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Abstract

We propose a novel stochastic network model,
called Fractal Gaussian Network (FGN), that
embodies well-defined and analytically tractable
fractal structures. Such fractal structures have
been empirically observed in diverse applications.
FGNs interpolate continuously between the pop-
ular purely random geometric graphs (a.k.a. the
Poisson Boolean network), and random graphs
with increasingly fractal behavior. In fact, they
form a parametric family of sparse random ge-
ometric graphs that are parametrized by a frac-
tality parameter ν which governs the strength of
the fractal structure. FGNs are driven by the la-
tent spatial geometry of Gaussian Multiplicative
Chaos (GMC), a canonical model of fractality
in its own right. We explore the natural ques-
tion of detecting the presence of fractality and
the problem of parameter estimation based on ob-
served network data. Finally, we explore fractal-
ity in community structures by unveiling a natural
stochastic block model in the setting of FGNs.

1. Stochastic Networks and Fractality
The unreasonable effectiveness of stochastic networks.
Stochastic networks have emerged as one of the fundamen-
tal modelling paradigms in the last few decades in our ef-
forts to effectively understand the structures underlying vast
amounts of data with increasing complexity, in order to
capture the effects of latent factors and their mutual inter-
actions. At a broad level of abstraction, this involves nodes
representing agents, and edges (weighted or otherwise) that
embody the interactions between these agents. Indeed, the
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ubiquity of statistical network models in the modern ap-
plied sciences may justifiably remind one of the famous
article of E.P. Wigner on the unreasonable effectiveness of
mathematics in the natural sciences (c.f. (Wigner, 1990)).

Within the domain of statistical networks, many popular
modelling formulations have been proposed and investi-
gated, in order to understand different types of phenomena
in large complex systems. These include the fundamen-
tal Erdős-Rényi random graph model, the preferential at-
tachment model and its variants, random geometric graphs,
graphons, the stochastic block model and its various avatars,
small world networks like the Watts-Strogatz model, mod-
els of scale-free networks, to provide a partial list of exam-
ples (see, e.g., (Albert & Barabási, 2002),(Strogatz, 2001),
(Lovász, 2012), (Erdös et al., 1959), (Penrose et al., 2003),
(Holland et al., 1983), (Orbanz & Roy, 2014)). As a preview
to connect our present contribution to this classical litera-
ture, here we aim to propose a novel paradigm of statistical
networks with a view to capturing fractal phenomena.

The application domains for stochastic network models are
diverse, ranging from the world-wide web and inter/intra-
nets, collaboration networks in academia, and social and
communication networks. Indeed, modern day network sci-
ence has developed into a unique discipline of its own, for an
overview of which we refer the reader to any amongst a mul-
titude of excellent texts - at this point we mention (Barabási
et al., 2016), (Lewis, 2011), (Mezard et al., 2009), (Crane,
2018), (Watts, 2004), (Bickel & Chen, 2009), (Chung et al.,
2006) , (Bollobás et al., 2010), (Van Der Hofstad, 2016),
(Spielman, 2010), (Caldarelli, 2007), (Jackson, 2010), only
to provide a partial list.

Fractal structures in large scale networks. An important
feature which has come to the fore in recent investigations
of networks is the emergence of inherent fractal structures
in diverse application domains. Heuristically, fractal struc-
tures are often characterized by non-standard and anomalous
behavior of various scaling and growth exponents, and (trun-
cated) power law tails for naturally associated statistics (c.f.,
(Falconer, 2004), (Mandelbrot, 1983), (Avnir et al., 1998)).

There are many instances of emergence of fractality in net-
works. To provide a detailed example, in human mobility
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networks, it has been observed that the layout of the way-
points in the trajectories and the boundaries of popular so-
journ domains exhibit fractal properties on a global scale,
and the flight/pause times and inter-contact times between
the agents exhibit power law tails (see, e.g., (Lee et al.,
2009), (Lee et al., 2011), (Rhee et al., 2011)). Another
important class of examples is the discovery of fractal struc-
tures in transportation networks, like urban bus transport
networks and railway networks ((Benguigui, 1992), (Pavón-
Domı́nguez et al., 2017), (Murcio et al., 2015), (Salingaros,
2003)) and drainage networks ((Rinaldo et al., 1992), (Ri-
naldo et al., 1993), (La Barbera & Rosso, 1989) (Claps et al.,
1996)).

Fractality and multifractality are also known to arise in the
context of scale-free and other complex networks ((Song
et al., 2005), (Song et al., 2006), (Kim et al., 2007)), internet
traffic ((Caldarelli et al., 2000)) and financial networks; in
fact, financial data in general present an important class
of problems where fractal properties are known to occur
(c.f., (Caldarelli et al., 2004), (de la Torre et al., 2017),
(Mandelbrot, 2013), (Mandelbrot & Hudson, 2010), (Inaoka
et al., 2004), (Evertsz, 1995)). Fractal phenomena have
emerged in sociological and ecological networks, dense
graphs and graphons ((De Florio et al., 2013), (Hill et al.,
2008), (Gao et al., 2012), (Palla et al., 2010), (Lyudmyla
et al., 2017)), biological neural networks ( (Bassett et al.,
2006)), network dynamics ((Orbach, 1986), (Goh et al.,
2006)) and even in the field of development economics
((Barrett & Swallow, 2006)).

Towards a parametric model of fractality in sparse net-
works: the Fractal Gaussian Network model (FGN). In
view of the diversity of settings in which fractality has been
observed to occur in networks, it is natural to investigate con-
crete mathematical models of fractality in networks which,
on one hand, are amenable to rigorous theoretical analysis,
and on the other hand, allow a broad enough horizon to
study a reasonably wide class of phenomena. Furthermore,
it would be of great interest to have a parametric statistical
model, e.g. in the spirit of exponential families of classical
parametric statistics ((Bickel & Doksum, 2015)). This will
open up a natural programme of investigation in terms of pa-
rameter estimation, tests of hypothesis with regard to fractal
structures and examination of the model under parametric
modulation.

In this work, we propose a statistical model for network data
that aims to understand such fractal structures in a rigorous
and analytically tractable manner. Based on a latent random
field structure accorded by Gaussian Multiplicative Chaos
(GMC), a canonical model of fractal phenomena in various
branches of natural and applied sciences, we call it the
Fractal Gaussian Network model, which we will abbreviate
henceforth as FGN.

2. Gaussian Multiplicative Chaos : an
overview

Gaussian Multiplicative Chaos (GMC) form a natural family
of random fractal measures. Roughly speaking, the GMC is
defined on a Euclidean base space (e.g., a domain Ω ∈ Rd,
scaled to have volume 1), and originates from an under-
lying centered Gaussian field (X(x))x∈Ω). Typically, on
Euclidean spaces the Gaussian field X is taken to be trans-
lation invariant and logarithmically correlated. This entails,
for example, that the covariance kernel K of the Gaussian
field X has the following form :

K(x, y) = ln+
T

|x− y|
+ g(x− y),

where T > 0 and g is a bounded continuous function. Such
fields arise naturally in many areas of mathematics, statis-
tical physics and their applications, an important example
being the celebrated Gaussian Free Field model (see, e.g.,
(Sheffield, 2007) and the references therein).

For any γ > 0 (with γ2 < 2d in order to ensure non-
degeneracy of the limiting measure) and a Radon measure
µ on Ω, we consider the random measure defined on Ω that
is given, heuristically speaking, by the formula

dMγ(x) := exp(γX(x)− γ2

2
E[X(x)2])dµ(x). (1)

In the common setting of translation-invariance and µ the
d-dimensional Lebesgue measure, this simply reduces to the
form dMγ(x) = Cγ exp(γX(x))dx, which is the setting
on which we are going to focus in this article. It is known
that in this case the expected measure E[dMγ(x)] = dx,
i.e. the Lebesgue measure, which provides a convenient
background measure to compare a typical realization of the
GMC with. We will provide a more technical discussion of
GMC in Section 10, and refer the reader interested in a full
treatment to the excellent survey (Rhodes et al., 2014) and
the references contained therein.

GMC is a canonical model of fractal behavior in nature,
endowed with statistical invariance properties that make it
both an attractive mathematical structure as well as a robust
modelling. Originating in the study of quantum field theory
((Høegh-Krohn, 1971), (Simon, 2015)) and the seminal
work of J.P. Kahane ((Kahane, 1985), (Kahane & Peyriere,
1976)), it has many applications to fundamental problems
like the study of quantum gravity (see, e.g., (Duplantier &
Sheffield, 2009), (Duplantier & Sheffield, 2011)), as well as
applied sciences where the GMC and related ideas have been
effectively used to model volatility in financial assets and
problems of turbulence (see, e.g., (Liu et al., 1999), (Duchon
et al., 2012), (Kolmogorov, 1941), (Kolmogorov, 1962),
(Fyodorov et al., 2010) and the surrounding literature).
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A crucial point is that, because of the logarithmic singularity
of the covariance kernel, the Gaussian field X is usually not
well-defined as a function, but can be made sense of only as
a Schwarz distribution (that acts on a smooth enough class of
functions). Consequently, the equation (1) (that essentially
purports to give a formulaic description of the GMC in terms
of a random density with respect to a Radon measure) is only
valid as a heuristic description. In fact, significant technical
effort needs to be dedicated to make rigorous sense of the
GMC as a random measure (without a well-defined density),
a natural path to which is via approximating Gaussian fields
for which everything is well-defined and taking limits.

The fact that the density in (1) does not exist as a well-
defined, albeit random, function indicates that as a random
measure GMC is indeed almost surely a fractal measure.
This can also be demonstrated rigorously, and it can be
shown that the GMC a.s. has a fractal dimension d− γ2

2 . It
may be noted that, compared to the ambient dimension d, it
is this fractal dimension that is more intrinsic to the GMC
measure.

3. Generating Fractal Gaussian Networks
We next proceed to describe the construction of the FGN
based on the GMC. To this end, we will require the follow-
ing ingredients :

• An integer d > 0, a parameter γ > 0 with γ2 < 2d,
and a domain Ω ⊂ Rd with Vol(Ω) = 1.

• A centered Gaussian random field X that lives on Ω,
with a logarithmically singular covariance kernel at the
diagonal.

• A realization of the GMC Mγ on the domain Ω and
based on the random field X .

• A size parameter n, which is a positive integer (to be
thought of as large but finite).

• A connectivity threshold σ (whose natural size will
turn out to be ∝ n−1/d)

• A Poisson random variable N that is distributed with
mean nMγ(Ω)

With the above ingredients in hand, we now proceed to
construct the FGN model via the following steps:

• Sample N -many points, denoted by V :=
{x1, . . . , xN} at random from the given realisation
Mγ of the GMC measure (after normalizing it to have
total mass 1). The points in V will form the nodes of
the FGN.

• Connect each xi with any other xj that is within dis-
tance σ of xi. It turns out that there are multiple ways
of implementing such connectivity that, broadly speak-
ing, leads to similar behavior of various network statis-
tics.

– A direct approach to just connect two points in V
if and only if they are within distance σ of each
other.

– A refined approach to connect two vertices
xi, xj ∈ V with probability ∝ exp(−‖xi−xj‖

2

σ2 ).
This allows for the possibility of long range con-
nectivity.

In the last step of constructing the edges, it is the latter, more
refined approach of adding edges randomly according to a
Gaussian kernel that we will follow for the rest of this paper.
However, we note in the passing that we believe the key
phenomena will largely be true for the direct approach of
connecting vertices merely based on their Euclidean sep-
aration. It turns out that E[Mγ(Ω)] = |Ω| = 1, therefore
E[N ] = nE[Mγ(Ω)] = n, so n is the natural large parame-
ter indexing a growing network size.

Single pass and multi pass observation models. Our data
access model is that we have access to the combinatorial
data of the graph. In other words, our information will
consist merely of a graph with vertices labelled {1, . . . , N}
and vertices i and j connected by an edge if and only if
the points xi and xj are connected in the above geometric
graph. Thus, the spatial geometric structure of the GMC is
purely a latent factor in the FGN, which we have no direct
access to in our statistical investigations.

We will explore two different observation models for the
FGN. One observation model, which we call the single
pass observation model is that we have access to a single
realization of the network, in the regime where the network
size parameter n is very large. The other observation model,
which we call the multi pass observation model, entails
that we have access to a moderately large number m of
i.i.d. copies of the network, in the regime where the size
parameter n is also moderately large.

Both these observation models are well-motivated as mod-
elling paradigms. In particular, for the FGN model, it may
be noted that the underlying Gaussian field X(x) is often
taken to be translation invariant on Rd. Hence, if two sam-
ples of the spatial geometric graph are obtained from two
sub-domains of the full space that are translates of each
other (i.e., we observe the nodes and edges for points in two
domains D and D + x0 for some vector x0 ∈ Rd), then the
subgraphs so obtained are identically distributed (because of
the translation invariance of the underlying Gaussian field).
On the other hand, if the sub-domains are well-separated
in the ambient space, then they can be taken to be approxi-
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Figure 1. A realization of the FGN.

mately independent because of decay of correlations of the
Gaussian field.

Thus, several approximately independent and identically
distributed realizations of the same FGN can be obtained
by taking samples of a very large, universal network based
on surveying spatially similar and well-separated regions.
Since the fractal properties may be reasonably assumed to
be similar in different segments of a very large network,
this provides us with a way of obtaining multiple samples
from a FGN model that can capture fractal structures similar
to the original graph. This can be compared, for example,
with taking localized snapshots of a different parts of a vast
communication network like the internet.

4. Properties of the FGN
Inherent fractal structure of the FGN. The inherent frac-
tal nature of a typical realization of the GMC measure in-
duces fractality in the FGN. For instance, one consequence
of fractality in terms of the network structure is a large
measure of heterogeneity, often manifested in terms of the
irregular distribution of nodes in the form of dense clusters
and rarefied neighborhoods in the graph.

The GMC is characterized by regions of high concentration
of measure, interspersed with regions of low mass distri-
bution. To see this in more detail, we refer the reader to
Figure 1 in (Rhodes et al., 2014). In fact, a progressive
increase in the irregularity of the GMC can be observed as
the parameter γ increases. The FGN, because of its latent
spatial geometry being derived from the GMC, also inherits
these heterogeneities in its graphical structure, characterized

by certain vertex clusters of high connectivity interspersed
with sparsely connected vertices (see, e.g., Figure 1 for an
illustration), with such heterogeneous effects increasing in
intensity as the parameter γ increases in value.

The latent geometry of the social space. It may be ob-
served that, once the realization of the GMC measure is in
our hands, the rest of the construction of the FGN is spa-
tial geometric in nature, and can actually be carried out for
any non-negative measure on the domain Ω - random or
otherwise.This spatial geometric construction employs the
commonly used technique for the construction of random
geometric graphs (RGG, c.f. (Penrose et al., 2003), (Gilbert,
1961)), popularly considered in the setting of the uniform
distribution on Ω (which is going to be our “pure noise” case
and the point of comparison with the FGN regarding the
presence of fractal structures).

At this point, a word is in order regarding the spatiality in-
herent in the construction of the FGN. It turns out that many
natural applications of stochastic networks have spatiality
built into their construction - mobility networks, transporta-
tion networks or drainage networks are all examples of this
phenomenon. But even more generally, our construction of
the FGN does not necessitate the ambient Euclidean space
Rd to correspond to our application in a physical sense. In
fact, the ambient space Rd can be taken to be the feature
space obtained from a feature mapping of the nodes, whose
specifics can be completely problem-dependent. This is
exemplified by its applications in the social networks, where
the feature mapping corresponding to a person corresponds
to his/her interests, and two persons are connected in the
social network if their interests (i.e., feature vectors) are
close in the metric of the latent social space (c.f., (Jackson,
2010), (Rácz et al., 2017), (Sarkar & Moore, 2006), (Grover
& Leskovec, 2016)).

Such graphs are of interest as statistical networks in both
low and high dimensional spatial settings (see, e.g., (Bubeck
et al., 2016), (Bubeck et al., 2015), (Mossel et al., 2018),
(Bubeck et al., 2017), (Bubeck & Ganguly, 2018), (Rácz &
Richey, 2019)). Physical spatiality would often correspond
to a low ambient dimension (as in the case of transportation
or drainage networks), whereas latent spatiality in the so-
cial/feature space may naturally correspond to a relatively
high ambient dimension d. It may be pointed out that the
FGN model encompasses both low and high dimensions of
the latent space, thereby catering to both types of spatial
structure.

The connectivity threshold σ, locality and the sparse
regime. We now undertake a brief discussion of the choice
of the threshold σ. We will study the FGN in the regime in
which it is a sparse graph, which entails that a given node
will typically have O(1) neighbors. This is most natural
in the context of most real world networks - even though
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Figure 2. Degree distribution of non-isolated nodes of the FGN: the value of ν increases from left to right.

the total network might be huge and highly complex, seen
from the viewpoint of a particular node it has a finite local
neighborhood, which does not scale with the growing size
of the network (see, e.g., (Johnson, 1977), (Krzakala et al.,
2013), (Guédon & Vershynin, 2016), (Batagelj & Mrvar,
2001) and the references therein).

It will turn out from our detailed analysis of the FGN is
Section 11 that, for any value of γ, the normalization σ =

1√
π
ρ1/dn−1/d will lead to, in expectation, ρ neighbors for

a given point under our connection model. We will call ρ
the density or the degree parameter. From a statistical point
of view, the density parameter ρ can be learnt by looking at
the degrees of vertices (possibly sampled at several disjoint
neighborhoods of the graph), rendering the density ρ a local
parameter in the FGN model. Local parameters are much
easier to investigate because they can be learnt by sampling
small local neighborhoods, which for practical purposes can
be taken to be approximately independent if they are well
separated (e.g., in the graph distance).

On the other hand, in real world networks, fractality is
often observed at the scale where one zooms out, i.e., at
mesoscopic scales or higher (c.f., (Franović & Miljković,
2009), (Pook & Janßen, 1991), (Daqing et al., 2011)). This
necessitates the investigation of fractality to be contingent
on more global aspects of the FGN, which makes it much
more challenging but at the same time more interesting to
study and is the principal focus of this article.

The intrinsic fractality parameter ν. For the FGN model,
the key determinant of fundamental network statistics turns
out be the quantity ν = γ2

d , which we refer to as the fractal-
ity parameter. Accordingly, we will maintain a particular
consideration for the fractality parameter ν in our statistical
analysis of the FGN model.

5. FGN as a parametric statistical model
Interpolating homogeneity and fractality. We will for-
mulate our analysis of the FGN as a statistical model of
network data in terms of the quantity ν, a choice that is
well-motivated by the discussions in the preceding sections.

It may be noted that, when ν = 0 (equivalently, γ = 0), the
GMC reduces to the Lebesgue measure, and we have a usual
Poisson random geometric graph, which we will consider
as the pure noise case in our setting. We will compare this
against the presence of fractality in the network, a situation
which would correspond to ν > 0.

Thus, the FGN model interpolates continuously between
Poisson random geometric graphs and networks with in-
creasing degree of fractality, as the value of the parameter
ν increases from 0. On a related note, it would also be of
interest to learn the value of fractality parameter ν in its own
right, which would correspond naturally to the problem of
parameter estimation in the FGN model.

In our investigation of the standard statistical questions on
the FGN model, such parameter estimation and testing (un-
dertaken in Sections 5, 5), we will make extensive use of the
statistics of small subgraph counts (in particular the edge
counts). This is well-motivated by the effectiveness of small
subgraph counts as statistical observables in the study of
usual spatial network models (see, e.g., (Rácz et al., 2017),
(Bubeck et al., 2016), and the references therein).

Degree distribution: Interpolating Poisson and power
laws. We investigate the degree distribution of the FGN
model empirically (c.f. Figure 2). We observe that, for
small ν, the degree distribution is Poissonian, whereas with
increasing values of the parameter ν, it deforms into a trun-
cated power law like distribution. It may be noted that power
laws and truncated power laws are ubiquitous in many real-
world networks (c.f. (Albert & Barabási, 2002) and the
references therein), whereas Poissonian behavior is a hall-
mark of classical mean-field models (like the Erdős-Rényi
random graphs, c.f. (Van Der Hofstad, 2016)). As para-
metric statistical model, the FGN continuously interpolates
between these two very different worlds which are the two
major paradigms the distributions of degrees in networks.

Inferring the size parameter n. It may be noted that the
parameter n driving the network size is not given to us in the
combinatorial data that we can access. In some sense, it is
also a latent parameter of the model that we do not directly
focus on in our study of the fractal properties of the network.
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However, statistical procedures typically utilize large sam-
ple effects, and for that purpose, it becomes imperative to
develop an idea of the underlying size parameter n from the
combinatorial graph.

To this end, we observe that, conditioned on the GMC, the
network size N is a Poisson random variable with mean
nMγ(Ω). As such, if {Yi}i≥0 are i.i.d. Poisson random
variables with mean Mγ(Ω), then N =

∑n
i=1 Yi in distri-

bution. Consequently, for a given realization of the GMC,
the quantity N

n = 1
n

∑n
i=1 Yi → Mγ(Ω) a.s. as n → ∞.

As a result, Nn = O(1) with high probability, as the size
parameter n→∞.

Therefore, for the single pass observation model, in the
regime of large size parameter n (which is the regime in
which we envisage the FGN model), we may justifiably
employ the network size N as an estimator for the latent
size parameter n. In particular, on the logarithmic scale we
may deduce that

logN = log n(1 + oP (1)), (2)

which is a form that will be particularly useful in our later
analysis.

In the multi pass observation model, where we have m i.i.d.
realizations of the FGN with node counts N1, N2, . . . , Nm,
we will use N = 1

m

∑m
i=1Ni, which will strongly concen-

trate around its expectation n.

Estimating the fractality parameter ν. In this section we
propose an estimator for the crucial fractality parameter ν
in the FGN model. To this end, we will focus on small
subgraph counts in the network, and utilize our analysis
of edge counts (for details, see Section 12) in order to de-
tect fractal structures. In this section, we will work in the
setting γ2 < d, so that the results of Section 12 would be
applicable. Interestingly, this would correspond to the so-
called L2 regime in the theory of GMC, where many of the
mathematical technicalities are known to be relatively more
tractable.

In the single pass observation model, we consider the statis-
tic

ν̂single :=
log E
logN

− 1 (3)

as an estimator for ν, where E is the edge count of the FGN.
To see why ν̂single is a good estimator, we write

log E = log

(
E

n1+ν
· n1+ν

)
= (1 + ν) log n+ log(E/n1+ν)

= log n

[
1 + ν +

log(E/n1+ν)

log n

]
.

But Theorem 12.1 suggests that E/n1+ν is an O(1) quantity,
which indicates that log E

logn ∼ 1 + ν as n→∞. But we may

now make use of the fact that we have logN = log n(1 +
o(1)) (as in (2)), which, coupled with the last equation,
implies that log E

logN is approximately 1 + ν, or equivalently
log E
logN − 1 is approximately ν in the regime of large size
parameter n, as desired.

In the multi pass observation model, we have m i.i.d. sam-
ples of the FGN with Ei andNi being the edge count and the
vertex count of the i-th sample. Then we may define E as the
mean edge count E := 1

m

∑m
i=1 Ei and N as the mean ver-

tex countN := 1
m

∑m
i=1Ni. We observe that, in the regime

of largem, the mean edge count E and the mean vertex count
N strongly concentrate around their expectations. As such,
in the regime of large m we have E = E[E ](1 + oP (1)) and
N = E[N ](1 + oP (1)) = n(1 + oP (1)).

This, coupled with our analysis of the single pass setting,
naturally suggests consideration of the following estimator
of ν in the multi pass observation model :

ν̂multi :=
log E
logN

− 1. (4)

The efficacy of ν̂multi as an estimator for ν follows from
the afore-mentioned asymptotics of E and N in the large m
regime, which lead us to deduce that

ν̂multi =
log E
logN

− 1

=
(logE[E ] + log(1 + oP (1)))

(logE[N ] + log(1 + oP (1)))− 1

=(1 + ν) + oP (1)− 1

=ν + oP (1),

where, in the last step, we have used the asymptotics of E[E ]
in Theorem 12.1, coupled with a small parameter expansion
of log(1 + x).

The estimator ν̂ has the form of a log-log plot between net-
work observables and system size. Such log-log plots have
been used effectively in studying growth exponents and frac-
tal behavior in the phenomenological literature (cite), and
therefore are well-motivated and thoroughly contextualized
in the setting of fractal networks.

Detecting the presence of fractality. We examine the pres-
ence of fractality in the network by examining whether the
combinatorial data of the graph points to the occurrence of
such structures. As argued earlier, in the context of FGN
this would entail determining whether ν = 0 (absence of
fractality), and compare it with the alternative possibility
ν ≥ ν0 for some given threshold ν0 (presence of a substan-
tive degree of fractality). Choosing a positive threshold for
the alternative, separated from 0, is a natural framework, be-
cause as discussed earlier the FGN interpolates continuously
between homogeneity and gradually increasing fractality.
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In this section, we will once again work in the setting γ2 <
d, so that the results of Section 12 would be applicable. As
observed earlier, this would correspond to the so-called L2

regime in the theory of GMC

In the single pass observation model, we again exploit our
analysis of edge counts for this purpose. We recall that when
ν = 0, that is for the Poisson random geometric graph, E is
a sum of indicators of all possible edges on the vertex set.
Since edges are usually formed when the underlying points
xi, xjxk are close to each other at the scale σ, and since
σ = O(n−1/d), we may conclude that E is a sum of a large
(and Poisson) number of weakly dependent random vari-
ables. As such, it can be well-approximated by a compound
Poisson random variable, which in turn admits a normal
approximation with appropriate centering and scaling (c.f.
(Penrose et al., 2003), (Van Der Hofstad, 2016)).

The upshot of this is that under ν = 0, for large n, the
normalized edge count E−E[E]√

Var[E]
is approximately normally

distributed. Under ν = 0, the edge count is known to sat-
isfy Var[E ] = C(d, ρ)n(1 + o(1)) (c.f. (Penrose et al.,
2003)), which implies the approximate upper tail bound
P[E ≥ C2(0, d)ρ2n + t] ≤ C exp(− ct

2

n ). This suggests
that, under ν = 0, the probability P[E ≥ n1+ 1

2ν0 ] ≤
exp(−cn1+ν0). On the other hand, under the alternative
E[E ] = C(γ, d, ρ)n1+ν(1 + o(1)) ≥ C(γ, d, ρ)n1+ν0(1 +
o(1))� n1+ν0/2 as n→∞. This suggests that the thresh-
old n1+ν0/2 for the edge count separates the ν = 0 and
ν ≥ ν0 settings.

However, in our observation models, we do not have direct
access to the latent size parameter n. Nonetheless, as dis-
cussed in Section 5, the observed network size N provides a
good approximation of n upto an O(1) multiplicative factor.
Since E under the null and the alternative hypotheses are
orders of magnitude (in n) apart (which is a consequence of
the positive separation between the null and the alternative),
we can use N as a substitute for n for obtaining a separation
threshold.

Thus, in the single pass observation model,

Declaring the presence of fractality if E > N1+ 1
2ν0 (5)

would provide a detection procedure for fractality with good
discriminatory power. In the multi pass observation model,
we make use of the mean edge count E = 1

m

∑m
i=1 Ei and

the mean vertex count N = 1
m

∑m
i=1Ni. In the regime of

large m, they concentrate strongly around their respective
means, with Gaussian CLT like effects. Thus, in the multi
pass observation model

Declaring the presence of fractality if E > N
1+ 1

2ν0 (6)

would provide a detection procedure for fractality with good
discriminatory power.

6. Stochastic Block Models in the FGN
paradigm

Stochastic Block Models (henceforth abbreviated as SBM)
has become an important paradigm for understanding and
investigation community structures in networks, social or
otherwise. A long series of ground breaking results in this
regard have been achieved in recent years; we refer the
interested reader to ((Holland et al., 1983), (Abbe, 2017),
(Abbe et al., 2015), (Abbe & Sandon, 2015), (Rácz et al.,
2017), (Mukherjee, 2018)) for a partial overview of this vast
and rapidly evolving field of research.

In the context of networks with fractal structures, it is natu-
ral to envisage a situation where there are multiple distinct
communities in the network with potentially different fractal
structures. It is also natural to posit that the communities
have differing degrees of affinity to connect within each
other as compared to connections across community bound-
aries, which might be rarer.

We encapsulate this idea in the form of a natural SBM
structure in the context of the FGN model. We need the
following ingredients:

• Two independent GMC-s Mγ1 ,Mγ2 corresponding to
(possibly different) positive parameters γ1, γ2 respec-
tively on the same domain Ω ⊂ Rd.

• Two different positive threshold parameters σin and
σout.

• A size parameter n ∈ N and two independent Poisson
random variables N1 ∼ Poi(nMγ1(Ω)) and N2 ∼
Poi(nMγ2(Ω)).

Given these ingredients, we construct the SBM on the FGN
model as follows.

• We generate N1 points {x1, . . . , xN1
} i.i.d. from

the (normalized) measure Mγ1 and N2 points
{y1, . . . , yN2

} i.i.d. from the (normalized) measure
Mγ2 .

• For each pair of points xi, xj , we connect them with an

edge with probability ∝ exp(−‖xi−xj‖
2

σ2
in

). Likewise,
For each pair of points yi, yj , we connect them with an

edge with probability ∝ exp(−‖yi−yj‖
2

σ2
in

). These are
the intra-community links.

• For each pair of points xi, yj , we connect them with an

edge with probability ∝ exp(−‖xi−yj‖
2

σ2
out

). These are
the inter-community links.

We then forget the spatial identities of the points, and con-
sider the resulting combinatorial graph G, whose node set
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is the union of the node sets of the FGN-s G1 and G2, and
whose edges are those of G1 ∪ G2 along with the cross-
community edges defined in the last step. This forms a
natural SBM structure in the context of the FGN model.

A natural statistical question in this context would be
to understand separation thresholds between in the intra-
community connection radius σin and the inter-community
connection radius σout which allow for detection of the
different communities with reasonable accuracy and proba-
bilistic guarantees, as the network size parameter n→∞.
We leave this and related questions for future investigation.

7. Conclusion
We proposed and investigated a parametric statistical model
of sparse random graphs called FGN that continuously in-
terpolates between homogeneous, Poisson behavior on one
hand, and fractal behavior with anomalous exponents and
power law distributions on the other. We demonstrated how
to construct a natural stochastic block model within the FGN
framework. We investigated the fundamental questions of
parameter estimation and detecting the presence of fractality
based on observed network data.

This work raises many natural questions for further investi-
gations. These include a more detailed and rigorous math-
ematical study of the FGN as a model of sparse random
graphs. Another direction would be to obtain fundamental
limits for natural statistical questions in this setting, particu-
larly the Stochastic Block Model in this context, and investi-
gating the computational-statistical trade-off for these prob-
lems. Extending our analytical results, and consequently the
range of the estimation and detection procedures, beyond the
L2 regime of the GMC would be an natural and interesting
question. From a modelling perspective, it would be natural
to explore beyond Gaussianity in the construction of our
networks, for which the basic motivation and the probabilis-
tic fundamentals seem to be promising (see, e.g., (Barral
& Mandelbrot, 2002), (Bacry & Muzy, 2003)). Another
direction would be to venture beyond the Euclidean set-up
as the latent space. We leave these and related questions as
natural avenues for future investigation.
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9. Additional Simulations
In this section, we provide surface-plots of the GMC measure as the parameter ν varies.

Figure 3. As we move from top to bottom and from left to right, the value of ν increases.

10. Gaussian Multiplicative Chaos : Fundamentals
In this section, we provide a more technical introduction to GMC, introducing tools which will aid in our analytical
investigations subsequently. For an elaborate discussion, we refer the reader to the extensive accounts (Rhodes et al., 2014),
(Rhodes et al., 2016), (Berestycki, 2015), (Berestycki et al., 2017), (Lacoin, 2019) for a partial list, and the references
contained therein. The introduction of a Brownian motion below is helpful for computations, for more detail we refer the
interested reader to (Duplantier et al., 2014c), (Duplantier et al., 2014b) and (Duplantier et al., 2014a).

Let {Xt(x), t ≥ 0, x ∈ Rd} be a centered Gaussian field, which is a standard Brownian motion for each fixed x and

E[Xt(x)Xt(y)] =

∫ et

1

k(u(x− y))

u
du, (7)

therefore stationary in space variable. We make the following assumptions

• The map k : Rd → [0,∞) is radial, i.e. k(x) = k(|x|e) for any x and unit vector e ∈ Rd.

• k(0) = 1

• k ∈ C1 and decays fast enough at infinity such that
∫∞

1
k(u)
u du <∞.

As t→∞, one obtains a log-correlated Gaussian field X as a random distribution. It turns out that such functions k lead to
the limiting covariance function of the Gaussian field X have the following form :

K(x, y) = ln+
T

|x− y|
+ g(x− y),
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where T > 0 and g is a bounded continuous function. With these ingredients in hand, we may define

Mγ := lim
t→∞

Mγ
t a.s., where Mγ

t (dx) = eγXt(x)− γ
2

2 E[Xt(x)2]dx, (8)

and the convergence is guaranteed by a martingale structure that is known to be inherent in this setting. Since, for each x,
the process Xt(x) is a Brownian motion, we have E[Xt(x)2] = t, and we may write

Mγ
t (dx) = eγXt(x)− γ

2t
2 dx.

If γ2 < 2d (equivalently, ν = γ2

d < 2), the limit Mγ is a non-degenerate measure, otherwise Mγ is a trivial zero measure.
This regime ν < 2 where the GMC is a non-degenerate measure will be referred to as the subcritical regime. In our
analytical considerations, we will assume the GMC is subcritical and we consider the GMC on the d-dimensional unit cube
Ω = [−1/2, 1/2]d.

11. Determining the connectivity threshold σ and sparse random graphs
In this section, we determine the right regime of the connectivity threshold σ. In doing so, our guiding principle would be to
obtain a sparse random graph model in the end, one in which the number of neighbours from the FGN of a given point in the
latent social space is typically O(1).

To this end, consider the FGN with N ∼ Poi(nMγ(Ω)), nodes {x1, . . . , xN} and threshold σ. Consider a point x0 ∈ Ω.
By the notation x ∼ y, we mean that the point x is connected to the point y by an edge. Observe that, under our connection

model for edge formation (once we are given some nodes), P[x0 ∼ xi] = e−
|xi−x0|

2

σ2 , and the total number of points to
which x0 may be connected to in this manner is

(∑N
i=1 1x0∼xi

)
. Therefore, in the regime of small connection threshold σ,

since ∫
Rd
e−|x|

2

dx = π
d
2 ,

the expected number of points in this FGN that would be connected of x0 is :

E

[
N∑
i=1

1x0∼xi

]
= E

[
E

[
N∑
i=1

1x0∼xi
∣∣FGN

]]

= E

[
N∑
i=1

e−
|xi−x0|

2

σ2

]

= E

[
E

[
N∑
i=1

e−
|xi−x0|

2

σ2
∣∣N, dMγ

]]

= E
[
N ·

∫
Ω

e−
|x−x0|

2

σ2
Mγ(dx)

Mγ(Ω)

]
= E

[
E
[
N ·

∫
Ω

e−
|x−x0|

2

σ2
Mγ(dx)

Mγ(Ω)

∣∣dMγ

]]
= E

[
E
[
N
∣∣dMγ

]
·
∫

Ω

e−
|x−x0|

2

σ2
Mγ(dx)

Mγ(Ω)

]
= n · E

[∫
Ω

e−
|x−x0|

2

σ2 Mγ(dx)

]
= n ·

[∫
Ω

e−
|x−x0|

2

σ2 dx

]
= nσd ·

∫
Ω/σ

e−
|x−x0|

2

σ2 dx
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= n(
√
πσ)d(1 + o(1)),

where, the fourth equality follows since the {xi}Ni=1 are i.i.d. dMγ given N, dMγ , the seventh equality follows since
E[N

∣∣dMγ ] = nMγ(Ω), and, the eighth inequality follows since the expected measure E[dMγ(x)] is Lebesgue. We
summarize this as follows.
Theorem 11.1. In the FGN model with size parameter n, setting the threshold parameter

σ =
1√
π
ρ1/dn−1/d,

one has that the expected number of neighbours of a given point is asymptotically ρ ∈ (0,∞).

We call ρ the density parameter or the degree parameter of the FGN.

12. The statistics of small subgraph counts in the FGN : an analysis of edge counts
In this section, we investigate the statistic of edge counts in the FGN model. To this end, consider the FGN with
N ∼ Poi(nMγ(Ω)), nodes {x1, . . . , xN} and threshold σ. Let E denote the number of edges in this FGN.

In this section, we will work in the setting γ2 < d (equivalently, ν < 1) for our analysis. Interestingly, this corresponds to
the so-called L2 regime of the GMC, where the model is believed to be technically more tractable in relative terms. We
believe that similar results would be true for the full range of validity of the GMC and the FGN model (i.e., all the way up to
ν < 2), albeit technically more challenging. We leave this as an interesting direction for future study.

In the computations that follow, we will use the fact that if Λ ∼ Poi(λ), then the second factorial moment of Λ is given
by the relation E[

(
Λ
2

)
] = λ2

2! (c.f. (Haight, 1967)). Consequently, recalling that given the GMC dMγ the node count
N ∼ Poi(nMγ(Ω)), we may deduce that E[

(
N
2

)
] = 1

2 · n
2Mγ(Ω)2.

In view of this, we may proceed as

E[E ] =E [E[E|FGN]]

=E

E
 ∑

1≤i<j≤N

1xi∼xj
∣∣FGN


=E

 ∑
1≤i<j≤N

e−|xi−xj |
2/σ2


=E

E
 ∑

1≤i<j≤N

e−|xi−xj |
2/σ2∣∣N, dMγ


=E

[(
N

2

)
·
∫∫

Ω×Ω

e−|x−y|
2/σ2 Mγ(dx)Mγ(dy)

Mγ(Ω)2

]
=E

[
E
[(
N

2

)
·
∫∫

Ω×Ω

e−|x−y|
2/σ2 Mγ(dx)Mγ(dy)

Mγ(Ω)2

∣∣dMγ

]]
=E

[
E
[(
N

2

)∣∣dMγ

]
·
∫∫

Ω×Ω

e−|x−y|
2/σ2 Mγ(dx)Mγ(dy)

Mγ(Ω)2

]
=E

[
1

2
n2Mγ(Ω)2 ·

∫∫
Ω×Ω

e−|x−y|
2/σ2 Mγ(dx)Mγ(dy)

Mγ(Ω)2

]
=
n2

2
E
[∫∫

Ω×Ω

e−|x−y|
2/σ2

Mγ(dx)Mγ(dy)

]
.

where the fifth equality follows since the {xi}Ni=1 are i.i.d. dMγ given N, dMγ . For further analysis, we consider

I := E
[∫∫

Ω2

exp

(
−|x− y|

2

σ2

)
Mγ(dx)Mγ(dy)

]
.
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and

It := E
[∫∫

Ω2

exp

{
−|x− y|

2

σ2
+ γ(Xt(x) +Xt(y) +Xt(z))− γ2t

}
dxdy

]
.

In view of the convergence (8), we will use It as an approximation for I as t→∞.

Using the fact that for fixed t the field {Xt(x)} is a centered Gaussian random field with covariance structure(7), we may
then proceed further as

E[E ] =
n2

2
lim
t→∞

E
[∫∫

Ω×Ω

exp

{
−|x− y|

2

σ2
+ γ(Xt(x) +Xt(y))− γ2t

}
dxdy

]
=
n2

2
lim
t→∞

∫∫
Ω×Ω

exp

{
−|x− y|

2

σ2
− γ2t

}
E [exp (γ(Xt(x) +Xt(y)))] dxdy

=
n2

2
lim
t→∞

∫∫
Ω×Ω

exp

{
−|x− y|

2

σ2
− γ2t

}
· exp

{
γ2

2
(2t+ 2

∫ et

1

k(u(x− y))

u
du)

}
dxdy

=
n2

2
lim
t→∞

∫∫
Ω×Ω

exp

{
−|x− y|

2

σ2
+ γ2

∫ et

1

k(u(x− y))

u
du

}
dxdy

=
n2

2

∫∫
Ω×Ω

exp

{
−|x− y|

2

σ2
+ γ2

∫ ∞
1

k(u(x− y))

u
du

}
dxdy. (9)

A change of variables shows that ∫ ∞
1

k(ux)

u
du =

∫ ∞
|x|

k(u)

u
du =: φ(|x|). (10)

Combining (9) and (10), together with another change of variables (x, y) 7→ (x/σ, y/σ), gives

E[E ] =
n2σ2d

2

∫∫
Ω/σ×Ω/σ

exp
{
− |x− y|2 + γ2φ (|x− y|σ)

}
dxdy (11)

where Ω/σ = [−1/2σ, 1/2σ]d. Since |x− y|σ ≤ 1, one has

φ(|x− y|σ) =

∫ 1

|x−y|σ

k(u)

u
du+

∫ ∞
1

k(u)

u
du. (12)

where the second term is finite by assumption.

Thus, as σ ↓ 0, one obtains from (12)

φ(|x− y|σ) =

(∫ 1

|x−y|σ

k(u)

u
du

)
(1 + o(1)) =

(
log

1

|x− y|
+ log

1

σ

)
(1 + o(1)) . (13)

Combining (11) with (13), in the regime of small σ and γ2 < d (so that
(∫

Rd
1
|u|γ2 e−|u|

2

du
)
<∞ ), we obtain

E[E ] =
n2σ2d

2
·
∫∫

Ω/σ×Ω/σ

exp
(
−|x− y|2

)
· 1

|x− y|γ2σγ2 dxdy

=
n2

2
σ2d−γ2

·
∫

Ω/σ

(∫
u=y−x
y∈Ω/σ

1

|u|γ2 e
−|u|2du

)
dx

=
n2

2
σ2d−γ2

·

(∫
Ω/σ

(∫
Rd

1

|u|γ2 e
−|u|2du

)
dx

)
· (1 + o(1))

=
n2

2
σ2d−γ2

·
(∫

Rd

1

|u|γ2 e
−|u|2du

)
· σ−d · (1 + o(1))
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=C1(γ, d) · n2σd−γ
2

(1 + o(1)) , (14)

where,

C1(γ, d) =
1

2

∫
Rd

1

|u|γ2 e
−|u|2du <∞.

Using the choice σ = 1√
π
ρ1/dn−1/d and ν = γ2/d, we finally obtain

E[E ] = C(γ, d)ρ1−νn1+ν (1 + o(1)) . (15)

We record our analysis as follows.

Theorem 12.1. In the FGN model with size parameter n, density parameter ρ and fractality parameter ν = γ2/d < 1, the
expected edge count satisfies

E[E ] = C(γ, d)ρ1−νn1+ν (1 + o(1))

as n→∞, where C(γ, d) = 1
2π

1
2d−

1
2γ

2 ·
(∫

Rd
1
|u|γ2 e−|u|

2

du
)

.


