma 3.4 Since (3.4) holds for all h, δ > 0, we only need to show that there exists a

finite constant M such that (3.5) and (3.6) hold with a = 1/(β + ε− 1), uniformly for all h < 1

and all δ > 1 so that δh1/(β+ε−1) > 1/r1.

Let us start with (3.5). One has as in (3.7) that

‖f̄h‖2 =
1

π
δσ̂20(δ)h

1+a

∫ ∞

0
ψ

(
λ

δha

)
|f̂(λ)|2dλ.

Write
∫ ∞

0
ψ

(
λ

δha

)
|f̂(λ)|2dλ

=

∫ 1

0
+

∫ r1δha

1
+

∫ ∞

r1δha
ψ

(
λ

δha

)
|f̂(λ)|2dλ =: B1 +B2 +B3.

By Lemma 2.5, one gets

B1 ≤ ψ

(
1

δha

)∫ 1

0
λβ−ε|f̂(λ)|2dλ ≤ cψ

(
1

δha

)
,

B2 ≤ ψ

(
1

δha

)∫ r1δha

1
λβ+ε|f̂(λ)|2dλ ≤ cψ

(
1

δha

)
.

Further, a variable change, ψ(λ) = o(λ2) at infinity ([18, Lem. 4.2.2]), and the fact that f̂ is a

Schwarz function implies that

B3 = δha
∫ ∞

r1

ψ(λ)|f̂(δhaλ)|2dλ

≤ cδha
∫ ∞

r1

λ2|δhaλ|−kdλ = c(δha)1−k

for arbitrarily large k ∈ N. Setting k = 3 and using Lemma 2.5, one obtains (δha)−2 ≤
c(δha)−β−ε ≤ ψ(1/(δha)), which implies B3 ≤ cψ (1/(δha)). Combining these estimates yields

that

‖f̄h‖2 ≤ cδσ̂20(δ)h
1+aψ

(
1

δha

)
≤ cδσ̂20(δ)ψ(1/δ)h

1+a−a(β+ε),

where we have used Lemma 2.5 again in the second inequality. Applying Lemma 2.5 as in the

proof of Lemma 2.6 entails that δσ̂20(δ)ψ(1/δ) ≤ c for all δ large enough. Letting a = 1/(β+ε−1)

gives (3.5).

Remark that, by Lemma 2.9, the uniform density bound for the maximum location τδ holds also

for large δ. Repeating the same lines as in the proof of Lemma 3.3 yields (3.6) which completes

the proof. �
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4. Proofs of Theorems 1.2 and 1.4

Following [4, 3, 16], the strategy is to first find an upper function for the local times with

relatively small space variable, then to obtain a lower function for the maximal local times, where

the order of the upper and lower functions are the same. This would give enough information to

derive asymptotic results for the favorite points. Precisely, we prove the following two lemmas.

Lemma 4.1. Let ha(t) = φ−1
(

t
(log 1/t)a

)
with a > 0.

(i) Assume (C1). For all γ < a/2,

lim
t→0

sup
|x|≤ha(t)

(log 1/t)γ(Lxτ(t) − t)

t
= 0 a.s.

(ii) Assume (C2). For all γ < a/2,

lim
t→∞

sup
|x|≤ha(t)

(log 1/t)γ(Lxτ(t) − t)

t
= 0 a.s.

Lemma 4.2. Set L∗
t = supx L

x
t .

(i) Assume (C1). For any γ > (α− 1)/(2 − α),

lim
t→0

(log 1/t)γ(L∗
τ(t) − t)

t
= ∞ a.s.

(ii) Assume (C2). For any γ > (β − 1)/(2 − β),

lim
t→∞

(log 1/t)γ(L∗
τ(t) − t)

t
= ∞ a.s.

Proof of Lemma 4.1 Let 0 < δ < 1. By Theorem 2.7,

P

(
sup

0≤x≤ha(t)
Lxτ(t) − t ≥ (1 + ε)λ

)

≤ P× P

(
sup

0≤x≤ha(t)

(
Lxτ(t) +

η2(x)

2
− t
)
≥ (1 + ε)λ

)

= P

(
sup

0≤x≤h(t)

(η2(x)
2

+
√
2tη(x)

)
≥ (1 + ε)λ

)

≤ P

(
sup

0≤x≤ha(t)
η2(x) ≥ 2ελ

)
+ P

(
sup

0≤x≤ha(t)

√
2t|η(x)| ≥ λ

)
:= P1 + P2.

Set

λ =

√
2t · c3σ̂20(ha(t))(1 + ε) log log 1/t

δ
.

Then the upper tail estimate in Lemma 3.1 yields,

P2 ≤ c2 exp

(
−(1 + ε) log log 1/t

δ

)
.
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By Lemma 2.3, σ̂20(ha(t)) ≍ (log 1/t)−a around zero, one deduces

P1 = P

(
sup

0≤x≤ha(t)
|η(x)| ≥

√
2ελ

)

≤ c2 exp

(
−2ε

√
2t(1 + ε) log log 1/t

c3σ̂
2
0(ha(t))δ

)

= c2 exp

(
−cε

√
(1 + ε) log log 1/t

δ/(log 1/t)a

)

≤ c2 exp

(
−(1 + ε) log log 1/t

δ

)

for t sufficiently small.

Let tk = exp(−kδ). When t = tk, both P1 and P2 are the general term of a convergent series.

By the Borel-Cantelli Lemma, a.s. for all k large enough,

sup
0≤|x|≤ha(tk)

| log tk|a/2(Lxτ(tk) − tk)

tk
√

log log 1/tk
≤ c/

√
δ. (4.1)

Thus, one has a.s. for all large k, and tk−1 < t < tk

sup
0≤|x|≤ha(tk)

| log tk|a/2(Lxτ(t) − t)

tk
√

log log 1/tk
≤ c/

√
δ +

(tk − tk−1)| log tk|a/2
tk
√

log | log tk|
,

where the second term is bounded from above by
√
δ. Therefore, a.s.

sup
|x|≤ha(t)

| log t|a/2(Lxτ(t) − t)

t
√
log log 1/t

≤
(
c√
δ
+

√
δ

)
tk log log 1/tk
tk−1 log log tk−1

≤ 2

(
c√
δ
+

√
δ

)

for all t sufficiently small. The first claim follows.

To show the second claim, the proof is identical except that we use Lemma 3.2 instead of

Lemma 3.1, and that we choose tk = exp(kδ). We omit the details. �

Proof of Lemma 4.2 Define the events

E1 =
{
Lxτ(t) − t ≤ C1th; |x| ≤ φ−1(ht)

}
;

E2 =

{
η2(x)

2
≤ C1th; |x| ≤ φ−1(ht)

}
;

E3 =

{
Lxτ(t) +

η2(x)

2
− t ≤ 2C1th; |x| ≤ φ−1(ht)

}
.

By the Markov inequality and the second moment estimate in Lemma 3.1, we can choose the

constant C1 in the event E2 large enough such that P(E2) > 1/2 uniformly in h, t < 1. Observe

that by the independence and Theorem 2.7, one has

P(E1)

2
≤ P(E1)P(E2) ≤ P× P(E3)

= P

(
η2(x)

2
+

√
2tη(x) ≤ 2C1th; |x| ≤ φ−1(ht)

)

≤ P
(
η(x) ≤

√
2C1

√
th
√
h; |x| ≤ φ−1(ht)

)
.



ON THE FAVORITE POINTS OF SYMMETRIC LÉVY PROCESSES 17

Recall that by Lemma 2.3, σ̂20(φ
−1(δ)) ≍ δ for δ sufficiently small, in other words, we can choose

C2 <∞ such that √
2C1δ ≤ C2σ̂0(φ

−1(δ2)).

In particular, for all γ < 1/(α − 1) and t, h sufficiently small, one has by Lemma 3.3 that

P(E1) ≤ 2P

(
η(x) ≤ C2

√
hσ̂20(φ

−1(th)); |x| ≤ φ−1(ht)

)
≤ Khγ

with some finite constant K. It follows that

P(L∗
τ(t) − t ≤ C1th) ≤ Khγ .

Now let 0 < d < 2 − α, t = tk := exp(−kd) and h = hk := k−(α−1)(1+ε) with 0 < ε <

(1 − d)/(α − 1) − 1. The Borel-Cantelli Lemma implies that almost surely for all k sufficiently

large,

L∗
τ(tk)

− tk ≥
C1tk

k(α−1)(1+ε)
.

Let tk ≤ t < tk−1, then,

L∗
τ(t) − t ≥ −(t− tk) +

C1tk
k(α−1)(1+ε)

and
L∗
τ(t) − t

t
≥ −(tk−1 − tk)

tk
+

C1tk
tk−1k(α−1)(1+ε)

≥ −2k−(1−d) +
C1(1− δ)

k(α−1)(1+ε)

for all δ > 0 and large k. By our choice of d and ε, one deduces

L∗
τ(t) − t

t
≥ C1(1− 2δ)

k(α−1)(1+ε)
≥ C1(1− 3δ)

(log 1/t)(α−1)(1+ε)/d
.

As d can be chosen arbitrarily close to 2− α, the first claim of Lemma 4.2 follows.

Similarly, applying the second Ray-Knight Theorem and Lemma 3.4 yields

P(E1) ≤ Khγ

for h < 1, δ > 1 such that δh1/(β+ε−1) > 1/r1. Repeating the arguments in the last paragraph

for tk = exp(kd) and hk = k−(β−1)(1+ε) (with some tuning in the choice of ε) gives the second

claim of Lemma 4.2. �

We are ready to finish the proof of Theorem 1.2.

Proof of Theorem 1.2. We only proof part (i) asymptotic behavior of {Vt, t ≥ 0} around zero,

the proof of (ii) is similar. Combining Lemma 4.1 (i) and Lemma 4.2 (i) entails that for γ >

2(α− 1)/(2 − α),

Vτ(t) ≥ φ−1

(
t

(log t)γ

)
(4.2)

for all t sufficiently small. In other words, for all small t,

Vt ≥ φ−1

(
L0
t

(logL0
t )
γ

)
,

which implies that

lim
t→0

Vt

φ−1
(

L0
t

(logL0
t )

γ

) = ∞.

This finishes the proof of Theorem 1.2. �
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We end this section by proving Theorem 1.4.

Proof of Theorem 1.4. By Theorem 1.3 and Proposition 1.4 of Eisenbaum and Khoshnevisan

[11], it is sufficient to verify that there is a sequence {xn} such that lim
n→∞

xn = 0 and

lim
k→∞

(ln k)1/2 sup
n,m ∈ N,

|n − m| ≥ k

uT0(xm, xn)√
uT0(xm, xm)uT0(xn, xn)

= 0, (4.3)

where uT0(x, y) is the function given in (2.16). The verification is similar to the proof of Theorem

5.2 in [11] and we give it for the sake of completeness. It follow from (2.16) that for any x, y ∈ R,

uT0(x, y)√
uT0(x, x)uT0(y, y)

≤ 1

2

σ0(x)

σ0(y)
+

|σ20(y)− σ20(x− y)|
σ0(x)σ0(y)

. (4.4)

Under Condition (C1), we apply Remark 2.4 to see that for any 0 < x < y ≤ 1,

σ0(x)

σ0(y)
≤
(
x

y

)α−ε
, (4.5)

where α > 0 is a constant and ε ∈ (0, α). In order to bound the second term on the right hand

side of (4.4), we use the fact that the covariance function uT0(x, y) of the associated Gaussian

process is the 0-potential density of X killed the first time it hits zero. By [18, Formula (7.232),

p.324],

σ20(x) ≥ |σ20(y)− σ20(y − x)|.

Therefore, the second term is bounded from above by σ0(x)
σ0(y)

. We have thus proved

uT0(x, y)√
uT0(x, x)uT0(y, y)

≤ c

(
x

y

)α−ε
.

Once this is in place, the rest of the proof is almost the same as that in the bottom on page

254 of [11] and is omitted. �

5. Examples

In this section, we provide more examples of symmetric Lévy processes (besides the semistable

Lévy processes in [7] that we have mentioned earlier) that satisfy the conditions of the present

paper, but not those in Marcus [16]. To avoid repetition, we only present examples concerning

the asymptotic behavior of the favorite points around zero.

Example 5.1. Let 1 < α < 2 and 0 < c1 < c2 be constants such that c2α/(2c1) < 2 and

c1α/(2c2) > 1. For any decreasing sequence {bn;n ≥ 0} such that b0 = 1 and bn → 0, define

θ(x) =

{
c1|x|α+1, |x| ∈ (b2k+2, b2k+1],

c2|x|α+1, |x| ∈ (b2k+1, b2k].

Then (C1) holds with α = c1α/(2c2) < c2α/(2c1) = α.
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Example 5.2. Let 1 < α1 < α2 < 2 and {bn;n ≥ 0} be a real sequence decreasing to zero such

that b0 = 1, b1 =
1
2 , and for any integer k ≥ 1,

b2k ≤ b2k−1/(k + 1), (5.1)
∫ b2k

b2k+1

dx

xα2+1
≤
∫ b2k−1

b2k

dx

xα1+1
, (5.2)

∫ b2k

b2k+1

dx

xα2−1
≤
∫ b2k+1

0

dx

xα1−1
. (5.3)

This can be done inductively. We choose first b2k satisfying (5.1) which ensures the convergence

as k → ∞, then chose b2k+1 close to b2k so that (5.2) and (5.3) hold. Let

θ(x) =

{
|x|α1+1, |x| ∈ (b2k+2, b2k+1],

|x|α2+1, |x| ∈ (b2k+1, b2k].

We claim that the following properties hold:

(i) π(λ) ≍ |λ|α1 for |λ| large enough;

(ii) ψ(λ) ≍ |λ|α1 for |λ| large enough;

(iii) Condition (C1) fails.

In particular, the conclusion of Lemma 2.1 holds with α = α = α1 even if (C1) fails. Consequently,

Part (i) of Theorem 1.2 still holds with α = α1.

Let us show the claims (i)-(iii). Observe by (1.2) and the integrability of 1/θ(x) at infinity

(dx/θ(x) is a Lévy measure) that

c|λ|α1 ≤ ψ(λ) ≤ C|λ|α2 (5.4)

for all |λ| large enough. Similarly,

c|λ|α1 ≤ π(λ) ≤ C|λ|α2

for |λ| sufficiently large. To show (i), it suffices to show π(λ) ≤ C|λ|α1 for large |λ|. For any

λ > 1, there exists a constant k0 such that either 1/λ ∈ (b2k0+2, b2k0+1] or 1/λ ∈ (b2k0+1, b2k0 ]. In

the first case,

π(λ)/2 ≤ 1

α1

(
λα1 − b−α1

2k0+1 + b−α1
2k0

− b−α1
2k0−1 + · · ·+ b−α1

2 − b−α1
1

)

+
1

α2

(
b−α2
2k0+1 − b−α2

2k0
+ b−α2

2k0−1 − b−α2
2k0−2 + · · ·+ b−α2

1 − b−α2
0

)
+

∫ ∞

1

dx

θ(x)
.

Plainly, the first sum is bounded from above by Cλα1 and the integral is finite. It follows from (5.2)

that the second sum is bounded from above by Cλα1 . In the second case when 1/λ ∈ (b2k0+1, b2k0 ],

π(λ)/2 ≤ 1

α1

(
b−α1
2k0

− b−α1
2k0−1 + · · ·+ b−α1

2 − b−α1
1

)

+
1

α2

(
b−α2
2k0+1 − b−α2

2k0
+ b−α2

2k0−1 − b−α2
2k0−2 + · · ·+ b−α2

1 − b−α2
0

)
+

∫ ∞

1

dx

θ(x)
. (5.5)

Again the both sums are bounded from above by Cλα1 by (5.2) and the integral is finite. Hence,

π(λ) ≤ Cλα1 for λ > 1, as desired.
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Now we verify (ii). Recalling (5.4) and Lemma 2.2 (applied to the Lévy measure rather than

the spectral measure), we only need to show that

λ2
∫ 1/λ

0
x2

dx

θ(x)
≤ Cλα1 (5.6)

for λ large enough. Let λ > 1 and k1 be the integer so that either 1/λ ∈ (b2k1+2, b2k1+1] or

1/λ ∈ (b2k1+1, b2k1 ]. In the first case, by (5.3)

λ2
∫ 1/λ

0
x2

dx

θ(x)
≤

λ2

(∫ 1/λ

0

dx

xα1−1
+

∫ b2k1+2

b2k1+3

dx

xα2−1
+

∫ b2k1+4

b2k1+5

dx

xα2−1
+ · · ·

)

≤ 1

2− α1
λα1 +

1

2− α2
λα1 ≤ Cλα1 ,

as desired. We prove similarly in the second case that (5.6) holds.

Finally, it follows from (5.5) that

lim sup
x→0

x/θ(x)

ν(y : |y| ≥ x)
= ∞.

Thus (C1) is not satisfied.

6. Extensions

6.1. Transient case

In this subsection we assume that the characteristic exponent ψ of the pure jump symmetric

Lévy process X satisfies
∫ ∞

1

dλ

ψ(λ)
<∞ and

∫ 1

0

dλ

ψ(λ)
<∞. (6.1)

Consequently, X is transient, its local times exist, and its 0-potential density u(x, y) is bounded

and continuous. Further, the support of potential operators of X is R, it follows from [6, p.55]

and the absolute continuity of potential operators that

hx = P
x(T0 <∞) > 0, ∀x ∈ R. (6.2)

We state the generalized second Ray-Knight Theorem for transient symmetric Markov processes

due to Eisenbaum et al. [10], see also [18, Thm. 8.2.3]. Set τ−(t) = inf
{
s : L0

s ≥ t
}
.

Theorem 6.1. Assume that hx = P
x(T0 <∞) > 0 for all x ∈ R. Let η = {ηx, x ∈ R} be a mean

zero Gaussian process with covariance uT0(x, y). Then for any t > 0 and any countable subset

D ⊂ R, under P
0 × P× Pρ, in law
{
Lxτ−(t∧L0

∞
) +

η2x
2
;x ∈ D

}
=

{
1

2
(ηx + hx

√
2(t ∧ ρ))2;x ∈ D

}
, (6.3)

where ρ is an exponential random variable with mean u(0, 0).

We also need the following fact in [6, p.26] which says that the excessive functions of a Markov

process with absolutely continuous potential operators are lower semi-continuous.

Lemma 6.2. hx is lower semi-continuous.
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Now let us focus on deriving an asymptotic result for V around zero. It suffices to prove

analogue of Lemma 4.1 (i) and 4.2 (i) for transient processes. We reduce the proof to the point

where we can apply Gaussian tail estimates as in Section 4.

Lemma 6.3. Let ha(t) be as in Lemma 4.1. Under Condition (C1), for all γ < a/2,

lim
t→0

sup
|x|≤ha(t)

| log t|γ(Lxτ−(t) − h2xt)

t
= 0, a.s.

Proof. Define the events

E4 =
{
L0
∞ > 1, ρ > 1

}
;

E5 =

{
sup

|x|≤ha(t∧L0
∞
)

η2(x)

2
+ hx

√
2(t ∧ ρ)η(x) + h2x(t ∧ ρ− t ∧ L0

∞) ≥ (1 + ε)λ

}
;

E6 =

{
sup

|x|≤ha(t)

η2(x)

2
+

√
2tη(x) ≥ (1 + ε)λ

}
.

Note that E4 ∩ E5 ⊂ E6 for 0 < t < 1. By Theorem 6.1,

P

(
sup

|x|≤ha(t∧L0
∞
)

Lxτ−(t∧L0
∞
) − h2x(t ∧ L0

∞) ≥ (1 + ε)λ

)
≤ P × Pρ × P(E5).

By the independence and the fact that L0
∞, ρ are exponential with mean 0 < u(0, 0) < ∞, we

have for 0 < t < 1,

P

(
sup

|x|≤ha(t∧L0
∞
)

Lxτ−(t∧L0
∞
) − h2x(t ∧ L0

∞) ≥ (1 + ε)λ

)
≤ e

2
u(0,0)P(E6),

where the Gaussian upper tail estimates have been applied. Set tk = exp(−kδ) with 0 < δ < 1.

It follows that under Condition (C1), a.s. for all k sufficiently large, (4.1) holds with Lxτ(tk) − tk

replaced by Lxτ−(tk∧L0
∞
) − h2x(tk ∧ L0

∞) and ha(tk) replaced by ha(tk ∧ L0
∞). Since a.s. L0

∞ > 0,

one deduces

sup
|x|≤ha(tk)

| log tk|a/2(Lxτ−(tk)
− h2xtk)

tk
√

log log 1/tk
≤ c/

√
δ

for all k sufficiently large. A routine interpolation ends the proof. � �

Lemma 6.4. Recall L∗
t = supx L

x
t . Under (C1), for γ > (α− 1)/(2 − α),

lim
t→0

| log t|γ(L∗
τ−(t) − h2xt)

t
= ∞.

Proof. Define the events

E7 =
{
Lxτ−(t∧L0

∞
) − h2x(t ∧ L0

∞) ≤ C1th; |x| ≤ φ−1(ht)
}
;

E8 =

{
Lxτ−(t∧L0

∞
) +

η2x
2

− h2x(t ∧ L0
∞) < 2C1th; |x| ≤ φ−1(ht)

}
;

E9 =

{
η(x)2

2
+ hx

√
2(t ∧ ρ)ηx + h2x(t ∧ ρ− t ∧ L0

∞) < 2C1th; |x| ≤ φ−1(ht)

}
;

E10 =

{
η(x)2

2
+ hx

√
2tη(x) ≤ 2C1th; |x| ≤ φ−1(ht)

}
.
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Observe that E7 ∩ E2 ⊂ E8. For C1 large, one has P(E7) ≤ 2P × P(E8) = 2P × P × Pρ(E9) by

Theorem 6.1. That E4 ∩ E9 ⊂ E10 for 0 < t < 1 and Pρ × P(E4) = e−2/u(0,0) yields

P(E7) ≤ 2e2/u(0,0)P(E10), 0 < t < 1.

By Lemma 6.2 and the fact that P(T0 = 0) = 1, there exists r > 0 such that hx ≥ 1/2 for |x| < r.

Hence,

P(E10) ≤ P(η(x) ≤ 2
√
2C1

√
th
√
h; |x| ≤ φ−1(ht))

for all t sufficiently small. Now the Gaussian lower tail estimates apply and the proof goes exactly

as that of Lemma 4.2. � �

It is worthy to point out that the generalized second Ray-Knight Theorem does not work well

when we wish to study the asymptotic behavior of favorite points around infinity for transient

processes. Indeed, in the transient case, the local time process at each fixed state is finite at

infinity Lx∞ < ∞ a.s. In particular, L0
∞ < ∞, hence its inverse τ(t) is (finite) constant for all t

sufficiently large, a.s. It would be natural to consider the local times under the true time scale

Lxt rather than the time changed local time Lxτ(t), but we have not been able to do so.

On the other hand, we can consider another type of favorite sites at infinity of transient

processes. Let Ur =
{
y ∈ [−r, r] : sup|x|≤r Lx∞ = Ly∞

}
be the set of favorite points within [−r, r]

at infinity and define the favorite points process by r 7→ Ur = inf {|y| : y ∈ Ur}. We expect that

Eisenbaum’s Isomorphism Theorem [18, Thm. 8.1.1] plays the role of the second Ray-Knight

Theorem. This is beyond the scope of the present article, and will be studied in a separate paper.

6.2. Symmetric Lévy processes with a Gaussian component

In this subsection, we assume that A 6= 0 in (1.2). Denote ψd(λ) = ψ(λ) − A2λ2. It follows

from [18, Lem. 4.2.2] that

ψ(λ) ≍
{
λ2 λ > 1,

ψd(λ) 0 < λ < 1.
(6.4)

Therefore, the local times exist and the processX is transient or recurrent according to
∫ 1
0

1
ψd(λ)

dλ

converges or diverges. It may be seen from the proof that the asymptotic behavior of the favorite

points relies on the asymptotic properties of σ20(x) defined in (1.1), which is presented in the

following lemma.

Lemma 6.5. Let σ20(x), σ̂
2
0(x), π(λ), φ(x) be defined in Sections 1 and 2.

(i) σ20(x) ≍ φ(x) ≍ |x| as |x| → 0.

(ii) Under (C2), ψ(λ) ≍ π(λ) as λ→ 0 and σ̂20(x) ≍ φ(x) as |x| → ∞.

Proof. (i) holds by a Tauberian type result [18, Thm 7.3.1], and (ii) follows from (6.4). � �

Since the large time behavior of V depends only on the asymptotic property of σ20(x) at infinity,

we have that under Condition (C2) and recurrence, Part (ii) of Theorem 1.2 holds when A 6= 0.

The small time behavior of V cannot be derived from the present proof when A 6= 0, the

problem being that the lower tail estimate obtained through Cameron-Martin formula is not

strong enough. In such case σ20(x) ≍ |x| around zero (the associated Gaussian process behaves

locally like a Brownian motion), one sees that our proof of Lemma 3.3 gives an upper bound chγ

for any γ < 1 but not for γ = 1. The decay is not fast enough for the subsequent computations
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involving local times. This kind of phenomenon appeared already in the case of stable Lévy

processes as recalled in the following remark.

Remark 6.6. For α-stable Lévy processes, the Brownian case (α = 2) and the pure jump case

(1 < α < 2) may amount to different treatment regarding the lower tail estimate of the associated

Gaussian process. Recall [18, p.498] that the associated Gaussian process ηα for α-stable process

with 1 < α ≤ 2 is a fractional Brownian motion with covariance C(s, t) = Cα

2 (|s|α−1 + |t|α−1 −
|s − t|α−1). Note that η2 is a two-sided Brownian motion. The decay of the lower tail estimate

obtained by Cameron-Martin formula is good enough for our purposes when 1 < α < 2, but is not

sufficient for the subsequent computations when α = 2. Indeed, [18, Lem. 11.5.1] shows that for

all 1 < α ≤ 2, ε > 0,

P

(
sup
|x|≤1

ηα(x) < λ

)
≤ cλ

2(1−ε)
α . (6.5)

In the critical case α = 2, we have the upper bound cλγ for any γ < 1, a bound that is not

sufficiently small for computations in the sequel, as pointed out by Marcus and Rosen [18, p.519].

However, the reflection principle and the the independence of {η2(x), x ≥ 0} and {η2(x), x ≤ 0}
actually implies

P

(
sup
|x|≤1

η2(x) < λ

)
≤
√

2

π
λ, (6.6)

a better bound that is sufficient to derive results for V , see [18, Sec. 11.2].

In both references [3, 16], the authors viewed the associated Gaussian process as a time-changed

Brownian motion and made use of (6.6) through Slepian’s lemma. This approach remains valid

for the small time behavior of the favorite points of a Lévy process with both a Gaussian part

and a pure jump part. Indeed, by replacing σ20(x) by |x| back and forth (and by the argument

developed in Section 6.1 if the process is transient), we can remove the monotonicity condition of

Marcus [16] so that [16, Thm 1.1] holds as t→ 0 when σ20(x) ≍ |x| around zero. Summarizing the

discussion, we have proved the following theorem. Part (i) states that the small time behavior of

V is the same as that of the Brownian part of X without any condition on the pure jump part.

Part (ii) states that (under recurrence condition) the large time behavior of V is the same as that

of the pure jump part of X subject to (C2).

Theorem 6.7. Let A 6= 0 in (1.2).

(i) For a > 8,

lim
t→0

Vt
L0
t

(logL0
t )

a

= ∞ a.s.

(ii) Under Condition (C2) and
∫ 1
0

1
ψd(λ)

dλ = ∞, for all a > 2(β − 1)/(2 − β),

lim
t→∞

Vt

φ−1
(

L0
t

(logL0
t )

a

) = ∞ a.s.

We finish the paper with an open problem: can one describe the small (resp. large) time

behavior of V when the Lévy measure satisfies (C1) with α = 2 (resp. (C2) with β = 2) and X

is a pure jump process? One may still obtain lower tail estimates with the approach of [3, 16].

However, (2.1)-(2.2) fail to hold and it is not clear to us how to find a monotone function which

is equivalent to σ20(x).
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