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Abstract—Most recent object detection methods have achieved 
growing performance on public datasets. However, enormous 
efforts are needed for these methods due to the extensive annota-
tions of ground-truth boxes. Weakly Supervised Object Detection 
(WSOD) methods hence have been proposed to solve this problem 
as only image-level annotations are required and then output 
bounding boxes related to the objects. In order to further elevate 
the weakly supervised detection methods on the extraction of 
reasonable features, the training of potential positive proposals, 
and the generation of proposals before training, we propose a new 
Combined Backbone and Advanced Selection Heads (CBASH) 
method with the proposals generated from the object semantic 
information. Specifically, Combined Backbone will make the 
unobvious object features more noticeable, Advanced Selection 
Heads promote more potential positive proposals to get training, 
and the generated object semantic proposals elevate the quality 
and quantity of positive proposals. The proposed method is evalu-
ated on the challenging PASCAL VOC 2007 and 2012 benchmark 
datasets. Experimental results show that our proposed method 
can achieve improved performance on both VOC 2007 and 
VOC 2012 datasets and outperforms the existing state-of-the-art 
methods.

Index Terms—Weakly Supervised Object Detection, Image-
level annotations, Combined Backbone, Advanced Selection 
Heads, Object semantic proposals.

I. INTRODUCTION

W Ith the amazing performance achieved by Convo-
lutional Neural Network (CNN) model on multiple

computer vision tasks such as image classification [1]–[3],
object detection [4]–[10], and image segmentation [11]–[13],
more advanced neural networks with various strengths are
proposed to improve further. However, in object detection,
fully supervised methods with massive anchor boxes [4]–[6]
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Fig. 1. Comparison of the detection result between OICR and our scheme. 
“SS” and “OSP” indicate selective search and object semantic proposal 
method, respectively. Note that the green and orange predicted boxes indicate 
good and weak detection results, respectively.

or anchor points [7]–[9] are in the majority, which compel 
researchers to put much attention on precisely annotating 
the coordinates of ground-truth boxes for each object before 
training.

Therefore, to circumvent the demand for ground-truth box 
annotations, Weakly Supervised Object Detection (WSOD) 
has been proposed in recent years as only image-level annota-
tions are required. For WSOD models, all proposals are trained 
on image-level annotations and the reasonable ones will then 
be selected after training, which means fewer resources are 
needed, but achieve or even outperform the performance with 
massive ground-truth boxes offering. Currently, many WSOD 
models employ Multiple Instance Learning (MIL) [14] and 
end-to-end model structures to build the connections between 
image-level labels and proposals in an image. For example, 
as an effective WSOD model, Online Instance Classifier 
Refinement (OICR) [15] firstly train all proposals with limited 
image-level information and then introduce pseudo image-
level ground-truth information to further focus on partial 
proposals.

Although the weakly supervised detection performance gets 
improvement greatly, three problems are still existed in these 
methods. Firstly, for the proposals, the quality and quantity
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of positive ones are poor and few, and it impedes model 
convergence during training. Secondly, for the features, the 
extracted object features from the backbone exhibit high 
responses only in the local discriminative regions, which 
results in the predicted proposals located in the evident regions 
generating higher confidence than the others representing a 
complete object. Thirdly, for the detection branches, it is 
unreasonable that each class only has one pseudo ground-truth 
box as there might be more objects with the same class with 
different locations in an image.

Taking into account the above issues, we propose a creative 
method including three parts. Firstly, to elevate the quality 
and enlarge the number of proposals, we propose a novel 
way to generate proposals based on object semantic features 
instead of pixel-level information such as Selective Search 
[16] or Edge Box [17] to further help our network better
convergence. Secondly, to prevent the network from overfitting
to local object discriminative regions, Combined Backbone
(CB) is designed to blend the features from the masked
and non-masked branches. The non-masked branch is to find
local discriminative parts and localize objects roughly and
the masked branch focuses on finding u nobvious features.
The response of unobvious features can be improved after
combining these two independent branches. Thirdly, to resolve
only one pseudo ground-truth box generated in each category,
Zhang et al. [10] uses multiple pseudo ground-truth boxes
generated from the WSOD model in each class. We propose
an efficient network head called Advanced Selection Heads
(ASH) to find more pseudo ground-truth boxes with high
confidence, so that more potential positive proposals will be
trained. However, different from [10], we do not use several
instance information about the non-missed objects to correct
the pseudo ground-truth information as we focus on WSOD
instead of missing bounding-boxes object detection. Fig. 1
quantitively illustrates the difference between OICR and our
proposed methods.

Our main contributions are as follows:

• We propose a recurrent masking method to generate
proposals based on object semantic information, which
can enhance the quantity and quality of positive proposals
to help our network better convergence during training.

• We propose a new network backbone structure called
Combined Backbone to make the unobvious features
more noticeable, which can avoid the detection results
being dominated by the local evident object features.

• We propose an efficient network head called Advanced
Selection Heads to generate more pseudo ground-truth
boxes with high confidence for each category, which can
make more relevant proposals be trained.

• We evaluate the effectiveness of our method on PASCAL
VOC 2007 and 2012 datasets, respectively. Extensive ex-
perimental results on different evaluation metrics demon-
strate that our model can obtain a large improvement
compared to other state-of-the-art methods.

II. RELATED WORKS

A. Weakly Supervised Object Detection

Multiple Instance Learning (MIL) is firstly proposed in [14]
and then applied to WSOD, where each image is defined as 
a bag and each proposal in an image is called an instance. In 
WSOD, only label of a bag is given instead of the multiple 
instances. Therefore, instances share the same label and the 
models output the instances which are most relevant to the 
bag label.

Besides, the efficiency of adapting CNN for the task of com-
puter vision indicates its strong ability to extract image local 
features [1]. Therefore, various WSOD models are proposed 
based on CNN with the MIL idea. Bilen and Vedaldi [18] 
proposed an end-to-end learned architecture called Weakly 
Supervised Deep Detection Network (WSDDN). They gen-
erate proposals by adopting Selective Search and Edge Box, 
respectively. In the detection part, they design a network with 
two branches which is motivated from [19] for the sake of 
building the interaction between the classes and proposals by 
multiplication. However, the problem is that all proposals are 
trained equivalently whether they contain an object or not 
and the rate of background proposals always accounts for the 
majority. Therefore, training all proposals disturbs the model 
to distinguish the foreground and background and hard to 
focus on real foregrounds. Moreover, the existence of local 
discriminative parts to objects leads to the final predicted 
proposals always locate in the evident parts of an object instead 
of the complete region.

To handle these problems, further various enhanced models 
are proposed. Kantorov et al. [20] proposed ContextLocNet 
to make use of spatial information. ContextLocNet establishes 
the connections between proposals and their contexts so that 
the network will output more precise predicted proposals. 
Diba et al. [21] propounded Weakly Supervised Cascaded 
Convolutional Networks (WSCCN). WSCCN concentrates on 
promoting the quality of proposals by adopting Class Activa-
tion Map (CAM) [22] and weakly supervised segmentation 
in a cascaded structure. Tang et al. [15] designed a novel 
WSOD network named OICR. The improvement compared 
to WSDDN is that relevant potential positive proposals can 
be trained independently as the generation of pseudo ground-
truth boxes. Besides the coarse selection in WSDDN, OICR 
introduces a series of independent parallel fully connected 
layers at the end of the network and choose the top score 
proposal in each category as the pseudo ground-truth box. 
Each proposal can be trained again if the overlapped area with 
these pseudo ground-truth boxes is larger than a threshold. 
Nevertheless, it is unreasonable that each category only has a 
single pseudo ground-truth box. Thus, to choose more reliable 
pseudo ground-truth boxes, Tang et al. [23] further proposed 
Proposal Cluster Learning (PCL), which uses k-Means [24] 
algorithm to split proposal scores into different clusters and the 
top score ranking proposals are chosen if the generated cluster 
contains the highest score proposal. Then, these proposals will 
be trained if Intersection-over-Union (IoU) between the cluster 
centers and proposals is larger than a threshold. However, 
this method is complex, not only for the clustering algorithm,
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Fig. 2. The pipeline of our model is composed of three core modules. The first module is to combine pixel-level and object semantic proposals and we define
the module as Improved Proposal. The second module is to decrease the influence of evident features by elevating the responses of unobvious object features.
We call this module Combined Backbone (CB). The last module called Advanced Selection Heads (ASH) is to generate more pseudo ground-truth boxes to
train more potential reliable proposals.

but also for the loss function with the marginal improvement
compared to the performance of OICR.

Moreover, there are some other works that incorporate novel
structure [25], weakly supervised image segmentation [26],
and other optimizations such as sidestepping local optima [18],
[27]–[29], improving the quality of the proposal [30], [31] and
incorporating a regression module [32].

B. Weakly Supervised Object Localization

Similar to WSOD, due to the labor-intensive and time-
consuming manual annotation work, Weakly Supervised Ob-
ject Localization (WSOL) has also become a popular research
area. It achieves locating objects with only image-level an-
notations. According to [33], the differences between WSOL
and WSOD can be summarized as three points. To the goals,
WSOL aims to output the coordinates of predicted boxes but
WSOD still needs to output the corresponding categories. To
the dataset, each input image of WSOD has multiple objects
with the same or different classes. For WSOL, although each
input image has only a single object, the number of learning
categories far outweighs WSOD. To the evaluation metrics,
Top-1/Top-5 localization accuracy (Top-1/Top-5 Loc) and
localization accuracy with known ground-truth class (GTLoc)
are used to evaluate the performance of WSOL models. For
WSOD, mean Average Precision (mAP ) with different IoU
thresholds and Correct Localization (CorLoc) are used to
evaluate the detection performance.

Since the effectiveness of visualized algorithms in neural
network [22], this method was adapted to WSOL as the simi-
larities existed in both vision tasks. Wei et al. [34] adopted an
iterative way to locate the object by erasing part of the object
regions in the input image. Zhang et al. [35] converted to erase
the feature map from the CNN. Choe et al. [36] presented an
attention-based dropout layer (ADL), which randomly erases
evident regions in the feature map without iterative processes.
Mai et al. [37] propounded Erasing Integrated Learning (EIL)
which trains the erasing stream and original stream with two
loss functions respectively and adopt them when the network
needs to locate the object.

III. PROPOSED METHOD

In this section, we firstly introduce the process to generate
object semantic proposals. Then, we describe the whole net-
work structure (CB and ASH) in detail. The pipeline of our
model is shown in Fig. 2.

A. Object Semantic Proposal

For Improved Proposal module, although the selective
search method can generate mountains of proposals, the
number of negative proposals far outweigh the positive ones.
Besides, it is common to find many positive proposals only in-
clude small part of an object. To deal with these problems, we
raise the quantity and quality of positive proposals according
to object semantic features.

Object semantic proposals are produced by analyzing the
object semantic features generated from the model that has
already owned a certain knowledge representation. Gradient-
weighted CAM (Grad-CAM) is a visualized algorithm that
aims to show the response of an object with a specific class.
The algorithm is more practical than CAM [22] and their
identical effect can be proved mathematically [38]. To be
specific, Grad-CAM can make the model output the object
response by using the gradients from backpropagation for each
category and adopting the global average pooling function to
compute the average weights for each feature map. Then, these
average weights are multiplied with the corresponding value
of the feature map before ReLU function. The whole process
can be summarized as follow:

αc
k =

1

Z

∑
i

∑
j

∂yc
∂Ak

ij

(1)

Lc = ReLU

(∑
k

αc
kAk

)
(2)

Where yc is the output of class c. Ak
ij indicates the value in

a specific position of the k-th feature map and Z denotes the
area of feature map. αc

k is the average response for the k-th
feature map and Lc is the class-specific activation map.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TCSVT.2022.3168547, 



4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

Fig. 3. The overview of the pipeline to generate object semantic proposals. The object response can be generated by using Grad-CAM. The dynamic threshold
function aims to generate a mask to erase evident features. The former image is replaced by the masked one and the process will begin again. When the
number of recurrent processes attains the stage threshold, multiple responses are combined to show the comprehensive result. Then the fixed threshold function
filters out noises and produces the object regions. Raising the threshold will make the regions becomes smaller. Proposals are produced according to these
object regions, respectively.

The differences compared with the work in [31] which also
uses Grad-CAM as the base to generate object proposals can
be concluded as a more generalized training-free model with
fewer manual factors. To be specific, we only use VGG16
[2] pretrained on ImageNet [39] as the backbone to generate
object semantic features and it can directly be utilized with-
out training the 1000 different categories, which means our
method is more generalized and can be used in the dataset
with more categories. Then, compared with the ten thresholds
in [31], we can also get reasonable proposals by using fewer
manual thresholds based on our proposed recurrent masking
method and the generation of object semantic proposals.

As the high responses are always dominated by evident fea-
tures, it is important to mask these regions before generating
feasible proposals. We hence adopt a recurrent process to mask
these discriminative parts. The general process is illustrated in
Fig. 3.

The whole process can be divided into three stages named
as masking stage, combining stage, and generating stage,
respectively. Firstly, the masking stage aims to erase the local
discriminative parts of the object. When the original image
goes through the neural network, the output will have scores
related to the corresponding classes. We choose the classes
within the top-5 scores as the source of responses before
computing gradients via backpropagation and generated the
network response before going to the dynamic binary threshold
function. Then, the evident features of the object will be
masked in the original image if these generated responses
in a specific location are higher than the threshold from the
dynamic function. After masking these evident feature regions,
the masked image will replace the former one and go through
the next loop.

The recurrent times we set is 2 as the first loop is to
find the most discriminative parts of objects and the next
is to find the secondary regions. More loops may work but
we found the effect is unobvious and time-consuming as the
above steps have already detected most of the regions related
to objects. To the dynamic binary threshold function, the
threshold value follows Eq. (3), where i = 1, 2, . . . , T . Ti

denotes the threshold of the i-th loop.

Ti = 100 + 20 ∗ (i− 1) (3)

According to massive empirical observations from the im-
ages, we found that a low threshold will lead to an oversized
mask that includes multiple objects. 100 is a suitable bench-
mark to generate a reasonable mask in the first stage. As the
former loop erases the discriminative parts, which means the
rest of the object regions are small and the network is more
sensitive to the noise when processing the masked image in
the network. Therefore, a higher threshold in the next loop
can avoid the network being interfered with by noises such as
the background.

The combining stage is to fuse these network responses
generated in each loop on average. Specifically, the compre-
hensive response should go through the fixed thresholds to
generate the multiple sets of binary object regions as the base
of proposals. As the small objects may exist in a large object
region, raising the threshold can generate small object regions
included in a large one so that the proposals related to these
small objects can be produced. Nevertheless, it is a tradeoff
that a small interval leads to the unobvious difference for each
region, and a large interval results in the generated regions
only representing part of the same object. Specifically, in Fig.
3, some small regions will be seen as noisy regions, which
means these regions only represent part of objects and we
should not consider their influence.

The generating stage is to produce proposals based on
the generated object regions. However, we do not acquire
proposals only from the edge of object regions. The differences
between adjacent object regions are the main factor for us
to produce object semantic proposals. The coordinates of the
generated proposal can be computed as follows:

Pright,i = Rright + i ∗ ∆right

N
∗ f (∆right,∆left) (4)

Pleft,i = Rleft + i ∗ ∆left

N
∗ f (∆left,∆right) (5)

Ptop,i = Rtop + i ∗ ∆top

N
∗ f (∆top,∆bottom) (6)
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Fig. 4. The visualized meaning of all variables in Eq. (4)-(8) and the center 
of the object region and the related ground-truth box. For clearness, we here 
only show the computation of the tenth object semantic proposal.

Pbottom,i = Rbottom + i ∗ ∆bottom

N
∗ f (∆bottom,∆top) (7)

f (∆a,∆b) =

{
uniform(0.7, 0.9), if ∆a

∆b
> t

uniform(0.9, 1.0), otherwise
(8)

Where Pright,i, Pleft,i, Ptop,i and Pbottom,i indicate the right, 
left, top and bottom coordinate of i-th proposal respectively. 
Rright, Rleft, Rtop and Rbottom represent the coordinates 
of a generated object region before. N is a constant which 
represents the number of proposals for each region and t 
is the threshold which determines the restriction factor of the 
interval distance. ∆right, ∆left, ∆top and ∆bottom are the 
differences computed on the corresponding location. We 
viusally show the meaning of all variables in Eq. (4)-(8) and 
also illustrate the center of the object region and the ground-
truth box respectively in Fig. 4.

From the statistical results in Table I on PASCAL VOC 
2007 test subset, SR and SGT indicate the area of generated 
object region and the area of its related ground-truth box, 
respectively. It can be noticed that although the object region 
has a high correlation (i.e., IoU(R, GT )>0.5) with the ground-
truth box, there is still 62.7% confidence to determine the 
area of generated object region is smaller than the area of the 
related ground-truth box. We hence need to enlarge the object 
regions to get reasonable object semantic proposals.

The effective object region has a high correlation with 
a ground-truth box or insides the related ground-truth box. 
If an effective object region locates at the top or left of a 
ground-truth box, the rest of the regions must locate at the 
bottom or right. In WSOD, we do not have any instance-
level information. However, as validated by the statistical 
results in Fig. 5, no matter where the effective object region 
is in the image, there is at least 70% probability that its 
center is farther from the image center than the center of the 
related ground-truth box, which implies that generating object 
semantic proposal towards the center of the image will be more 
reasonable. Therefore, given an effective object region located 
in the top or left of the image center, paying more attention on 
enlarging the bottom or right of the object generated region is

TABLE I
THE PROPORTION OF THE AREA OF RELATED OBJECT REGION IS

LARGER THAN THE AREA OF GROUND TRUTH BOX

IoU > 0 IoU > 0.5
SR < SGT 77.4% 62.7%

Fig. 5. The statistical results of the relative position on PASCAL VOC 2007 
test set between the center of object region and the center of related ground-
truth box.

more likely to reduce the distance between the object region 
center and ground-truth box center.

Furthermore, to decrease the influence of the object regions 
that are larger than the ground-truth boxes and bring irreverlant 
information, the random restriction function f in Eq. (8) is 
hence incorporated into Eq. (4)-(7) to shrink the growth of the 
coordinates, so that the irrelevant information can be reduced. 
Besides, objects located at the edge of the image lead to 
imbalanced intervals in computing the coordinates of object 
semantic proposals. For example, if an object is located in the 
top-left corner of an image, the result of ∆bottom and ∆right 
will be much larger than ∆top and ∆left. Background 
information from the bottom-right area will hence be included. 
The random restriction function also considers this situation 
and brings relatively strong restriction to the growth of the 
bottom-right interval. Fig. 6 illustrates the comparisons for 
object semantic proposals by adopting the random restriction 
function. It can be noticed that the object semantic proposals 
are relatively tight to the ground-truth boxes and less irrelevant 
information is included compared to the generated proposals 
without using the random function. However, as most object 
regions are smaller than their related ground-truth boxes, 
stronger restriction in Eq. (8) will lead to more proposals with 
smaller areas.

As we stated above, the adjacent sets of object regions have 
connections that decide the result of ∆. The former object 
regions will become the boundary of the latter ones. But for 
the first o bject r egions, t he s ize o f t he o riginal i mage a cts as 
their farthest boundary. Moreover, there is a potential problem 
that the shrinking regions sometimes represent the same object 
rather than other small objects in Fig. 3, which means these
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Fig. 6. Comparisons between the object semantic proposals without and 
with the random restriction function. The orange and blue boxes indicate the 
ground-truth boxes and object semantic proposals, respectively. The generated 
proposals with the random restriction function are relatively tighter to the 
ground-truth boxes, which means the background information within these 
proposals can be reduced.

regions should not be considered during the generation of 
object semantic proposals. To decrease the influence, we 
compute the IoU between the former object region and the 
latter ones to decide whether to generate proposals based on 
these smaller regions.

In addition, the image pyramid is also introduced as each 
local feature is computed within a local receptive field by 
CNN, which means the responses are changed by the scale 
of an object. Thus, we set s = [1, 0.75, 0.5] and suggest that 
it is suitable for the network to find s mall, m iddle, a nd large 
size objects, respectively. The initial threshold in the fixed 
binary function also equals 100, to generate more sets of object 
regions, each raising threshold behind the function we set will 
be higher than 30 compared with the last one, i.e., the fixed 
binary thresholds Tfix = [100, 130, 160]. Besides, each object 
region will generate a fixed n umber o f p roposals. According 
to Eq. (4)-(7), when the ∆ is computed, the interval distance 
is decided by N . Here, we only choose the top 10 proposals 
(i.e., i ∈ [0, 9]) from each object region and set N to 50 and 20 
for the first and the rest sets of the object regions respectively. 
Lastly, the threshold t we set is 8 in Eq. (8).

B. Combined Backbone

Given an image, proposals based on pixel-level and object
semantic features are generated and fed into the Spatial Pyra-
mid Pooling (SPP) layer [40]. Specifically, after getting the
extracted features from CB and the coordinates of proposals,
following [18] and [15], we map the proposals to the feature
map in order to get the Region of Interests (RoIs). As each
RoI has its own size, SPP layer is then adopted to get the RoIs
with a fixed size by replacing the max pooling layer located
in the last of CB. Then, the parallel fully connected layers in
ASH will get them and output a series of the proposal feature
vectors.

Toward further decreasing the overfitting of the local evident
features. A combined network structure is designed to elevate

Fig. 7. Difference between hard and soft masked method. Here we assume
that α equals 0. After going through the soft masked method, the feature
values around the object are the same, which means all features surrounding
the object have the same level of importance. However, the hard masked
method does not work as the average feature value is decreased by a too
large background area.

the responses of unobvious feature regions. Specifically, after
extracting the low-level features, the network will be divided
into two independent branches. The first branch is to find
the discriminative parts of an object to roughly localize the
position and the second one is to mask these discriminative
parts but keep the unobvious features.

The way to delimit the discriminative and unobvious fea-
tures is to extract the mean and maximum from the feature
maps before going through these two separate branches. The
discriminative features will be masked if the value is higher
than a threshold and the response of unobvious features will
be reinforced. Moreover, there are two methods to implement
value determination. One is the hard masked method and the
other is the soft masked one which can be shown in Eq. (9)
and Eq. (10), respectively.

fh
i,j =

{
0, if fi,j > mean+ α ∗ (Max−mean).
fi,j , otherwise. (9)

fs
i,j =

{
Max− fi,j , if fi,j > mean+ α ∗ (Max−mean)
fi,j , otherwise

(10)

Where fi,j denotes the feature value in a specific position.
fh
i,j and fs

i,j indicate the result by adopting the hard and
soft masked method respectively. α is a hyperparameter that
controls the determination of threshold.

In comparison with the hard masked method, there are two
advantages to the soft one. Firstly, it can avoid a situation
where some features whose value is slightly higher than the
threshold can not get improvement as the hard masked function
will set zero to them in the masked branch. Secondly, it
can work well in the situation that small objects locate in a
large background as too much background information cause
the reduction of the global average feature value so that the
masked branch can only focus on features with a much low
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Algorithm 1 Multiple Instance Selection
Input: Outputs S; threshold t; threshold K; image label vec-

tor y = [y1, . . . , yC ]; proposals P ; index vector c = [1, . . . , C].
Output: Pseudo ground-truth boxes Ĝ = [ĝ1, . . . , ĝC ]

1: Randomize the sequence of c and assign to the original
class vector.

2: for i = 1 to |c| do
3: if yc[i] == 1 then
4: Initilize k.
5: Sort S from high to low.
6: Select the top 10% proposals from P as P ′.
7: for j = 1 to |P ′| do
8: if k < K then
9: if k == 0 or IoU

(
P ′[j], ĝc[i]

)
< t then

10: ĝc[i].append(P ′[j]).
11: k = k + 1.
12: Clear the score of P ′[j].
13: else
14: Break.
15: return Ĝ

value for hard masked method. In Fig. 7, we generally show
a simple example to clearly illustrate the difference between
the function of the hard and soft masked method.

C. Advanced Selection Heads

The procedure of ASH can be summarized into two steps.
All proposals generated in the Improved Proposal module are
firstly trained in the top head to find potential foreground
proposals. The ground-truth image-level labels are also fed
as supervisions. Then, only potential positive proposals will
be trained again in the rest of the refinement heads, which is
similar to the correction operation in [5]. The pseudo ground-
truth box labels generated in the former head are fed in the
next head as new supervisions. Different from OICR [15]
or PCL [23] which produce purely one or multiple pseudo
ground-truth boxes with complex clustering algorithms for
each category, a simple and efficient algorithm called Multiple
Instance Selection (MIS) is proposed to generate multiple
pseudo ground-truth boxes.

MIS algorithm aims to generate multiple pseudo ground-
truth boxes with high confidence in each class and send them
to the latter refinement head so that more relevant feasible
proposals can be trained. The details of MIS are shown in
Algorithm 1. Based on the outputs from a network head
branch, proposals have different scores in each class. We sort
all of the scores from high to low and focus on the top 10%
score proposals P ′ as the source of pseudo ground-truth boxes.
A threshold K will be set to restrain the number of pseudo
ground-truth boxes in each category. After that, we adopt a
similar way as non-maximum suppression (NMS) with the
same threshold in each class to determine whether a proposal
can act as the pseudo ground-truth box. More specifically, for
i-th index, if the IoUs between a high score proposal and the
pseudo ground-truth boxes generated before are lower than
the threshold t, this proposal will be appended to the list

of pseudo ground-truth boxes ĝc[i]. Note that the scores of
these selected proposals are cleared as these proposals might
be trained in other classes. Moreover, the sequence of class
vector c is randomized before generating the pseudo ground-
truth boxes Ĝ to decrease the influence that the class with
prior order can select more proposals.

In ASH, each class will generate multiple pseudo ground-
truth boxes. The proposals whose the largest IoU computed
among these pseudo ground-truth boxes higher and lower
than 0.5 will be treated as foregrounds and backgrounds,
respectively. To train our network more efficiently, balancing
the positive and negative proposals is needed as the number
of backgrounds is far outweigh the foreground. Therefore,
we multiply the standard softmax loss with the weight γk in
the k-th head such that the loss function for foreground and
background samples can be balanced by adjusting the value
of γk. To avoid the model overfitting by this parameter, all
fine branches have the same adjustment of γ. Our experiments
show that this weight can significantly elevate the model
performance. Moreover, we follow [15] that multiplies the
wp which equals the score of the closest pseudo ground-truth
box for proposal p because these boxes in their corresponding
class as the supervisions are very noisy and wp is small at
the beginning of training. This variable can prevent our model
from being disturbed by these noisy pseudo boxes. Therefore,
for the k-th refinement head, the refinement loss function is
shown in Eq. (11)-(13).

FGk
c,p = wk

py
k
c,p log s

k
c,p (11)

BGk
p = wk

py
k
(C+1)p log s

k
(C+1)p (12)

Lk
R = − 1

|P |

|P |∑
p=1

(
γk

C∑
c=1

FGk
c,p +

(
1− γk

)
BGk

p

)
(13)

Where FGk
p,c and BGk

p indicate the forground with c-th
class and background cost for p-th proposal in k-th head,
respectively. C is the number of class and |P | equals the
number of proposals. C+1 represents the label of background.
ykc,p and skc,p indicate the label and output of the class c for
the proposal p in k-th head.

Then, the standard binary cross entropy function which
is shown in Eq. (14) from the top corse selection head is
incorporated into the whole model loss function to make the
network trained jointly. The whole loss function used to train
our network is shown in Eq. (15).

LWSDDN = −
C∑

c=1

yc logPc + (1− yc) log (1− Pc) (14)

L = LWSDDN +
K∑

k=1

Lk
R (15)

Where Pc and yc indicate the output of the top head and
ground-truth image-level label for the c-th class. C and K
represent the number of class and refinement heads, respec-
tively.
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TABLE II
PER-CLASS DETECTION RESULTS USING VGG16 ON PASCAL VOC 2007.

Methods Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV mAP50

ContextLocNet [20] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3
Li [28] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

OICR [15] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
Self-taught [30] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7
WSCCN [21] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

PCL [23] 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5
TS2C [27] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3

WSRPN [25] 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3
Shen [26] 52.0 64.5 45.5 26.7 27.9 60.5 47.8 59.7 13.0 50.4 46.4 56.3 49.6 60.7 25.4 28.2 50.0 51.4 66.5 29.7 45.6
Wan [41] 55.6 66.9 34.2 29.1 16.4 68.8 68.1 43.0 25.0 65.6 45.3 53.2 49.6 68.6 2.0 25.4 52.5 56.8 62.1 57.1 47.3
Yi [32] 62.1 67.9 51.6 22.3 18.4 69.3 68.0 47.9 23.1 54.9 42.2 49.0 51.3 67.3 13.0 24.0 46.6 53.1 61.8 58.9 47.6

C-MIL [29] 62.5 58.4 49.5 32.1 19.8 70.5 66.1 63.4 20.0 60.5 52.9 53.5 57.4 68.9 8.4 24.6 51.8 58.7 66.7 63.5 50.5
PG-PS (extra training) [31] 63.0 64.4 50.1 27.5 17.1 70.6 66.0 71.1 25.8 55.9 43.2 62.7 65.9 64.1 10.2 22.5 48.1 53.8 72.2 67.4 51.1

Ours 65.5 74.4 47.5 36.3 22.8 67.7 68.3 25.9 26.9 63.9 37.0 30.2 52.5 70.4 3.1 27.6 58.9 51.6 62.5 61.5 47.7

TABLE III
PER-CLASS CORRECT LOCALIZATION RESULTS USING VGG16 ON PASCAL VOC 2007

Methods Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV CorLoc
Li [28] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4

ContextLocNet [20] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1
Self-taught [30] 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6 68.9 75.5 56.1
WSCCN [21] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

OICR [15] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6
TS2C [27] 84.2 74.1 61.3 52.1 32.1 76.7 82.9 66.6 42.3 70.6 39.5 57.0 61.2 88.4 9.3 54.6 72.2 60.0 65.0 70.3 61.0
Wan [41] - - - - - - - - - - - - - - - - - - - - 61.4
PCL [23] 79.6 85.5 62.2 47.9 37.0 83.8 83.4 43.0 38.3 80.1 50.6 30.9 57.8 90.8 27.0 58.2 75.3 68.5 75.7 78.9 62.7

WSRPN [25] 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8
Shen [26] 82.9 74.0 73.4 47.1 60.9 80.4 77.5 78.8 18.6 70.0 56.7 67.0 64.5 84.0 47.0 50.1 71.9 57.6 83.3 43.5 64.5

Yi [32] - - - - - - - - - - - - - - - - - - - - 65.0
C-MIL [29] 82.1 75.7 73.0 44.2 43.5 76.7 83.6 75.9 40.7 76.7 44.5 68.8 77.9 88.0 41.8 54.6 68.0 58.9 74.9 74.2 66.2

PG-PS (extra training) [31] 85.4 80.4 69.1 58.0 35.9 82.7 86.7 82.6 45.5 84.9 44.1 80.2 84.0 89.2 12.3 55.7 79.4 63.4 82.1 82.1 69.2
Ours 85.3 87.9 63.5 54.1 42.5 83.3 86.0 35.7 47.0 85.8 52.6 56.4 68.2 85.6 9.4 58.4 86.6 72.2 68.7 76.9 65.8

IV. EXPERIMENTS

In this section, we firstly introduce the datasets and evalu-
ation metrics utilized in experiments. Training strategies and
implementation details are described in the second part. Then,
we compare the performance of our method with other state-
of-the-art ones. Extensive experiments are conducted in the
next part to discuss the influence of different parameter settings
and modules. Finally, some qualitative results are shown to
further illustrate the effectiveness of our method.

A. Datasets and Evaluation Metrics

We evaluate our model on the challenging PASCAL VOC
2007 and 2012 datasets following standard PASCAL VOC
protocol [42]. These two benchmarks are split into train,
validation, and test sets, which contain 9,963 and 22,531
images for 20 object classes respectively. Here we combine
train and validation sets as trainval set for both benchmarks
and choose them (5,011 images for 2007 and 11,540 for 2012)
respectively with only image-level annotations to train our
network. In the testing stage, Average Precision (AP ) and
mAP with IoU threshold at 50% and 75% are both utilized
to evaluate the model performance. Moreover, CorLoc [43] is
also taken as the evaluation metric to measure the localization
accuracy on the trainval and test set, respectively.

B. Training Strategies and Implementation Details

During training, Adam [44] is adopted as the optimizer of
our network model with the initialized learning rate equals
1 × 10−5. The mini-batch size we set is 8 on VOC 2007
and 16 on VOC 2012 respectively. For both datasets, we
train the model for 30k iterations and decrease the learning
rate by 0.1 after 20k iterations. If not specified, γk equals
0.7 for positive proposals in the refinement loss function for
each refinement branch and α equals 0.1 in the soft masked
function. In algorithm 1, K and threshold t are set to 5 and
0.05 as default. The number of refinement branches is 3.
With the random horizontal flipping operation, we utilize five
image scales {480, 576, 688, 864, 1200} to resize the shortest
side of the training image stochastically. In the testing stage,
the outputs are computed by analyzing all scales and their
horizontal flips for each image comprehensively.

We use Selective Search to generate pixel-level proposals
combined with our object semantic proposals as the training
samples. VGG16 (without batch normalization) pretrained on
the ImageNet [39] dataset is adopted as the backbone of
feature extraction. Besides, the penultimate max-pooling layer
and subsequent convolutional layers are changed to dilated
convolutional layers to enlarge the receptive field. For the
newly added layers, they are initialized by using Gaussian
distributions with 0-mean and standard deviations of 0.01.
Biases are initialized to 0.
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TABLE IV
PER-CLASS DETECTION RESULTS USING VGG16 ON PASCAL VOC 2012.

Methods Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV mAP50

ContextLocNet [20] 64.0 54.9 36.4 8.1 12.6 53.1 40.5 28.4 6.6 35.3 34.4 49.1 42.6 62.4 19.8 15.2 27.0 33.1 33.0 50.0 35.3
Li [28] 62.9 55.5 43.7 14.9 13.6 57.7 52.4 50.9 13.3 45.4 4.0 30.2 55.6 67.0 3.8 23.1 39.4 5.5 50.7 29.3 35.9

WSCCN [21] - - - - - - - - - - - - - - - - - - - - 37.9
OICR [15] 67.7 61.2 41.5 25.6 22.2 54.6 49.7 25.4 19.9 47.0 18.1 26.0 38.9 67.7 2.0 22.6 41.1 34.3 37.9 55.3 37.9

Self-taught [30] 60.8 54.2 34.1 14.9 13.1 54.3 53.4 58.6 3.7 53.1 8.3 43.4 49.8 69.2 4.1 17.5 43.8 25.6 55.0 50.1 38.3
Shen [26] - - - - - - - - - - - - - - - - - - - - 39.1
Wei [27] 67.4 57.0 37.7 23.7 15.2 56.9 49.1 64.8 15.1 39.4 19.3 48.4 44.5 67.2 2.1 23.3 35.1 40.2 46.6 45.8 40.0
PCL [23] 58.2 66.0 41.8 24.8 27.2 55.7 55.2 28.5 16.6 51.0 17.5 28.6 49.7 70.5 7.1 25.7 47.5 36.6 44.1 59.2 40.6

WSRPN [25] - - - - - - - - - - - - - - - - - - - - 40.8
Wan [41] - - - - - - - - - - - - - - - - - - - - 42.4
Yi [32] 69.5 68.3 53.1 17.4 27.7 55.5 53.5 45.3 19.8 60.1 26.9 47.7 54.8 72.0 24.5 26.2 51.1 31.3 58.3 56.0 45.9

C-MIL [29] - - - - - - - - - - - - - - - - - - - - 46.7
PG-PS (extra training) [31] 68.3 60.0 47.4 26.4 20.6 61.5 59.9 82.1 23.7 50.4 20.1 78.8 52.7 67.7 2.6 21.5 43.8 50.1 67.2 60.5 48.3

Ours 72.8 71.6 47.1 22.6 31.2 59.6 57.8 34.8 24.8 62.3 19.1 54.7 66.2 75.6 3.7 27.9 57.3 44.2 48.8 59.1 47.0*

∗

http://host.robots.ox.ac.uk:8080/anonymous/I2CJJP.html

TABLE V
PER-CLASS CORRECT LOCALIZATION RESULTS USING VGG16 ON PASCAL VOC 2012

Methods Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV CorLoc
Li [28] - - - - - - - - - - - - - - - - - - - - 29.1

ContextLocNet [20] 78.3 70.8 52.5 34.7 36.6 80.0 58.7 38.6 27.7 71.2 32.3 48.7 76.2 77.4 16.0 48.4 69.9 47.5 66.9 62.9 54.8
Self-taught [30] 82.4 68.1 54.5 38.9 35.9 84.7 73.1 64.8 17.1 78.3 22.5 57.0 70.8 86.6 18.7 49.7 80.7 45.3 70.1 77.3 58.8

OICR [15] - - - - - - - - - - - - - - - - - - - - 62.1
PCL [23] 77.2 83.0 62.1 55.0 49.3 83.0 75.8 37.7 43.2 81.6 46.8 42.9 73.3 90.3 21.4 56.7 84.4 55.0 62.9 82.5 63.2
Shen [26] - - - - - - - - - - - - - - - - - - - - 63.5
Wei [27] 79.1 83.9 64.6 50.6 37.8 87.4 74.0 74.1 40.4 80.6 42.6 53.6 66.5 88.8 18.8 54.9 80.4 60.4 70.7 79.3 64.4

WSRPN [25] 85.5 60.8 62.5 36.6 53.8 82.1 80.1 48.2 14.9 87.7 68.5 60.7 85.7 89.2 62.9 62.1 87.1 54.0 45.1 70.6 64.9
C-MIL [29] - - - - - - - - - - - - - - - - - - - - 67.4

Yi [32] 84.6 79.9 73.7 42.8 53.1 83.7 69.2 72.0 47.8 84.8 51.5 64.7 78.5 90.3 43.8 55.1 81.9 46.5 73.6 79.8 67.9
PG-PS (extra training) [31] 85.5 81.1 69.2 54.3 37.6 86.7 81.7 84.0 44.6 83.3 45.8 80.2 84.2 87.2 11.5 52.1 78.9 63.9 81.0 80.9 68.7

Ours 89.0 87.0 67.1 48.0 55.8 86.5 77.5 57.6 54.5 86.8 44.4 63.8 82.4 92.4 13.9 58.1 85.8 67.3 68.2 79.5 68.3

Our experiments are implemented in Pytorch [45] deep
learning framework, Python, and C++. All of the experiments
run on NVIDIA GTX TitanV GPU and Intel Xeon Silver 4110
CPU (2.10 GHz).

C. Comparsion with State-of-the-Art

We calculate the AP50 and mAP50 for each and all cat-
egories on the PASCAL VOC 2007 test set, respectively.
Then, CorLoc is computed on the trainval set to compare our
method with other state-of-the-art ones. Experimental results
are shown in Table II and Table III,

It can be noticed that our proposed method can achieve the
comparable results on PASCAL VOC 2007. Specifically, our
model gets the best performance in the class of aeoplane, bike,
boat, chair, motor, and sheep for AP50, and bike, chair, sheep,
and sofa for CorLoc on VOC 2007. However, our method
can only get 3.1% AP and 9.4% CorLoc to the category of
person, which is weaker than previous methods. We conjecture
the reasons for the generated inferior performance can be
attributed to two parts. Firstly, we only use PASCAL VOC
2007 trainval set to train our model, which means there are
fewer data compared to PASCAL VOC 2012 trainval set. It
leads to the CBASH can not be trained very well as the CB
needs data to know the unobvious object features and elevate
their responses and the ASH needs data to generate reliable
multiple pseudo ground-truth boxes in each class and train the
potential positive proposals better. Moreover, if the number of

Fig. 8. Object semantic proposals about person generated via VGG16 model
pretrained on ImageNet. After masking the discriminative region such as the
face, the pretrained model still generates a high response in the region.

samples is small, the number of object semantic proposals will
be small and then offer benefits to a limited extent. Secondly,
the overfitting existed in pretrained VGG16 will decrease the
quality of these proposals. As shown in Fig. 8, after we mask
the evident features of the person, the network still generates
a high response around the evident features instead of the
unobvious features such as hands or feet.

More data can help our model own stronger knowledge
representation and more precise localization. We then report
the corresponding evaluated results to analyze the model
performance on PASCAL VOC 2012. Results are listed in
Table IV and Table V, respectively. It can be observed that
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Fig. 9. Effect of α (left) and K (right) on The PASCAL VOC 2007 Dataset.

we win in 9 categories of AP50 and attain the significantly
shrink the gap of mAP50 compared to [31] which uses an
extra training classifier. We may suggest the performance can
be attributed to more positive proposals with high qualities
being produced, the network learning more unobvious fea-
tures, and more potential positive proposals can be found and
get training. Also, we get more comparable comprehensive
performance on CorLoc and win the categories on aeroplane,
bike, bottle, chair, motor and sofa, respectively. To be specific,
we significantly outperform the second-best one over 6.7% in
the sheep samples (54.5% vs. 47.8%).

D. Discussion and Ablation Studies

In this part, we analyze the influence of various model
hyperparameters which have already been elucidated in the
last section, i.e., γk, α, and K without the influence of object
semantic proposals and multiple image scales during training.
Then we discuss the performance of different modules in our
model, i.e., object semantic proposals, CB, and ASH through
the ablation studies.

We firstly discuss the influence of γk, this hyperparameter
is to adjust the unbalance of positive and negative samples
as there are amounts of proposals generated from IP module
in each image and the negative proposals are in the majority.
The results are shown in Table VI. We can find that when
the value of γk is 0.9, mAP50 and mAP75 do not get
the highest values, which we suggest that the restriction of
negative samples is too strong. After changing γk from 0.9
to 0.7, they increase steadily and achieve the maximum when
γk equals 0.7. Then, continue decreasing the γk leads to the
degradation of performance as the unbalance enlarged between
the foreground and background.

TABLE VI
EFFECT OF γk ON THE PASCAL VOC 2007 DATASET.

γk mAP50 mAP75

0.90 37.3 12.1
0.85 37.5 12.2
0.80 38.2 12.4
0.75 38.7 12.6
0.70 39.5 13.2
0.65 38.9 12.8

Then we discuss the influence of α, the hyperparameter is
to control the detemination of threshold in the feature map.
The higher α leads to larger masked regions. Results are

Fig. 10. Comparisons of qualitative detection results between (a) the hard
masked method and (b) the soft masked method.

Fig. 11. Comparisons of qualitative results among WSDDN (left), OICR
(middle) and CBASH (right) on PASCAL VOC 2007.

illustrated on the left of Fig. 9. From this line graph, we
observe that their maximum appeared when α equals 0.1, and
the overall tendency for the curve of CorLoc and mAP50

are decreasing with the increasing number of α, which means
there is a suitable combination between the masked and non-
masked branch in CB and the noisy features gradually impact
the model when increasing α.

Next, we discuss the influence of K in our network. It is
responsible for assigning the maximum of pseudo ground-truth
boxes in each category. Related experiments are also shown
on the right of Fig. 9. According to this graph, it can be
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Fig. 12. Some visualized detection results for class aeroplane, train, cow, boat, bicycle, dog, bird, person, horse, cat and car.

apparently noticed that both curves have a similar tendency,
and setting K to 5 can obtain the best performance. Note that
more pseudo ground-truth boxes can not bring the gain of
detection performance, which means ensuring the quality of
pseudo ground-truth boxes is important during training.

TABLE VII
COMPARISONS OF DETECTION RESULTS AMONG DIFFERENT
COMBINATIONS IN BACKBONE ON THE PASCAL VOC 2007

Combination mAP50 mAP75 CorLoc
CB with only non-masked branch 36.7 12.1 52.5

CB with hard masked method 38.8 12.7 54.3
CB with soft masked method 39.5 13.2 56.2

To demonstrate the effectiveness of the proposed soft
masked method, the detection results by employing only the
non-masked branch, the hard masked method and the softed
masked method in CB are shown in Table VIII together. It
can be noticed that either the hard or soft masked method can
boost the detection performance compared to the only non-
masked branch in CB, which means the enhanced responses
of unobvious features can detect the objects more precisely.
Furthermore, as the soft masked method can also notice the
features whose values are slightly larger than the threshold
and the small objects with a large background, the detection
performance of the soft masked method is hence better than
the hard masked one. Moreover, to further demonstrate the
strength of the soft masked method which detects small objects
in a large background, we collect the images from the VOC
2007 test set whose ground-truth boxes of objects are smaller
than one-third of the image sizes. Some visualized results are
shown in Fig. 10 and the detection results are listed in Table
VIII. It can be seen from this Table that the soft masked
method can respectively outperform the detection performance
over 2.8% and 4.2% on mAP50 and CorLoc. According
to Fig. 10, the soft masked method can not only produce
more precise predicted boxes, but also find small objects
more effectively than the hard masked one, which presents
the strength of the soft masked method is better than the hard
masked method in detecting small objects.

TABLE VIII
COMPARISONS OF THE SMALL OBJECTS DETECTION RESULTS BETWEEN
THE HARD AND SOFT MASKED METHOD ON THE COLLECTED PASCAL

VOC 2007

Combination mAP50 CorLoc
CB with hard masked method 21.8 41.3
CB with soft masked method 24.6 45.5

In the ablation studies, we respectively discuss the improved
extent of each module to the baseline model. The results are
listed in Table IX. It can be observed that all components
can elevate the performance of baseline especially for our
ASH which boosts the performance at 4.2% for mAP50. After
incorporating object semantic proposals, the performance of
CBASH can further be elevated and attain the best per-
formance on mAP50 (47.7%) and CorLoc (65.8%), which
demonstrate the effectiveness of the object semantic proposals.

TABLE IX
ABLATION STUDIES ON THE PASCAL VOC 2007.

Object Semantic Combined Advanced
mAP50 CorLocProposals Backbone Selection Heads

41.2 60.6
✓ 42.3 61.2

✓ 43.1 61.8
✓ 45.4 63.1

✓ ✓ 46.1 63.8
✓ ✓ ✓ 47.7 65.8

E. Qualitative Results

Toward further illustrate the effectiveness of CBASH, we
compare our model with WSDDN [18] and OICR [15] qual-
itatively. All methods utilize the same basic network with
identical training strategies and we do not incorporate object
semantic proposals during training to ensure fairness. The
results are shown in Fig. 11. Note that we determine the quality
of predicted boxes according to whether the IoU between the
predicted box and ground-truth box is larger than 0.5. From
these visualized results, we can observe that our model can
localize the object more precisely without producing extra
false positive predicted boxes. For example, in the third row
of Fig. 11, a little cow is similar to the class of dog to some
extent. Our model can detect and recognize it precisely but the
others can not localize well or even generate wrong predicted
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boxes. Moreover, when multiple objects with different classes 
appeared tightly in an image, our model can still detect them.

Although our model outperforms the state-of-the-art meth-
ods and is robust to the viewpoints, scales, and occlusions 
for the objects with different classes, it is also challenging 
to detect them completely for some special categories such 
as person, which will be our future work to research from the 
generation of more advanced proposals and the design of more 
generalized network during training. More qualitative results 
are shown in Fig. 12.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new network model called 
CBASH with object semantic proposals to further elevate 
WSOD performance. We improve the quantity and quality 
of the positive proposals, the response of unobvious features, 
and the generation of pseudo ground-truth boxes by using 
our object semantic proposals, Combined Backbone (CB), and 
Advanced Selection Heads (ASH), respectively. Specifically, 
the Improved Proposal module offers more positive proposals 
generated from object semantic information to help our model 
better convergence during training. The CB module elevates 
the response of unobvious features to avoid the network 
focusing too much on the local discriminative regions. The 
ASH module produces more pseudo ground-truth boxes in 
each category so that more potential relevant proposals will 
be trained again. Extensive experiments demonstrate that our 
method can bring a great improvement and significantly out-
perform other state-of-the-art methods. For the future, the 
adaptive threshold value and the improved network response 
can be incorporated to further elevate the quality of proposals. 
Moreover, the advanced coordinate regression loss function 
can be introduced to correct the coordinates of proposals and 
elevate the detection performance.
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