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In this paper, an explainable artificial intelligence (AI) technique is employed to analyze the match style
and gameplay of the national basketball association (NBA). A descriptive analysis on the evolution of the
NBA gameplay is conducted by using clustering and principal component analysis. Supervised-learning
based AI models (including the random forest and the feed-forward neural network) are applied to pro-
duce accurate predictions on NBA outcomes at a season-by-season and a month-by-month basis. To eval-
uate the interpretability of the established AI models, an explainable AI algorithm is utilized to deduce
and assess the precise reasoning behind the model prediction based on the local interpretable model-
agnostic explanation method. To illustrate its application potential, the method is applied to the open-
source NBA data from 1980 to 2019. Experimental results demonstrate the effectiveness of the intro-
duced explainable AI algorithm on predicting NBA outcomes with interpretation.
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1. Introduction

Sports science is a discipline that investigates how human bod-
ies work in exercise, and how sports activities improve players’
health and performance from cellular to whole-body perspectives
[3,5]. The past few years have witnessed recurring research inter-
ests in the prediction and optimization of sports performance.
Due to its remarkable capabilities, artificial intelligence (AI) has
shown exciting application prospects in many branches of sports
science, e.g., injury risk assessment [8,18,28,43] and tactical deci-
sion making [2,41].

For AI-based injury risk assessment, one of the first attempts
has been made in [43] towards the diagnosis problem of sports
injuries, where the decision tree and the Bayesian classification
methods have been used to extract the available knowledge for
diagnosing injuries. In [18], the decision tree classifier has been
leveraged to build a robust predictive model to identify athletes
at the high/low risk of muscle injuries based on the pre-season
screening data. In [28], a variety of supervised learning algorithms
(including the naive Bayes, logistic regression, random forest, and
support vector machine) have been utilized to predict the inci-
dence of the hamstring strain injury in elite Australian footballers.

Using AI techniques for decision making has also been a
research hotspot [1,9–11,13,31]. For example, convolutional neural
networks (NNs) and recurrent NNs have been deployed in [41] to
model sequences of player actions in rugby union, where the
established prediction model could provide tactical decision sup-
ports to coaches. The advantage of such a model is that it incorpo-
rates the data of field locations to improve the modelling accuracy
so as to provide better tactical decisions. It should be pointed out
that the performance of the prediction model is greatly limited
by the availability of the data. For instance, the position data of
the target player is generally utilized for the sequence modelling,
whereas the absent data (e.g. position data of other players), if pre-
sent, would have also helped improve the modelling accuracy.

Due to its worldwide prevalence and enormous financial value,
the national basketball association (NBA) has spared no effort in
improving training methods, boosting sports performances, and
predicting sports outcomes. This gives rise to widespread NBA
applications of AI algorithms which include, but are not limited
to, the NNs, naive Bayes, decision tree, support vector machine
and random forest [4,7,12,16,17,21,35,38,46]. For example, NNs
have been used in [12] to analyze the sports data of 890 basketball
games and predict the outcomes of basketball games. Among a list
of factors (e.g. two-point shots, three-point shots and defensive
rebounds) that affect sports performance, it has been found that
defensive rebounds and two-point shots are two important factors
for winning games. In [17], the statistics coming from 620 NBA
games has been collected and adopted to train four types of NNs
(i.e. the feed-forward, probabilistic, radial basis and generalized
regression NNs), whose prediction results on winning teams have
proven to be more accurate than those made by basketball experts.
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In [21], the naive Bayes classifier has been employed to predict
winners of the NBA matches.

By resorting to the NN, naive Bayes and decision tree, a set of
prediction models have been built to forecast outcomes of NBA
games based on the historic data [35]. Through the quantitative
comparison among various prediction models using different fea-
tures, the influential features (such as defensive rebounds, three-
point percentage and free throws made) have been explicitly iden-
tified to have a great impact on the prediction performance. Based
on NBA teams’ performance indicators during the regular season,
the logistic regression approach has been employed in [7] to pre-
dict the team’s probability of participating in the playoff, where
the team’s points (per game) and its opponent’s field goal percent-
age have been found to be the most two important factors in accu-
rately predicting the participation probability. In [16], a two-step
prediction approach has been presented to forecast the winning
probabilities of NBA teams. Given the average inefficiency ratio,
the predictive result on the winning probability is generated by
integrating all players’ performances and referring to the correla-
tion between the sports performance and the winning probability.

Notice that much of the existing work on sports science
revolves around predictions at a micro level such as an individual
person or a specific play by using AI techniques. In this case, a
seemingly natural idea is to conduct AI predictions at a macro level
(i.e. predicting game or even season outcomes), which would bring
greater applicability and entertainment value to sports audiences.
Nevertheless, a key absence in these literatures is explainable AI,
which refers to the interpretability, analysis and validation of indi-
vidual model predictions in the context of the NBA [6,23–25,30].
Though defensive rebounds and two-point shots have been con-
cluded as the two most important factors in [7,12,35], this only
gives the reader a generalized viewpoint on what features could
impact a team’s ability to win as opposed to a tailored viewpoint
to pinpoint what the exact key features are behind each individual
prediction. For example, the top ranked feature in global feature
importance may not necessarily be the top ranked feature for an
individual data-point. In this context, it seems natural to develop
an explainable AI algorithm for NBA gameplay prediction and the
corresponding interpretive analysis.

The motivation of this paper is based upon the claim that open-
source material incorporating both (a) predicting NBA outcomes
(through open-source data) using NNs and (b) accurately interpret-
ing NN predictions using explainable AI techniques is rare. Conse-
quently, there is a need to provide a descriptive analysis to identify,
understand and depict the evolution of the NBA gameplay from the
1980s to the current modern era from a statistical standpoint.

Motivated by above discussions, the purpose of this paper is to
launch a comprehensive investigation of existing open-source
materials relating to the hybrid of sports/NBA analytics and
explainable AI techniques in sports science. The main contributions
can be summarised into the following three aspects: 1) an explain-
able AI algorithm is employed to accurately predict macro-level
(seasonal/game level) NBA outcomes and interpret individual pre-
dictions for the first time; 2) a descriptive analysis of the NBA
gameplay is conducted, which provides an overview of the NBA
gameplay from the 1980s to the current modern era in a statistical
standpoint; and 3) the developed method is applied to real-world
NBA datasets with satisfactory experimental results.

The rest of this paper is organized in the following manner. In
Section 2, the utilized methods for the descriptive analysis of
NBA gameplay and NBA match outcome prediction are introduced.
Data preparation and data pre-processing are presented in Sec-
tion 3. Experimental results and discussions are illustrated in Sec-
tion 4. In Section 5, conclusions are drawn, and future directions
are pointed out.
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2. Methods

The main purpose of this paper can be summarized into two
aspects: 1) a descriptive analysis of the NBA gameplay from the
1980s to the current modern era; and 2) the success strategy of a
given team in the modern NBA. To be specific, the success of a
given NBA team is defined by 1) a high win ratio per month; and
2) the given NBA teammaking the post-season playoffs. In this sec-
tion, the utilized data mining and explainable AI methods for the
aforementioned tasks are discussed separately.
2.1. Descriptive analysis of the NBA gameplay

In this paper, a descriptive analysis is conducted to identify,
understand and depict the evolution of the NBA gameplay from
1980 to 2019 from a statistical standpoint. To be specific, trend
analysis, clustering analysis and visualization are adopted. Details
of the utilized methods are summarized as follows:

1) Trend Analysis:
a. Produce line graphs depicting year on the � axis and attri-

bute mean on the y axis, e.g. investigate mean 3 points
made per season in NBA matches and how it changes over
the forty-year period. Given the dataset is standardized,
multiple attribute trends are plotted on the same graph
for reliable comparison purposes.

2) Clustering
a. Deploy the K-means and DBSCAN clustering algorithms so

as to group the data points into distinct clusters where
each cluster represents a period that epitomizes a distinct
NBA game style (e.g. late 1990s style basketball at the
zenith of Michael Jordan’s careers vs late 2010s 3-point
based style dominated by the Golden State Warriors).

b. Use the silhouette score to evaluate the quality of the
clustering results. The silhouette score is calculated using
the mean intra-cluster distance (a) and the mean nearest-
cluster distance (b) for each sample, where the silhouette
coefficient of a sample is (b - a)/max(a, b).

3) Principal component analysis (PCA) and Visualization
a. Depict the clustering results and trend analysis at a macro

level to visualize how the NBA gameplay has changed.
b. Apply PCA to reduce the dimensionality of the dataset and

use the ‘‘proportion of variance explained by � principal
components” metric to assess the reliability of a 2D/3D
representation of the dataset.

c. Visualize the obtained dataset (processed by using PCA)
and use different colors to identify the cluster label. High-
light the year of the data-point from trend analysis for
each data-point in the 2D/3D diagram with different
colors.

d. Plot arrows to project each original attribute as a labelled
vector in the new 2D/3D principal component axes.
2.2. Predicting NBA outcomes with interpretability analysis

As stated previously, the success of a given NBA team is defined
by two ways: 1) a high win ratio per month for a given team (re-
gression problem); and b) an NBA team making the post-season
playoffs (classification problem). For predicting the NBA outcomes,
random forest and feedforward NN algorithms are employed to
build the predictive model, while the Local Interpretable Model-
agnostic Explanations (LIMEs), proposed in [26] is an explainable
AI method, is adopted in this paper to interpret the predictions.
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2.2.1. Win ratio prediction
After conducting data preparation and data pre-processing

(which will be described in the next section), the following two
steps are undertaken to carry out the predictions as well as the
interpretability element of the predictions:

1) Train a random forest regressor and a feed-forward NN to
predict the win ratio column based on all other features in
the dataset.

a. Implement the following procedures for assessing each
model’s predictive power:

i. Set the 90/10 ratio for training/testing data.
ii. Leave 10 out Cross Validation (Leave One Out Cross Vali-

dation unrealistic here due to computational constraints).

b. Tune the hyperparameters of the random forest regressor
and the feed-forward NN.

c. Use R2 (proportion of variance of win ratio column
explained by other independent variables) and mean
squared error (MSE) as the performance assessment metric.

d. All predictor attributes are standardized to train the NN
model but not the random forest since the splitting of values
in decision tree-based models are not prone to scales.

2) Employ the LIME algorithm for interpreting the predictions
obtained by the NN. In the simulation, the top 10 attributes
are displayed by LIME.

NBA team post-season playoffs classification
For the classification problem, the aforementioned AI methods

(random forest and feedforward NN) as well as the LIME method
are employed, where the only major difference is the implementa-
tion of a classification model as opposed to a regression model (e.g.
random forest classifier used instead of random forest regressor, F1
used as a testing metric instead of MSE, etc.). F1 is the harmonic
mean of the precision and recall, which is used to measure the
accuracy of a test.
3. Experiment

In this paper, the NBA gameplay data are extracted from online
open source websites. With the data source obtained, data scraping
is taken place. Data exploration and data wrangling are then car-
ried out to justify the reliability and validity of the subsequent
modelling. The employed data processing method can be con-
cluded into the following 3 steps:

1) Data scraped from the chosen open source site (http://basket-

ball.realgm.com/).
2) Data joining, wrangling, and aggregation on the various

datasets obtained.
3) Remediation for any data quality defects in the final

datasets.

Each step of this process, along with nuances (e.g. data quality
issues) and how they are either remediated or taken into consider-
ation when critically evaluating results, are fully documented in
the following two subsections.
3.1. Descriptive analysis of the NBA gameplay

For data analysis of NBA gameplay, the subsequent tasks
include 1) producing unsupervised learning based data exploration
(Clustering and PCA); and 2) visualising (utilising PCA reduced
2D/3D datasets) the descriptive analysis results.
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3.1.1. Data preparation
To gather the data with web scraping, the NBA gameplay data at

a seasonal level for each team from the 1980 season to the latest
2019 season is collected. In the experiment, each data point is
one NBA team’s average statistics across multiple attributes for
one season. The data for the regular season gameplays contains a
table which outlines the season averages for key gameplay attri-
butes for each team at each year.

3.1.2. Data pre-processing
It should be noted that the raw data includes not only the

season-wide averages for team totals but also that of the opponent
totals. As there might be correlation between team totals and
opponent totals (i.e. if the statistics for team totals are good, one
would expect the statistics for opponent totals is poor), the dataset
is filtered to opponent totals per team only, for each NBA season.

The raw dataset includes 1055 data points, where the attributes
‘‘Year”, ‘‘Games played” and ‘‘Team name” are removed. Games
played each year will generally be static unless due to the occa-
sional NBA lockout. ‘‘Year” is a variable which cannot be used to
explore the relationship between year and gameplay attributes.
Team name is removed from the data as it adds no informative sta-
tistical value. There are no missing values, and all remaining attri-
butes are of type numerical, eliminating the need for dummy
variable creation.

For the descriptive analysis of the NBA gameplay, clustering
analysis, trend analysis using line graphs, and PCA are employed.
The data standardisation process (i.e. removing the mean and scal-
ing to unit variance) is applied to ensure reliability and inter-
pretability of the utilized methodologies. Particularly, data
standardization ensures the unbiasedness as all the attributes are
compared and analyzed on the same metric scale.

3.2. Predicting NBA outcomes with interpretability analysis

To predict and understand the strategies a given team should
undertake to achieve success in the modern NBA, the subsequent
procedures are carried out, which includes model training, model
prediction on unseen data, and model interpretation.

3.2.1. Win ratio prediction
3.2.1.1. Data preparation. To predict the win ratio of a team for a
given month, the gameplay attributes at a monthly level is
required. To obtain the win information, the date and result for
each game played by each team is scraped and processed. As the
data format of the scraped datasets is inconsistent, a simple format
clean-up approach using substring and split methods is utilized. It
should be noted that the gameplay results for October and April are
removed due to tacit strategy purposes. After calculating the win
ratios for each team per month, the gameplay attributes are
retrieved to predict the win ratios.

3.2.1.2. Data pre-processing. Data pre-processing is employed to
predict the win ratio of a team for a given month. In this experi-
ment, feature selection, data profiling, data imputation and data
cleaning are utilized to pre-process the raw data.

1. Feature selection

The attributes of the raw dataset are included in the website

(https://basketball.realgm.com/info/glossary). In the online data
source, there is no team-wide averages per month data. To manu-
ally obtain the team-wide averages, the player averages per month
information is employed for data analysis. The ‘‘PER 36” of the NBA
statistic is used to holistically evaluate a player’s performance as

http://basketball.realgm.com/
http://basketball.realgm.com/
https://basketball.realgm.com/info/glossary
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opposed to purely their raw numbers. ‘‘PER 36” essentially extrap-
olates the raw numbers based on the assumption that the player
plays for 36 min in a game, which could contribute to the evalua-
tion of a player’s impact and retrieve a team-wide average each
month.

Upon initial exploratory model training and testing, the fields
‘‘PER” and ‘‘eDIFF” are removed from the dataset as predictors for
the following reasons, deduced by basketball domain knowledge:

� PER is a player efficiency rating created by John Hillinger, which
incorporates all a player’s contributions in a game down to one
rating. PER is a useful number for a player/team to acknowledge
how well their all-round contribution is in a game. However, it
is not easily interpretable since it cannot simply be decomposed
into its individual components for an analyst to analyze. Sec-
ondly, given PER encompasses multiple if not all aspects of
gameplay into one score, having team PER average as an attri-
bute in the dataset to predict win ratio would introduce a con-
siderable self-fulfillment or bias in predictions since a high
team PER average would certainly have an extreme positive
impact on a team’s win ratio.

� eDIFF is the difference between the offensive and defensive rat-
ings of a player. Since offensive and defensive ratings are
already in the dataset, there is less need to have eDIFF since
the existence of an obvious correlation. Furthermore, the uti-
lization of eDIFF could suppress the predictive powers of offen-
sive and defensive ratings due to their correlation.

The data source contains ‘‘advanced statistics” as opposed to the
standard set of statistics such as Field Goals Made, Three Points
Made etc. These statistics are mostly game minutes agnostic as
they include mainly percentages and ratings. The two processed
datasets are checked for potential duplicates (none present) and
subsequently merged horizontally using month, year, player, and
team as the join key. According to domain knowledge, a filter is
set to remove data points where the number of average minutes
played is less than 10, or the number of games played is less than
2. After that, the data aggregation is employed for obtaining
month-wide averages per team so as to reduce bias in the deployed
model.

2. Data profiling

Data profiling is adopted to better understand the dataset and
identify issues such as missing values. Specifically, the following
five components in the raw dataset are computed for each column:

1. % of column populated (i.e. non nulls);
2. Number of unique/distinct values;
3. Data type;
4. Count (length of data-frame);
5. % of column being 0.

The general profile of the dataset is illustrated in Fig. 1. All the
attributes used for prediction are numerical values, which removes
the need for dummy variables. The only issue is the case of null val-
ues in the dataset. Though most of these nulls are not caused by
the data quality issue since they are justified under a basketball
context, nulls are a blocker to modelling. The following four solu-
tions are shortlisted to solve this problem:

1. Remove rows which contain a null in any field.
2. Remove columns which contain a null in any row.
3. Replace the null field with a surrogate mean/median of all pop-

ulated values for the column.
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4. Replace the null field with a predicted value based on the pop-
ulated fields of the row.

3. Data imputation

Given the essence of data volume as an important factor in this
paper, especially when there is only so much NBA data available
for analysis from the 1980s onwards, the imputation-based meth-
ods are used to deal with null values. It should be pointed out that
certain viable imputation-based methods may not be appropriate
for data imputation in the context of the NBA. With mean value
imputation, a significant bias would exist as the values for the null
fields are imputed based on the mean of all populated fields, which
would highly generalise and skew the imputed value. For example,
Fig. 1. The win ratio dataset.



Table 1
DBSCAN clustering results with epsilon of 2.4 (* the cluster
label of �1 in DBSCAN refers to a data-point being a ‘‘noisy”
sample).

Cluster Cluster Size

0 156
1 572
�1* 327
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when a player has a record of zero blocks, which can be highly pos-
sible that the player is an offensive based guard, and we impute his
block percentage based on the mean of all populated block per-
centages (including defensive based players with high number of
blocks per game). As such, the player may be assigned a higher
block percentage than the ground truth. In this case, a specific
imputation method based on predictive modelling is developed
to deal with null values. The procedure of the developed imputa-
tion method by predictive modelling is shown as follows:

1. Delete the arbitrary fields (such as player name and team
names).
2. Sort the column names which contain null values by the
number of null values from largest to smallest via a list.
3. For each field in the null-field list from step 1, train a random
forest regressor, since all the fields are of numerical nature, to
predict the value of the null-field list in instances where the
field in the null-field list is populated, based on the values of
all other populated fields, using mean-value imputation if nec-
essary if any of the other fields are null (cases of this should be
minimal).
4. Use the trained random forest regressor model from step 3 to
predict the field in the null-field list in stances where it is null.
5. Repeat from step 3 onwards for all other fields in the null-
field list.

The developed imputation method gives a sense of assurance,
compared with using mean value imputation methods, that the
values for null fields are imputed using similar data-points (e.g. a
similar performing player) where the field to impute is not null.
It should be noted that the developed imputation approach also
guarantees that there is no data loss since no rows or columns
are removed.

4. Data cleaning

Data cleaning is applied to ensure consistency in representa-
tions of NBA seasons. A season spans over two years and the data
source sometimes illustrates the season by the year the season
ends, but at other times by the actual year where the game has
taken place (in the case of per-game results). The subsequent step
is to aggregate the dataset to a monthly average level to predict a
team’s monthly win ratio. Finally, prior to the modeling part, the
dataset illustrating the monthly gameplay attribute average is
joined up with the dataset depicting the win ratios per team each
month, based on the team and date as the join key. As a result, a
complete null-free dataset is obtained to predict win ratios based
on a rich set of gameplay attributes.

3.2.2. NBA team post-season playoffs classification
3.2.2.1. Data preparation. Data is retrieved from the regular season
average section in the data source instead (but includes both stan-
dard and advanced statistics), since whether a team makes the
playoffs or not is based on a per-season basis without manual
aggregation. It should be noticed that because whether or not a
team makes the playoffs is not explicitly stated within the
retrieved regular season average data, a separate identification
process of determining whether a team makes the playoffs is con-
ducted. The identification process is carried out through a ‘‘try/ex-
cept” function on a HTTP GET request specifically for playoffs data.
If the GET request succeeds, it verifies playoffs statistics are avail-
able for the given team that season, hence confirming that the
team made the playoffs that season.

3.2.2.2. Data pre-processing. The data pre-processing of the classifi-
cation problem is the same as that of the prediction problem as
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mentioned in Section 3.3.1. For the classification problem, we have
a 1055 row dataset portraying each team’s average seasonal game-
play attributes and whether the team made the NBA playoffs for
each season since 1980.
4. Results and discussions

In this section, the testing methods, metrics, and experimental
results are presented. The testing part involves 1) assessing the
model outcomes from a quantitative perspective; and 2) evaluating
the model from the domain specific perspective. As mentioned pre-
viously, domain expertise in NBA/basketball is crucial for validat-
ing the reliability of a machine learning model’s output.
Experimental results of the descriptive analysis for NBA gameplay
are first shown where the testing process involves the comparison
of various clustering algorithms, the granularity of the clusters pro-
duced, the proportion of variance explained by PCA, and visual
inspection of the descriptive visualisations produced. Additionally,
the success prediction of a given NBA team with interpretability
analysis is demonstrated. To be specific, the validity and accuracy
of the prediction results are analyzed, and the model interpretabil-
ity using LIME is also presented.

4.1. Results of NBA gameplay descriptive analysis

In the simulation, the epsilon value of the DBSCAN algorithm is
set up as the maximum distance between two samples for one to
be considered as in the neighbourhood of the other, which is the
most crucial parameter. With various values of epsilon in the range
of 0 < x < 5 considered in the simulation, the epsilon value of 2.4 is
the optimal one in terms of the silhouette score and number of
clusters formed. The corresponding silhouette score is 0.135, and
the number of samples (or total weight) in a neighbourhood for a
point to be considered as a core point is 10.

There are two major critical observations of the DBSCAN clus-
tering results: 1) the silhouette score is low (a low or negative sil-
houette score indicates poor clustering); and 2) many samples
(Table 1) lie in the anomalous ‘‘noisy” category of label �1. In con-
trast, when epsilon is changed to a higher value, such as 4.5, a
much higher silhouette score (the value of 0.475) is obtained but
with an undesired clustering breakdown. The min sample value
is 10. The clustering results are provided in Table 2.

The clustering breakdown in Table 2 is undesirable in this paper
to identify distinct clusters of NBA dynasties since there are virtu-
ally no clusters identified, despite the higher silhouette score. This
indicates that the data potentially may not conform to density-
based clustering. To further explore the data distribution, the K-
means clustering algorithm is employed. The cluster size and sil-
houette scores of K-means clustering are displayed in Table 3,
where all hyperparameters are left as default.

It can be seen that the K-means clustering outcome is far from
optimal in terms of the silhouette scores. However, it is clear that
the performance of the K-means clustering algorithm is better than
that of the DBSCAN algorithm in terms of silhouette scores, sug-



Table 2
DBSCAN clustering results with epsilon of 4.5 (* the cluster
label of �1 in DBSCAN refers to a data-point being a ‘‘noisy”
sample).

Cluster Cluster Size

0 1054
�1* 1

Table 3
K-means clustering results.

Cluster: Silhouette Score:

2 0.317
3 0.213
4 0.170
5 0.133
6 0.122
7 0.120
8 0.115
9 0.119

Table 4
The clustering results for 5 most frequently appearing NBA seasons.

Cluster
Size:

Label: Cluster
Size:

5 Most frequently appearing NBA
seasons:

2 0 715 1990, 1989, 1991, 1986, 1987.
1 340 2008, 2005, 2006, 2007, 2004.

3 0 420 2006, 2003, 2004, 2005, 1999.
1 330 1990, 1989, 1988, 1986, 1991.
2 305 2019, 2018, 2016, 2015, 2014.
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gesting that a density-based clustering approach through DBSCAN
is probably unsuitable on this dataset. Thus, the K-means cluster-
ing output is used for the subsequent implementations in PCA
and visualisation. Using the cluster sizes with the top silhouette
scores, a further breakdown is displayed in Table 4.

It can be observed that certain similar seasons appear fre-
quently within the same cluster, and the most prevalent NBA sea-
sons in each cluster are from vastly different time periods (e.g.
early 1990s vs late 2010s), signalling that the NBA gameplay has
evolved over the past four decades. To explore further, the results
of PCA and visualisation ensue.

Choosing a suitable number of principal components aims to
balance the trade-off between the number of principal components
and the proportion of variance explained by the principal compo-
nents. In fact, the sole purpose of PCA is to reduce dimensionality
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down to either 2 or 3 for visualisation purposes. As such, the pro-
portion of variance explained by 2 and 3 principal components
must suffice for reliable visualization. A scree plot of number of
principal components vs proportion of variance explained by the
principal components is depicted in Fig. 2.

In Fig. 2, the proportion of variance explained by 2 and 3 prin-
cipal components is 0.6 and 0.68, respectively. The results can be
seen as a reasonable but subjective approximation of the informa-
tion in the dataset. Due to this approximation, the ensuing dia-
grams act as purely a reference for visualisation and not as the
golden standard for describing the evolution of the NBA gameplay.
For K-means with 2 and 3 clusters, the subsequent images depict
the following:

� 2D representation of the clusters (each cluster identified
through a distinct colour) with the projection of each original
feature as a labelled vector on the principal component axes.

� 3D representation of the clusters (each cluster identified
through a distinct colour).

� 3D representation with each data-point coloured according to
its corresponding NBA season/year.

Figs. 3-5 demonstrate that: 1) there is a difference in gameplay
between the various clusters identified; and 2) there is a gradual
shift in gameplay as we alter the timeframe. Focusing on the clus-
tering to begin with, the tables below exhibit the key descriptive
statistics for selected attributes within each cluster, highlighting
the major discrepancies in gameplay attributes between each
cluster.

The clustering visuals and their accompanying breakdown in
Tables 5 and 6 suggest two to three potential NBA dynasties, each
with a distinct basketball style.

To visually inspect individual attributes which may be con-
tributing to this evolution, Fig. 6 depicts the trend analysis of a
select few gameplay attributes over the years (essentially inter-
preting Fig. 5). As all values have been standardised, all ten attri-
butes are displayed upon one graph. The trend is quite intriguing
from the perspective of an NBA fan. A few observations, along with
some possible hypothesises for each phenomenon, are obtained
which include the following:

� 3-point attempts and 3 points made have continuously
increased over the four decades;

� Defensive rebounds have continuously increased over the four
decades;

� Offensive rebounds have continuously decreased over the four
decades;

� Free throw attempts and free throws made have continuously
decreased over the four decades.

From the above statistics, the style of the NBA is truly different
depending on the chosen year. A notable observation is that that a
successful player in 1989 may not be able to automatically trans-
late his game into success in 2019.

4.2. Results of NBA team’s success strategy using explainable AI

4.2.1. Win ratio prediction
In this experiment, random forest and feed-forward NN algo-

rithms are employed for the win prediction of a given NBA team.
The hyperparameters of the two models, after hyperparameter
tuning, are given as follows:

Random Forest:

� Max depth: 20
� Split criterion: MSE



Fig. 3. 2D representation of the clusters (left is the 2 clusters’ case and right is the 3 clusters’ case).

Fig. 4. 3D representation of the clusters (left is the 2 clusters’ case and right is the 3 clusters’ case).

Fig. 5. 3D representation with each data-point coloured according to its corre-
sponding NBA season/year (darker colours representing a more recent NBA season).
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� Number of estimators: 200
� Maximum features: sqrt
� Out of bound score: True

Feed-forward NN:

� Number of hidden layers: 4
� Number of nodes on each layer (in order from front to end): 4, 3,
2, 1

� Model type: Sequential feed-forward NN with dense layers
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� Activation type: ReLU for all layers
� Optimizer type: Adam
� Epochs: 40
� Loss: Mean Squared Error
� Validation split within the training set: 0.2
� Early stopping patience: 5

Experimental results from the random forest as well as the
feed-forward NN to validate the monthly win ratio predictions
are exhibited in the following table:

As shown in Table 7 that the predictive power of the feed-
forward NN is superior over the random forest model based on
the higher R2 value and lower MSE value. Whilst the Leave-10-
Out-Cross-Validation method is unfeasible for the NN model due
to computation constraints, one would expect the metrics to
exceed the Train/Test split value given a larger training set for
the model to learn from (as proven in the random forest instance).
An R2 value of minimum 0.77 in accurately predicting a team’s win
ratio for a given month by a NN seems subjectively acceptable,
which indicates a significant improvement over 0.65 in the case
of a random forest model.

To test the interpretability of each method, LIME, the explain-
able AI method, is utilized to derive local feature importance. To
test the effectiveness of local model interpretation, three specific
samples are taken into consideration for verification:

1. A phenomenally successful month with a 0.94 win ratio in the
Lebron James-led Miami Heat of Feb 2013;

2. An average month with a 0.5 win ratio by the New York Knicks
of February 1992;



Table 5
Clustering results when N = 2.

N = 2 Clustering approach:
Cluster 0 FGM 3PM 3PA 3P% FTM FTA TOV PF ORB APG SPG PPG Year

mean 42.4 1.7 5.4 0.3 21.7 28.7 17.0 24.2 14.4 25.5 8.8 108.2 1987.5
std 2.4 1.2 3.3 0.0 2.2 2.8 1.9 1.8 1.0 1.8 0.9 4.8 4.8
min 34.9 0.3 1.5 0.1 15.8 20.5 11.8 19.5 11.9 21.2 6.3 97.5 1980.0
25% 40.8 0.7 2.6 0.3 20.2 26.9 15.5 22.9 13.7 24.3 8.2 104.9 1984.0
50% 42.2 1.5 4.8 0.3 21.7 28.9 17.0 24.2 14.3 25.5 8.7 107.5 1987.0
75% 43.7 2.4 7.1 0.3 23.2 30.5 18.2 25.4 15.0 26.5 9.4 110.9 1991.0
max 52.0 7.1 18.7 0.4 29.0 37.5 22.8 29.9 18.2 30.9 11.4 130.8 2010.0

Cluster 1 FGM 3PM 3PA 3P% FTM FTA TOV PF ORB APG SPG PPG Year

mean 37.0 6.5 18.2 0.4 18.4 24.5 14.7 21.4 11.5 21.9 7.7 98.8 2006.8
std 2.3 2.0 5.4 0.0 2.0 2.7 1.2 1.7 1.2 1.9 0.8 5.8 7.4
min 30.3 1.9 6.1 0.3 13.7 18.2 11.3 16.2 8.0 16.3 5.6 83.4 1990.0
25% 35.5 5.2 14.6 0.3 17.0 22.5 13.7 20.2 10.6 20.6 7.2 95.0 2001.0
50% 37.0 6.1 17.1 0.4 18.3 24.3 14.6 21.4 11.4 21.9 7.7 98.5 2007.0
75% 38.6 7.4 20.4 0.4 19.8 26.2 15.5 22.6 12.4 23.2 8.2 102.5 2013.0
max 43.4 13.1 36.3 0.4 24.7 32.4 19.4 27.1 15.3 26.9 10.4 119.4 2019.0

Table 6
Clustering results when N = 3.

N = 3 Clustering approach:
Cluster 0 FGM 3PM 3PA 3P% FTM FTA TOV PF ORB APG SPG PPG Year

mean 35.7 5.3 15.2 0.4 19.0 25.4 14.9 22.1 11.8 21.2 7.7 95.6 2002.5
std 1.8 1.1 2.9 0.0 2.0 2.6 1.3 1.6 1.1 1.7 0.8 4.3 5.6
min 30.3 1.6 4.8 0.3 13.9 19.4 11.7 17.7 9.3 16.3 5.6 83.4 1990.0
25% 34.5 4.6 13.5 0.3 17.5 23.5 14.0 20.9 11.0 20.0 7.2 92.8 1998.0
50% 35.8 5.4 15.2 0.4 19.0 25.4 14.9 22.0 11.9 21.2 7.7 96.0 2003.0
75% 36.8 6.0 17.0 0.4 20.3 27.1 15.7 23.2 12.7 22.3 8.2 98.6 2006.3
max 40.9 8.5 24.1 0.4 25.0 33.6 20.6 27.1 14.7 26.3 10.4 105.6 2016.0

Cluster 1 FGM 3PM 3PA 3P% FTM FTA TOV PF ORB APG SPG PPG Year

mean 42.5 1.6 5.2 0.3 21.7 28.7 17.0 24.2 14.4 25.6 8.8 108.3 1987.2
std 2.3 1.1 3.0 0.0 2.2 2.8 1.9 1.8 1.0 1.7 0.9 4.7 4.5
min 38.0 0.3 1.5 0.1 15.8 20.5 11.8 19.5 11.9 21.2 6.3 97.5 1980.0
25% 40.8 0.7 2.6 0.3 20.1 26.9 15.5 23.0 13.7 24.5 8.2 105.3 1983.3
50% 42.3 1.4 4.6 0.3 21.7 28.8 17.0 24.2 14.3 25.5 8.8 107.6 1987.0
75% 43.8 2.3 7.0 0.3 23.2 30.5 18.2 25.5 15.1 26.5 9.4 110.9 1991.0
max 52.0 6.8 18.7 0.4 29.0 37.5 22.8 29.9 18.2 30.9 11.4 130.8 2002.0
Cluster 2 FGM 3PM 3PA 3P% FTM FTA TOV PF ORB APG SPG PPG Year

mean 38.8 8.0 22.2 0.4 17.7 23.4 14.4 20.5 11.1 22.8 7.7 103.3 2012.4
std 1.6 2.0 5.5 0.0 1.8 2.3 1.2 1.5 1.3 1.7 0.7 4.7 5.7
min 34.1 2.8 8.5 0.3 13.7 18.2 11.3 16.2 8.0 17.8 5.7 89.4 1993.0
25% 37.7 6.5 18.3 0.3 16.4 21.8 13.5 19.5 10.2 21.6 7.2 100.2 2010.0
50% 38.6 7.6 21.4 0.4 17.7 23.3 14.4 20.4 11.0 23.0 7.6 102.7 2014.0
75% 39.8 9.4 26.3 0.4 18.8 24.7 15.1 21.4 11.8 23.9 8.1 106.3 2017.0
max 43.4 13.1 36.3 0.4 22.8 29.8 18.6 24.7 15.3 26.9 9.9 119.4 2019.0

Fig. 6. Trend analysis of a select few gameplay attributes over the years.
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Table 7
Experimental results of the random forest and the feed-forward NN.

Dataset length: 4718 Random
Forest
Model

Feed-forward NN
Model

90/10 train and test split average over
10 random splits (randomness
determined using seeds)

R2: 0.65
MSE: 0.014

R2: 0.77
MSE: 0.009

Leave 10 out cross validation R2 score:
0.66

NA (due to
computational
constraints)
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3. A poor performing month with a 0.1 win ratio by the Denver
Nuggets of February 2015.

In Figs. 7-9, the local feature importance and its positive/nega-
tive contribution to the predicted value are depicted for the 3 cho-
sen samples. For demonstrative purposes, a verbal analysis of
samples 1 and 3 follows, as an example of determining whether
exceptionally successful and unsuccessful months can be logically
explained in basketball terms.

For sample 1, the model predicts a win ratio of 0.72 compared
to the actual ratio of 0.94. The following three conclusions are
drawn from the experimental results.
Fig. 7. LIME results of sam

Fig. 8. LIME results of sam
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1) The top attributes contributing to a positive value include a
high floor impact (which is the mean impact each player
gives in terms of assists, shot creation, and offensive
rebounding), a good defensive rating mean (that limits the
number of opposition points), and a good offensive fire-
power. From a basketball standpoint, these make complete
sense and follow the general coaching principle that defence
and impacting other players around the player is more cru-
cial in winning games than purely focusing on offensive
plays. The finding is highly relevant with a famous basket-
ball phrase ‘‘Defence wins championships”.

2) The top three attributes inhibiting a high win ratio are high
number of games played, high number of steals and a high
assist percentage. A high number of mean steals and a high
assist percentage should in theory be positive traits in an
NBA game.

3) The predicted value of 0.72 is not as high as the actual win
ratio of 0.92. This is a general trend among predicting test
cases where the win ratio is exceptionally high because of
the smaller sample size around the tails of the win ratio dis-
tribution for the model to train on.
ple 1 (the 2013 case).

ple 2 (the 1992 case).



Fig. 9. LIME results of sample 3 (the 2015 case).
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For sample 3, the model predicts a win ratio of 0.17 compared
to the actual ratio of 0.1. According to the experimental results,
the following two conclusions are outlined:

1) Low total rebounding percentage, low floor impact, and low
field goals made sum up the top attributes explaining the
horrendous month of basketball. Low rebounding percent-
ages mean low second chance opportunities per possession
and giving up possessions on play to the opposition. The
coach in this instance should thus request extra emphasis
on going after each rebound and increasing assists to
improve floor impact in subsequent games.

2) Like the above scenario, the contrasting attributes seem to
make little basketball sense. A low mean points scored value
along with a low field percentage, which should theoreti-
cally negatively impact a team’s performance, are classified
as positive contributions.

It is difficult to employ the AI techniques (e.g. the random forest
model and the feed-forward NN) to accurately predict the win ratio
of a team for a given month, even with advanced NBA statistics.
According to experimental results, a feed-forward NN predicts
the win ratio of a given NBA team within a month with a respect-
able accuracy of 0.77 using the R2 metric, which indicates that the
feed-forward NN should generally be able to give a solid indicator
of how a team will perform for a given month, given a set of NBA
attributes. LIME produces rational interpretability behind each
predicted value, but the contributing factors for the contrasting
side, particularly the positive contributions, for each prediction
sometimes make little sense in basketball terms.
Table 8
Experimental results of the random forest model and the feed-forward NN.

Dataset length: 1055 Random
Forest
Model

Feed-forward NN
Model

90/10 train and test split average over
10 random splits (randomness
determined using seeds)

F1: 0.85 F1: 0.87

Leave 100 out cross validation/11 Fold
Cross Validation

F1: 0.87 F1: 0.87

Leave 2 out cross validation F1: 0.88 N/A (due to
computational
constraints)
4.2.2. NBA team post-season playoffs classification
In this experiment, the post parameter tuning, the optimal

structure and hyperparameter values for the random forest and
feed-forward NN models are given as follows:

Random Forest:

� Max depth: 25
� Split criterion: gini
� Number of estimators: 250
� Maximum features: sqrt
� Bootsrap: True

Feed-forward NN:
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� Number of hidden layers: 4
� Number of nodes on each layer (in order from front to end): 5, 4,
3, 2

� Model type: Sequential feed-forward NN with dense layers
� Activation type: Linear. Softmax for final layer
� Optimizer type: Adam
� Loss function: Categorical cross entropy
� Epochs: 40
� Validation split within the training set: 0.2
� Early stopping patience: 5

The results from the various testing methodologies (including
the random forest model and the feed-forward NN) to validate
the monthly win ratio predictions are exhibited in the tables
below:

The classification task is much easier than the corresponding
win-ratio prediction task, given it is firstly a binary classification
and secondly it is at a season-by-season level as opposed to a
monthly level. Thirdly, from an NBA domain perspective, it is sim-
ply more complicated to predict exactly how many games a team
will win in a specific month given the volatility of how teams per-
form game to game as opposed to if that team is generally of play-
off calibre, given a set of gameplay attribute values. As shown in
Table 8, we can see that the F1 score is relatively high across all
metrics for both models, with the feed-forward NN having a slight
advantage over the random forest model.

The three NBA team cases, the 2015–2016 Golden State War-
riors, the 2011–2012 Charlotte Bobcats as well as the 2010–2011
Golden State Warriors, are employed to verify the effectiveness
of local model interpretation on the NN classifier.



Fig. 11. LIME results of sample 2 (the 2011–2012 case).

Fig. 12. LIME results of sample 3 (the 2010–2011 case).

Y. Wang, W. Liu and X. Liu Neurocomputing 483 (2022) 59–71
The first sample is the best NBA season in history, which was
obtained by the 2015–2016 Golden State Warriors:

a) 99.999% probability of making the playoffs
b) High defensive intensity, high offensive firepower, high field

goal percentage (converting your shots to points) and high
number of 3 points made (thanks to the Warriors’ ‘‘splash
brothers”) contribute significantly to making the playoffs.
Interestingly, where the casual NBA follower may instantly
come to the conclusion that the Warriors’ three pointers
are core to their success, our results suggest it is more their
defence (a large part down to Draymond Green presumably)
which anchored their championship run, with three points
contribution only 4th in our feature importance ranking.

c) Low offensive rebounding, too many field goal attempts and
playing too fast counter the positive contributions but they
are vastly overpowered by their positive counterparts.

The second sample is the worst NBA season in history, which
was obtained by the 2011–2012 Charlotte Bobcats:

a) 99.999% probability of not making the playoffs.
b) No gameplay attributes in the top ten contributing to mak-

ing the playoffs.
c) Each of the top ten attributes make logical sense in basket-

ball terms.

The third sample is a relatively average season, which is the
2010–2011 Golden State Warriors who failed to make the playoffs:

a) 58% of not making the NBA playoffs for an average season, a
correctly predicted classification.

b) Allowing too many points scored by the opposition is the
core factor resulting in the lack of success. High steal per-
centage is, however, a substantial bright spot in the season.

c) Attributes contributing both positively and negatively make
logical sense in basketball terms.

The local feature important rankings of the three cases are
depicted in Figs. 10-12.

As shown in Figs. 10-12, the feed-forward NN could predict that
a playoff-calibre team indeed makes the playoffs given a set of
gameplay attributes (and vice versa) with high confidence. Given
the relative simplicity in nature of predicting whether an NBA
team makes the playoffs or not for a given season, both random
forest and NN model perform well on unseen data, with the
Fig. 10. LIME results of sample 1 (the 2015–2016 case).
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feed-forward NN having the edge with a minimum 0.88 F1 score.
In this case, LIME produces rational interpretability behind each
predicted value and validates the common basketball theory that
emphasis on defence is the key to becoming a playoff-worthy
team.

In [21], the data mining techniques produced a probability of
0.67 in predicting a correct match winner. Furthermore, in [35],
the machine learning methods which were implemented more
recently in 2019 produced test set F1 scores in the range of 0.71
to 0.83 (depending on algorithm implemented) in predicting
games, based on their respective datasets. With the extensive
source of attributes scraped and pre-processed for use in this
paper, this project’s testing dataset result of 0.77 R2 for monthly
win ratio prediction (regression) and a testing dataset result of
0.88 F1 for playoff prediction (classification) trumps both results
exhibited in the two most recent literatures mentioned above in
predicting macro NBA outcomes. In addition to purely producing
powerful predictive models, this paper also incorporates the
domain of reliably interpreting each individual prediction, such
that it can be appropriately leveraged by an NBA coach. This is
an area not explored in the open source community based on the
literature reviews undertaken.
4.3. Discussion

In this paper, the year-by-year changes in key gameplay attri-
butes are firstly graphically illustrated and compared to back the



Y. Wang, W. Liu and X. Liu Neurocomputing 483 (2022) 59–71
widely-renowned claim that the NBA has changed over the past
decades. Secondly, three NBA cases are analyzed by using the K-
means clustering algorithm, each with a distinctive set of game-
play attributes as shown in Tables 5 and 6, again signalling game-
play evolution. Lastly, the clustering results are holistically
depicted in Figs. 3-5 and the findings are demonstrated into 2D
and 3D visuals, essentially summarising the findings into one
diagram.

A feed-forward NN is applied to predict the win ratio per month
and the seasonal playoff-making probability for a given team with
respectable metrics of 0.77 R2 and 0.87 F1. Furthermore, given the
difficulties in interpreting the predictions of complex models such
as NNs compared to say, random forests, LIME is employed to pro-
duce sensible reasoning behind each prediction. The established
model could give an NBA fan/coach not only insights into whether
the team can win games or make the playoffs, but also the corre-
sponding reasons to understand the team’s strengths and weak-
nesses. In addition, the LIME outcomes validate a basketball
claim, which is that defence as opposed to offense is the funda-
mental key to success on the court.
5. Conclusion

In this paper, an overview of AI applications in sports science,
particularly the NBA case, has been provided due to the lack of
open-source literatures. An exploration of AI techniques in NBA
has been conducted incorporating both a) accurately predicting
macro-level (seasonal/game level) NBA outcomes; and b) inter-
preting individual predictions using an explainable-AI approach
so as to validate and assess the accuracy of the interpretation. A
descriptive analysis of the NBA gameplay has been carried out to
analyze the evolution of the NBA gameplay from the 1980s to
the current modern era from a statistical standpoint. The popular
machine learning techniques (e.g. random forest and feed-
forward NN) have been applied to predict the win ratio of a specific
month and the seasonal playoff-making probability for a given NBA
team. Experimental results have demonstrated the effectiveness of
the established AI models. In addition, the explainable AI technique
(the LIME method) has been successfully utilized to produce sensi-
ble reasoning of the predictions.

In the future, we aim to: 1) employ deep learning and other
machine learning techniques for NBA gameplay prediction
[20,36,37,39,40,42,44,46]; 2) study the robustness and generaliza-
tion ability of the established machine learning models based on
signal processing and system science techniques [22,34]; 3) adopt
evolutionary computation algorithms (e.g. the particle swarm opti-
mization algorithm, the genetic algorithm and the artificial bee col-
ony algorithm) to choose the parameters of the machine learning
models [14,19,27,29,32,33]; and 4) apply the developed models
to other areas such as telecommunication, electrical engineering,
and medical science [15,45].
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