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Abstract
In this paper, a novel parameterized generative adversarial network (GAN) is proposed where the parameters are introduced 
to enhance the performance of image segmentation. The developed algorithm is applied to the image-based crack detection 
problem on the thermal data obtained through the non-destructive testing process. A new regularization term, which contains 
three tunable hyperparameters, embedded into the objective function of the GAN in order to improve the contrast ratio of 
certain areas of the image so as to benefit the crack detection process. To automate the selection of the optimal hyperparam-
eters of the GAN, a new particle swarm optimization (PSO) algorithm is put forward where a neighborhood-based velocity 
updating strategy is developed for the purpose of thoroughly exploring the problem space. The proposed PSO-based GAN 
algorithm is shown to 1) work well in detecting cracks on the thermal data generated by the eddy current pulsed thermog-
raphy technique; and 2) outperforms other conventional GAN algorithms.

Keywords  Generative adversarial network · Particle swarm optimization · Hyperparameter optimization · Crack detection · 
Non-destructive testing · Thermal image analysis

1  Introduction

The past few years have witnessed the rapid development of 
deep learning techniques owing to their practical application 
insights [45, 47, 48, 51]. Serving as a popular deep learning 
algorithm, the generative adversarial network (GAN) has 
been successfully applied to a wide range of applications 
(e.g., image processing, image super-resolution, and image 
synthesis) because of its strong abilities in data generation 
and feature extraction [23, 42]. The training process of a 
GAN can be regarded as a minimax two-player game, where 
the generator aims to produce samples as real as possible and 
the discriminator aims to distinguish the generated sample 
and the real sample. Although it has been widely applied to 
various real-world applications, the original GAN suffers 
from the collapse problem.

To improve the generalization ability of the GAN and allevi-
ate the collapse problem, considerable effort has been devoted 
to developing GAN variants [3, 8, 43, 44, 54]. Some repre-
sentative GAN variants have been proposed by introducing 
regularization terms into the loss function, such as the infor-
mation maximizing GAN (InfoGAN) [3], and the latent opti-
mization for GAN (LOGAN) [44]. For example, the InfoGAN 
has been proposed in [3] where the mutual information has 
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been utilized for learning hidden representations. In addition, 
a designed regularization term has been added in the loss func-
tion of the InfoGAN for improving the convergence rate of the 
algorithm. The pix2pix tool has been developed in [8] to handle 
the image-to-image translation task, where a designed regu-
larization term has been introduced in the conditional GAN 
(CGAN) to improve the quality of the generated image. As a 
follow-up study, the pix2pixHD method has been presented 
in [43] where the feature matching loss has been utilized in 
the CGAN for high-resolution image synthesis and semantic 
manipulation. Motivated by the above discussions, a seemingly 
natural idea is to deploy a specific regularization term into the 
loss function of the GAN with hope to improve the generaliza-
tion ability of the GAN for real world applications.

It is worth pointing out that the performance of deep learn-
ing algorithms is highly dependent on the hyperparameters 
which are generally selected according to experimental experi-
ence. During the past few decades, the selection of the hyper-
parameters has attracted an ever-increasing research interest, 
which can be treated as an optimization problem [35]. Due to 
their strong abilities in discovering the global optimum, the 
evolutionary computation approaches (such as the particle 
swarm optimization (PSO) algorithm, the simulated annealing 
algorithm, and the genetic algorithm) are popular for tackling 
the hyperparameter optimization problem. Among the evo-
lutionary computation approaches, the PSO algorithm has 
received much research attention because of its easy imple-
mentation and competitiveness in finding a satisfactory solu-
tion with a reasonable convergence rate, see e.g., [21, 24].

Recently, the PSO algorithms have been successfully 
employed in optimizing the parameters of deep learning 
algorithms [11, 22, 30, 35, 40]. Unfortunately, the stand-
ard PSO algorithm suffers from the premature convergence 
problem and may easily be trapped in the local optimal solu-
tions. To overcome the premature convergence problem, it 
is of practical significance to develop PSO variants with 
improved search capability. During the evolution process, 
all the particles are forced to explore around their own best 
positions and the global best position searched by the whole 
swarm. It seems natural to develop a new PSO algorithm 
which utilizes the neighborhood information to update the 
global best position according to the currently global best 
position and a certain number of particles that are close to 
the currently global best position. By exploiting the neigh-
borhood of the global best position, the possibility of being 
trapped in the local optima could be decreased, which allevi-
ates the premature convergence problem. In this paper, the 
developed neighborhood-based PSO algorithm is adopted to 
optimize the hyperparameters of the GAN for further crack 
detection on the non-destructive testing (NDT) data [5, 9, 
41]. The developed parameterized GAN can be utilized for 
fault detection and structural health management of the oil 
pipeline, the gas pipeline and the aircraft.

The main contributions can be highlighted as follows: 
(1) a neighborhood-based PSO algorithm is utilized to opti-
mize the hyperparameters of the GAN; (2) a specific regu-
larization term is designed to improve the generalization 
performance of the GAN, which could enhance the contrast 
ratio of the images; and (3) the proposed PSO-based GAN 
method is applied to crack detection by using the eddy cur-
rent pulsed thermography (ECPT) technique on the thermal 
data for the first time.

The rest of this paper is organized as follows. Section 2 
introduces the background of the GAN. The framework of 
the proposed method is also provided. Main results are pre-
sented in Sect. 3, in which the experiment data is also dis-
cussed. Finally, conclusions are drawn and future research 
directions are discussed in Sect. 4.

2 � Method

In this paper, the GAN is adopted to deal with the thermal 
data for crack detection by using the ECPT technique. The 
ECPT is a popular NDT method, in which the specimen 
is heated by using the eddy current. The ECPT process is 
recorded by a thermal imager. The spatial features (such 
as the crack, and the distance between the specimen and 
the thermal imager) are analyzed to construct the thermal 
images so as to justify whether the detecting point is a crack 
or not. In this section, the background information of the 
original GAN is provided. Then, the objective function of 
the modified GAN is introduced. The developed PSO-based 
hyperparameter optimization strategy and the training pro-
cedure of the modified GAN are also presented.

2.1 � The background of the GAN

The original GAN consists of a generative network (also 
known as the generator) and a discriminative network (which 
is also called as the discriminator). The generator aims to 
produce the samples as real as possible, and the purpose of 
the discriminator is to distinguish the real samples and the 
so-called fake samples obtained by the generator.

The objective function of the conventional GAN is given 
as follows:

where z is random noise; x represents the reference sample; 
G(⋅) is the generator; D(⋅) is the discriminator; ℙdata(x) indi-
cates that the x is selected from the distribution ℙdata ; and 
ℙz(z) indicates that z is selected from the distribution ℙz . The 
main purpose of the conventional GAN is to pursue:

(1)
J(D,G) = 𝔼x∼ℙdata(x)

[logD(x)]

+ 𝔼z∼ℙz(z)
[log(1 − D(G(z)))]
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2.2 � The modified GAN

In the original GAN, the input of the generator is random 
noise (which obeys the Gaussian distribution), and the input 
of the discriminator is the real sample and the so called fake 
sample generated by the generator. In this paper, the GAN is 
applied to the crack detection on the thermal data obtained 
by using the ECPT technique. The temperature of the speci-
men for each spatial point is a data flow when the specimen 
is heated by the pulsed eddy current in an ECPT system [55]. 
The input of the generator is the detected thermal signal of 
one spatial point in the specimen. To be specific, the thermal 
signal utilized in this paper represents the temperature of the 
corresponding spatial point in the specimen during the NDT 
process. The output of the generator is a single pixel value, 
which is utilized to reconstruct the thermal image of the 
specimen. The input of the discriminator is the fake sample 
and the real sample (which is the corresponding pixel value 
in the detected thermal image). An example of the detected 
thermal information of a spatial point is shown in Fig. 1.

To enhance the contrast ratio of the reconstructed image, 
a designed regularization term is added in the objective 
function of the modified GAN. The objective function of 
the modified GAN is shown in Eq. (3):

where �1 is the penalty factor of the objective function (1); 
�2 and �3 are the parameters of a sigmoid function which is 
used to adjust the output value of the generator; var(z) is the 
variance of z; � is a constant value; and J(D, G) indicates the 
objective function (1).

As shown in Fig. 1, the temperature of the spatial point 
changes during the heating process. In fact, the heating 

(2)min
G

max
D

J(D,G).

(3)

V(D,G, �1, �2, �3)

= J(D,G) + �1

G(z)

1

1+e−�2[var(z)−�3]
+ �

energy of the crack area is higher than that of normal areas 
due to the excitation of the eddy current. In this case, the 
temperature curve of the spatial points that belongs to the 
crack area is different from that of the normal area. In this 
paper, the temperature curve of each spatial point is uti-
lized to extract the features of the acquired thermal data. 
In the developed GAN, a designed penalty term is intro-
duced in the loss function to enhance the temperature 
curve features of the crack information. Furthermore, the 
term 1

1+e−�2[var(z)−�3]
 is a sigmoid function, which contains two 

hyperparameters: �2 and �3 . The characteristics of nonlin-
ear and monotonicity of the sigmoid function could benefit 
the training process of the modified GAN by adjusting the 
hyperparameters.

In this paper, we aim to develop a new PSO algorithm 
that automates the optimal selection of the hyperparam-
eters �i (i = 1, 2, 3) so as to solve:

2.3 � PSO‑based hyperparameter optimization

In the designed objective function equation  (3), the 
weights and biases of the generator and the discrimina-
tor are denoted by �g and �d , respectively. �g and �d are 
optimized by using the Adam optimization algorithm. In 
this paper, three hyperparameters ( �1 , �2 and �3 ) of the 
GAN are chosen by using our developed PSO algorithm 
instead of manually selecting the parameters according to 
experimental experience.

The optimization process of the proposed objective 
function is depicted in Fig. 2, where each curve indicates 
a set of parameters. It can be seen in Fig. 2 that suitable 
parameters should lead to the minimal fitness value for the 
weights of the network ( �g ) and the penalty factors ( �).

(4)min
�1,�2,�3

min
G

max
D

V(D,G, �1, �2, �3).

Time

Temperature

0

Heating

process

Temperature-fall

process

...
Time

Time series signalSpatial distribution

Fig. 1   The thermal information of a spatial point in the specimen
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Fig. 2   The optimization process of the proposed objective function
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2.3.1 � The PSO algorithm

Inspired by a metaphor of social interaction (such as fish 
schooling and birds flocking), the PSO algorithm has been 
developed for solving various optimization problems owing 
to its easy implementation and relatively fast convergence 
rate. In recent years, the PSO algorithm has received an ever-
increasing interest due to its wide application potential. Each 
particle represents a candidate solution of the optimization 
problem.

Note that all the particles move at a certain speed in a 
D-dimensional search space. The velocity and position of the 
ith particle at the kth iteration are denoted by two vectors, 
which are the velocity vector vi(k) = (vi1(k), vi2(k),⋯ , viD(k)) 
and the position vector si(k) = (si1(k), si2(k),⋯ , siD(k)) , 
respectively. According to swarm intelligence, the posi-
tion of each particle is automatically updated towards 
two positions, where one position is the personal best 
position found by the particle itself (pbest) denoted by 
pi = (pi1, pi2,⋯ , piD) , and the other one is the global best 
position among the whole swarm (gbest) represented by 
pg = (pg1, pg2,⋯ , pgD) . The velocity and the position of the 
ith particle at the ( k + 1)th iteration are updated as follows:

where k is the current iteration number; w is the inertia 
weight; c1 and c2 are the acceleration coefficients called as 
the cognitive parameter and the social parameter, respec-
tively; and r1 and r2 are two random numbers which are uni-
formly distributed over the interval [0, 1].

2.3.2 � The neighborhood‑based PSO algorithm

As a powerful evolutionary computation algorithm, the 
PSO algorithm has been successfully applied to a variety of 
optimization problems. To alleviate the premature conver-
gence problem, some variant PSO algorithms focus on the 
modification of the parameters, such as the PSO algorithm 
with linear decreasing inertia weight and the PSO algorithm 
with time-varying acceleration coefficients. Despite adjust-
ing the parameters, some PSO variants have been proposed 
by designing topological structures [10, 34, 37]. For exam-
ple, the widely used topological structures (consisting of all, 
ring, and clusters) have been adopted in [10] to update the 
velocity of the particles. In [34], a fully informed PSO algo-
rithm has been put forward where each particle is adjusted 
according to its neighborhood information. In the standard 
PSO algorithm, all the particles are motivated to explore 
the search space based on personal best position of each 

(5)

vi(k + 1) = wvi(k) + c1r1(pi(k) − si(k))

+ c2r2(pg(k) − si(k)),

si(k + 1) = si(k) + vi(k + 1),

particle and the global best position searched by the entire 
swarm. Motivated by variant PSO algorithms that utilize 
the neighborhood information, a seemingly natural idea is 
to explore around the discovered global best position based 
on the nearby particles.

In recent years, the neighbourhood information has been 
adopted to enhance the search capability of the PSO algo-
rithms [16, 34, 37]. For example, a fully informed PSO 
algorithm has been proposed in [34], where the neighbour-
hood information of each particle is employed in the velocity 
updating model. In [16, 37], the particles are updated using 
the information of local best positions. To summarize, the 
aforementioned variant PSO algorithms employ the neigh-
bourhood of all the particles, which makes it time-consum-
ing to update the personal best particle and the global best 
particle during the population evolution process. As such, 
there is a need to put forward a new PSO algorithm which 
not only utilizes the neighbourhood information of the par-
ticle but also has relatively fast convergence rate.

In this paper, a neighborhood-based PSO algorithm is put 
forward where the neighborhood information of the global 
best position is employed for updating the velocity of the 
particles. In the proposed algorithm, a certain number of 
particles (which are close to the global best position) and 
the currently global best position are employed for updating 
the global best position. The designed neighborhood-based 
PSO algorithm has the capability of searching around the 
global best position at each iteration, which contributes to a 
thorough exploration of the problem space and may increase 
the possibility of escaping from the local optima.

Assume that there are several particles near the global 
optimal position and these particles are randomly distributed 
in the solution space. Based on this assumption, the neigh-
borhood information around the currently global best posi-
tion is employed to search for a candidate solution through 
the solution space. The neighborhood-based searching pro-
cess of the introduced PSO algorithm is displayed in Fig. 3.

In this paper, pg in equation (5) is updated as follows:

The space of the

feasible solution

Solution space

The particleThe prediction solution

The neighborhood particles The optimal particle

Fig. 3   The neighborhood-based searching process
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where A = F(pg(k)) ; B = F(
1

n+1

∑n

i=1
(pg(k) + ŝi(k))) ; ŝi(k) is 

a neighborhood point of pg(k) where the distance is deter-
mined by L2 norm; and n is the number of the neighborhood 
points; F(∗) is the objective function of the corresponding 
optimization problem:

Comparing with the velocity updating strategy of the stand-
ard PSO, the neighborhood-based updating strategy is 
capable of approaching the optimal solution with a faster 
convergence rate, which could benefit the hyperparameter 
optimization for deep learning techniques. It should be noted 
that the L2 norm has the ability of searching the solutions 
evenly in the target region compared with other norms, such 
as L1 norm or L∞ norm. In this case, the L2 norm is employed 
to measure the distance between pg(k) and its neighborhood 
points.

2.3.3 � The hyperparameter optimization of the modified 
GAN

In this paper, the proposed neighborhood-based PSO algo-
rithm is employed to optimize the hyperparameters ( �1 , 
�2 and �3 ) of the modified GAN. By using the optimized 
hyperparameters, the parameters of the modified GAN are 
then updated by employing the gradient descent method. 
The flowchart of the training process is depicted in Fig. 4.

In Fig. 4, after the initialization process, the neighbor-
hood-based PSO algorithm is first implemented for a certain 
number of iterations to obtain a proper set of hyperparam-
eters. Then, the gradient-descent-based optimization algo-
rithm is employed to optimize the parameters of the modi-
fied GAN for a certain number of epochs with the chosen 
hyperparameters. The whole process stops when the value of 
the objective function reaches the threshold and the pseudo-
code is shown as Algorithm 1. In the training process of 
the modified GAN, the neighborhood-based PSO algorithm 
operates first to initialize the hyperparameters of the modi-
fied GAN. Then, the parameters of the modified GAN are 
tuned by using the Adam optimizer. Note that the parameters 
of the GAN remain the same when updating the loss func-
tion. In this case, the neighborhood-based PSO algorithm 

(6)pg(k) =

⎧
⎪⎨⎪⎩

pg(k), A ≤ B

1

n+1

∑n

i=1
(pg(k) + ŝi(k)), A&gt;B

(7)F(�1, �2, �3) = �1

G(z)

1

1+e−�2[var(z)−�3]
+ c

.

can be applied to optimize the parameters of other GAN 
variants, such as the Wasserstein GAN and the least squares 
GAN. 

Begin

Prepare the training data

(time series signal data and it

corresponding label data)

Initialize the parameters:

1, 2, 3, g, d

Gradient-based algorithm fixed;

RUN improved PSO algorithm

Improved PSO algorithm fixed;

RUN Gradient-based algorithm

Iteration is over?

Iteration is over?

Output the optimal g,

The generator is obtained

End

No

Yes

No

Yes

Iteration is over?

Yes

No

Training the GAN

Fig. 4   The flowchart of the training process of the modified GAN
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3 � Experimental results

In this paper, the developed PSO-based GAN is exploited for 
the crack detection of the ECPT NDT images. In this sec-
tion, experiment setup is first introduced and experimental 
results are then presented.

3.1 � Experiment setup

In NDT, the thermography technique is widely used for 
crack detection. Particularly, the ECPT approach is one of 
the most popular NDT methods for subsurface crack detec-
tion. In the ECPT technique, the eddy current is excited in 
the specimen and the temperature of the crack area will be 
increased because the density of the eddy current is higher 
than that of the normal area. The heating process is recorded 
by using a thermal imager, which is shown in Fig. 5. It 
should be pointed out that it is difficult to identify the shape 
of the cracks by using the ECPT technique because the ther-
mal energy in the material is transferred during the heating 
process.

The ECPT detection system is depicted in Fig. 6. The 
alternating current is generated by a power device to drive 
the heating coil, which excites the eddy current in the speci-
men. The thermal imager is employed to record the heating 
process with a high sampling rate. It should be noted that 
the specimen could be placed under or on the heating coil. 
Fig. 6 (b) shows the experimental specimen with the cracks 
with different sizes, which is made of stainless steel. Some 
of the cracks with big size are through-hole.

3.2 � Experiment data

In the experiment, the through-hole crack and the general 
crack are used for the crack detection. A typical frame of the 
thermal image used for the training of the GAN is shown in 
Fig. 7. It can be seen that the crack with a bigger size is the 
through-hole crack and the smaller one is a general crack.

The pre-processing process is adopted to produce the real 
sample for training the discriminator. Notice that it is diffi-
cult to obtain a high-quality thermal image during the ECPT 
process. To obtain a relatively satisfactory thermal image of 
the specimen, the pre-processing process is adopted where 
the pro-processed image is utilized as the real sample for 
training the discriminator. In this paper, the real sample is 
the binarized thermal image where the pixel value of a crack 
point is “1” and the other non-crack points are with the pixel 
value of “0”. An example of the real samples is depicted 
in Fig. 8. In order to extract the features of the crack in the 
thermal data, a series of the thermal signal is utilized as the 
input of the generator. Each thermal signal corresponds to a 
pixel point in the thermal image. The thermal signal and its 
corresponding real sample constitute a pair of training data. 
As shown in Fig. 7, the size of an acquired thermal image is 
480 × 640 , and the total number of pixel points in this image 
is 307200. In total, there are 307200 pairs of training data.

The testing data (which includes three general cracks) is 
extracted from other area of the specimen. A typical thermal 
image of the testing data is shown in Fig. 9. We can see in 

Thermal imager

Eddy current

Crack

Fig. 5   The ECPT crack detection theory

Heatin
g coil

Thermal imager

Heating controller

Specim
en

SpecimenCrack

(a) The ECPT detection system

(b) The specimen with different crack

men

Fig. 6   The ECPT detection system and the specimen

Crack

The edge of the specimen

Fig. 7   The typical thermal image of the training data
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Fig. 9 that the pixel value of crack area is small by compar-
ing with the normal area. In addition, the obtained thermal 
image is corrupted by the noise, which makes it difficult to 
use a threshold to extract the crack area. In such a case, it is 
very hard to accurately extract the shape of the crack.

In the experiment of training the conventional GAN, 
the parameters �1 , �2 and �3 are manually selected. In the 
experiment that employs the PSO-based method, �1 , �2 and 
�3 are randomly initialized in the range of [-10, 10]. The 
parameters of PSO are set up as follows: the inertia weight 
is set to be w = 0.7298 ; the acceleration coefficients are 
c1 = 1.4962 and c2 = 1.4962 ; ri(i = 1, 2) are random num-
bers which are uniformly distributed in [0, 1]; the number 
of neighborhood points corresponding to the global point is 
n = 3 ; the search range of hyperparameters �i(i = 1, 2, 3) is 
in the range of (0, 2]; the number of the particles is set to 
be 30. These parameters are selected depending on experi-
mental experience.

In this paper, the architecture of the GAN is a fully con-
nected neural network. The detailed information of the mod-
ified GAN is listed as follows:

•	 Information:
	   Layers : 12;

	   Learning rate: 0.01;
	   Batch size: 100;
	   Optimizer: Adam;
•	 Generator:
	   Input: 201;
	   Hidden: 10, 30, 40, 50, 40;
	   Output: 1;
•	 Discriminator:
	   Input: 1;
	   Hidden: 20, 3, 12;
	   Output: 1.

3.3 � Results and discussions

To verify the effectiveness of the proposed PSO-based GAN 
method for crack detection, the original GAN is utilized for 
comparison. It should be noted that all the experiments are 
conducted with the same initial parameters. The size of each 
thermal image is 480 × 640 . In total, 307200 thermal sam-
ples (signals) can be used as the input of the generator dur-
ing the training process. For each iteration, 100 signals are 
randomly selected from the training dataset.

The experiment results of the original GAN for crack 
detection by using the ECPT NDT technique are shown in 
Fig. 10. It can be seen that the background noise is reduced 
which indicates the effectiveness of the original GAN. Nev-
ertheless, it can be observed that there are still some cor-
rupted areas around the cracks, which are produced by the 
excited eddy current in the non-crack areas. Additionally, the 
shape of the real crack area cannot be accurately extracted 
due to the heat transfer in the material. To conclude, the 
produced result by using the original cannot be used to accu-
rately detect the cracks.

The second experiment is conducted by using the modi-
fied GAN with a newly designed loss function, and results 
are shown in Fig. 11. In this experiment, the hyperparam-
eters of the modified GAN are chosen as �1 = 0.4 , �2 = 1.4 
and �3 = 0.6.

In Fig. 11, the pixels of the crack area are enhanced prom-
inently. It should be noted that the pixel values of the noise 
around the crack are relatively large comparing with that of 
other non-crack areas. To sum up, the introduced regulariza-
tion term in the loss function contribute to the enhancement 
of the contrast ratio.

In the second experiment, the hyperparameters are deter-
mined depending on the experimental experience. Notice 
that the hyperparameters selected for the second experiment 
are not the optimal ones. To further improve the perfor-
mance of the modified GAN, the fine-tuned hyperparameters 
of the network are determined, and the results are shown in 
Fig. 12. Here, the hyperparameters are set up as �1 = 0.01 , 
�2 = 0.1 and �3 = 0.05 . It can be seen in Fig. 12 that the 
background noise is almost reduced and the pixel values of 

Crack area

Influenced by the excitation coil

The edge of the specimen

Fig. 8   The “real data” of the training data

Crack area

Crack area

1 2 3 1
2 3

Fig. 9   The typical thermal image of the test data
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the cracks are enhanced. In addition, the shapes of the three 
cracks are very clear.

The experiment results of the proposed PSO-based GAN 
approach are shown in Fig. 13. In this experiment, the hyper-
parameters optimized by the developed neighborhood-based 
PSO algorithm are �1 = 0.5 , �2 = 0.75 and �3 = 0.1 . We can 
see that the noise around the crack area is largely reduced 
by comparing with the results in Fig. 12. The shape of the 

crack is accurately extracted in Fig. 13. Furthermore, Fig. 13 
presents a more accurate crack shape comparing with the 
real crack in the specimen shown in Fig. 6. Results shown 
that the proposed neighborhood PSO algorithm is capable 
of discovering the optimal hyperparameters for training the 
GAN. Comparing with the manually hyperparameter selec-
tion method, the proposed algorithm is capable of searching 
the optimal solution in a fast and accurate way. The updating 
process of the hyperparameters is shown in Fig. 14. Notice 
that the hyperparameters are updated once for every 100 
iterations in Fig. 14. In addition, the perturbation of each 
parameter becomes small, which indicates that the result 
approaches the optimal solution.

The error between the generated sample and the real sam-
ple is shown in Fig. 15. The sigmoid function is employed as 
the activation function for the output layer of the discrimi-
nator. It can be seen in Fig. 15 that the training error of the 
network converges very fast by using the hyperparameters 
optimized by the PSO algorithm. The running time com-
parison of the conventional GAN and the PSO-based GAN 
is shown in Fig. 16. In the experiment, the network is trained 
by 26 epochs with the batch size of 1000. It can be seen in 
Fig. 16 that there is little difference between the conven-
tional GAN and the PSO-based GAN at each epoch. Accord-
ing to the CPU timer, the running time of the conventional 
GAN is 517.238s, and the running time of the PSO-based 
GAN is 635.439s. The training process becomes stable after 
running 1500 iterations as shown in Fig. 15. In this case, the 
employment of the PSO algorithm will not cause the time-
consuming problem in training the GAN.

Crack

The edge of the crack

Fig. 10   The result without the regularization term

Crack

Fig. 11   Experiment results by using modified GAN

The real edge of crack

The crack

Fig. 12   Experiment results of the modified GAN with manually fine-
tuned hyperparameters
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To summarize, we can draw the conclusion that the PSO-
based GAN performs well for the crack detection on the 
ECPT NDT data. The shortcomings of the proposed GAN-
based crack-detection method are listed as follows: 

1.	 the labels of the data should be manually provided; and
2.	 a large amount of data is required to train an effective 

network.

The proposed GAN-based crack detection algorithm 
enhances the contrast ratio of the thermal images which 
benefits the crack detection on ECPT data. Actually, the pro-
posed method can be applied to other data that have same 
features as the ECPT data. Specifically, the features of the 
crack area are different from that of the normal area. For 

example, the developed method can be employed for crack 
detection on magnetic optical imaging data and ultrasonic 
testing data.

4 � Conclusion

In this paper, a novel PSO-based GAN approach has been 
put forward for ECPT crack detection. A designed regula-
tion term has been introduced in the objective function of 
the modified GAN so as to enhance the contrast ratio of 
the reconstructed image. The neighborhood-based PSO 
algorithm has been developed to automatically select the 
hyperparameters of the modified GAN, where a neighbor-
hood updating strategy has been proposed to make full use 
of the neighborhood information of the global best posi-
tion. Finally, experiments have been conducted to verify the 
effectiveness of the PSO-based GAN approach. Experimen-
tal results have demonstrated the superiority of the proposed 
method over the original GAN and the modified GAN (with 
manually selected hyperparameter) for crack detection on 
the ECPT NDT data. In the future, we aim to: (1) employ 

Crack

The real edge of the crack

Fig. 13   The result by using the Adam algorithm and the improved 
PSO algorithm

0 500 1000 1500
0

0.5

1

1.5

2

Itrations

V
al

ue
 o

f 
th

e 
 λ

1, λ
2 a

nd
 λ

3

 

 
λ

1

λ
2

λ
3

Fig. 14   The hyperparameters at each iteration

0 500 1000 1500
0.68

0.69

0.7

0.71

0.72

0.73

0.74

Iterations

C
ro

ss
 e

nt
ro

py

 

 

Before using PSO 
After using PSO

Fig. 15   The cross entropy result

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

Iterations

T
im

e(
s)

 

 

Training GAN only
Training GAN with PSO

Fig. 16   Comparison of running time



1154	 International Journal of Machine Learning and Cybernetics (2022) 13:1145–1155

1 3

other GAN variants (e.g. the Wasserstein GAN, the least 
squares GAN) and machine learning algorithms for crack 
detection on NDT data [2, 31, 32]; (2) improve the search 
ability of the neighbourhood-PSO algorithm by designing 
a novel strategy to assign appropriate weights to each indi-
vidual particle in the neighbourhood [1, 13, 25, 26, 46]; (3) 
design an adaptive control strategy to developed GAN-based 
crack detection algorithm [4, 14, 18, 27–29, 33, 39, 49, 52, 
53, 58]; (4) study the stability of the ECPT system [6, 7, 15, 
17, 19, 20, 36, 38, 50, 56, 57]; and (5) apply the proposed 
algorithm to other applications, such as thermal-to-visible 
image translation and image super-resolution [8, 12].
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