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Abstract—In this paper, the joint state and fault estimation been established that consists of two steps: 1) a residual signal
problem is investigated for a class of discrete-time complex js employed to detect the possible faults in the underlying
networks with measurement saturations and stochastic nonlin- system, and 2) the residual generator is then designed to

earities. The difference between the actual measurement and the - . . : .
saturated measurement is regarded as an unknown input and the guarantee that the desired residual is robust against distur-

system is thus re-organized as a singular system. An appropriate Pances and sensitive to the faults via parity space method [52],
estimator is designed for each node which aims to estimate H_/H,., observer [10] and/or some other techniques. Further
the system states and the loss of the actuator effectivenessesearch has been carried out to determine the location and
simultaneously. In the presence of measurement saturations and the amplitude of the faults, that is, isolate and estimate the

stochastic nonlinearities, upper bounds of the error covariances of faults b | loiting th t . ts/outouts. A t
the fault estimates are recursively obtained and then minimized. aufts by properly exploiting the system Iinputs/outputs. A grea

Sufficient conditions are proposed to guarantee the existence, Number of results have been reported in the literature on the
unbiasedness, and boundeness of the developed estimator. Ougeneral fault diagnosis, isolation and estimation problems, see
developed estimator design algorithm is distributed because it e.g. [18], [24], [28], [34], [50], [51].

depends only on the local information and the information In real-world systems, due mainly to physical and technical

from the neighboring nodes, thereby avoiding the usage of a . ; .
center estimator. Finally, simulation results are presented to constraints, sensors cannot generate signals whose amplitudes

show the performance of the proposed strategy in simultaneously are unlimited, and the resulting saturation phenomena are
estimating the states and faults. typically described by nonlinearities which, in turn, pose extra

Index Terms—Fault estimation; unbiased estimation; complex Challenges to the analysis/synthesis problems of the overall
network; measurement saturation; stochastic nonlinearity. systems. Up to now, the control/estimation/FD problems sub-
ject to saturations have received much research attention [1]—
[3], [38]. The FD problem has been investigated in electric
. INTRODUCTION power systems with current transformers [16], [33], where
The past few decades have witnessed ever-increasing the- three-phase currents at the sending end and receiving end
mands on system safety and reliability owing to the growingay be saturated. Furthermore, some appealing algorithms
complexity of modern processes. The fault diagnosis (FD) hiagve been developed in [19] to simultaneously estimate the
proven to be an attractive yet promising research direction sgistem states and reconstruct the additive faults. In the deter-
engineering practice. So far, a model-based FD framework hragistic case, the sector-bounded conditions have been widely
employed to guarantee that the saturation-induced nonlinear-
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Also, calculating the fault estimation error covariances Imear constraints such as sector-bounded conditions and Lips-
a non-trivial task when taking into account the differenceshitz conditions. Nonetheless, the FD-related results have been
between the actual and the saturated measurements, andgtite scarce for nonlinear complex networks. Furthermore,
is further complicated by the need of characterizing the FD practice, certain nonlinearities may occur in a random
unit in the minimum variance framework. In view of thesenanner because of imperfect data transmissions, variations
identified challenges, we are motivated to investigate the Fidthe working points, changes of the operation environment,
problem for systems with saturation phenomena by developiet [40]. Systems with stochastic nonlinearities have recently
a novel yet efficient estimation strategy. stirred some research interests, see [13] and the references

Complex networks have been an attractive research togherein. The FD problem has been addressed for practical
because their successful applications in a variety of practicantralized systems with stochastic nonlinearities such as ro-
systems [17]. In the analysis of complex networks, both thating machinery [15] and buck converter [45]. Unfortunately,
dynamics of individual nodes and the coupling configuratiah remains challenging as how to address the distributed FD
between different nodes should be simultaneously taken imgmblem for complex networks with both measurement satu-
account. Until now, much research attention has been devotations and stochastic nonlinearities (for which the substantial
to the synchronization [6], [42] and state estimation [12], [3G]hallenges may result from the modeling complexity and
problems of complex networks. The FD problem for complethe algorithm feasibility), and this provides us with another
networks has mostly been investigated in the robust framewariotivation for shortening such a gap.

[21], [32], [46], [49] where the worst-case performance of the ) ] ) ) S
disturbance attenuation has been considered. It is noted th42Sed on the above discussion, the aim of this article is to

many of the above-mentioned results have used the infornfAestigate the distributed FD problem for a class of discrete

tion fromall the nodes and, in this case, a center system woi@mPIex networks with measurement saturations and stochas-
be required to collect information from all the nodes. This i4C nonlinearities. Some components of outputs are subject to
certainly inconvenient for distributed execution (as preferred fturation phenomenon at each node. The difference between

the setting of complex networks) of the developed algorithmi§l® actual measurement and the saturated measurement is
In fact, it is much desirable in practice that each node in&stimated and then used to jointly estimate the system states

complex network can realize FD with onlgcal information and the fault at each node. An upper bound of the estimation

and the information from its neighboring nodes because, " covariance is obtained and subsequently minimized by

doing so, the transmission burden can be greatly reduced &hpropriately designing the estimator parameters via solving
the real-time FD performance can be improved as well. recursive matrix equations. The unbiasedness and existence

The distributed and decentralized FD problem has stirr&g@nditions are explicitly presented for the developed estimator.

some research attention. In [4], [5], the distributed fault detelt-'S noticeable that the developed algorithm can be implement-
tion problem has been studied for a class of complex netwof&& i @ trulydistributedway since only local information and

by resorting to the concept of Plug-and-Play [37], [41], Wheﬂgformagon frc_)m the neighboring nod_es are utilized. Finally,
Schur stability of the estimation and detection strategy h§8Me simulation examples are provided to demonstrate the
been discussed in details as well. In the presence of bound@lidity of the proposed strategy.

disturbances and unmodeled dynamics, [23], [35] have anahg main contributions of the paper are highlighted as
lyzed the FD and fault-tolerant control problems in distribut|ows: 1) a novel idea of estimating and then compensat-

ed systems, where the conditions guaranteeing the deteciioh e gifference induced by the measurement saturation is
and isolation of faults have been quantitatively estabhshe&oposed for the first time, which proves to help achieve
The fault estimation and fault-tolerant control issues havg..rate FD results: 2) a n,ew estimator is established that
been considered in distributed multi-agent systems in [26liny estimates the system states and faults by minimizing
[27] via sliding-mode and hierarchical-structure approacheg,  pper bound of the estimation error covariance for each
respectively. Note that the saturation phenomenon has Bolje: and 3) the proposed algorithm is distributed since only

been considered in the distributed estimation methodologigs jhformation from the local node itself and the neighboring
proposed in [30], [31]. Furthermore, almost all the existingyqes is adopted.

results concerning fault estimation problems have been ob-
tained based on the assumption that certain knowledge aboutlotations. The notation used in the paper is fairly standard
the fault dynamics is knowa priori, but such an assumptionexcept where otherwise statéfl” denotes the-dimensional
is not always realistic since the positions/amplitudes of actugliclidean space. The variable$” and A~' denote the
faults are usually unavailable. Hence, the main motivation tinspose and inverse of mattk respectively. The notation
this work is to estimate the faults (without known dynamicsX > Y (respectivelyX > Y), where X and Y are symmetric
for complex networks with measurement saturations. matrices, means thaf —Y is positive semidefinite (respective-
Apart from the measurement saturation, another frequenlyy positive definite)./ is the identity matrix with compatible
encountered phenomenon in the complex networks is tlienension.E{xz} stands for the expectation of the stochastic
nonlinearities. To date, the analysis/synthesis problems \ariablex. tr{ A} stands for the trace of a square matrx
nonlinear systems with distributed structures have been ejen(-) denotes the signum function. When a variable has more
tensively studied in [8], [14], [25], [47], where the addresseithan one subscript, the first one denotes the node identifier, and
nonlinear functions have mostly been handled under sonhe last one corresponds to the time step.
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Il. PROBLEM FORMULATION the first equation in (1) can be organized as:
Consi(_jer the following class of discrete-time complex net- Tisi1 =AisTis + Gis(Tis, is) + Bi Ui sVis
works with N nodes: N
Tisr1 = AisTis + Gis(Tis, 0is) + Bi s Ti st s + Z ij,sL'j,s + Wi, (6)
N j=1
+J; @ijs T g, + Wis, Defining the measurement error (induced by the saturation
Yil,s = Cvil,l,sl'i,l,s + C'i,z,siﬂz‘,z,s + Vi 1,s, 1) phenomenon) as
yi72a5 = U[Z] (Cia273‘ria273 —]\ZUZ',ZS) ) di.,s é O’M (Ci7275$i7275 + 1)132_’5) — Ci7275Ii7275 — 'Ui.,2757
. olPL 1] _ : o .
Uis = Q; s Yis + Q4 5 lzl Yi,s—1 the third equation in (1) can be written as
Yizs = CiosTios +dis+ Vi2s. (7)

where the subscript denotes the time stepy; , € R7,
u; s € Rl andy; , € R™ are the system state, control input Constructing an augmented state, = [27,,d?,]7, system

. . . . 6,57 4,5
and measurement output of thith nTOde, ;eSp;lCtlvelyri,s (6) and (7) can be rewritten in the followirgingular form:
and y; ; are partitioned as:; s = [7; 1 ., Tiod's Yis = _ o _
Wl o uls )", wherey;,, € R™ is those measurement EZisin = AisTis + 9is(ETiss) is) + BissUisis

components which are free of saturations, and ; € R™2 + sz: aijysf‘jjys + wi s,

corresponds to elements subject to saturatians, € R” _J=1

and v;s = [vl,,,v5,,]7 € R™ are the process noise Yirs = Cinslis + Vis,

and the measurement noise of thi node, respectively, Yizs = Ci2sTis +viz2s,

which are mutually uncorrelated zero-mean sequences with (8)

Efw; swl,} = Wi, and E{v; 0]} = Vis. The matrices where

Ais, Bis, Cirs, Cins, Cias, QEZ] and Qﬂ are known 1. = _

with appropriate dimensions. The superscripts [P] and [I] Ais = [Ai’f’o]’ ['=[r.00, B=IL0,

mean thatQEi] and Qﬂ are the proportional and integral Cins = [Ci,l,s,éiﬂ,sao} y Cigs =10,Cin6,1].
control gains, respectively. = diag{r1,...,r,} is the inner-

coupling matrix.Y; s = diag{vi1.s,--.,%,,s} represents the
possible loss of control effectivenesé, = [a;; s]nxn IS the

For system (8), the following state and fault estimator is to
be established:

coupling configuration matrix of the given complex network _ M. g N H. 4 9
with a;; s > 0 for i # j. The diffusive coupling condition — *ist+1 =MisTiss +Z i,5%g,80 ©)
N j=1
Qijs = _j,%# ai;,s holds for every node [44]. Fioor1 =Fiat1 + Kist10i2.5415 (10)
The varialble%S is random and zero-mean. Furthermore, Yis =R s41 (yi,s+1 - Ci,s+1$?i,s+1) ) (11)
gi.s(xi s, o 5 ) Satisfies the following conditions: N
Zijst1 =M sZis + JisYizs + Sishis + ) Hijskj,
E{giys(aji_’s’ai_’s”xiys} _ O’ (2) 7,8 1,8%1,8 1,8Y1,2,s 2,8 1,8 ; 17,8%7,8
E{gis (%15, i,8)9; 1 (€50, @) |Tis, 50} = 0, N
if i#£jor s#h ©) + ZLij,syj,2,57 12)
=1
E{gi (@i, i s)gF (i s, V=0, .2 U, T, J
{900 (@issr iss) 95,0 (@iss: i) 5} boi,s SasTi,s @) Tistr1 =Zist1 + Kis+1i,2,541, (13)

. e . ~ AT AT 1T 4 l ~ +
where®; ; and¥; ; are known positive semidefinite matricevhereC; s = [Cf, ., Cl5 7. 4is € RN and @ o € R

with appropriate dimensions. Moreover, , is independent of are the estimates af ; andz; s, respectivelyz; ;.1 € Rrma
and z; ;11 € R""™2 are the estimator states, afigls;1 €

Wi, s or Vi,s- . . . . .
n-+m
For a vector = [p1, ... ,pmz]T, the saturation function of R +tm2 js an interim variable to estimate; ;. M, , H;j s,
the ith nodes!! : R™2 —s R™2 is defined as: Kist1, Rist1, Jis, Si,s and L;;, are the parameters to be
designed.
; [i] (i) r s oA - - A - . Ma
O'[Z] (p) = |:0'1 (pl), .. .,0’%2 (pm2):| s (5) DenOteei,s = Tij,s — Lisy €i,s = Li,s — Li sy 61-75 = Yi,s —

4i.s- Our goal is to design an estimator in the form of (9)-
Wherqui] (p;) = sign (p;) min (bgi], |pj|) and bgi] > 0 means (13_) for system (8) V\fhich is capable of obtaining the unbiased
the saturation level for alf = 1,.. estlmat_es ofy; s and:c.m in the presence of the m_easurement
Setting saturations and the interconnections between different nodes.
Furthermore, the estimator parameters at every node will be
Uis 2 (Uit sy oo Uils) s determined with aim to minimize an upper bound of the fault
estimation error covariance at each time step. The scheme of
each node in the complex network and the distributed estimator
g is presented in Fig. 1.

., Ma.

Uis = diag{ui 15, Uiss})
Yi,s £ [%',1,3, ce 7%,l,s]T
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. States from .
Disturbance Disturbance

Fault neighboring nodes
. i Control l i l Actual
Desired output input output
»% P Controller Actuator ———— > Plant —» Sensor

State estimate from ¢
neighboring nodes » P State estimate
Estimator ——)» Fault estimate

Estimation error covariance from
neighboring nodes_> ——)» Estimation error covariance

Fig. 1. Scheme of each node and distributed estimator

Remark 1: In this paper, the considered complex network =oli] (éi7275IET]278 + viyg_,s) , (15)
and the estimator are botime-varying which improves the T
applicability of the method. The diffusive coupling condition ¢ a \7 a \T . .
stems from the relative state (the difference between systt\évnhlerexg-r]S - [(xglls) ’ (IE]“) - Thus, itis evident that
states of different nodes) in the information exchange [44]. Athe measurement equations can still be written in the form of
ditive plant/actuator faults can also be readily coped with in tt¢) after the coordinate transformation even if the saturated
proposed framework via replacing; .U; ;. State-dependent measurement s related to every element of the original system
multiplicative noises can be seen as special cases of #iate.
considered stochastic nonlinearities. In the proposed estimator

(9)-(13), the information on the dynamics of neithgr; nor I1l. ESTIMATOR DESIGN

dis is required, which facilitates the effective handling of the |, s section, the desired state and fault estimator is
fault (withoutpriori knowledge) and the saturation. It will beto be parameterized, and the existence conditions of the

illustrated later that a group of properly selected paramet@{§imator will be established as well. Firstly, two matrices
can guarantee the unbiasedness of the estimation resuits ofX_ € ROm2)xn and K, , € R(m2)xm2 are provided
7,8

and z; s under several existence conditions. By introducinQ)Z’SS(,msfy

the variablesz; ; and z; ;, the right-hand side of (11) is a E

linear combination of the fault, stochastic nonlinearity, external [Xi,s, K] { Cio } =1 (16)
noises and estimation error in the previous time step. It will be b B

shown that the coefficient of the fault , can be a unit matrix It follows from the definitions of matrice&’ andC; »  that

under certain conditions and an unbiased estimation result of i 0 01!
the fault can be obtained correspondingly. Moreover, since it E 17" _ 7 0
is overly complicated to calculate the accurate estimation error C; a5 o C 7

" i,2,s

14y

covariance in the presence of the saturations and the stochastic L

OO N OO

nonlinearities, an upper bound of the fault estimation error 0 0
covariance will be derived and then minimized via determining = I 0. 17)
the estimator parameters. —Cigs 1

Remark 2:In case that the saturated measuremgnt; is E
dependent on all the elements of the system state, the meaFherefore, the invertibility of the matri{ . } can be
surement equations in (1) can be obtained after a coordingtgyranteed. Furthermore, it is obvious that v
transformation. As long as the matix » ; is of full row rank,

there always exists an invertible mati$ » ; such that I 0 0
' Xis=10 1 , Kig=101]. (18)
Ci2,65i2,s = [0,@,2,5} , (14) 0 —Cigs 1

- o ) S _ The matricesX; ;, and K; s will play important roles in the
whereCi s € Rmxﬁz is invertible. Considering the coordi-fo|10wing design procedure. It can be seen that, is in fact
. t — ) . . . . .

nate transformation, | = 5, z; ;, the second measurementonstant, so its subscripts will be omitted in the following

equation becomes calculations. Now, the unbiasedness of the estimator is to be
(i [t discussed.
Yi2,s =0 (012»551'»275%5 + ”in-ﬁ) Theorem 1:If the condition

i ~ t ~
=l ([O, Oi,Q,s:| x[.}S + ’Ui,Q,S) Ris11Cis11Xis11BisUis =1 (19)
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holds for every time step, then with an unbiased initighe estimator design, we will calculate an upper bound of the
conditionE {e; o} = 0 for all the nodes, the state and faulestimation error covariance and then locally minimize it.
estimation results are both unbiased wkh,,, and K given The following lemma is to be used in the subsequent
by (18), and the other parameters provided as follows: procedures.

Lemma 2: [19] For any two vectorsz,y € R", the

Hij s = a5 X; 41T, (20)  inequality
M= X; 51145, 21 -
’ S5, (1) a:yT + yxT <exzl +¢ 1ny (28)
Si,s = Xis+1BisUis, (22) _
Jio= M, K, 23) holds wherez > 0 is a constan'g sca_lar. _ _
’ ’ Lemma 2 can be proved easily with the renowned inequality
Lijs = Hij s K. (24) of arithmetic and geometric means. In this paper, this lemma

Proof: See Appendix A is introduced to deal with the cross-covariances between
) ' a(—f-stimation errors of different nodes.

| |
Remark 3:Based on Theorem 1, with the unbiased initi Theorem 2-Let =1 ande. be positive scalars. Assume that
condition, the unbiased fault and state estimation can Ee ) €1 €2 P ;

achieved under condition (19). In this unified framework {ein} = 0andP; . < Py, hold for every node = 1,. oM
the original system states, the multiplicative fault and th%nd every time step < s. Define the following variable:
output error (brought in by the measurement saturation) are all P = Ri75+1Q£VS]+1RiTS+1, (29)
estimated simultaneously. Compared to some existing results ’ ’ ’

where the saturation levels have been used to develop a rot{s¢re

estimator [19], [38], the method proposed in this article direct- Qh] =C; g1 Xi SHRU] xI 0T .+ (Cisa

ly estimates the saturation-induced error and then compensates """ " S ’

= T
it in the state and fault estimation. The consideration of the x KF = I)Vi o1 (Cis1 KF = 1), (30)
distributed structure in complex networks constitutes another N B o
contribution of our method with respect to [19]. It is noted Rmﬂ =|1+¢ Z aijs | (Aiys + aiisT) Py s
that, when (19) holdsR; .1 cannot be determined uniquely j=1,j%i
and, to deal with this issueR; s+1 is to be selected in the N
minimum variance sense. . % (Ai,s+aii,sf)T+ el Z ij.s
SetP;, = E{eiﬂsegs}, Pi[;] £ E{em (ezhs]) . In j=1,j7i
the following lemma, the state and fault estimation error N N —— .
covariances are provided. o Z _aij=SFPJ'=SF +(1+e") Oistr{E
Lemma 1:1f (19) holds, thenPi“S] obeys the following =Lz _
equation: ’ X &is8p BTV} + (14 £2)0; str{ EP; JET
PPl =R QYR (25) X Wis}+ Wis. (31)
where Then, we havePi[;] < Pi[;]. Moreover, if the following
] ] . . condition is satisfied:
4 :C’is Xis R X C: + éis N
o 2Ot b Clon 1 (G ranke ([0, F7]) = rank (0],,1). (82)
x KF =1)Visp1 (Cisp KF = 1), (26) ' '
] _ _ _ 7 - where
Ri sy = (Ai,s + aii,sr) P, (Ai,s + aii,sr) + (Ai,s ]
. _ Qist1 = Aist1 Qi?%“ ; (33)
+ a;i,sT) Z ai;,sE {ei7se;‘fs} rr ' 0 —Af o1
J=1.5#1 A si1 =Ci 511X s41Bi sUi s, (34)
N ~
+ Z aij,sf‘E {e.ﬁsezs} (Ai73 + aii,sf‘)T F= [Ia O] ) (35)
J=1,j#i then with
N N B B - T
+ Z Z ai,ﬁsaih,sFE{e.ﬂseis}FT Ri=5+1 :Fi,erl [I’O] ’ (36)
J=LIA h=T Fioor =Fo) o +2(1- 0] ), (37)
+ 0, E{z[ ,E"V; (EZ; } + W, .. (27) _ _ o o
’ ' ’ where= is an arbitrary matrix with appropriate dimension, the
Proof: See Appendix B. B gain R; ;41 in (36) can minimizetr{Pi[g]H} at each time
We can see that it is quite complicated to directly computgep.
Pi[;] based on Lemma 1 since there are many cross-covariances Proof: See Appendix C. ]

between estimation errors of different nodes. Naturally, it is Remark 4:Based on Theorem 1, it can be seen that the un-
difficult to characterize the estimator in the sense of minbiased fault estimator can be established with the upper bounds
mizing the accurate estimation error covariance. To facilitatd the distributed state estimation error. In the subsequent
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steps, the upper bound will be obtained with the parameteksdetailed explanation is given as follows. Select an arbitrary
designed in Theorems 1 and%,,; can be updated at each time:, and then (68) becomes
step when the control input is known. Under condition (32), N
the parameter in (36) can always guarantee that assumption Z Z asj,s0im,sTE {ej sef }TT
(19) holds. . . - . j=1,j#i h=1,h#i

Let us examine the rank ob; s, in detail. According to N N
the definitions ofC; 5, X; s and K, Qmﬂ can be written as =5 Z Z 15, 50in,sTE {ej.sf  + e oel }TT

j=1,j#i h=1,h#i

~ ~ ~ ~ T
onl . — { Cits+1 Ciosti ]RM [ Cits Ciags } 1 N 1
iys+1 — 1,541 T T T (T
IO ; 0 L 0 0 §§ ‘ ;ﬁh lz;#‘au,sam,sl"E {663,563-73 + ge;me,w} r
J=1,j#i h=1,h#i
+ Vist1 . (38) N N
0 0 0 0 1 1 _ P—
- . N N . :5 (€+ E) Z Qij,s Z aij,sl"IE{ejJej,S}l" .
SlnceRJS+1 andV; ;1 are both positive definite matrices Jj=1,j#i J=1,j#i
according to their definitions, we can wri(ém+1 as It is obvious that where — 1, the coef‘ficient% €+%
[ Mier 0 39 is minimum and its value is 1. A tight upper bound of the
Qi1 = 0 o |’ (39) equation naturally leads to less conservatism.
. N o i Bgsed on Theorem Z&; ;1 can be obtained with a group
WhereHi,sﬂ is a positive definite matrix. of P,, > P, ,, and these upper bounds of estimation errors
The matrixA; ;11 can be re-organized as are provided in the following theorem.
e e A, Theorem 3:Assume that the conditions (19) and (32) hold
Ajoy1 = [ “1(’)5“ “2(’)5“ } B; U, = [ “5“ } ., for every node and every time step, and the estimator is char-

(40) acterized based on Theorems 1 and 2. Consider the following

matrix:
where _ _ _
} . R P o1 = (I - Si,sRi,sHCi,sH) Xi,s+1RZ[-7S]+1XES+1 (I
Aisrr = |Cisrt, Ci"Q’SH} Bi,sUis. (41) - Si,sRi,s+léi,s+l)T + [SisRist1(Cisin
It follows that X KF —1I) — KF|V; s11[SisRis41
[ Avort Mg O x (Cis1KF —1) — KF]. (47)
Qi oq1 = 0 0 01, (42) Then, P, is an upper bound oP, ..
0 Al 0 Proof: See Appendix D. =
The overall algorithm is summarized as follows to show the
and o .
5 determination of the parameters at each time step.
K [ AZS“ 0 0 I
{fbfﬁl, FT} =| M 0 —Ajq 0 |- (43)  Algorithm:
0 0 0 0 Step 1. Determine the initial value®, o > P, .
Step 2. Calculate thePi[;], Qmﬂ and Rm“ based

Noticing thatll; ;. is a positive definite matrix of full rank, on (29)-(31).

we have Step 3. If (32) does not hold, the solution does not
rank({(p;{Hl’ﬁTD —my 41, (44) exist and stop. Otherwise, compuf@ .,
’ with (36).
wherem, and{ are the dimensions dff; ;;1 and I, respec- Step 4. ChooseM,; s, Hijs, K, Jis, Sis and Ly
tively. according to (18) and (20)-(24).
According to (42), it can be seen that Step 5. UpdateP; ;1 with (47).

Step 6. Sets = s+ 1 and go toStep 2

V)

rank (®; ;41) = rank ([ Bistt s }) . (45)

0 —AT
1,541 .
. Remark 6:Theorem 3 has provided a way to calculate an
Based on (44) and (45), we can conclude that if upper bound of the state estimation error covariance. So far,

VR | P the state and fault estimation problem has been solved in
rank <[ Lot oot ]) =m +1, (46)

v

0 _A1Ts+1 the paper for a class of complex networks subject to sensor

saturations and stochastic nonlinearities. The structure of the
then (32) is satisfied and the existence of the desRed,; estimator has been properly selected such that the fault can
can be ensured. be decoupled from the state estimation error under condition

Remark 5:1n (68), Lemma 2 has been applied with= 1 to  (19). The system has been written in a singular form, where the
reduce the conservatism in the calculation of the upper bousdturation error has been integrated into the system state. In
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this way, the covariances of the state/fault estimation errorsTheorem 4:Consider the complex network (8) (without the
can be obtained even in the presence of unknown faudttochastic nonlinearity; s(z; s, o)) with the distributed es-
and saturation errors. The applicability and feasibility of thémator (9)-(13), whose parameters are determined by resorting
established estimator have been greatly enhanced sincéo @aheorems 2 and 3. If the initial estimation error is bounded
center node is not required. The upper bound of the estimatiamd condition (32) holds, then under Assumption 1, the state
error covariance has been calculated in consideration of #ued fault estimation errors are bounded in mean square, i.e.,
interconnections between different nodes, and the estimator N
has been parameterized allowing for the sparse structure of SHPZE{ezsei,s} < o0, (51)
the complex network. eN = ’

Remark 7:In the parameters of the estimator (9)_(13)én d
M; s, Hij s, Kis Jis, Sis and L have been obtained

based on (18) and (20)-(24), such that the unbiased fault/state N N

estimates can be achieved. By resorting to (38),,: has :ggZE{(ezs) 61',5} < o0. (52)
been computed to minimize an upper bound of the fault i=1

estimation error under condition (32). Proof: See Appendix E. [ ]

Now let us analyze the stability of the proposed estimation Remark 8:The main differences between the methods de-
strategy. Whenlim x; s — oo, it is obvious thatP; , is veloped in this paper and those in [30], [31] mainly lie in two
divergent due to the term; . (z:.5, a5 ), whose second-order@SPects. 1) The dynamics of the faults has not been required in
moment is a quadratic function of ,. Next, the dynamics of Our current investigation, while faults in [30], [31] have been

the estimation error will be discussed in the absence of tAt@deled in a polynomial form (with respect to time stgp
stochastic nonlinearity; . (x; ., a;.;). Denote the following which might not be the case in engineering practice. In this

variables: paper, to deal with the unavailable fault dynamics, we have
~ provided (19) to guarantee the unbiased fault/state estimations,

Dy, £diag { (I — S1,6R1,541C1,541) X1 541, - - -, and then presented the sufficient condition (32) that ensures
(I —SNsBNs+1CN,s+1) XNs41} 5 (19) to hold. 2) The measurement saturation phenomenon

has been introduced in this paper, which has brought in

Dy s 2di SR C KF—-1)—-KF,... . " .
2.0 Sdiag {S1aB,041(Crot1 ) B extra nonlinearities/errors. To tackle such an extra complexity,

) SN-,SRN-,SH(C'MSHKF_I) —KF}, we have constructed a singular system (8) accounting for
A, 2diag {A1 s+ a1, ..., AN s +annT}, the saturation error, and the corresponding structure of the
W, Ldiag (Wia,o. W}, I, 2 diag{T,...,T}, e_stim.ator.(9)-(13) has been different from that of the Kalman-
like filter in [30], [31].
N
~ A - A s _
Vs Sdiag{Vis,..., Vnsh, T2 2 [0 T, IV. |LLUSTRATIONS
N

Let us consider a time-varying complex network with four
nodes. Whern # j, a;; s = 0.1 or 0. A group of independent
Bernoulli distributed sequences is employed to characterize the

N N-1
A s £diag 1+52a1j,5,...,1+62a1\ﬁ73 ® 1,
/=t dynamic topology of the system. Defing; = Prob(a;;s =

Jj=2

N N-l 0.1)(i # j) with
AQ_’S édlag 571+Za1j75,...,671—|— ZaNj’S ®I,
=2 j=1 012 013 014 0.25 0.35 0.45
s if g # . 021 023 024 _ 0.35 0.45 0.55
As s 2laijsnsn © 1, where agj =9 “0o DT 031 032 04 045 055 0.65
0. it i=7. 0.55 0.65 0.75
(48) 041 042 043 . . .
With the variables defined above, the following assumption The S|mu_lat|on example is inspired by the three-tank system
is proposed. presented in [29], where each node represents a three-tank

. ) . __ - system. Three-tank system is a typical nonlinear system widely
Assumption 1:There are positive real numbets, v;, b;, . o o
o . "’ used in control and filtering disciplines. Because of the output
u;, ¢ and r;, such that the following bounds on various, . . S
matrices are fulfilled for every < i < N ands > 0: signal range of the plate capacitor and the V|b_rat|on_|nduced by

- = = the water inlet, the actual three-tank system is subject to both
Wil < @i, ||[Visll <0iy |Bisl < bs, measurement saturations and stochastic nonlinearities. Set the

_ _ _ _ steady liquid levels to bé, = [0.6813,0.3321,0.5534]"m
1Uisll < 1, [|Cisl < @i, . :
and the sampling period; = 1s. Then, the system model of

S T pT T ~T
Cist1Xis11Bi Ui sUp (Bi (X 1Ci o1 27,1, (49)  the system can be obtained as follows along the similar line
and the following inequality holds: in [48]:
-2 - - 0.9908 0 0.0091
[l AL HDI,SAS + HA2,5A3,SF1H HFzH <1 (50) Ais = 0  0.9856 0.0072

0.0091 0.0072 0.9836
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0 0 0
+sin(s/10) x { 0 0 —0.0001 |,
0 0 0.0001
0.03 = Saturated mesurement 1 | -{
646627 O :_:_ ia;ura;eg mesuremen: §
Bi73 = 00007 + Sln 8/10 00001 N 0.02 ggggﬁ ~ Saturated mesurement 4 | -|
R 0'2978 —0.0001 % I " 182226 X
i1,s =1, Cins= , Cips=[1 0], § --------------------------------------
QLP}=10*3X[—31.9 9.6], E ool e iememmmnand
Q=10 x [ -15 21], T =0.11. £ o
[]
Based on the values @}, s, Cy 2, andC; o, it can be ooy < e
seen that the measurement of Tank 2 is subject to saturatior .| T e 216
phenomenon where the saturation level is set to be 0.02. . " - - - - .

The disturbances); ; andv; s are2 x 10~° times of unit
Gaussian white noises far= 1,...,4. The parameters;
and e, is determined to be 1.2 and 1.5, respectively. EveFfys. 2.
element of the initial system state is uniformly distributed over
[-0.02 — 0.017,0.08 — 0.01¢] for theith node(i = 1,...,4).
The stochastic nonlinear function is selected as:

Saturated measurements

s (MY 4" 4™
. r r T 0.08
gl S(Ii 8 Qi S) - 03 Z Slgn (Iias) Iias aias ? = Estimation error 1
O. 1 r=1 007+ = === Estimation error 2 | |

Estimation error 3
+  Estimation error 4

wherea; ;s = [aﬁ}s’,ais’, 1(35)

Gaussian white noise for= 1

is 5 x 1073 times of unit

., 4. It can be readily verified

that such a nonlinear function satisfies (2)-(4) with

0.16 0.12 0.04

0;,=| 012 0.09 0.03

, U, =25x107°].

Estimation errors

0.04 0.03 0.01

The following multiplicative loss of actuator effectiveness
is considered for Node 4:

Y, — 1, if  s<40,
457 11— (s —20)/40, otherwise.

Fig. 3. State estimation errors

A multiplicative ramp fault, which is common in practice
due to ubiquitous component degradations, is considered in
the simulation. It is noted that other types of faults can be
handled with the proposed strategy as well since there is no
limitation on the dynamics of the fault in our estimator.

Firstly, the measurement outputs subject to the saturation
phenomenon at all the nodes are depicted in Fig. 2. It can
be seen that the outputs in Nodes 1 and 4 are saturated at th
first 22 and 13 time steps, respectively, when the system states
are distant from the equilibrium points in the early stage. By
resorting to Theorems 1-3, the estimates of the states and the
actuator faults can be obtained at every node. The Euclidean
norms of state estimation errors are illustrated in Fig. 3. The
state estimation is satisfying in the presence of the saturations
and the multiplicative faults. The actual fault at Node 4 and
the estimate are both presented in Fig. 4. It is clear that the ‘ ‘ ‘ ‘ ‘
fault can be estimated well after some unsteady transient steps ° 0 ® Ti:e a0 0 60
Therefore, the proposed method can estimate the state and faun
well simultaneously. The condition (32) can be verified in thisig. 4. Actual fault and its estimate
simulation example by making sure that, # 0 at each time
instant.

1.2

T T
= Actual fault
= = Estimated fault

Actual fault and its estimate

8
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TABLE |
~, 0.08 « 0.06 PLUG-IN AND UNPLUGGING OF EACH NODE INO-20TIME STEPS
£ £ O TP - - —
g 006 e % oos .- Node | Unplugging time| Plug-in time
[7) I | 1)
£ 0.04 2 1 4 6
n 2]
5 %5 0.02 10 11
o o
g g 12 13
0 20 40 60 18 19
Time
2 15 17
0.1
g T 19 20
b = U SN m -
g g 3 18 19
Qo o
5 = 005 4 9 10
S E = Proposed method
g g = = Lietal
w w 0
0 20 40 60
Time Time 0.09 T
Estimation error 1
. . . . 0.08 == === Estimation error 2 | -|
Fig. 5. State estimation error comparisons Estimation error 3
0.07 i Estimation error 4 | |
'
1
0 0.06 1 1
0.025 [+ . . S
I“ = Proposed method “C’ 0.05
! \ = = Lietal =}
1 =1
o 0021 Y i g o004
§ 1 “ ﬁ
) 1 L
c Y 0.03
k- I \
£ 09 v 0.02
? 1 \
2 I \
s . N 0.01
£ 001 .
% n ‘\
2 0
% ! . 0 10 20 30 40 50 60
& 0.005 . B Time
\ -
\ -
A s - . . .
AP Fig. 7. State estimation errors in the unstable case
o -
0 10 20 30 40 50 60
Time
i - iti imati strategy in an unstable system, we re@%]tj] as
Fig. 6. Equivalent additive fault estimation errors ay Y ) s

Q) =10"2 x [-4.35 1.30].

To further illustrate the estimation performance of our The state and fault estimation results are depicted in Fig. 7

approach, the estimation result of the method proposed in [iﬁ]d Fig. 8, rgspectlvely. It is clear that the state/fault can be
that can cope with distributed systems is compared with tH5#cked well in an unstable complex network.
of the developed estimator. The state estimation errors of all
the nodes are presented in Fig. 5, and it is transparent that our V. CONCLUSION
method can achieve smaller errors at almost every time stepThe joint state and fault estimation problem has been studied
Moreover, the equivalent additive fault (i.e; s — Yisuis  inthe paper for a class of complex networks with measurement
in our problem formulation) estimation errors are compareghturations and stochastic nonlinearities. The difference be-
in Fig. 6 because the method in [25] is inapplicable to degleen the actual measurement and the saturated measurement
with the multiplicative parameters. Our estimator can realizgys heen formulated as an unknown input. An augmented state
more accurate fault estimation because the saturation effqg;xmposed of the original system state and the unknown input
are compensated in the framework, and such a strategy leRg§ been constructed and the system has been written in a
to less conservatism. singular structure. To cater for the singular form, an estimator
To show the applicability of the provided method, thén the proper structure has been put forward at each node
unplugging and plug-in time of each node is illustrated iwith only locally available information. The parameters have
Table I. Due to the space limitation, the unplugging and pluggeen obtained ensuring the unbiasedness of the estimation
in time only in the first 20 time steps are presented. It cagsults and the minimization of the upper bounds of the fault
be seen that each node is plugged-in and unplugged at leastmation error covariances. Sufficient conditions have been
once, and our method can still achieve the satisfying estimatiestablished which can guarantee the existence, unbiasedness,
results. Therefore, it can be asserted that the developed methad boundedness of the desired estimator. Some simulation
is suitable for complex networks over dynamic topology. examples have been demonstrated to show the effectiveness
To illustrate the performance of the established estimatiof the proposed algorithm. Further research topics would be
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L ‘ ‘ ‘ ‘ ‘ X Cis41Mis+1 + Rist1 (Oi,s+1KF - I) Vi s+1,
(56)

Actual fault
= = Estimated fault | |

where

0.2
According to the assumptions th&t{e, ,} = 0 for every
x < s and that the noises are zero-mean, it can be seen that

02y ] ]Eie%] = 0 if (19) holds. Therefore, the fault estimate is
unbiased and we have

§ 081 Nis41 =M s€i s + Xi s419i,s(ETi 5, 05 5)

2 o6l N

g + Z Hijsejs + X sp1wi s, (57)
g o4 i=1

E F =[0,1]. (58)
©

g

0 10 20 30 40 50 60 [ ]
Time eils = = Ris+1Ci s+1Mis+1 + Ris11(Ci s 1 KF

— I)Ui75+1. (59)

Next, the unbiasedness of the state estimate is to be proved.
According to (13), we have

the extension of the main results of this paper to more compleé — Y
systems with more network-induced phenomena [7], [9], [11], “* ™ (ZI)SHKC‘ Gt 2 A . (60)
= - 0,2,54+1) Lis+1 — Zi,s+1 — LAV 2 541

[20], [22], [39], [43], [53].

Fig. 8. Actual fault and its estimate in the unstable case

From (8), (12) and (16), it follows that

APPENDIXA
PROOF OFTHEOREM 1 €541 =Xis4+1 <Ai,sxi,s + 9i,s(EZi s, 0t s) + Bi Ui 57

The theorem can be proved by induction. Considering the
initial conditionE {e; o} = 0, we can assumé& {e; .} = 0 N _ A
for all the nodes and every < s, and it remains to show that + Zaij,smays +wis | = Miszis — Jisyi2,s
E eﬂ = 0 andE{e; s+1} = 0. The unbiasedness of the 7=l N N
fault estimation is to be dealt with first. . .

. — SisVis — Hij 256 — Lij syj
From (10), it follows that b ; isZis ; i:sY52s

€i o1 =Ti,s+1 — Tis+1 — Kv;2,541. (61)

= (I - Kci72-,s+1) Tijst1 = Zist1 — Kvigsi1. (53) According to (20)-(22), we have

Considering (8), (9) and (16), we have Civost =M; T+ Xios10is(ETis, is) + Si,sem
N
éi,erl :Xi,erl Ai,sa_?i.,s + gi,s(Ea_?i.,& ai,s) + Bi,sUi,s'Yi,s —+ Z Hij.,s:fj.,s —+ Xi75+1w1-75 — i,séi,s
=1
N ~ N ’ N N
+ Z ij,sUTj s + wis | — Z Hijstjs — Misis — JisYi2s — Z Hij o255 — Z Lij sYj2.s
j=1 i=1 — —
j=1 Jj=1
— Kvig 541 (54) — Kvigeq1. (62)
Substituting (20) and (21) into (54) yields Based on (13), (59) and the definition &f,, we have
€i,sr1 =M s€i s + Xi s119i,s(ETi s, i s) + Xis41Bi,sUi s Cisr1 =M; T + Xiop19i.s(BEi g, i) — SisRisin
N i _
x C; i + S; sR;. Ci s 1 KF —1v;
% ")/in + ZHi%Se%S +X1'75+1’(Ui75 _ KUZ'7275+1. J\;,erlT]z,erl 1,8 1,s+1( 1,5+1 ) 7,5+1
— - -
! (55) + Z HijsZjs + Xisp1wis — M o (Tiys — €1
j=1
Now, let us calculate the fault estimation error. Based on N
(11) and (55), we have — Kyia,s) = Jis¥i2,s — Z Hij s (Zjs — €js
= - j=1
eEL =Yis — Fi 541 (yi,s+1 — Oi,erlIi,erl) N
=%i,s — Ri o1 (Ci,s16i541 + Visst1) — K syj2,s) — Z Lij syj2s — Kvigsy1.  (63)
j=1

=(I = Ris4+1Ci s41Xi s41Bi,sUis) Yi,s — Rijs1
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It follows from (23) and (24) that

i.5€is + Xis+10i,s(BTi s, is) — Si s Ris+1
X Ci,s41Mi,s+1 + Si,s Ris+1(Ci s 1 KF — IV 541
N

+ E Hijsejs + Xisp1wi s — KFU; s41.
j=1

€i,s+1 =

(64)

Again, since it has been assumed thide; ..} = 0 for every
k < s, it can be concluded th& {e; s+1} = 0. The proof is
complete.

APPENDIXB
PROOF OFLEMMA 1

Considering (20) and (21); s+1 in (57) can be written as

Mi,s+1 =Xi,54+17i,5415 (65)
where
N
Nis+1 =Ais€is + Gis(ETi sy 0is) + Z a;jl'ej s +wjs.
i=1
(66)

It is obvious thatR

here.

APPENDIXC
PROOF OFTHEOREM 2

First, let us show thaRZ[.)”S]Jrl < Rm“. Based on Lemma
2, we have
N
(Ais + aii,sD) Z aijsE{e;se] JTT
J=1,j#i

5 TE {6} (Ars + s D)

N
j=1,j#

azg s |:51 A’L s T Qi s ) E {ei,sezs} (Ai,s

+ i Sl“) + &7 'TE {ejsel, } T, 67)
and
N N
Z Z Q5,5 Aih, SFE {ej s€h s} FT
j=1,j#i h=1,h#i
1 N N .
=3 Z Z aij,sGih, SFE{€7 sehs—i—eh se }I‘
Jj=1,j#i h=1,h#i
1 N N B B
§§ Z Z aij,s@in,sI'E {e‘me;‘fs + eh7se;‘as} r’
Jj=1,j#i h=1,h#i
N N
Z aij, Z aij,s['E {e;, Se ST (68)
Jj=1,j#i Jj=1,5#1

Furthermore, we have

0;E {:T ET V; s BT s}

1 =E {fist17f41 ). Then, (25) is
easily accessible from (59) where the detailed proofis omitt&d

11

—0, ,tr {EE {(em ¥ 2 (e + :az,s)T} ETY;. }

<Oistr {E[(1+e2)Pis+ (143 ") @i ] BT}

=(1+e5") Osstr {E2; a7 JETW; .} + (1 4+ £2)0;.6
x tr{ EP; JET W, ,}.

Substituting (67)-(69) into (27) yields

(69)

N
<|1l+eg Z aij,s (/L'.,s + aii,sf) P s
i=Li#i

R,

N
x (Ais +aisD) + |ert+ >0 aie
J=1,j#1
N
X Z UJU’SFP]"SI:‘T +
J=1,j#i
< 0udT BT} + (14 £2)0, atr{EP, T
X \Iji,s} + Wi,s- (70)

Considering the assumption th# , < P,,. for all the
i i [ (]
nodes and every previous time step, we h&yg, , < R;’ S+1
Based on (30) and (31), it follows directly théyS < Qﬁs
apd P < Pi[g], respectively.
Now we have proved thaPi[g] is an upper bound oPi[?S],
and it is to be shown thaR; ;11 in (36) can minimize
tr p['Y]
foIIowing cost function is to be minimized:

(1+e3") O, tr{E

V['Y]

ist1 =Ur {PZ.[:;]} — 2tr{(Ri,s+1Ci, 541 Xi,541Bi s Ui s

- DAY 1}, (71)

whereA; ;41 is the Lagrange multiplier. Then, we have

oviL | _
aRZ,ys :2Ri75+1Q£7s]+1 - 2Ai=5+1Uz sB;Tsxl s+1cgs+1'
i,5+1
(72)
Considering the constraint (19) and setting
vl
7 s+1
=0 73
DRrves (73)
the following equation can be established:
[Riss1s Nigsr] @i = F, (74)

where®; and F' are given in (33) and (35), respectively.

When (32) holds, it is obvious that (74) is solvable and the

solution satisfies

[Ri,s+17Ai,s+1] = FA‘@ZT7S+1 + = (I D;, s+1q)z s+1)

= Li,s+1- (75)
Moreover, we have
62
z s+1 7]
_nsTL 9 76
aRz s+laRz s+1 Ql S+1 ( )

Therefore,R; .1 in (36) can minimize the cost function

VZ[Z]H, and this concludes the proof.

. According to (30) and the condition (19), the
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APPENDIXD
PROOF OFTHEOREM 3

Considering (57) and (64), we have

€ist1 = (I = SisRis41Ci s41) Mis 41 + Sis Riss1
X (C’i75+1KF — I)Ui75+1 — KFULSJ’»l.

(77)

|

12

N
upper bound ofY_ E {¢],e; .}, it can be asserted that the

=1
state estimation error is bounded in mean square.
Based on (29)-(31), it can be easily seen that the upper
bound of the fault estimation error covariance is convergent if

is convergent. It follows directly that the fault estimation

error is bounded in mean square, and the proof is complete

From (65) and the fac:RE_’"thr1 < Rmﬂ, it follows that

Pisy1 < (I = SisRis+1Cis41) Xi,s+1R£7s]+1ng+1 (1

- Si,sRi,s+1Ci,s+1)T + [Si,sRiys1(Cli s
x KF = 1) = KF|V; o41[SisRi s
X (C’i73+1KF — I) - KF}

—17,5+15

(1]

[2]
(78)

and the proof is now complete. [3]
APPENDIXE
PROOF OFTHEOREM4

Firstly, we need to investigate the boundednes®pf and
D, s according to Assumption 1. From (19) and (49), it follows
that

(4

(5]

1
1R sl < — 27, (79)
- 6]
Based on (18), we have
IXiel < y/1+E 2z, ®o) M
Substituting (80) and (49) into (22) yields
- 8
1S5l < Zibiu; = 5. (81) )
From (79)-(81), it follows that
_ [9]
D151l < max [(1+ 5:7:6) ;] = dy, (82)
and [10]
|‘D275|‘ < _7I{1aXN [gifi (Ei + 1)] +1 £ JQ. (83)
=1,..., [11]
Now we can analyze the boundedness of the state/fault
estimation errors. Denot®, £ diag { P\ ,..., Py, }. Con- 12
sidering (47), we have
Perl :AI,SDI,SASPSAZD,{:S + A275A375f1P5f§
+ Dy WD, + D, V. DL 84)
It is readily accessible that
- - - [14]
HPerIH SPHPS +67 (85)

where

now.
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