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Abstract: 

Cardiac arrhythmia is a condition caused by an impaired electrical conduction of the heart, resulting 
in irregular rhythms that can increase the risk of stroke or even lead to sudden cardiac deaths. Luckily, 
bio-signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) can be utilized to assess 
the health of the patient. This work presents a comprehensive review on the recent machine learning 
(ML) and deep learning methods applied for arrhythmia classification using both, ECG and ABP signals,
including preliminary steps such as pre-processing, feature extraction and feature optimization. This
review considers various ML techniques such as Artificial Neural Networks, Support Vector Machine,
K Nearest Neighbour, Decision Tree, as well as DL methods such as Convolutional Neural Networks,
Deep Neural Networks, Deep Belief Networks (DBN), and Recurrent neural networks.

1. Introduction

According to the World Health Organization, cardiovascular diseases (CVDs) are the leading cause 
of death globally. Approximatively 17.5 million deaths due to CVD were reported in 2012 [1], and 17.9 
million were reported in 2016, which indicates an overall increase from 30% to 31% globally. 
Arrhythmia is a CVD, that refers to any irregular deviation from the normal heart rhythms. Various 
types of arrythmia exist, including supraventricular arrhythmias, ventricular arrhythmias, sinus node 
dysfunction, heart block, and premature contractions. Even though some arrhythmias do not have 
immediate effects, the long-term exposure to irregular heartbeats can lead to serious damage to the 
heart. Atrial fibrillation, for instance, is a common type of supraventricular arrhythmia that causes an 
increased heart rate. Patients with atrial fibrillation being associated with a risk of stroke five times 
higher than patients with a normal heart rhythm [2]. Premature atrial (PAC) or ventricular (PVC) 
contractions are premature beats that originate from the atria or ventricles, respectively. Frequent 
PVCs can lead to far more dangerous, ventricular arrhythmias such as ventricular fibrillation (VF) or 
ventricular tachycardia (VT), that can immediately lead to heart failure [3]. 

Arrhythmias can be prevented with early detection and treatment. In clinical settings, arrhythmia 
diagnosis is mostly based on individual patient’s electrocardiogram (ECG) analysis. An ECG represents 
a signal that compresses important information regarding the electrical activity of the heart. Although 
ECG is the gold standard for arrhythmia detection [4], other bio-signals such as arterial blood pressure 
(ABP) can be used in addition to the ECG to detect the presence of arrhythmias. While extremely 
useful, analysing bio-signals can be very challenging for a person, as it is time consuming and requires 
a great amount of expertise [5].  Therefore, in the last decades researchers proposed a wide range of 
methods for automatic arrhythmia classification by means of machine learning and deep learning 
techniques. 

Traditional machine learning (ML) techniques require steps such as feature extraction, selection 
and optimization that transform the bio-signals into a compressed set of features prior to the final 
classifier. The hand-crafted feature extraction process requires deep knowledge of the signals and pre-
processing steps such as noise filtering or signal segmentation. The main problem when using hand-
crafted methods is that patients can have different features for the same disease, or different diseases 
could have very similar features, making the classification a difficult process. However, ML techniques 
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have been made an incredible progress among the years due to the wide range of strategies proposed 
for feature extraction. Deep learning (DL) methods on the other hand, combine the feature extraction, 
selection and classification steps into the same learning body. Recently developed, these techniques 
are much deeper (multiple hidden layers) and more complex than the traditional ML methods and can 
take as inputs low filtered or even raw signals. Nevertheless, deep learning methods require large 
datasets to achieve good results and the training process is computationally expensive compared to 
ML networks. Thus, both ML and DL techniques have their pros and cons, and the choice of one 
approach must take into consideration the available datasets used to train the model, the application 
and the available resources.  

In this work, a comprehensive review is conducted for arrhythmia classification methods using 
ECG and blood pressure signals. Although other papers that review ECG arrhythmia classification 
methods exist in literature [5]–[14], they either discuss classical feature extraction and machine 
learning techniques [6], [9], [13], [15], or focus just on deep learning methods [11], [12], [14]. To our 
knowledge, this is the first review paper on arrhythmia classification that covers a broad range of topic 
that incorporates all the major aspects of ECG analysis, including pre-processing, feature extraction, 
feature optimization, and classification with both machine learning and deep learning techniques. 
Furthermore, our paper covers a review of the arrhythmia detection methods that use blood pressure 
waveforms. Specifically, this paper reviews the existing studies on ECG, PPG and ABP analysis present 
in the literature mainly from the last decade.  

This paper is organized as follows: Section 2 provides the medical background needed to 
understand the ECG and ABP characteristics that will be further discussed in this paper. Sections 3, 4, 
and 5 present a general overview of the pre-processing, feature extraction and feature optimization 
steps required before the machine learning classification. Section 6 describes the most frequently 
used machine learning techniques. Similarly, Section 7 provides short descriptions of the deep learning 
methods used for classification and reviews the outstanding methods present in literature. Some of 
the methods are describes in detail throughout the paper, while other are summarised in table 4. 
Section 8 presents deep learning methods that have been used for feature extraction. In addition, in 
Section 9 this paper reviews feature extraction and classification methods that use arterial blood 
pressure waveforms. Finally, Section 10 concludes the paper.   

2. Medical background

This section provides an overview about the electrocardiogram (ECG), arterial blood pressure
(ABP) signals and their morphologies. Both of these signals reflect the status of the heart. Specifically, 
the ECG reflects the electrical activity of the heart, while the ABP waveforms describe the effect of the 
volume of ejected blood by the left ventricle in the circulatory system. General knowledge about the 
normal morphologies of these signals is essential when developing arrhythmia detection algorithms. 
Thus, the following subsections will present the normal morphologies and meaningful segments of 
these signals.   

2.1. Electrocardiogram signal analysis 
The analysis of the Electrocardiogram (ECG) waveforms, intervals and segments reveals important 
information regarding the state of the patient and are widely used for diagnosis purposes. The ECG is 
a test that uses electrodes attached to the skin able to record the currents produced by the atrial and 
ventricular muscles during stimulation. The electrical stimulation of the heart is produced in different 
phases: atrial depolarization, ventricular depolarization, and the relaxation phase. Each of these 
phases are depicted on the ECG by a specific wave or segment. A typical ECG signal along with some 
meaningful segments and intervals can be seen in Figure 1. The P wave is visible on the ECG signal as 
the first positive deflection and is caused by the spread of the electrical stimulation through the atria 
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(atrial depolarization). The spreading of the stimulus from the atria to the ventricle causes the 
ventricular depolarization, represented by the QRS complex. As the name suggests, the QRS complex 
is composed of three individual waves: Q wave, R wave, and S wave. The Q wave is the initial negative 
deflection of the complex, the R wave is the positive deflection of the complex and normally the wave 
with the highest amplitude, and the S wave is the negative deflection following the R wave. The 
contraction of the ventricles is followed by a relaxation phase, knows as ventricular repolarization, 
that is represented on the ECG signal by the T wave. The T wave is an asymmetrical wave, followed 
sometimes by a small, rounded deflection called U wave. The time intervals and segments between 
these waves also provide a great deal of information that can be used for patient’s health assessment. 
The first interval on the ECG signal is the PR interval, measured from the onset of the P wave to the 
beginning of the QRS complex. Also called the atrio-ventricular (AV) delay, the PR interval represents 
the time interval taken from the stimulus to travel from the sinoatrial node through the atria and pass 
through the atrio-ventricular node. A normal conduction of the stimulus from the sinoatrial node to 
the ventricles is known as normal sinus rhythm (NSR) and is usually indicated by a heart rate between 
60-100 beats per minute. The next interval is the QRS width, representing the time interval required
for the depolarization of the ventricles, whereas the QT interval represents both depolarization and
repolarization of the ventricles. The isoelectric line between the depolarization and repolarization of
the ventricles is known as ST segment.

            Table 1. Normal values of the ECG parameters 

ECG parameter Normal values 
P wave amplitude 0.05-0.25 mV 
P wave duration 0.06-0.12 s 
PQ interval 0.10-0.20 s 
PR interval 0.12-0.20 s 
QRS interval 0.06-0.10 s 
Q wave amplitude 0.23-0.27 mV 
Q wave duration 0.01-0.03 s 
R wave amplitude 1-1.60 mV
R wave duration 0.02-0.06 s
S wave amplitude 0.25-0.45 mV 
S wave duration 0.02-0.04 s 
ST segment 0.08 s 
Heart rate 60-100 bpm 

The normal amplitudes and time intervals of the ECG 
waves and segments can be seen in Table 1. Any deviation from the normal values can indicate the 
presence of arrhythmias. For example, as shown in Figure 2, the presence of atrial fibrillation is 
suggested by the absence of P waves which are replaced by inconsistent fibrillatory waves [7], whereas 
distorted S and T waves indicate the occurrence of an atrial premature beat. 

Figure 1. Segments and intervals of a typical ECG signal 
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Figure 2. Examples of arrhythmias and their characteristics [8] 

2.2.  Arterial blood pressure (signal analysis 

The behaviour of the arterial blood pressure (BP) waves, their timing and amplitudes provide 
valuable information about the function and compressibility of the arterial system. These waves are 
generated by the volume of the blood ejected throughout the arteries with every heartbeat. As 
illustrated in Figure 3, the blood pressure waveform is generally composed of a systolic phase, 
indicated by the rapid increase in pressure, followed by a diastolic phase, indicated by a quick drop 
related to the left ventricular ejection. The incisura between these two phases is known as the dicrotic 
notch and represents the closure of the aortic valve.  

Figure 3. An illustration of the arterial blood pressure signal [16] 
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The relationship between ECG and ABP signals is usually described by the correlation between the 
R-peaks in the ECG followed by the systolic peaks in the ABP. Recent studies also demonstrated that
arrhythmias produce imperfect oscillation of blood pressure [17]. The contraction of the heart, shown
on the ECG by the QRS complex, causes the ejection of the blood to different parts of the body. The
systolic peaks can be seen in the ABP signals after a delay, correlated to the time taken for the blood
to reach the measurement site. Thus, any disturbances in the electrical activity of the heart should
have an impact on the morphology and parameters of the ABP waveforms. Although less explored,
this correlation could improve the ability to detect arrhythmias.

3. Pre-processing

The aim of the pre-processing stage is to reduce the unnecessary parts of the signal that can 
potentially cause misdiagnosis.  The recorded signals, whether we are talking about ECG, ABP or other 
bio-signals, are usually contaminated with noise or artefacts. The most common types of 
noise are the powerline interference, instrumentation noise, muscle artefacts and baseline wander 
[18]. Although a variety of methods are available for the elimination or reduction of these 
noises, there is no universal method that can be effective for all of them. Thus, researchers choose 
one or more denoising methods depending on their application and the state of the signals that 
they are working with.   

The ECG signals are usually filtered using high pass, low pass, band pass or median filters (Table 
2). High pass filters are used to remove low frequency noises such as baseline wander, a noise caused 
by respiration with a frequency between 0.5- 0.6 Hz [19], or baseline drift, a variation of the signal 
from the baseline found in frequency components less than 3 Hz [20] On the other hand, lowpass 
filters are applied to remove high frequency noises such as powerline interference, a sinusoidal 
interference of 50 ~ 60 Hz [21], or EMG noise, with a variable frequency between 1-10000 Hz. 
Bandpass filter is also extensively used for ECG signal filtering, as it can be applied to eliminate both 
low- and high-frequency noises including artefacts, power line interference and muscle noise (table 
2).    

Table 2. Examples of filters used to denoise the ECG signals in the pre-processing step. 

Ref Filter Frequency/ Time 
Chen et al. [22] Band pass 1-30 Hz 
Zhang et al. [23] Band pass 1-45 Hz 

Xu et al. [24] Band pass 5-45 Hz
Prakash et al. [25] Band pass 0.1-40 Hz 

Wang et al.[1] Median 200 and 600 ms 
Mondejar-Guerraa et al. [26] Median 200 and 600 ms 

Shi et al. [20] High pass, Low pass 0-0.28125 Hz, 45-90 Hz 
Ashtiyani et al. [27] Notch 60 Hz 

Bhoi et al. [28] Band pass 5-15 Hz 
Essa et al. [29] Median 

Low pass 
200 and 600 ms 

35 Hz 
Sayantan et al [30] Median 

Low pass 
200 and 600 ms 

35 Hz 
Cai et al. [31] Band pass 0.5-35 z 

4. Features extraction

Signals can be divided into a sequence of phases that describe their patterns and ideally suppress
all the important information. The identification of those patterns is known as feature 
extraction. Classical machine learning approaches use hand-crafted feature extraction methods, 
transforming the input data (ECG signals) into a set of features that can be further utilized for 
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classification. These methods depend heavily upon the mathematical approaches used for feature 
extraction. Among the years, researchers used different mathematical measurements and 
transformations to extract, optimize, and store a wide range of patterns into feature vectors [32], 
[33]. According to the methods used for extraction, the obtained patterns can be classified in 
categories such as: wavelet, statistical, and heartbeat or morphological features. Researchers use 
them either individually [34]–[38] or coupled with other features [1], [32], [39], [40].   

4.1. QRS complex, P and T waves detection 

A wide range of features can be extracted from the ECG signals based on location, amplitude, 
duration and morphology of the P, Q, R, S, T waves. An accurate localization of those deflections is 
crucial for calculating the signals features and predicting a correct diagnosis. Although all the waves 
provide essential information, the QRS complex features provide the most meaningful information for 
ECG analysis, as it characterizes the electrical activity of the heart during ventricular contraction. 
Therefore, QRS complex detection plays a vital role in ECG analysis and can either compromise or 
enhance the accuracies of the final classification.  

In the last decades, a significant number of QRS complex detection methods have been published 
in literature (Table 3).  Still among the most extensively applied methods in state-of-the art papers 
([41]–[44]), Pan-Tompkins is an efficient algorithm used for noise removal and QRS complex detection, 
that provides an excellent accuracy. This algorithm includes a bandpass filter, a five-point derivative, 
moving window integrator and automatically adjustable thresholds which discriminate the locations 
of the QRS complexes [45]. Although efficient, Pan-Tompkins algorithm necessitates a relatively large 
complexity due to all the above-mentioned steps that are required [46]. To address this problem 
Hamilton and Tompkins [47] proposed a QRS detection method based on optimized decision rule 
threshold process and upgraded the denoising stage by using linear and nonlinear digital filters, 
obtaining a higher precision. Later, Benitez et al. [48] introduced a detection method that applies 
Hilbert transform on the first differential of the ECG signal and detects the QRS peaks using an adaptive 
threshold. More recently, Zhang et al. [23] achieved a 99.83% detection sensitivity by applying an 
optimal bandwidth-bandpass filter and thresholding method to denoise, amplify and detect the QRS 
complexes. The P and T waves are further detected by removing the QRS complexes from the signals, 
cross correlating the main signal with a triangular filter and applying the threshold processing. Other 
QRS detection methods use wavelet techniques, which are well known due to their ability to filter the 
noise, and to their capacity to emphasise and delimitate the ORS peaks. The decomposition 
coefficients obtained by applying wavelet transforms on the signals can be used to divide the low and 
high frequency components. Thus, the signals can be reconstructed using just the useful coefficients, 
obtaining a filtered signal with well-preserved R peaks. Pal et al. [49] detected the QRS complex, P and 
T waves using multiresolution wavelet analysis. DWT wavelet was applied to decompose the signals 
on 8 decomposition levels, and different levels were used to detect QRS complex, Q and S waves, and 
P and T waves, respectively. Similarly, Banerjee et al. [50] used multiresolution wavelet analysis and 
adaptive thresholding, achieving a sensitivity (Se) of 99.8% and a positive predictive value (PPV) of 
99.6%. More recently, Bouny et al. [51] used stationary wavelet transform (SWT) along with Teager 
energy operator (TEO) and adaptive thresholding to localize the frequency content of QRS complexes. 
Their method yielded a 99.84% Se, with 0.3% detection error rate (DER). Beyramienanlou and 
Lotfivand [52] achieved a DER of just 0.155% using a method based on signal energy. For each sample, 
the energy of the local spectrum is calculated using Shannon energy (SE) and further used to make an 
envelope and remove the small spikes around the R peaks. Finally, the QRS peaks are detected using 
a threshold. Methods that combined wavelet transform and entropic criterion also yielded good 
results due to the elimination of the unnecessary signals using entropy [53]–[56].  

Despite their good detection accuracies, peak detection techniques and their extracted features 
can sometimes fail to accurately describe specific arrhythmias, especially when dealing with unusual 
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morphologies. Luckily, methods such as waveform analysis can also be used by themselves to extract 
wavelet coefficients, which can be used as frequency-based features. Various wavelet transform 
methods have been used to extract the frequency-based features such as continuous wavelet 
transform (CWT) [1], [57], [58], dual tree complex wavelet (DTCWT) [59], discrete wavelet transform 
(DWT), or Meyer Wavelet Transform (MWT) [60].  

Table 3. Comparison between QRS, P and T wave detection algorithms 

Ref. Year Method Se 
(%) 

Ppv (%) Acc (%) Der 
(%) 

Pan-Tompkins [45] 1985 bandpass filter, differentiation, squaring, and 
moving-window integration 

99.75 99.54 - 0.71

Hamilton and 
Tompkins [47] 

1986 linear and nonlinear digital filtering, 
optimized threshold decision rule process 

99.69 99.77 - - 

Benitez et al. [48] 2000 Hilbert transform 99.81 99.83 - 0.36
Chen et al. [61] 2006 Moving average 99.55 99.49 99.50 - 

Banerjee et al. [62] 2012 Multiresolution DWT and adaptive 
thresholding 

99.80 99.60 - - 

Zeng et al. [63] 2013 Wavelet transform (combination of Mexican 
hat and Morlet wavelet) 

99.71 99.53 - 0.77

Merah et al. [64] 2015 Stationary Wavelet Transform (SWT) 99.84 99.88 - 0.28
Rekik et al. [53] 2017 Entropy Criterion (EC) of the Wave l e t 

Transform (WT) 
99.94 99.99 - - 

Beyramienanlou and 
Lotfivand [52] 

2017 Shannon energy and threshold 99.92 99.92 99.84 0.16 

Abdul et al. [65] 2019 differentiation, Hilbert transform, adaptive 
threshold 

99.62 99.88 - 0.50

Bouny et al. [66] 2020 SWT and Teager energy operator (TEO) 99.84 99.87 99.70 0.30 
Alhussainy [67] 2020 DWT and two adaptive thresholds 99.682 99.36 99.36 0.32 
Chen et al. [22] 2020 hierarchical clustering and DWT 99.89 99.97 99.83 - 

Anuhya et al. [68] 2020 adaptive Stockwell transform (AST) 99.93 99.94 - 0.15
Fotoohinasab et al. 

[69] 
2021 graph-constrained changepoint detection 

(GCCD) 
99.76 99.68 - 0.55

5. Feature optimization techniques

Large number of features are often extracted from the ECG signals and, although useful, these
features increase the training time and can hamper an optimized training to be performed [70]. Thus, 
when the feature set has a high dimension, optimization is required in order to reduce the complexity 
of the models and obtain relevant and accurate classification. As a result, a reduced number of 
meaningful and most representative features are identified.  

Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Linear 
Discriminant Analysis (LDA) are the most used techniques applied to dimensionally reduce and 
optimize the features. PCA is a linear method that transforms the input vectors into principal 
components which contain uncorrelated variables in decreasing order of the total variability. The 
components with the highest variability suppress the most meaningful information.  Unlike PCA, which 
is maximizing variance, the ICA is a statistical method that allows the separation of mixed signals into 
their components by maximizing the independence between them, thus obtaining statistically 
independent components. LDA, on the other hand, discriminates the features by maximizing the 
separability between classes. To compare the accuracy of these methods, Martis et al. [71] used Pan-
Tompkins algorithm and discrete wavelet transform to detect the QRS complexes and extract the 
wavelet coefficients. The wavelet coefficients were then separately fed into three different 
dimensionality reduction methods (PCA, ICA, LDA) and each one of the resulted features were tested 
on support vector machines, probabilistic and backpropagation neural networks for the final 
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classification.  IDA on wavelet coefficients provided the highest accuracy when used with the 
probabilistic neural network classifier. PCA and LDA on wavelet coefficients provided 99% and 98.59% 
accuracy using probabilistic neural network and backpropagation neural network, respectively.   

6. Machine learning techniques for ECG arrhythmia classification

In the last decades, significant number of techniques have been proposed for ECG arrhythmia 
classification using machine learning approaches. In the next subsections, widely used machine 
learning methods such as Artificial Neural Networks (NN), Support Vector Machine (SVM), K Nearest 
Neighbour (KNN) and Decision Tree (DT) will be discussed.    

6.1. Artificial Neural Networks 

Artificial Neural Networks are brain-inspired networks composed of three types of layers known 
as input layers, hidden layers, and output layers, that mimic the functionality of the human neurons. 
These layers are composed of several interconnected units called nodes or artificial neurons that are 
associated with adaptable weights. According to the reviewed studies, in this paper we classify the 
ANNs in four categories: Feed-forward Neural Networks (FNN), Back Propagation Neural Networks 
(BPNN), Probabilistic Neural Networks (PNN) and other. 

• Feed-forward Neural Networks

In Feed Forward Neural Networks (FNNs), as the name suggests, the information travels in just
one direction from input to output, the final decision being based on a specified threshold. Although 
outdated by other modern methods, in [72] FNN provided a better classification accuracy compared 
to SVM and multi-layer perceptron. In [73], FNN combined with Particle Swarm Optimization, which 
optimised the weights and biases of the network, achieved a surprisingly good accuracy of 99.41% 
using a set of seven features.  

• Back Propagation Neural Networks

Back Propagation Neural Networks (BPNN) were introduced to overcome the simplicity of FNN by
comparing the achieved output with the expected output using a loss function. According to this loss 
function the weights are adjusted from the output layer to the input layer (back propagated) and the 
process continues until the minimum error is reached. Although more precise than FNN, the random 
weights that are initially assigned lead to fluctuations in BPNN response, as different initial weights 
can result in different classification results [74]. BPNN are employed in some recent studies for ECG 
arrhythmia classification [33], [36], [71], [75]–[79]. In other papers [80]–[83], fuzzy clustering 
algorithms are combined with BPNNs and employed for arrhythmia classification, increasing the 
accuracy of the results.  

• Probabilistic Neural Networks

Introduced by Specht in 1990, Probabilistic Neural Networks (PNNs) are composed of input,
pattern, summation, and decision layers. Similarly organised as a BPNNs, PNNs use a statistically 
derived activation function capable to compute non-linear decision boundaries, which under certain 
conditions approach the Bayes optimal decision surface [84]. The PNN was used to classify arrhythmia 
in ECG signals using ICA and RR-interval features [74], PCA and LDA features [85], heartbeat features 
[86], as well as statistical and wavelet features [87]. PNN was also used in studies such as [36], [71], 
[88], [89]. Although PNNs are much faster and precise than BPNNs, this comes at the cost of 
computational memory.   
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• Other

In addition to the above-mentioned methods, ANN techniques such as radial basis function neural
network (RBF-NN) ([88]–[90]), generalized regression neural network (GRNN) ([91]), and neural 
network with adaptive activation function (NNAAF) [92], [93] are also applied in literature.  

6.2. Support Vector Machine 

Support Vector Machine (SVM) is a supervised learning algorithm, that can be used for both 
classification and regression problems. Roughly speaking, SVM returns the hyperplane that has 
maximum margin between the training data and the decision boundary [5]. SVM was first designed to 
solve binary classification problems, but methods such as “one vs one” and “one vs all” have been 
proposed and extensively used for multi-class classification. When dealing with nonlinear datasets, 
kernel functions such as polynomial, Gaussian, Radial Basis Function (RBF) and sigmoid are used to 
project the features into a higher dimensional space where they are linearly separable.  

Yazdanian et al. [94] detected five classes of arrhythmia using SVM classifier on a set of 
wavelets, apparent and time-domain features, achieving a precision of 96.97% using Radial Basis 
Function kernel and 92.72% using sigmoid kernel. Sahoo et al. [77]  classified temporal, morphological 
and heartbeat features with an accuracy of 96.67% using an SVM model. Heart rate variability (HRV) 
features are also frequently used for arrhythmia detection using SVM classifiers ( [27], [39], [95]–[98] 
), being advantageous as they can also be calculated from other bio-signals such as PPG [99]. Other 
papers that employed SVM for the final classification are illustrated and summarized in table 4 [27], 
[39], [100]. 

6.3. K Nearest Neighbour 

K Nearest Neighbour (KNN) is a supervised classifier which assumes that each type of arrhythmia 
has a group of similar features that exists in the near neighbourhood.  A new feature vector is classified 
by calculating the distances from this vector to all the learning vectors from the training dataset. The 
new vector is then assigned to the class in which the majority of the closest vectors belong to. The 
most frequently used distance calculated in KNN is the Euclidean distance. Although with a higher 
computational cost, Manhattan, Chebyshev or Mahalonobis distances can also be used. Recent 
developed methods used KNN for ECG arrhythmia classification [35], [88]–[90], [101]. 

6.4. Decision Tree 

Decision trees (DT) networks are machine learning algorithms that can be categorised in 
classification or regression trees. DTs map the dataset from a set of observations about an item to 
conclusions represented by target values or target classes. In classification trees the observations 
(branches) are groups of features, whereas the conclusions (leaves), are target class labels. In 
regression trees, on the other hand, the targets are represented by real values. Random forest (RF) 
classifiers are a collection of many decision trees that produce a response by aggregating the results 
from all the individual trees. RFs are often used in recent papers for ECG arrhythmia classification  [25], 
[102]–[104].  

7. Deep learning techniques for ECG arrhythmia classification

Deep learning methods are a subset of machine learning techniques, able to perform intelligent 
decision making using a neural network with multiple hidden layers. Compared to classical machine 
learning techniques, deep neural networks are providing a better performance due to their ability to 
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deal with unstructured data and thus, the ability to process a substantially larger number of features. 
Deep Neural Networks are essentially feed-forward neural networks with many layers that can be 
trained end-to-end. In other words, the deep hidden layers of DNNs can learn the features that best 
describe the dataset without any prior processing.  In the last decades, various deep learning methods 
have been proposed including Convolutional Neural Networks (CNN), Deep Neural Networks (DNN), 
Deep Belief Networks (DBN), and Recurrent neural networks (RNN). These methods, as well their 
variants are all summarized in Table 5. The most frequently used will be presented and explained in 
this section. 

7.1. Convolutional Neural Networks 

Convolutional Neural Networks (CNN) are a special type of artificial neural networks that 
consist of multiple connected layers assembled in a feed forward manner. CNNs have three main types 
of layers: convolutional layers, pooling layers and fully connected layers. The first layers are 
responsible for pattern extraction, whereas the fully connected layers are responsible for the final 
classification.   

A wide range of methods that use CNN for ECG arrhythmia classification exists in literature. 
As CNNs were first introduced for image recognition tasks, these methods can be classified in two 
categories such as one-dimensional CNNs, able to analyse raw time series signals, and two-
dimensional CNNs, that require the conversion of time series signals to images. The transformation of 
the ECG signals into images is considered advantageous as noise filtering and feature extraction steps 
can be avoided and steps like data augmentation can be used to expand the training data, reduce 
overfitting and balance the class distribution when dealing with an imbalanced dataset. For 2D CNNs, 
researchers applied different conversions of the signals using grayscale images of the segmented ECG 
beats [3], recurrence plot images of 2-second ECG signals [105], or time-frequency images obtained 
by applying wavelet transforms on the ECG signals [106], [1].  

More recently, 1D CNN models, firstly introduced by Kiranyaz et al. in 2015 [107], were 
applied for signal classification. In 2017, Andrew Ng [108] proposed a 34-layers deep 1D CNN for 
heartbeat classification. This method takes as input raw ECG signals from 30,000 unique patients and 
can classify 12 different arrhythmias with a sensitivity and productivity superior to that of 
cardiologists. Likewise, Sarvan and Nalan [109] used raw ECG signals and fed them into a 9-leyer deep 
CNN. Although their method obtained high accuracy and specificity, the sensitivity was just 26.85%. 
The poor results of deep networks are most probably caused by the relatively small size of data used 
to train the models, as deep networks are closely linked with the amount of data used. Thus, Wan et 
al. [110] proposed a method that uses denoised ECG signals and a 4-layer CNN model to classify five 
types of arrhythmia, reaching a 99.10% accuracy. Cai et al. [31] proposed a one-dimensional densely 
connected neural network (DDNN) for atrial fibrillation detection using 12-lead ECG signals. The DDNN 
was composed of four dense blocks with a total of 36 layers, and each block consisted of 2, 4, 6, and 
4 convolutional layers. Before each dense block and transition layer, squeeze-and-excitation module 
was applied for feature recalibration. Pooling layers were used between dense blocks to improve the 
efficiency, and global average pooling and softmax activation function was employed before and after 
the fully connected layer. Accuracy, sensitivity, and specificity of the results on the test dataset were 
99.35%, 99.19%, and 99.44%, respectively. Yildirim et al. [111] proposed a DNN composed of 6 one-
dimensional convolutional layers and 4 sub-sampling (max-pooling) layers in the representation 
learning phase (feature extraction), and a 128 LSTM block in the sequence learning phase. Two batch 
normalization and two dropout layers were used to normalize the data and avoid overfitting. Leaky-
ReLU activation function was used in the first part of the algorithm. The average accuracy of the result 
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was 96.13% when model was tested on 12-lead ECG signals, with the best performance obtained on 
Lead-II (95.43% sensitivity, 98.71% specificity, 95.78% precision). Other recent methods that use CNN 
for arrhythmia detection are summarized in table 5. 

7.2. Deep Belief Networks 

Deep Belief Networks (DBN) are probabilistic generative deep learning algorithms introduced to 
provide a better alternative to the traditional neural networks that can get stuck in local minima and 
become slow when training in deep layered networks. DBNs consist of multiple Restricted Boltzmann 
Machines (RBMs), that are composed of two unidirectional connected layers: a layer of visible units 
and a layer of hidden units with no connections between the units. The visible layer of an RBM 
represents the input data, while the hidden layer has the ability to perform unsupervised learning.  

Recent papers such as [112]–[114] applied DBN classification networks. Tripathy et al [112] 
proposed a two-stage variational mode decomposition (VMD) method for the extraction of sample 
entropy and VMD estimated center frequency features, and a DBN for the detection of atrial 
fibrillation. Both Bernouli–Bernouli and Gaussian–Bernouli were used for the probability distribution 
of visible and hidden units of the DBN, but Gaussian–Bernouli yielded a better detection accuracy of 
98.27% when tested on MIT-BIH arrhythmia and MIT-BIH AF databases. Similarly, Mathews et al. [113] 
used two sets of extracted features and a DBN to detect supraventricular ectopic beats and ventricular 
ectopic beats, achieving an accuracy of 93.78%, and 96.94%, respectively.  

7.3. Recurrent Neural Networks (RNN) 

Recurrent neural networks are networks with feedback connections specially designed to learn 
sequential or time-series patterns. RNNs make predictions according to both the present input value 
and the prior input values (feedback) using backpropagation through time with gradient descent. 
Compared to feed-forward neural networks, in RNN the weights are shared across layers and thus the 
errors are summed at each time step, allowing them to memorize previous sequences. Although RNN 
gives a better performance than FNN, both algorithms deal with vanishing gradients. This problem is 
related to the size of the gradients, which decrease exponentially during backpropagation and thus, 
these networks cannot learn long time-series data. To reduce the vanishing gradient problem, Long 
Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) Networks were proposed. LSTMs can 
make predictions based on both short and long-term sequences, using memory cells composed of 
input, forget and output gates that use sigmoid functions to decide which information needs to be 
retained or withdrawn in order to make the next predictions. Similar to LSTM, GRU are another 
generation of RNNs composed of just two types of gates: reset gate and update gate, being considered 
faster and less computationally expensive than LSTM networks. Moreover, LSTM and GRU can be 
extended to bidirectional LSTM and GRU networks. Introduced by Schuster et al. [115], these 
networks can be trained in both past and future directions by connecting two hidden layers from 
opposite directions to the same output, increasing the accuracy of the model. A few of these methods 
are explained below.  

Zhang et al. [116] proposed a patient specific classification method, that uses clustering to extract 
both common features from the dataset and patient-specific features. Morphology information is fed 
into an LSTM model that learns time correlation among signal points and detects the VEB and SVEB 
with an overall accuracy of 99.7% and 99.3%, respectively.  Wang et al.  [91] proposed a four-layer 
global and updatable heartbeat classification model, called Global Recurrent Neural Network (GRNN), 
composed of two parts: a morphological and a temporal part. In the morphological part, LSTM blocks 
were used to memorize longer history, and their output was fed into a fully connected layer. In the 
temporal part, a fully connected layer was designed and used to learn temporal information. In the 
end, GRNN learns the differences among various classes, detecting VEB and SVEB with an accuracy, 
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sensitivity and precision over 99%. The main advantage of this system is that a single model can classify 
samples from multiple patients, and, when different databases are used for training and test samples, 
the generalization performance of the GRNN improves.  

More recently, Zhang et al. [117] developed a heartbeat detection model using CNN and GRU. The 
algorithm extracts spatial and temporal CNN features and feds them in a GRU network capable to 
detect nine arrhythmia classes, with an overall F1 score of 83.5%.  Similarly, Pandey et al. [29] detected 
five types of arrhythmia with a 99.52% accuracy using CNN encoded features and a bidirectional LSTM. 
Essa and Xie [29] proposed an ensemble model for arrhythmia classification. Both hand-crafted 
features and CNN-based features were extracted, and LSTM is used for the final classification. 
Although it seems an interesting approach and the overall accuracy is 95.81%, this model fails to 
detect SVEB (supraventricular arrhythmia) and F (fusion) heartbeats. Other recent methods that used 
RRNs for ECG arrhythmia classification methods are summarized in table 4.  

8. Deep learning-based feature extraction

Recently, researchers proposed deep learning techniques for automatic feature extraction, 
which overcome the time-consuming hand-crafted feature extraction process required in machine 
learning techniques. These methods are known as end-to-end learning, where feature extraction, 
feature optimization, and classification are integrated in one body [118].    

The strong ability of the convolutional layers to extract complex features that describe the 
analysed signals or images, makes the convolutional neural networks among the most extensively 
used methods for automatic feature extraction. Oh et al. [119] proposed an automated hybrid system 
that uses CNN to extract the spatial feature maps and LSTM to extract the temporal dynamics of these 
feature maps. The advantage of this method is that it has the ability to classify ECG segments of 
variable lengths with a high accuracy of 98.10%. However, an imbalanced dataset was used to develop 
the model and assumed that each ECG segment contains just one type of arrhythmia, which may 
decrease the classification accuracy if tested on other signals. Zhang et al. [117] developed a multi-
class arrhythmia detection model based on CNN and GRU. The features are extracted by embedding 
spatial and temporal attention mechanism in each convolutional block. The attention mechanisms are 
used to assign specific weights for a feature map, helping them to focus on the representative 
features. Other recent papers that use CNN for automatic feature extraction are [29], [120]–[123].  

Intentionally designed for analysing time-series datasets, the long short-term memory 
networks can be used for both classification and future extraction. Hou et al. [124] proposed an 
arrhythmia detection model that applies LSTM-based auto-encoder (AE) model for feature extraction 
and SVM for the final classification. The LSTM-based AE consists of two layers: one that works like an 
encoder and extracts the ECG features, and the other one that decodes the features and transforms 
them back into signals. The features obtained after the LSTM encoder layer are fed into an SVM which 
detects five types of heartbeats with a 99.74% accuracy. Yildirim [125] developed a deep bidirectional 
LSTM network that used wavelet sequences to extract ECG features. Another deep LSTM is then used 
for classification, obtaining an outstanding performance that yielded a 99.39% accuracy. 

9. Arrhythmia classification using Arterial Blood Pressure signals

In the last decades various techniques have been reported for the analysis and classification of
arrhythmia. Although most of the methods have been focused on the ECG analysis, signals such as 
arterial blood pressure waveforms (ABP) or photoplethysmogram (PPG) can be employed as an 
alternative or in addition to the ECG to increase the accuracy of the model or to provide 
supplementary information that can help in assessing the cardiovascular function.  The APB and PPG 
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waveforms are both pressure waveforms, but the difference between them is the recording 
technique. The ABP waveforms are invasively acquired using a catheter placed in an artery (e.g., 
femoral, brachial, radial), while the PPG is an optical signal acquired using a pulse oximeter placed on 
the fingertip of the patient.  

Blood pressure waveform analysis is well known for its potential to assess the haemodynamic and 
cardiovascular function [126]. Traditional methods analyse the ABP waveforms through single 
parameter analysis such as pulse wave velocity (PWV) and augmentation index (Alx) [127]. Even 
though these methods made possible the estimation of arterial stiffness using non-invasive 
measurements, the ABP understanding would be highly improved using multi-parametric techniques. 
Thus, feature extraction techniques have been proposed for studying the morphology, temporal, and 
frequency proprieties of the blood pressure waveforms. Melis et al. [127] proposed an ABP waveform 
feature extraction method using wavelet analysis of carotid artery pressure waveforms. Daubechies 4 
was used to decompose the ABP signals in seven decomposition levels and clear differences in the 
morphology of different ABP waveforms could be seen in the fifth detail. Although the choice of the 
wavelet function is closely associated with the utilized dataset, this study demonstrated that wavelet 
analysis can be employed to extract features from ABP waveforms. In 2011, Almeida et al. [128] 
proposed the prominent point’s identifier algorithm (PPIA) to extract hemodynamic features from ABP 
waveforms. The signals are first segmented pulse by pulse and lowpass filtered to remove the high 
frequency components. The systolic peak (SP), dicrotic peak, and reflection point were detected using 
a combined analysis between the ABP waveform and its first order derivative. Moreover, according to 
the location of the mentioned points, the augmentation index is calculated, and the ABP waveforms 
are classified into one of four classes: A, B, C and D; where type A indicates large arterial stiffness and 
type C and D indicate elastic arteries, specific to young patients [126].  This method achieved 99.09% 
sensitivity for localizing the peaks in time measurements and 99.08% sensitivity for localizing the peaks 
in amplitude measurements. Later, Almeida et al. [126] improved their initial method and used a 
multi-parametric approach to compute morphological attributes of the ABP waveforms. Ratios, 
indices and root mean square of successive differences were computed for the initial parameters for 
both time and amplitude measurements. The extracted features were optimized using Weka package, 
which uses a discretization method to measure the information gain for each feature and used to 
classify two types of groups: hypotensive and healthy patients. Several machine learning models such 
as decision tree and BayesNet have been tested, but Random Forest yielded the best accuracy 
(96.95%).  

ABP waveforms provide a great deal of information regarding the function and compressibility of 
the arterial system which could be studied as additional information regarding the impact of 
arrhythmias on patient’s health. However, up to date, a limited number of methods have been 
proposed for ABP arrhythmia detection (Table 4). Schack et al.  [129] proposed an algorithm for atrial 
fibrillation based on photoplethysmogram (PPG) signals generated based on the red channel of 50x50 
pixels images acquired using smartphone’s cameras. The peaks are detected using 20s windows and 
selected as the samples that are larger than their two adjacent data samples. Time-domain and 
frequency-domain features are extracted and dimensionally reduced using a sequential forward 
selection (SFS) which found the best feature combination as being the Shannon entropy of peak 
differences and the median of peak rise height. Their method has low computational costs and 
achieved 100% accuracy. However, the classification is exclusively based on pairs of two features and 
a simple linear SVM model was employed. Thus, this method does not seem reliable when multiple 
classes of arrythmia must be distinguished. In 2017, Arvanaghi et al. [17] classified for the first time 
five types of arrhythmias based just on ABP waveforms and achieved a 95.75% accuracy. However, 
ECG signals were synchronically recorded and used to analyse the ABP signals based on a window with 
the length of the RR intervals which were detected with DWT. Frequency-domain features such as min 
and max FFT values, mean and median frequency and the median normalized frequency are extracted 
together with other features based on power and entropy of the signals. The feature vector is fed into 
the Least Square Support Vector Machine (LS-SVM) model where the final classification is performed. 
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Hussin et al. [130] proposed an arrhythmia detection model based on Acceleration Plethysmogram 
(APG) signals and Multi-Layer Perceptron (MLP). The APG signals are obtained by calculating the 
second derivative of the denoised PPG signals. Here, Weka software is used as a feature extraction 
tool and MLP classifies the signals into normal and abnormal classes with 96% accuracy.    

Table 4. Arrhythmia classification methods based on arterial blood pressure signals. 

Ref Signal Denoisi
ng 

filter 

Feature 
extraction 

Features No of 
featur

es 

Feature 
optimizatio

n 

Classifica
tion 

No 
of 

class
es 

Results 

Schack et 
al. [129] 

PPG Bandpa
ss filter 

R-peak detection
algorithm; Fourier 

transform 

Time-domain; 
Frequency-

domain 

85 Sequential 
Forward 
Selection 

(SFS) 

SVM 2 Accuracy:  
100, 

 Sensitivity  
100 

Specificity 
 100 

Arvanag
hi et al. 

[17]  

ABP DWT DWT Frequency 
based features, 

power and 
entropy 

10 - 
LS-SVM 

6 Accuracy:  
95.75 

Sensitivity: 
96.77 

Specificity: 
96.32 

Hussin et 
al. [130] 

APG Bandpa
ss 

Weka software - - - MLP 2 Accuracy 
96 

Besleaga 
et al. 
[131] 

ABP 
PPG 
ECG 

Lowpas
s 

first derivative 
and Fourier 
transform 

PPG features 
before and after 

the onset of 
ventricular 

tachycardia; 
Heart rate from 

ECG signals 

- Least 
absolute 
shrinkage 

and 
selection 
operator 
(LASSO) 

logistic 
regressio

n 

2 Accuracy 
 86 

Kalidas 
and 

Tamil 
[132] 

ABP 
PPG 
ECG 

Bandpa
ss 

Lowpas
s 

Pan-Tompkins for 
ECG and 

threshold based 
peak detection 

for PPG and ABP 

Specific 
features for 

each 
arrhythmia type 

- - SVM and 
logical 

analysis 
techniqu

es 

5 Sensitivity: 
 94 

Specificity  
82 

Other studies used blood pressure waveforms together with ECG for a better accuracy. Besleaga 
et al. [131] used invasive ABP waveforms, PPG and ECG signals to distinguish between stable and 
unstable ventricular tachycardia events. Most of the used features consisted of PPG parameters, while 
ECG signals were used to extract the heart rate and the ABP signals were used to extract mean ABP 
and the drop in mean ABP.  The best pair of features were selected using Least absolute shrinkage and 
selection operator (LASSO) models. As a result, an 86% accuracy was obtained using PPG markers in 
combination with the heart rate, indicating the link between PPG and ECG.  Kalidas and Tamil [132] 
classified five types of cardiac arrhythmias using ECG, PPG, and ABP signals. After the signals were 
filtered by noise, ECG R-peaks were detected using Pan-Tompkins algorithm, whereas PPG and ABP 
systolic peaks were detected as the peaks whose amplitude was higher than 40% of the maximum 
value of the first-order derivative of the signals. For each arrhythmia, 2 feature vectors were extracted, 
one of them from the ECG signal and the other from the PPG signal, and fed into the SVM classifier. If 
both features have met the criteria for a specific arrythmia, then that specific record was labelled with 
that arrythmia. Otherwise, the record was labelled as normal. The records that were detected with 
arrhythmias underwent further threshold-based logical analysis to reduce false positives. ABP was 
used when PPG information lacked. The method achieved an overall sensitivity of 94%, but the main 
drawback is that individual features and algorithms have been created for each arrythmia types, 
making this technique time consuming and computationally expensive.  
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10. Conclusions

This study presents a comprehensive review on different machine learning and deep learning
methods employed for cardiac arrhythmia detection. Although other arrhythmia detection review 
articles exist in the literature, they are restricted to only specific subjects. In this work, all the major 
aspects of arrhythmia detection have been discussed, including both deep learning and hand-crafted 
machine learning techniques with steps such as pre-processing, feature extraction, and feature 
optimization. Moreover, techniques that use ABP signals either by themselves or in addition to ECG 
signals have also been reviewed and explained in this paper.  

Appendix 

Table 5. Recent cardiac detection techniques using ECG signals  

Reference Pre- 
processing 

Feature 
extraction 

method 

Features No 
of 

feat
ures 

Optimiza
tion 

Classifi
cation  

Database Cla
sse
s 

Results (%):  

Jambukia 
et al. [73] - 

Pan-
Tompkins 

Morphological (R 
peak, QRS 

duration) and 
timing features 

(RR interval) 

7 - 
PSO 
and 
FNN 

MIT-BIH 
arrhythmia 

3 
4  
6 

Accuracy 
99.41%, 
98.68% 
98.69% 

Deriche et 
al. [41] - 

DWT and 
Pan-
Tompkins  

Heartbeat 
features 13 - 

Bayesia
n 

MIT-BIH 
Arrhythmia 5 

Accuracy 
92% 

Moreira et 
al. [43] 

Bandpass and 
DC filter 

Pan-
Tompkins 
Dynamic 

segmentati
on  

RR intervals; 
amplitude; Hjorth 

parameters 
21 - SVM 

MIT-BIH 
Arrhythmia 2 

Sensitivity 
72.46% 

Sueaseena
k et al. [42] - 

Pan-
Tompkins 

 mean and SD of 
RR interval 2 - SVM  - 4 

Accuracy 
96.43%  

Bhoi et al. 
[28]  

Low pass, 
high pass and 
passband  

Pan-
Tompkins 

improvised 
with 

difference 
operation 
method 
(DOM) 

Mean QRS 
complexes, mean 
ST segments, 
Ratio of power 
spectrum and 
power spectral 
density, area 
under the curve 
of QRS and ST 
segment 

4 - ANN 

FANTASIA, 
MIT-BIH 

Arrhythmia
, and long-

term ST 

3 
Accuracy 

91.7%  

Martis et 
al. [71] 

DWT 
Pan-

Tompkins 
and DWT DWT coefficients 12 

PCA 
LDA 

     ICA 

BPNN 
SVM, 
PNN 

MIT-BIH 
arrhythmia  

5 Accuracy: 
PCA-PNN: 

99% 
LDA-BPNN: 

98.59% 
ICA-PNN 
99.28% 

Sahoo et 
al. [100] 

Wavelet 
transform  

Hilbert 
transform 

wavelet, temporal 
and 

morphological 
features 

- PCA SVM MIT-BIH 
arrhythmia  

5 

Accuracy:  
98.50%  

Sensitivity: 
95.68% 

Specificity: 
99.18% 

Thilagavat
hy et al. 

[37] 

DWT 
(Daubechies 

D6) 

Pan-
Tompkins 
and DWT 

wavelet 
coefficients - - SVM 

MIT-BIH 
arrhythmia  6 

Accuracy 
98.67%  
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Prakash et 
al. [25] 

Bandpass 
filter (band-
pass 
frequency of 
0.1-40 Hz) 

Pan-
Tompkins 
and dual 

tree 
complex 
wavelet 

transform 
(DTCWT) 

Temporal (AC 
power, kurtosis, 
skewness, and 

timing 
information), and 
frequency domain 

- - 
Rando

m 
forest 

MIT-BIH 
arrhythmia  

5 

 Accuracy: 
99.52 

Sensitivity: 
 99.24 

Specificity: 
  99.12 

Precision:  
99.26 

Abdalla et 
al. [133] - 

annotation
s from mit; 
DWT with 

Multiresolu
tion 

Analysis 
(MRA) 

Average Power 
(AP), Dispersion 
Coefficient (CD), 
Sample Entropy 
(SE) and Singular 

Values (SV) 

36 
and 
15 

after 
PCA 

PCA SVM MIT-BIH 
arrhythmia  

10 
Accuracy: 

99.84 

Chashmi et 
al.  [134] 

DWT 
(Daubechies 

D6) 

R-peak 
annotation
s from mit 
database 
DWT and 

HOS 

 linear statistical 
parameters 
(minimum, 
maximum, mean, 
standard 
deviation and 
power of the 
wavelet 
coefficient) 

22 
Shannon'
s Entropy 

BPNN,  

SVM-
RBF 

MIT-BIH 
arrhythmia  

5 

Accuracy 
99.03 

99.83 

Kumari et 
al. [135] - 

Auto-
Regressive, 

Shannon 
entropy, 

Multi-
fractal 

wavelet 
variance 

- 190 - SVM 

MIT-BIH 
arrhythmia; 

MITBIH 
NSR; 

BIDMC 
database  

3  
Accuracy: 

95.92 

Harkat et 
al. [57] 

- 

Pan-
Tompkins; 
Continuous 
Wavelet 
Transform 
(CWT) 

Wavelet 
coefficients 

- - 

RBF-
NN 

(radial 
basis 

functio
n) 

MIT-BIH 
arrhythmia  

2 

Accuracy: 
98.32%  

Sensitivity: 
98.92% 

Ye et al. 
[136] 

WT for 
baseline 

wander and 
bandpass (5-

12 Hz) 

MIT 
database R-

peak 
annotation
s, WT and 

ICA 

RR interval, 
morphological 

features (wavelet 
features and ICA 

features) 

22 PCA SVM MIT-BIH 
arrhythmia  

16 

Accuracy: 
99.3% 

Sensitivity: 
53.46% 

Precision: 
62.79 

Gupta et 
al. [101] 

ICA for noise 
filtering 

Auto 
Regressive 

Burg 
Method 

and Hilbert 
transform 

- - PCA KNN 
Massachus
etts 
Institute of 
Technology  

- 

Accuracy: 
99.84% 

Sensitivity 
 99.90%, 

Precision: 
 99.93%, 

Mathunjwa 
et al. [137]  

Conversion of 
2s ECG signals 

into 
recurrence 
plot images 

- - - - 
2D 

CNN 
MIT-BIH 

arrhythmia  6 

Acc. First 
stage: 95.3 
% ± 1.27 % 
and second 
stage 98.41 
% ± 0.11 % 

Jun et al. 
[3] 

Conversion of 
ECG beats 

into grayscale 
images  

- - - - 
2D 

CNN 
MIT-BIH 

arrhythmia  8 

Accuracy 
99.05% 

Sensitivity: 
97.85% 

Wang et al. 
[1] 

Two median 
filters (200 
ms and 600 
ms) 

R-peak 
annotation
s and CWT 

(mexh) 

RR intervals 
(previous, post, 
ratio, local-RR) 
CWT Scalogram  

- - 
2D 

CNN 
MIT-BIH 

arrhythmia  4 

Accuracy: 
98.74% 

Sensitivity: 
 67.47% 

Precision: 
 70.75%  
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Sarvan et 
al. [109] - - - - - 1D 

CNN 
MIT-BIH 

arrhythmia  
5 

Accuracy: 
93.72% 

Sensitivity: 
26.85% 

Specificity: 
99.6% 

Precision: 
 85.43% 

Wan et al. 
[138] 

Bandpass 
filter (5-15 

Hz)  
- - - - 

1D 
CNN 

MIT-BIH 
arrhythmia  5 

Accuracy: 
99.10% 

Shaker et 
al. [139] 

Butterworth 
filter with a 
gange [0.5-

40] Hz 

- - - - 1D 
CNN 

MIT-BIH 
arrhythmia  

16 Accuracy: 
97.30 

 Ferretti et 
al. [140] 

- - - - - Deep 
1D 

CNN 

MIT-BIH 
arrhythmia  

16 Accuracy: 
98 

Li et al. 
[141] 

Wavelet 
decompositio
n for signal 
filtering 

- - - - 1D 
CNN 

MIT-BIH 
arrhythmia  

5 Accuracy: 
97.5 

Rajpurka et 
al. [108] 

- - - - - 1D 
CNN 

ECG signals 
from 

30,000 
unique 

patients 

12 
Sensitivity: 

 82.7 
Precision 

80.9 

Li et al. 
[142]  

Conversion of 
time-

frequency 
signals to 

images using 
Morlet, Paul 

wavelets, and 
Gaussian 
derivative 

- - - - 
2D 

CNN 
MIT-BIH 

arrhythmia  3 
Accuracy 

 97.96 

Afadar et 
al. [104] 

Low pass; 
High pass 

- 
RR interval, QRS 
duration, Heart 

rate 
3 - 

SVM 
Naïve 

Bayers,  
RF 

MIT-BIH 
arrhythmia, 
NSR, LBBB  

4 

Accuracy: 
SVM 92.3 
NB: 91.0  
RF: 98.9  

Sahoo et 
al. [77] 

DWT  multiresolu
tion DWT  

RR intervals, 
heartbeat 
features (Q, R, S, T 
amplitudes, QRS 
duration), 
Morphology (Q-T 
interval, S-T 
interval) 

- - 

BPNN 

SVM 

MIT-BIH 
arrhythmia  

4 

Accuracy 
96.67 

98.39 

Yazdanian 
et al.  [94] DWT  

Shanon 
Energy and 

Hilbert 
Transform 

Morphology, 
time-domain, 

wavelet features 
189 - SVM MIT-BIH 

arrhythmia  
5 Precision: 

96.97 

Martis et 
al. [76] 

DWT for 
denoising and 

Pan-
Tompkins for 
segmentation 

PCA 
Principal 

components - PCA SVM 
MIT-BIH 

arrhythmia 5 

Accuracy: 
98.11 

Sensitivity: 
99.90 

Specificity: 
99.10% 

Ge et al. 
[143]  

CWT for 
denoising and 

signal 
segmentation 

wavelet 
transform, 

higher 
order 

statistics 
(HOS) 

R-R interval,
wavelet and HOS 

features 
- - SVM 

MIT-BIH 
arrhythmia 4 

Accuracy: 
98.40 
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Sivanantha
m et al. 

[39]  
Bandpass 

(0.1-35 Hz) 

Hamilton 
and 

Tomkins 

time-domain, 
frequency-domain 

and Heart rate 
variability 
features 

16 - SVM MIT-BIH 
arrhythmia  

5 Accuracy: 
90.26 

Ashtiyani 
et al.  [27] 

Notch (60 Hz) 
Pan-

Tompkins, 
wavelet 

transform 

Heart rate 
variability 
features 

- Genetic 
Algorith
m (GA)  

SVM 
MIT-BIH 

arrhythmia  3 

Accuracy:  
97.14 

 Sensitivity: 
97.54,  

Specificity: 
96.9  

Precision: 
97.64 

Zhu et al. 
[144] 

Morphologica
l filter

Pan-
Tompkins; 

PCA; 
Dynamic 

time 
warping 
(DTW) 

Morphological 
features; PCA 

features;  
19 -  SVM 

MIT-BIH 
arrhythmia  4 

Accuracy: 
97.8 

Nahak et 
al. [98]  

moving 
average filter 

Pan-
Tompkins; 

DWT 

Heart rate 
variability, 

wavelet features 
and auto-

regressive model 
coefficients  

- - SVM 

MIT-BIH 
arrhythmia, 

BIDMC 
Congestive 

Heart 
Failure, 
MIT-BIH 
Normal 
Sinus 

Rhythm 

3  
Accuracy 

 93.33 

Thomas et 
al. [75] 

Bandpass (4-
22 Hz) 

dual tree 
complex 
wavelet 

transform 
(DTCWT) 

wavelet 
coefficients, QRS 
features (AC 
power, kurtosis, 
skewness and 
timing 
information) 

28 - BPNN 
MIT-BIH 

arrhythmia  5 
Accuracy: 

 94.64 

Alqudah et 
al. [87]   

Bandpass 
(0.1-100 Hz) 
and moving 

average 
filter+ 

heartbeat 
segmentation 

 Gaussian 
mixture 

modeling, 
DWT 

statistical (mean, 
standard 
deviation, energy, 
entropy, 
skewness, 
variance) and 
wavelets (energy,  
variance, 
standard 
deviation, 
waveform length)

38 PCA PNN 
MIT-BIH 

arrhythmia  6 
Accuracy: 

99.99 

Yu et al. 
[74] - 

Independe
nt 

component 
analysis 

(ICA) 

ICA-based, and 
RR-interval 

features 

33 
ICA 
com
pone
nts 

- PNN 
MIT-BIH 

arrhythmia  4 
Accuracy 

98.71 

Wang et al. 
[85]  

signal 
normalization 

and 
segmentation 

PCA, LDA 
RR time intervals, 

PCA and LDA 
features 

22 LDA and 
PCA 

PNN MIT-BIH 
arrhythmia  

8 Accuracy: 
99.71 

Gutiérrez 
et al. [86] 

Wavelet 
transform for 

noise 
reduction 

Wavelet 
transform 

heartbeat 
features (number 
of P waves, QRS 
duration, RR 
interval, position 
of R, heart rate, 
PR interval, global 
rhythm, P wave 
polarity) 

8 - PNN 
MIT-BIH 

arrhythmia  8 
Accuracy: 

92.75 
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Pławiak et 
al. [89] 

Rescaling 

Welsh 
method for 
power 
spectral 
density 
estimation 
of the 
signals, and 
the discrete 
Fourier 
transform 

frequency 
components  

4001 Genetic 
algorithm

s 

SVM MIT-BIH 
arrhythmia  

13 

15 

17 

Accuracy: 

95 

91 

90 

Raj et al. 
[88] 

 DWT 

Pan-
Tompkins; 

Sparse 
signal 

decomposit
ion (Gabor 
Dictionary) 

time delay, 
frequency, width 
parameter, and 

square of 
expansion 
coefficient 

- 

Particle 
Swarm 

optimizat
ion 

SVM 
MIT-BIH 

arrhythmia 
5 Accuracy: 

99.11 

Rai et al. 
[36]  

multiresolutio
n DWT 
moving 

average filter 

DWT for 
QRS 

detection; 
multiresolu
tion DWT 

Wavelet features 21 - 

PNN 
BPNN 
SVM 
MLP 

MIT-BIH 
arrhythmia 5 

Accuracy: 
99.53 
97.94 

99 
98.53 

Wang et al. 
[91] 

Combined 
wavelet-

based 
denosing and 

median 
filtering 

algorithm 

Morphologi
cal and 

Premature-
or-Escape- 
Flag (PEF) 

Morphological 
and temporal 

features 
- - GRNN 

MITDB, 
INCA-TDB, 

SVDB  
4 

Over 99% 
accuracy, 
sensitivity 

and 
precision 

for VEB and 
SVEB 

classes  

Li et al.  
[34] 

Butterworth 
filter 

difference 
operation 
method 

(DOM) for 
QRS 

detection;  
 heartbeat 
features 

8 - parallel 
GRNN 

MIT-BIH 
arrhythmia; 

300 real 
patients’ 

holter data 
from the 

Navy 
General 

Hospital in 
Beijing 

5 Accuracy: 
95% 

Karboub et 
al. [35]  

DWT 
(Daubechies-

db4) 

CWT, DWT, 
maximum 

overlap 
discrete 

transform 
(MODWT) 

and 
autoregress

ive 
modelling 

(AM) 

wavelet features - PCA 

SVM, 
CNN, 
quadra
tic 
discrim
inant, 
KNN 
and 
Naïve 
Bayes 

MIT-BIH 
arrhythmia, 

normal 
sinus 

rhythm and 
BIDMC 

congestive 
heart 
failure 

3 

Quadratic 
discriminan
t and KNN 
classifiers 
obtained 

the highest 
accuracies 
of 99.92 

and 98.63 

Mazaheri 
et al. [90] 

Normalizatio
n 

DWT, ECG 
wave 

detection 
algorithm 

morphological 
features, 

frequency domain 
features, and 

nonlinear indices 
(entropy, fractal 

dimension, 
Lyapunov 
exponent)  

- 

non-
dominate
d sorting 
genetic 

algorithm 
(NSGA II) 

KNN 
FNN 

RBFNN 
Fit NN 
Pat NN 

MIT-BIH 
arrhythmia  7 

Accuracy: 

93.26 
98.75 
83.78 
98.65 
97.97 

Alickovic et 
al.[145] 

multiscale 
principal 

component 
analysis 
(MSPCA) 

DWT 

statistical features 
(2 indices for 

frequency 
distribution and 2 

indices for the 
amount of change 
in the frequency 

distribution) 

4 - 
CART 

C4.5 

RF 

MIT-BIH 
and St. -

Petersburg 
Institute of 
Cardiologic
al Technics 

12-

5 

Accuracy: 

98.7 

98.4 

99.3 
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lead Arrhyt
hmia 

Lu et al. 
[123] 

transform the 
heartbeats 

into grayscale 
images 

2D-CNN, 
Early fusion 
algorithm  

convolutional 
features (200), 
PQRST features 

(25) 

225 - RF MIT-BIH 
arrhythmia 

5 
Accuracy: 

 99.90 

Singh et al. 
[146] 

Normalizatio
n, 

Segmentation 
in 3 beats - - - - 

RNN 
GRU 
LSTM 

MIT-BIH 
arrhythmia  2 

Accuracy: 
 85.4, 
82.5  
88.1 

Zhang et 
al. [116] 

 Dual-Tree 
Complex 
Wavelet 

Transform 
(DTCWT) and 

median 
filtering 

Clustering 
algorithm  

- - - LSTM MIT-BIH 
arrhythmia  

3 

Accuracy 
99.7 for 

VEB 
detection 
and 99.3 
for SVEB 
detection 

Pandey et 
al.  [122] 

ECG signal 
segmentation CNN convolutional 

encoded features 
- - 

Bidirec
tional 
LSTM 

 MIT-
BIH arrhyth

mia 
5 

Accuracy: 
    99.52 

Zhang et 
al. [117] 

The signals 
are down-
sampled to 

60s  

CNN with 
spatial and 
temporal 
attention 

mechanism
s 

Spatial and 
temporal features  - - GRU 

China 
Physiologic

al Signal 
Challenge 

2018 

9 
F1 score 

83.5 

Lynn et al. 
[118] 

low order 
polynomial 
and bandpass 
filter for 
noise 
filtering; 
segmentation 
with Pan-
Tompkins 
algorithm 

- - - - 

Bidirec
tional 
LSTM 

Bidirec
tional 
GRU 

MIT-BIH 
arrhythmia  

- 

Accuracy: 

96.4 

98.55; 

Kim and 
Pyun [147] 

derivative 
filter, moving 
average filter, 
normalization

, and signal 
segmentation 

- - - - 

Bidirec
tional 
LSTM  

MIT-BIH 
Normal 
Sinus 

Rhythm 
(NSRDB) 
and MIT-

BIH 
Arrhythmia 

(MITDB) 

- 

MITDB: 
Accuracy: 

 99.8  
Sensitivity 

99.8  
Precision: 

99.8 

Khan and 
Kim [148] PCA - - - PCA LSTM 

University 
of 

California, 
Irvine (UCI) 
repository 

16 

Accuracy 
93.5,  

Sensitivity 
90.7 

Precision 
92.8 

Essa and 
Xie [29] 

2 median 
filters (200 

and 600 ms) 
and low-pass 

filter 

CNN and R 
peak 

detection 

RR intervals and 
HOS (68), 

convolutional 
features 

- - LSTM 
MIT-BIH 

arrhythmia  5 

Accuracy 
95.81 

Sensitivity 
 69.20 

Specificity 
 94.56 

Precision 
74.97 
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Yildirim et 
al. [111] 

Lowpass 
filter, local 
polynomial 
regression 
smoother 
(LOESS), and 
Non-Local 
Means (NLM) 

1D CNN 
Convolutional 

features - - LSTM 

Chapman 
University 

and 
Shaoxing 
People’s 
Hospital 

4 

7 

Accuracy: 
96.13  

92.24 

Cai et al. 
[31] 

Bandpass 
filter (0.5-
35Hz) and 

segmentation 
in 10s 

segments 

- - - - 

DNN 
 (36 
layers) 

Chinese 
PLA 
General 
Hospital; 
CardioClou
d Medical 
Technology 
(Beijing) 
Co. Ltd; The 
China 
Physiologic
al Signal 
Challenge 
2018 

3  

Accuracy: 
 99.35 

Sensitivity  
99.19 

Specificity 
99.44 

Xu et al. 
[149] - i-vector - - - DNN 

MIT-BIH 
arrhythmia  2  

Accuracy 
99.1 for 

SVEB 
detection 
 99.7 for 

VEB 
detection 

 Xu et al. 
[150] 

heartbeat 
segmentation 

using Pan-
Tompkins 

algorithm and 
heartbeat 
alignment 
along the 
time axis 

DNN - - - DNN MIT-BIH 
arrhythmia  2  

Accuracy: 
93.1  

Sannino 
and De 
Pietro 
[151]  

Denoising (2 
median filters 
and lowpass 
filter);  

Pan and 
Tompkins 

RR interval 
features (pre RR; 

post-RR; local 
average RR; global 

average RR) 

4 - DNN MIT-BIH 
arrhythmia  

5 Accuracy: 
99.68 

Hannun et 
al. [152] - CNN - - - DNN 

MIT-BIH 
arrhythmia  12 

F1 score 
83.7 

Tripathy et 
al. [112] 

High pass 
filter 

Hilbert 
transform 

and 
frequency 
heterodyni

ng 

sample entropy 
(SE) and the 

Variational mode 
decomposition 

estimated centre 
frequency 
features 

18 - DBN 

MIT-BIH 
arrhythmia  
and MIT-

BIH AF  
2  

Accuracy: 
98.27 

Sensitivity 
97.77 

Specificity 
98.67 

Mathews 
et al. [113] 

Bandpass, 2 
median filters 
and adaptive 

filters;  

Detection 
of R-peak 
using filter 
bank based 
approach 
and T-wave 
using 
search 
windows 
with 
adaptive 
thresholds 

RR intervals; 
heartbeat 
intervals; 

segmented 
morphology 

intervals; fixed 
interval 

morphology 

48 - DBN 
MIT-BIH 

arrhythmia  2  

Accuracy 

 93.78 for 
VEB 

detection 

96.94 for 
SVEB 

detection 
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Altan et al. 
[114]  

2 median 
filters  

Wavelet 
packet  
decomposit
ion, higher 
order 
statistics, 
morpholog
y and  
Discrete 
Fourier 
transform 

High Order 
Statistic; 

Morphological 
features; Higher 
order statistic of 
Wavelet Packet 
decomposition; 
Discrete Fourier 

transform 
features 

150 - DBN MIT-BIH 
arrhythmia 

5 

Accuracy 
94.15  

Sensitivity 
92.64 

Specificity 
93.38 

Sayantan 
et al.   [30] 

noise removal 
(2 median 
filters and a 
lowpass filter) 

unsupervis
ed feature 

learning 
using GB- 

DBN 

- - - SVM 
MIT-BIH 

arrhythmia; 

 SVDB 
database  

2 Accuracy 
99.5 for 
SVEB and 
99.4 for 
VEB on 
MITdb;  
Accuracy 
97.5 for 
SVEB and 
98.6 for 
VEB on 
SVDB 
database 

Oh et al. 
[119] 

Different 
lengths signal 
segmentation 

CNN and 
LSTM 

- - - Fully 
connec
ted 
layer 

MIT-BIH 
arrhythmia; 

SVDB 
database  

5 Accuracy: 
98.1%, 
Sensitivity: 
97.5% 
Specificity: 
98.7%  
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	Abstract:
	Cardiac arrhythmia is a condition caused by an impaired electrical conduction of the heart, resulting in irregular rhythms that can increase the risk of stroke or even lead to sudden cardiac deaths. Luckily, bio-signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) can be utilized to assess the health of the patient. This work presents a comprehensive review on the recent machine learning (ML) and deep learning methods applied for arrhythmia classification using both, ECG and ABP signals, including preliminary steps such as pre-processing, feature extraction and feature optimization. This review considers various ML techniques such as Artificial Neural Networks, Support Vector Machine, K Nearest Neighbour, Decision Tree, as well as DL methods such as Convolutional Neural Networks, Deep Neural Networks, Deep Belief Networks (DBN), and Recurrent neural networks. 
	1. Introduction
	According to the World Health Organization, cardiovascular diseases (CVDs) are the leading cause of death globally. Approximatively 17.5 million deaths due to CVD were reported in 2012 [1], and 17.9 million were reported in 2016, which indicates an overall increase from 30% to 31% globally. Arrhythmia is a CVD, that refers to any irregular deviation from the normal heart rhythms. Various types of arrythmia exist, including supraventricular arrhythmias, ventricular arrhythmias, sinus node dysfunction, heart block, and premature contractions. Even though some arrhythmias do not have immediate effects, the long-term exposure to irregular heartbeats can lead to serious damage to the heart. Atrial fibrillation, for instance, is a common type of supraventricular arrhythmia that causes an increased heart rate. Patients with atrial fibrillation being associated with a risk of stroke five times higher than patients with a normal heart rhythm [2]. Premature atrial (PAC) or ventricular (PVC) contractions are premature beats that originate from the atria or ventricles, respectively. Frequent PVCs can lead to far more dangerous, ventricular arrhythmias such as ventricular fibrillation (VF) or ventricular tachycardia (VT), that can immediately lead to heart failure [3].
	Arrhythmias can be prevented with early detection and treatment. In clinical settings, arrhythmia diagnosis is mostly based on individual patient’s electrocardiogram (ECG) analysis. An ECG represents a signal that compresses important information regarding the electrical activity of the heart. Although ECG is the gold standard for arrhythmia detection [4], other bio-signals such as arterial blood pressure (ABP) can be used in addition to the ECG to detect the presence of arrhythmias. While extremely useful, analysing bio-signals can be very challenging for a person, as it is time consuming and requires a great amount of expertise [5].  Therefore, in the last decades researchers proposed a wide range of methods for automatic arrhythmia classification by means of machine learning and deep learning techniques.
	Traditional machine learning (ML) techniques require steps such as feature extraction, selection and optimization that transform the bio-signals into a compressed set of features prior to the final classifier. The hand-crafted feature extraction process requires deep knowledge of the signals and pre-processing steps such as noise filtering or signal segmentation. The main problem when using hand-crafted methods is that patients can have different features for the same disease, or different diseases could have very similar features, making the classification a difficult process. However, ML techniques have been made an incredible progress among the years due to the wide range of strategies proposed for feature extraction. Deep learning (DL) methods on the other hand, combine the feature extraction, selection and classification steps into the same learning body. Recently developed, these techniques are much deeper (multiple hidden layers) and more complex than the traditional ML methods and can take as inputs low filtered or even raw signals. Nevertheless, deep learning methods require large datasets to achieve good results and the training process is computationally expensive compared to ML networks. Thus, both ML and DL techniques have their pros and cons, and the choice of one approach must take into consideration the available datasets used to train the model, the application and the available resources. 
	In this work, a comprehensive review is conducted for arrhythmia classification methods using ECG and blood pressure signals. Although other papers that review ECG arrhythmia classification methods exist in literature [5]–[14], they either discuss classical feature extraction and machine learning techniques [6], [9], [13], [15], or focus just on deep learning methods [11], [12], [14]. To our knowledge, this is the first review paper on arrhythmia classification that covers a broad range of topic that incorporates all the major aspects of ECG analysis, including pre-processing, feature extraction, feature optimization, and classification with both machine learning and deep learning techniques. Furthermore, our paper covers a review of the arrhythmia detection methods that use blood pressure waveforms. Specifically, this paper reviews the existing studies on ECG, PPG and ABP analysis present in the literature mainly from the last decade. 
	This paper is organized as follows: Section 2 provides the medical background needed to understand the ECG and ABP characteristics that will be further discussed in this paper. Sections 3, 4, and 5 present a general overview of the pre-processing, feature extraction and feature optimization steps required before the machine learning classification. Section 6 describes the most frequently used machine learning techniques. Similarly, Section 7 provides short descriptions of the deep learning methods used for classification and reviews the outstanding methods present in literature. Some of the methods are describes in detail throughout the paper, while other are summarised in table 4. Section 8 presents deep learning methods that have been used for feature extraction. In addition, in Section 9 this paper reviews feature extraction and classification methods that use arterial blood pressure waveforms. Finally, Section 10 concludes the paper.  
	2. Medical background
	2.1. Electrocardiogram signal analysis
	3. Pre-processing
	4. Features extraction
	4.1. QRS complex, P and T waves detection
	5. Feature optimization techniques

	This section provides an overview about the electrocardiogram (ECG), arterial blood pressure (ABP) signals and their morphologies. Both of these signals reflect the status of the heart. Specifically, the ECG reflects the electrical activity of the heart, while the ABP waveforms describe the effect of the volume of ejected blood by the left ventricle in the circulatory system. General knowledge about the normal morphologies of these signals is essential when developing arrhythmia detection algorithms. Thus, the following subsections will present the normal morphologies and meaningful segments of these signals.  
	The analysis of the Electrocardiogram (ECG) waveforms, intervals and segments reveals important information regarding the state of the patient and are widely used for diagnosis purposes. The ECG is a test that uses electrodes attached to the skin able to record the currents produced by the atrial and ventricular muscles during stimulation. The electrical stimulation of the heart is produced in different phases: atrial depolarization, ventricular depolarization, and the relaxation phase. Each of these phases are depicted on the ECG by a specific wave or segment. A typical ECG signal along with some meaningful segments and intervals can be seen in Figure 1. The P wave is visible on the ECG signal as the first positive deflection and is caused by the spread of the electrical stimulation through the atria (atrial depolarization). The spreading of the stimulus from the atria to the ventricle causes the ventricular depolarization, represented by the QRS complex. As the name suggests, the QRS complex is composed of three individual waves: Q wave, R wave, and S wave. The Q wave is the initial negative deflection of the complex, the R wave is the positive deflection of the complex and normally the wave with the highest amplitude, and the S wave is the negative deflection following the R wave. The contraction of the ventricles is followed by a relaxation phase, knows as ventricular repolarization, that is represented on the ECG signal by the T wave. The T wave is an asymmetrical wave, followed sometimes by a small, rounded deflection called U wave. The time intervals and segments between these waves also provide a great deal of information that can be used for patient’s health assessment. The first interval on the ECG signal is the PR interval, measured from the onset of the P wave to the beginning of the QRS complex. Also called the atrio-ventricular (AV) delay, the PR interval represents the time interval taken from the stimulus to travel from the sinoatrial node through the atria and pass through the atrio-ventricular node. A normal conduction of the stimulus from the sinoatrial node to the ventricles is known as normal sinus rhythm (NSR) and is usually indicated by a heart rate between 60-100 beats per minute. The next interval is the QRS width, representing the time interval required for the depolarization of the ventricles, whereas the QT interval represents both depolarization and repolarization of the ventricles. The isoelectric line between the depolarization and repolarization of the ventricles is known as ST segment. 
	            Table 1. Normal values of the ECG parameters
	The normal amplitudes and time intervals of the ECG waves and segments can be seen in Table 1. Any deviation from the normal values can indicate the presence of arrhythmias. For example, as shown in Figure 2, the presence of atrial fibrillation is suggested by the absence of P waves which are replaced by inconsistent fibrillatory waves [7], whereas distorted S and T waves indicate the occurrence of an atrial premature beat.
	/
	Figure 2. Examples of arrhythmias and their characteristics [8]
	2.2.  Arterial blood pressure (signal analysis 
	The behaviour of the arterial blood pressure (BP) waves, their timing and amplitudes provide valuable information about the function and compressibility of the arterial system. These waves are generated by the volume of the blood ejected throughout the arteries with every heartbeat. As illustrated in Figure 3, the blood pressure waveform is generally composed of a systolic phase, indicated by the rapid increase in pressure, followed by a diastolic phase, indicated by a quick drop related to the left ventricular ejection. The incisura between these two phases is known as the dicrotic notch and represents the closure of the aortic valve. 
	/
	Figure 3. An illustration of the arterial blood pressure signal [16] 
	The relationship between ECG and ABP signals is usually described by the correlation between the R-peaks in the ECG followed by the systolic peaks in the ABP. Recent studies also demonstrated that arrhythmias produce imperfect oscillation of blood pressure [17]. The contraction of the heart, shown on the ECG by the QRS complex, causes the ejection of the blood to different parts of the body. The systolic peaks can be seen in the ABP signals after a delay, correlated to the time taken for the blood to reach the measurement site. Thus, any disturbances in the electrical activity of the heart should have an impact on the morphology and parameters of the ABP waveforms. Although less explored, this correlation could improve the ability to detect arrhythmias.
	The aim of the pre-processing stage is to reduce the unnecessary parts of the signal that can potentially cause misdiagnosis.  The recorded signals, whether we are talking about ECG, ABP or other bio-signals, are usually contaminated with noise or artefacts. The most common types of noise are the powerline interference, instrumentation noise, muscle artefacts and baseline wander [18]. Although a variety of methods are available for the elimination or reduction of these noises, there is no universal method that can be effective for all of them. Thus, researchers choose one or more denoising methods depending on their application and the state of the signals that they are working with.  
	The ECG signals are usually filtered using high pass, low pass, band pass or median filters (Table 2). High pass filters are used to remove low frequency noises such as baseline wander, a noise caused by respiration with a frequency between 0.5- 0.6 Hz [19], or baseline drift, a variation of the signal from the baseline found in frequency components less than 3 Hz [20] On the other hand, lowpass filters are applied to remove high frequency noises such as powerline interference, a sinusoidal interference of 50 ~ 60 Hz [21], or EMG noise, with a variable frequency between 1-10000 Hz. Bandpass filter is also extensively used for ECG signal filtering, as it can be applied to eliminate both low- and high-frequency noises including artefacts, power line interference and muscle noise (table 2).   
	  
	Table 2. Examples of filters used to denoise the ECG signals in the pre-processing step.  
	0.5-35 z
	Signals can be divided into a sequence of phases that describe their patterns and ideally suppress all the important information. The identification of those patterns is known as feature extraction. Classical machine learning approaches use hand-crafted feature extraction methods, transforming the input data (ECG signals) into a set of features that can be further utilized for classification. These methods depend heavily upon the mathematical approaches used for feature extraction. Among the years, researchers used different mathematical measurements and transformations to extract, optimize, and store a wide range of patterns into feature vectors [32], [33]. According to the methods used for extraction, the obtained patterns can be classified in categories such as: wavelet, statistical, and heartbeat or morphological features. Researchers use them either individually [34]–[38] or coupled with other features [1], [32], [39], [40].  
	A wide range of features can be extracted from the ECG signals based on location, amplitude, duration and morphology of the P, Q, R, S, T waves. An accurate localization of those deflections is crucial for calculating the signals features and predicting a correct diagnosis. Although all the waves provide essential information, the QRS complex features provide the most meaningful information for ECG analysis, as it characterizes the electrical activity of the heart during ventricular contraction. Therefore, QRS complex detection plays a vital role in ECG analysis and can either compromise or enhance the accuracies of the final classification. 
	In the last decades, a significant number of QRS complex detection methods have been published in literature (Table 3).  Still among the most extensively applied methods in state-of-the art papers ([41]–[44]), Pan-Tompkins is an efficient algorithm used for noise removal and QRS complex detection, that provides an excellent accuracy. This algorithm includes a bandpass filter, a five-point derivative, moving window integrator and automatically adjustable thresholds which discriminate the locations of the QRS complexes [45]. Although efficient, Pan-Tompkins algorithm necessitates a relatively large complexity due to all the above-mentioned steps that are required [46]. To address this problem Hamilton and Tompkins [47] proposed a QRS detection method based on optimized decision rule threshold process and upgraded the denoising stage by using linear and nonlinear digital filters, obtaining a higher precision. Later, Benitez et al. [48] introduced a detection method that applies Hilbert transform on the first differential of the ECG signal and detects the QRS peaks using an adaptive threshold. More recently, Zhang et al. [23] achieved a 99.83% detection sensitivity by applying an optimal bandwidth-bandpass filter and thresholding method to denoise, amplify and detect the QRS complexes. The P and T waves are further detected by removing the QRS complexes from the signals, cross correlating the main signal with a triangular filter and applying the threshold processing. Other QRS detection methods use wavelet techniques, which are well known due to their ability to filter the noise, and to their capacity to emphasise and delimitate the ORS peaks. The decomposition coefficients obtained by applying wavelet transforms on the signals can be used to divide the low and high frequency components. Thus, the signals can be reconstructed using just the useful coefficients, obtaining a filtered signal with well-preserved R peaks. Pal et al. [49] detected the QRS complex, P and T waves using multiresolution wavelet analysis. DWT wavelet was applied to decompose the signals on 8 decomposition levels, and different levels were used to detect QRS complex, Q and S waves, and P and T waves, respectively. Similarly, Banerjee et al. [50] used multiresolution wavelet analysis and adaptive thresholding, achieving a sensitivity (Se) of 99.8% and a positive predictive value (PPV) of 99.6%. More recently, Bouny et al. [51] used stationary wavelet transform (SWT) along with Teager energy operator (TEO) and adaptive thresholding to localize the frequency content of QRS complexes. Their method yielded a 99.84% Se, with 0.3% detection error rate (DER). Beyramienanlou and Lotfivand [52] achieved a DER of just 0.155% using a method based on signal energy. For each sample, the energy of the local spectrum is calculated using Shannon energy (SE) and further used to make an envelope and remove the small spikes around the R peaks. Finally, the QRS peaks are detected using a threshold. Methods that combined wavelet transform and entropic criterion also yielded good results due to the elimination of the unnecessary signals using entropy [53]–[56]. 
	Despite their good detection accuracies, peak detection techniques and their extracted features can sometimes fail to accurately describe specific arrhythmias, especially when dealing with unusual morphologies. Luckily, methods such as waveform analysis can also be used by themselves to extract wavelet coefficients, which can be used as frequency-based features. Various wavelet transform methods have been used to extract the frequency-based features such as continuous wavelet transform (CWT) [1], [57], [58], dual tree complex wavelet (DTCWT) [59], discrete wavelet transform (DWT), or Meyer Wavelet Transform (MWT) [60]. 
	Table 3. Comparison between QRS, P and T wave detection algorithms 
	Large number of features are often extracted from the ECG signals and, although useful, these features increase the training time and can hamper an optimized training to be performed [70]. Thus, when the feature set has a high dimension, optimization is required in order to reduce the complexity of the models and obtain relevant and accurate classification. As a result, a reduced number of meaningful and most representative features are identified. 
	Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Linear Discriminant Analysis (LDA) are the most used techniques applied to dimensionally reduce and optimize the features. PCA is a linear method that transforms the input vectors into principal components which contain uncorrelated variables in decreasing order of the total variability. The components with the highest variability suppress the most meaningful information.  Unlike PCA, which is maximizing variance, the ICA is a statistical method that allows the separation of mixed signals into their components by maximizing the independence between them, thus obtaining statistically independent components. LDA, on the other hand, discriminates the features by maximizing the separability between classes. To compare the accuracy of these methods, Martis et al. [71] used Pan-Tompkins algorithm and discrete wavelet transform to detect the QRS complexes and extract the wavelet coefficients. The wavelet coefficients were then separately fed into three different dimensionality reduction methods (PCA, ICA, LDA) and each one of the resulted features were tested on support vector machines, probabilistic and backpropagation neural networks for the final classification.  IDA on wavelet coefficients provided the highest accuracy when used with the probabilistic neural network classifier. PCA and LDA on wavelet coefficients provided 99% and 98.59% accuracy using probabilistic neural network and backpropagation neural network, respectively.  
	6. Machine learning techniques for ECG arrhythmia classification
	6.1. Artificial Neural Networks
	6.2. Support Vector Machine
	6.3. K Nearest Neighbour
	6.4. Decision Tree

	In the last decades, significant number of techniques have been proposed for ECG arrhythmia classification using machine learning approaches. In the next subsections, widely used machine learning methods such as Artificial Neural Networks (NN), Support Vector Machine (SVM), K Nearest Neighbour (KNN) and Decision Tree (DT) will be discussed.   
	Artificial Neural Networks are brain-inspired networks composed of three types of layers known as input layers, hidden layers, and output layers, that mimic the functionality of the human neurons. These layers are composed of several interconnected units called nodes or artificial neurons that are associated with adaptable weights. According to the reviewed studies, in this paper we classify the ANNs in four categories: Feed-forward Neural Networks (FNN), Back Propagation Neural Networks (BPNN), Probabilistic Neural Networks (PNN) and other.
	 Feed-forward Neural Networks 
	In Feed Forward Neural Networks (FNNs), as the name suggests, the information travels in just one direction from input to output, the final decision being based on a specified threshold. Although outdated by other modern methods, in [72] FNN provided a better classification accuracy compared to SVM and multi-layer perceptron. In [73], FNN combined with Particle Swarm Optimization, which optimised the weights and biases of the network, achieved a surprisingly good accuracy of 99.41% using a set of seven features. 
	 Back Propagation Neural Networks
	Back Propagation Neural Networks (BPNN) were introduced to overcome the simplicity of FNN by comparing the achieved output with the expected output using a loss function. According to this loss function the weights are adjusted from the output layer to the input layer (back propagated) and the process continues until the minimum error is reached. Although more precise than FNN, the random weights that are initially assigned lead to fluctuations in BPNN response, as different initial weights can result in different classification results [74]. BPNN are employed in some recent studies for ECG arrhythmia classification [33], [36], [71], [75]–[79]. In other papers [80]–[83], fuzzy clustering algorithms are combined with BPNNs and employed for arrhythmia classification, increasing the accuracy of the results. 
	 Probabilistic Neural Networks
	Introduced by Specht in 1990, Probabilistic Neural Networks (PNNs) are composed of input, pattern, summation, and decision layers. Similarly organised as a BPNNs, PNNs use a statistically derived activation function capable to compute non-linear decision boundaries, which under certain conditions approach the Bayes optimal decision surface [84]. The PNN was used to classify arrhythmia in ECG signals using ICA and RR-interval features [74], PCA and LDA features [85], heartbeat features [86], as well as statistical and wavelet features [87]. PNN was also used in studies such as [36], [71], [88], [89]. Although PNNs are much faster and precise than BPNNs, this comes at the cost of computational memory.  
	 Other
	In addition to the above-mentioned methods, ANN techniques such as radial basis function neural network (RBF-NN) ([88]–[90]), generalized regression neural network (GRNN) ([91]), and neural network with adaptive activation function (NNAAF) [92], [93] are also applied in literature. 
	Support Vector Machine (SVM) is a supervised learning algorithm, that can be used for both classification and regression problems. Roughly speaking, SVM returns the hyperplane that has maximum margin between the training data and the decision boundary [5]. SVM was first designed to solve binary classification problems, but methods such as “one vs one” and “one vs all” have been proposed and extensively used for multi-class classification. When dealing with nonlinear datasets, kernel functions such as polynomial, Gaussian, Radial Basis Function (RBF) and sigmoid are used to project the features into a higher dimensional space where they are linearly separable. 
	Yazdanian et al. [94] detected five classes of arrhythmia using SVM classifier on a set of wavelets, apparent and time-domain features, achieving a precision of 96.97% using Radial Basis Function kernel and 92.72% using sigmoid kernel. Sahoo et al. [77]  classified temporal, morphological and heartbeat features with an accuracy of 96.67% using an SVM model. Heart rate variability (HRV) features are also frequently used for arrhythmia detection using SVM classifiers ( [27], [39], [95]–[98] ), being advantageous as they can also be calculated from other bio-signals such as PPG [99]. Other papers that employed SVM for the final classification are illustrated and summarized in table 4 [27], [39], [100].
	K Nearest Neighbour (KNN) is a supervised classifier which assumes that each type of arrhythmia has a group of similar features that exists in the near neighbourhood.  A new feature vector is classified by calculating the distances from this vector to all the learning vectors from the training dataset. The new vector is then assigned to the class in which the majority of the closest vectors belong to. The most frequently used distance calculated in KNN is the Euclidean distance. Although with a higher computational cost, Manhattan, Chebyshev or Mahalonobis distances can also be used. Recent developed methods used KNN for ECG arrhythmia classification [35], [88]–[90], [101].
	Decision trees (DT) networks are machine learning algorithms that can be categorised in classification or regression trees. DTs map the dataset from a set of observations about an item to conclusions represented by target values or target classes. In classification trees the observations (branches) are groups of features, whereas the conclusions (leaves), are target class labels. In regression trees, on the other hand, the targets are represented by real values. Random forest (RF) classifiers are a collection of many decision trees that produce a response by aggregating the results from all the individual trees. RFs are often used in recent papers for ECG arrhythmia classification  [25], [102]–[104]. 
	7. Deep learning techniques for ECG arrhythmia classification
	7.1. Convolutional Neural Networks
	7.2. Deep Belief Networks
	7.3. Recurrent Neural Networks (RNN)

	Deep learning methods are a subset of machine learning techniques, able to perform intelligent decision making using a neural network with multiple hidden layers. Compared to classical machine learning techniques, deep neural networks are providing a better performance due to their ability to deal with unstructured data and thus, the ability to process a substantially larger number of features. Deep Neural Networks are essentially feed-forward neural networks with many layers that can be trained end-to-end. In other words, the deep hidden layers of DNNs can learn the features that best describe the dataset without any prior processing.  In the last decades, various deep learning methods have been proposed including Convolutional Neural Networks (CNN), Deep Neural Networks (DNN), Deep Belief Networks (DBN), and Recurrent neural networks (RNN). These methods, as well their variants are all summarized in Table 5. The most frequently used will be presented and explained in this section.
	Convolutional Neural Networks (CNN) are a special type of artificial neural networks that consist of multiple connected layers assembled in a feed forward manner. CNNs have three main types of layers: convolutional layers, pooling layers and fully connected layers. The first layers are responsible for pattern extraction, whereas the fully connected layers are responsible for the final classification.  
	A wide range of methods that use CNN for ECG arrhythmia classification exists in literature. As CNNs were first introduced for image recognition tasks, these methods can be classified in two categories such as one-dimensional CNNs, able to analyse raw time series signals, and two-dimensional CNNs, that require the conversion of time series signals to images. The transformation of the ECG signals into images is considered advantageous as noise filtering and feature extraction steps can be avoided and steps like data augmentation can be used to expand the training data, reduce overfitting and balance the class distribution when dealing with an imbalanced dataset. For 2D CNNs, researchers applied different conversions of the signals using grayscale images of the segmented ECG beats [3], recurrence plot images of 2-second ECG signals [105], or time-frequency images obtained by applying wavelet transforms on the ECG signals [106], [1]. 
	More recently, 1D CNN models, firstly introduced by Kiranyaz et al. in 2015 [107], were applied for signal classification. In 2017, Andrew Ng [108] proposed a 34-layers deep 1D CNN for heartbeat classification. This method takes as input raw ECG signals from 30,000 unique patients and can classify 12 different arrhythmias with a sensitivity and productivity superior to that of cardiologists. Likewise, Sarvan and Nalan [109] used raw ECG signals and fed them into a 9-leyer deep CNN. Although their method obtained high accuracy and specificity, the sensitivity was just 26.85%. The poor results of deep networks are most probably caused by the relatively small size of data used to train the models, as deep networks are closely linked with the amount of data used. Thus, Wan et al. [110] proposed a method that uses denoised ECG signals and a 4-layer CNN model to classify five types of arrhythmia, reaching a 99.10% accuracy. Cai et al. [31] proposed a one-dimensional densely connected neural network (DDNN) for atrial fibrillation detection using 12-lead ECG signals. The DDNN was composed of four dense blocks with a total of 36 layers, and each block consisted of 2, 4, 6, and 4 convolutional layers. Before each dense block and transition layer, squeeze-and-excitation module was applied for feature recalibration. Pooling layers were used between dense blocks to improve the efficiency, and global average pooling and softmax activation function was employed before and after the fully connected layer. Accuracy, sensitivity, and specificity of the results on the test dataset were 99.35%, 99.19%, and 99.44%, respectively. Yildirim et al. [111] proposed a DNN composed of 6 one-dimensional convolutional layers and 4 sub-sampling (max-pooling) layers in the representation learning phase (feature extraction), and a 128 LSTM block in the sequence learning phase. Two batch normalization and two dropout layers were used to normalize the data and avoid overfitting. Leaky-ReLU activation function was used in the first part of the algorithm. The average accuracy of the result was 96.13% when model was tested on 12-lead ECG signals, with the best performance obtained on Lead-II (95.43% sensitivity, 98.71% specificity, 95.78% precision). Other recent methods that use CNN for arrhythmia detection are summarized in table 5.
	Deep Belief Networks (DBN) are probabilistic generative deep learning algorithms introduced to provide a better alternative to the traditional neural networks that can get stuck in local minima and become slow when training in deep layered networks. DBNs consist of multiple Restricted Boltzmann Machines (RBMs), that are composed of two unidirectional connected layers: a layer of visible units and a layer of hidden units with no connections between the units. The visible layer of an RBM represents the input data, while the hidden layer has the ability to perform unsupervised learning. 
	Recent papers such as [112]–[114] applied DBN classification networks. Tripathy et al [112] proposed a two-stage variational mode decomposition (VMD) method for the extraction of sample entropy and VMD estimated center frequency features, and a DBN for the detection of atrial fibrillation. Both Bernouli–Bernouli and Gaussian–Bernouli were used for the probability distribution of visible and hidden units of the DBN, but Gaussian–Bernouli yielded a better detection accuracy of 98.27% when tested on MIT-BIH arrhythmia and MIT-BIH AF databases. Similarly, Mathews et al. [113] used two sets of extracted features and a DBN to detect supraventricular ectopic beats and ventricular ectopic beats, achieving an accuracy of 93.78%, and 96.94%, respectively. 
	Recurrent neural networks are networks with feedback connections specially designed to learn sequential or time-series patterns. RNNs make predictions according to both the present input value and the prior input values (feedback) using backpropagation through time with gradient descent. Compared to feed-forward neural networks, in RNN the weights are shared across layers and thus the errors are summed at each time step, allowing them to memorize previous sequences. Although RNN gives a better performance than FNN, both algorithms deal with vanishing gradients. This problem is related to the size of the gradients, which decrease exponentially during backpropagation and thus, these networks cannot learn long time-series data. To reduce the vanishing gradient problem, Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) Networks were proposed. LSTMs can make predictions based on both short and long-term sequences, using memory cells composed of input, forget and output gates that use sigmoid functions to decide which information needs to be retained or withdrawn in order to make the next predictions. Similar to LSTM, GRU are another generation of RNNs composed of just two types of gates: reset gate and update gate, being considered faster and less computationally expensive than LSTM networks. Moreover, LSTM and GRU can be extended to bidirectional LSTM and GRU networks. Introduced by Schuster et al. [115], these networks can be trained in both past and future directions by connecting two hidden layers from opposite directions to the same output, increasing the accuracy of the model. A few of these methods are explained below. 
	Zhang et al. [116] proposed a patient specific classification method, that uses clustering to extract both common features from the dataset and patient-specific features. Morphology information is fed into an LSTM model that learns time correlation among signal points and detects the VEB and SVEB with an overall accuracy of 99.7% and 99.3%, respectively.  Wang et al.  [91] proposed a four-layer global and updatable heartbeat classification model, called Global Recurrent Neural Network (GRNN), composed of two parts: a morphological and a temporal part. In the morphological part, LSTM blocks were used to memorize longer history, and their output was fed into a fully connected layer. In the temporal part, a fully connected layer was designed and used to learn temporal information. In the end, GRNN learns the differences among various classes, detecting VEB and SVEB with an accuracy, sensitivity and precision over 99%. The main advantage of this system is that a single model can classify samples from multiple patients, and, when different databases are used for training and test samples, the generalization performance of the GRNN improves. 
	More recently, Zhang et al. [117] developed a heartbeat detection model using CNN and GRU. The algorithm extracts spatial and temporal CNN features and feds them in a GRU network capable to detect nine arrhythmia classes, with an overall F1 score of 83.5%.  Similarly, Pandey et al. [29] detected five types of arrhythmia with a 99.52% accuracy using CNN encoded features and a bidirectional LSTM. Essa and Xie [29] proposed an ensemble model for arrhythmia classification. Both hand-crafted features and CNN-based features were extracted, and LSTM is used for the final classification. Although it seems an interesting approach and the overall accuracy is 95.81%, this model fails to detect SVEB (supraventricular arrhythmia) and F (fusion) heartbeats. Other recent methods that used RRNs for ECG arrhythmia classification methods are summarized in table 4. 
	8. Deep learning-based feature extraction
	Recently, researchers proposed deep learning techniques for automatic feature extraction, which overcome the time-consuming hand-crafted feature extraction process required in machine learning techniques. These methods are known as end-to-end learning, where feature extraction, feature optimization, and classification are integrated in one body [118].   
	The strong ability of the convolutional layers to extract complex features that describe the analysed signals or images, makes the convolutional neural networks among the most extensively used methods for automatic feature extraction. Oh et al. [119] proposed an automated hybrid system that uses CNN to extract the spatial feature maps and LSTM to extract the temporal dynamics of these feature maps. The advantage of this method is that it has the ability to classify ECG segments of variable lengths with a high accuracy of 98.10%. However, an imbalanced dataset was used to develop the model and assumed that each ECG segment contains just one type of arrhythmia, which may decrease the classification accuracy if tested on other signals. Zhang et al. [117] developed a multi-class arrhythmia detection model based on CNN and GRU. The features are extracted by embedding spatial and temporal attention mechanism in each convolutional block. The attention mechanisms are used to assign specific weights for a feature map, helping them to focus on the representative features. Other recent papers that use CNN for automatic feature extraction are [29], [120]–[123]. 
	Intentionally designed for analysing time-series datasets, the long short-term memory networks can be used for both classification and future extraction. Hou et al. [124] proposed an arrhythmia detection model that applies LSTM-based auto-encoder (AE) model for feature extraction and SVM for the final classification. The LSTM-based AE consists of two layers: one that works like an encoder and extracts the ECG features, and the other one that decodes the features and transforms them back into signals. The features obtained after the LSTM encoder layer are fed into an SVM which detects five types of heartbeats with a 99.74% accuracy. Yildirim [125] developed a deep bidirectional LSTM network that used wavelet sequences to extract ECG features. Another deep LSTM is then used for classification, obtaining an outstanding performance that yielded a 99.39% accuracy. 
	9. Arrhythmia classification using Arterial Blood Pressure signals
	In the last decades various techniques have been reported for the analysis and classification of arrhythmia. Although most of the methods have been focused on the ECG analysis, signals such as arterial blood pressure waveforms (ABP) or photoplethysmogram (PPG) can be employed as an alternative or in addition to the ECG to increase the accuracy of the model or to provide supplementary information that can help in assessing the cardiovascular function.  The APB and PPG waveforms are both pressure waveforms, but the difference between them is the recording technique. The ABP waveforms are invasively acquired using a catheter placed in an artery (e.g., femoral, brachial, radial), while the PPG is an optical signal acquired using a pulse oximeter placed on the fingertip of the patient. 
	Blood pressure waveform analysis is well known for its potential to assess the haemodynamic and cardiovascular function [126]. Traditional methods analyse the ABP waveforms through single parameter analysis such as pulse wave velocity (PWV) and augmentation index (Alx) [127]. Even though these methods made possible the estimation of arterial stiffness using non-invasive measurements, the ABP understanding would be highly improved using multi-parametric techniques. Thus, feature extraction techniques have been proposed for studying the morphology, temporal, and frequency proprieties of the blood pressure waveforms. Melis et al. [127] proposed an ABP waveform feature extraction method using wavelet analysis of carotid artery pressure waveforms. Daubechies 4 was used to decompose the ABP signals in seven decomposition levels and clear differences in the morphology of different ABP waveforms could be seen in the fifth detail. Although the choice of the wavelet function is closely associated with the utilized dataset, this study demonstrated that wavelet analysis can be employed to extract features from ABP waveforms. In 2011, Almeida et al. [128] proposed the prominent point’s identifier algorithm (PPIA) to extract hemodynamic features from ABP waveforms. The signals are first segmented pulse by pulse and lowpass filtered to remove the high frequency components. The systolic peak (SP), dicrotic peak, and reflection point were detected using a combined analysis between the ABP waveform and its first order derivative. Moreover, according to the location of the mentioned points, the augmentation index is calculated, and the ABP waveforms are classified into one of four classes: A, B, C and D; where type A indicates large arterial stiffness and type C and D indicate elastic arteries, specific to young patients [126].  This method achieved 99.09% sensitivity for localizing the peaks in time measurements and 99.08% sensitivity for localizing the peaks in amplitude measurements. Later, Almeida et al. [126] improved their initial method and used a multi-parametric approach to compute morphological attributes of the ABP waveforms. Ratios, indices and root mean square of successive differences were computed for the initial parameters for both time and amplitude measurements. The extracted features were optimized using Weka package, which uses a discretization method to measure the information gain for each feature and used to classify two types of groups: hypotensive and healthy patients. Several machine learning models such as decision tree and BayesNet have been tested, but Random Forest yielded the best accuracy (96.95%). 
	ABP waveforms provide a great deal of information regarding the function and compressibility of the arterial system which could be studied as additional information regarding the impact of arrhythmias on patient’s health. However, up to date, a limited number of methods have been proposed for ABP arrhythmia detection (Table 4). Schack et al.  [129] proposed an algorithm for atrial fibrillation based on photoplethysmogram (PPG) signals generated based on the red channel of 50x50 pixels images acquired using smartphone’s cameras. The peaks are detected using 20s windows and selected as the samples that are larger than their two adjacent data samples. Time-domain and frequency-domain features are extracted and dimensionally reduced using a sequential forward selection (SFS) which found the best feature combination as being the Shannon entropy of peak differences and the median of peak rise height. Their method has low computational costs and achieved 100% accuracy. However, the classification is exclusively based on pairs of two features and a simple linear SVM model was employed. Thus, this method does not seem reliable when multiple classes of arrythmia must be distinguished. In 2017, Arvanaghi et al. [17] classified for the first time five types of arrhythmias based just on ABP waveforms and achieved a 95.75% accuracy. However, ECG signals were synchronically recorded and used to analyse the ABP signals based on a window with the length of the RR intervals which were detected with DWT. Frequency-domain features such as min and max FFT values, mean and median frequency and the median normalized frequency are extracted together with other features based on power and entropy of the signals. The feature vector is fed into the Least Square Support Vector Machine (LS-SVM) model where the final classification is performed. Hussin et al. [130] proposed an arrhythmia detection model based on Acceleration Plethysmogram (APG) signals and Multi-Layer Perceptron (MLP). The APG signals are obtained by calculating the second derivative of the denoised PPG signals. Here, Weka software is used as a feature extraction tool and MLP classifies the signals into normal and abnormal classes with 96% accuracy.   
	Table 4. Arrhythmia classification methods based on arterial blood pressure signals.  
	Other studies used blood pressure waveforms together with ECG for a better accuracy. Besleaga et al. [131] used invasive ABP waveforms, PPG and ECG signals to distinguish between stable and unstable ventricular tachycardia events. Most of the used features consisted of PPG parameters, while ECG signals were used to extract the heart rate and the ABP signals were used to extract mean ABP and the drop in mean ABP.  The best pair of features were selected using Least absolute shrinkage and selection operator (LASSO) models. As a result, an 86% accuracy was obtained using PPG markers in combination with the heart rate, indicating the link between PPG and ECG.  Kalidas and Tamil [132] classified five types of cardiac arrhythmias using ECG, PPG, and ABP signals. After the signals were filtered by noise, ECG R-peaks were detected using Pan-Tompkins algorithm, whereas PPG and ABP systolic peaks were detected as the peaks whose amplitude was higher than 40% of the maximum value of the first-order derivative of the signals. For each arrhythmia, 2 feature vectors were extracted, one of them from the ECG signal and the other from the PPG signal, and fed into the SVM classifier. If both features have met the criteria for a specific arrythmia, then that specific record was labelled with that arrythmia. Otherwise, the record was labelled as normal. The records that were detected with arrhythmias underwent further threshold-based logical analysis to reduce false positives. ABP was used when PPG information lacked. The method achieved an overall sensitivity of 94%, but the main drawback is that individual features and algorithms have been created for each arrythmia types, making this technique time consuming and computationally expensive. 
	10. Conclusions
	This study presents a comprehensive review on different machine learning and deep learning methods employed for cardiac arrhythmia detection. Although other arrhythmia detection review articles exist in the literature, they are restricted to only specific subjects. In this work, all the major aspects of arrhythmia detection have been discussed, including both deep learning and hand-crafted machine learning techniques with steps such as pre-processing, feature extraction, and feature optimization. Moreover, techniques that use ABP signals either by themselves or in addition to ECG signals have also been reviewed and explained in this paper. 
	Appendix 
	Table 5. Recent cardiac detection techniques using ECG signals 
	Results (%):  
	Classes
	Database
	Classification 
	Optimization
	No of features
	Features
	Feature extraction method
	Pre- processing
	Reference
	Accuracy 99.41%, 98.68% 98.69%
	Morphological (R peak, QRS duration) and timing features (RR interval)
	3
	MIT-BIH arrhythmia
	PSO and FNN
	Pan-Tompkins
	Jambukia et al. [73]
	4 
	-
	7
	-
	6
	Accuracy 92%
	MIT-BIH Arrhythmia
	Bayesian
	Heartbeat features
	DWT and Pan-Tompkins 
	Deriche et al. [41]
	5
	-
	13
	-
	Pan-TompkinsDynamic segmentation 
	Sensitivity
	MIT-BIH Arrhythmia
	RR intervals; amplitude; Hjorth parameters
	Bandpass and DC filter
	Moreira et al. [43]
	72.46%
	2
	SVM
	-
	21
	Accuracy 96.43% 
	 mean and SD of RR interval
	Pan-Tompkins
	Sueaseenak et al. [42]
	4
	-
	SVM 
	-
	2
	-
	Mean QRS complexes, mean ST segments, Ratio of power spectrum and power spectral density, area under the curve of QRS and ST segment
	Pan-Tompkins improvised with difference operation method (DOM)
	FANTASIA, MIT-BIH Arrhythmia, and long-term ST
	Low pass, high pass and passband 
	Bhoi et al. [28] 
	Accuracy 91.7% 
	3
	ANN
	-
	4
	Accuracy:
	5
	MIT-BIH arrhythmia 
	PCA-PNN: 99%
	BPNN
	Pan-Tompkins and DWT
	SVM, PNN
	PCA
	DWT
	Martis et al. [71]
	LDA-BPNN: 98.59% ICA-PNN 99.28%
	LDA
	12
	DWT coefficients
	     ICA
	Accuracy: 
	98.50% 
	wavelet, temporal and morphological features
	Sensitivity: 95.68%
	5
	MIT-BIH arrhythmia 
	SVM
	PCA
	-
	Hilbert transform
	Wavelet transform 
	Sahoo et al. [100]
	Specificity: 99.18%
	Accuracy
	MIT-BIH arrhythmia 
	wavelet coefficients
	Pan-Tompkins and DWT
	DWT (Daubechies D6)
	Thilagavathy et al. [37]
	98.67% 
	6
	SVM
	-
	-
	 Accuracy:
	Temporal (AC power, kurtosis, skewness, and timing information), and frequency domain
	Pan-Tompkins and dual treecomplex wavelet transform (DTCWT)
	99.52
	Sensitivity:
	Random forest
	Bandpass filter (band-pass frequency of 0.1-40 Hz)
	Prakash et al. [25]
	 99.24
	5
	MIT-BIH arrhythmia 
	-
	-
	Specificity:
	  99.12
	Precision:  99.26
	Average Power (AP), Dispersion Coefficient (CD), Sample Entropy (SE) and Singular Values (SV)
	annotations from mit; DWT with Multiresolution Analysis (MRA)
	36 and 15 after PCA
	Accuracy:
	Abdalla et al. [133]
	99.84
	10
	MIT-BIH arrhythmia 
	SVM
	PCA
	-
	MIT-BIH arrhythmia 
	 linear statistical parameters (minimum, maximum, mean, standard deviation and power of the wavelet coefficient)
	R-peak annotations from mit database DWT and HOS
	Accuracy 99.03
	BPNN, 
	Shannon's Entropy
	DWT (Daubechies D6)
	Chashmi et al.  [134]
	99.83
	5
	SVM-RBF
	22
	MIT-BIH arrhythmia; MITBIH NSR; BIDMC database  
	Auto-Regressive, Shannon entropy, Multi-fractal wavelet variance
	Accuracy:
	Kumari et al. [135]
	95.92
	3 
	SVM
	-
	190
	-
	-
	Accuracy:
	RBF-NN (radial basis function)
	Pan-Tompkins; Continuous Wavelet Transform (CWT)
	98.32% 
	Sensitivity:
	2
	MIT-BIH arrhythmia 
	-
	-
	Wavelet coefficients
	-
	Harkat et al. [57]
	98.92%
	Accuracy:
	RR interval, morphological features (wavelet features and ICA features)
	MIT database R-peak annotations, WT and ICA
	WT for baseline wander and bandpass (5-12 Hz)
	99.3%
	Ye et al. [136]
	Sensitivity:
	16
	MIT-BIH arrhythmia 
	SVM
	PCA
	22
	53.46%
	Precision:
	62.79
	Accuracy:
	Auto Regressive Burg Method and Hilbert transform
	99.84%
	Massachusetts Institute of Technology 
	ICA for noise filtering
	Gupta et al. [101]
	Sensitivity
	-
	KNN
	PCA
	-
	-
	 99.90%,Precision:
	 99.93%,
	Acc. First stage: 95.3 % ± 1.27 % and second stage 98.41 % ± 0.11 %
	Conversion of 2s ECG signals into recurrence plot images
	MIT-BIH arrhythmia 
	2D CNN
	Mathunjwa et al. [137] 
	6
	-
	-
	-
	-
	Accuracy 99.05% Sensitivity:
	Conversion of ECG beats into grayscale images  
	MIT-BIH arrhythmia 
	2D CNN
	Jun et al. [3]
	8
	-
	-
	-
	-
	97.85%
	Accuracy:
	98.74% Sensitivity:
	MIT-BIH arrhythmia 
	2D CNN
	RR intervals (previous, post, ratio, local-RR) CWT Scalogram 
	R-peak annotations and CWT (mexh)
	Two median filters (200 ms and 600 ms)
	4
	-
	-
	Wang et al. [1]
	 67.47%
	Precision:
	 70.75% 
	Accuracy: 93.72%
	Sensitivity: 26.85%
	Sarvan et al. [109]
	5
	MIT-BIH arrhythmia 
	1D CNN
	-
	-
	-
	-
	-
	Specificity:
	99.6%
	Precision:
	 85.43%
	Accuracy:
	MIT-BIH arrhythmia 
	1D CNN
	Bandpass filter (5-15 Hz) 
	Wan et al. [138]
	99.10%
	5
	-
	-
	-
	-
	Butterworth filter with a gange [0.5-40] Hz
	Accuracy:
	16
	MIT-BIH arrhythmia 
	1D CNN
	-
	-
	-
	-
	Shaker et al. [139]
	97.30
	Accuracy:
	16
	MIT-BIH arrhythmia 
	Deep 1D CNN
	-
	-
	-
	-
	-
	 Ferretti et al. [140]
	98
	Wavelet decomposition for signal filtering
	Accuracy: 97.5
	5
	MIT-BIH arrhythmia 
	1D CNN
	-
	-
	-
	-
	Li et al. [141]
	Sensitivity:
	ECG signals from 30,000 unique patients
	 82.7
	12
	1D CNN
	-
	-
	-
	-
	-
	Rajpurka et al. [108]
	Precision 80.9
	Conversion of time-frequency signals to images using Morlet, Paul wavelets, and Gaussian derivative
	Accuracy
	MIT-BIH arrhythmia 
	2D CNN
	Li et al. [142] 
	 97.96
	3
	-
	-
	-
	-
	Accuracy: SVM 92.3
	MIT-BIH arrhythmia, NSR, LBBB  
	SVM
	RR interval, QRS duration, Heart rate
	NB: 91.0 
	4
	Naïve Bayers, 
	-
	3
	-
	Low pass; High pass
	Afadar et al. [104]
	RF: 98.9 
	RF
	Accuracy 96.67
	RR intervals, heartbeat features (Q, R, S, T amplitudes, QRS duration), Morphology (Q-T interval, S-T interval)
	BPNN
	4
	MIT-BIH arrhythmia 
	multiresolution DWT 
	DWT 
	Sahoo et al. [77]
	-
	-
	98.39
	SVM
	Morphology, time-domain, wavelet features
	Shanon Energy and Hilbert Transform
	Precision:
	5
	MIT-BIH arrhythmia 
	SVM
	-
	189
	Yazdanian et al.  [94]
	96.97
	DWT 
	Accuracy:
	DWT for denoising and Pan-Tompkins for segmentation
	98.11
	MIT-BIH arrhythmia
	Principal components
	Martis et al. [76]
	Sensitivity:
	5
	SVM
	PCA
	-
	PCA
	99.90
	Specificity:
	99.10%
	wavelet transform, higher order statistics (HOS)
	Accuracy:
	MIT-BIH arrhythmia
	R-R interval, wavelet and HOS features
	CWT for denoising and signal segmentation
	Ge et al. [143] 
	98.40
	4
	SVM
	-
	-
	time-domain, frequency-domain and Heart rate variability features
	Hamilton and Tomkins
	Sivanantham et al. [39]  
	Accuracy: 90.26
	5
	MIT-BIH arrhythmia 
	SVM
	-
	16
	Bandpass (0.1-35 Hz)
	Accuracy: 
	97.14
	Pan-Tompkins, wavelet transform
	 Sensitivity: 97.54, 
	MIT-BIH arrhythmia 
	Genetic Algorithm (GA) 
	-
	Heart rate variability features
	Notch (60 Hz)
	Ashtiyani et al.  [27]
	3
	SVM
	Specificity: 96.9  
	Precision:
	97.64
	Pan-Tompkins; PCA; Dynamic time warping (DTW)
	Accuracy: 97.8
	MIT-BIH arrhythmia 
	Morphological features; PCA features; 
	Morphological filter
	Zhu et al. [144]
	4
	 SVM
	-
	19
	MIT-BIH arrhythmia, BIDMC Congestive Heart Failure, MIT-BIH Normal Sinus Rhythm
	Heart rate variability, wavelet features and auto-regressive model coefficients 
	Accuracy
	Pan-Tompkins; DWT
	 93.33
	3 
	SVM
	-
	-
	moving average filter
	Nahak et al. [98] 
	wavelet coefficients, QRS features (AC power, kurtosis, skewness and timing information)
	dual tree complex wavelet transform (DTCWT)
	Accuracy:
	MIT-BIH arrhythmia 
	Bandpass (4-22 Hz)
	Thomas et al. [75]
	 94.64
	5
	BPNN
	-
	28
	statistical (mean, standard deviation, energy, entropy, skewness, variance) and wavelets (energy,  variance, standard deviation, waveform length)
	Bandpass (0.1-100 Hz) and moving average filter+ heartbeat segmentation
	Accuracy: 99.99
	MIT-BIH arrhythmia 
	 Gaussian mixture modeling, DWT
	Alqudah et al. [87]   
	6
	PNN
	PCA
	38
	33 ICA components
	Independent component analysis (ICA)
	Accuracy 98.71
	MIT-BIH arrhythmia 
	ICA-based, and RR-interval features
	Yu et al. [74]
	4
	PNN
	-
	-
	RR time intervals, PCA and LDA features
	signal normalization and segmentation
	Accuracy: 99.71
	8
	MIT-BIH arrhythmia 
	PNN
	LDA and PCA
	22
	PCA, LDA
	Wang et al. [85] 
	heartbeat features (number of P waves, QRS duration, RR interval, position of R, heart rate, PR interval, global rhythm, P wave polarity)
	Wavelet transform for noise reduction
	Accuracy: 92.75
	MIT-BIH arrhythmia 
	Wavelet transform
	Gutiérrez et al. [86]
	8
	PNN
	-
	8
	Accuracy:
	Welsh method for power spectral density estimation of the signals, and the discrete Fourier transform
	95
	13
	MIT-BIH arrhythmia 
	SVM
	Genetic algorithms
	4001
	frequency components 
	Rescaling
	Pławiak et al. [89] 
	91
	15
	90
	17
	Pan-Tompkins; Sparse signal decomposition (Gabor Dictionary)
	time delay, frequency, width parameter, and square of expansion coefficient
	Particle Swarm optimization
	Accuracy: 99.11
	5
	MIT-BIH arrhythmia
	 DWT
	Raj et al. [88]
	SVM
	-
	Accuracy:
	99.53
	PNN
	DWT for QRS detection; multiresolution DWT
	multiresolution DWT moving average filter
	97.94
	MIT-BIH arrhythmia
	BPNN
	Rai et al. [36] 
	99
	5
	SVM
	-
	21
	Wavelet features
	98.53
	MLP
	Over 99% accuracy, sensitivity and precision for VEB and SVEB classes 
	Combined wavelet-based denosing and median filtering algorithm
	Morphological and Premature-or-Escape- Flag (PEF)
	MITDB, INCA-TDB, SVDB 
	Morphological and temporal features
	Wang et al. [91]
	4
	GRNN
	-
	-
	MIT-BIH arrhythmia; 300 real patients’ holter data from the Navy General Hospital in Beijing
	difference operation method (DOM) for QRS detection; 
	Accuracy:
	5
	parallel GRNN
	-
	8
	 heartbeat features
	Butterworth filter
	Li et al.  [34]
	95%
	Quadratic discriminant and KNN classifiers obtained the highest accuracies of 99.92 and 98.63
	MIT-BIH arrhythmia, normal sinus rhythm and BIDMC congestive heart failure
	SVM, CNN, quadratic discriminant, KNN and Naïve Bayes
	CWT, DWT, maximum overlapdiscrete transform (MODWT) and autoregressive modelling (AM)
	DWT (Daubechies-db4)
	Karboub et al. [35]  
	3
	PCA
	-
	wavelet features
	Accuracy:
	morphological features, frequency domain features, and nonlinear indices (entropy, fractal dimension, Lyapunov exponent) 
	non-dominated sorting genetic algorithm (NSGA II)
	93.26
	KNN
	DWT, ECG wave detection algorithm
	98.75
	MIT-BIH arrhythmia 
	FNN
	Normalization
	Mazaheri et al. [90]
	83.78
	7
	RBFNN
	-
	98.65
	Fit NN Pat NN
	97.97
	Accuracy:
	MIT-BIH and St. -Petersburg Institute of Cardiological Technics 12-lead Arrhythmia
	statistical features (2 indices for frequency distribution and 2 indices for the amount of change in the frequency distribution)
	98.7
	CART
	multiscale principal component analysis (MSPCA)
	-
	4
	DWT
	Alickovic et al.[145]
	98.4
	5
	C4.5
	99.3
	RF
	5
	convolutional features (200), PQRST features (25)
	2D-CNN, Early fusion algorithm 
	transform the heartbeats into grayscale images
	Accuracy:
	MIT-BIH arrhythmia
	RF
	-
	225
	Lu et al. [123]
	 99.90
	Accuracy:
	Normalization, Segmentation in 3 beats
	 85.4,
	MIT-BIH arrhythmia 
	RNN
	82.5 
	2
	GRU
	Singh et al. [146]
	88.1
	LSTM
	-
	-
	-
	-
	Accuracy
	 Dual-Tree Complex Wavelet Transform (DTCWT) and median filtering
	99.7 for VEB detection and 99.3 for SVEB detection
	3
	MIT-BIH arrhythmia 
	LSTM
	-
	-
	-
	Clustering algorithm 
	Zhang et al. [116]
	Accuracy:
	 MIT-BIH arrhythmia
	Bidirectional LSTM
	ECG signal segmentation
	Pandey et al.  [122]
	    99.52
	5
	-
	-
	convolutional encoded features
	CNN
	China Physiological Signal Challenge 2018
	CNN with spatial and temporal attention mechanisms
	The signals are down-sampled to 60s 
	F1 score 83.5
	Spatial and temporal features 
	Zhang et al. [117]
	9
	GRU
	-
	-
	Accuracy:
	low order polynomial and bandpass filter for noise filtering; segmentation with Pan-Tompkins algorithm
	Bidirectional LSTM
	96.4
	-
	MIT-BIH arrhythmia 
	Lynn et al. [118]
	-
	-
	-
	-
	 Bidirectional GRU
	98.55;
	MITDB: Accuracy:
	 
	MIT-BIH Normal Sinus Rhythm (NSRDB) and MIT-BIHArrhythmia (MITDB)
	Bidirectional LSTM 
	 
	 
	 
	derivative filter, moving average filter, normalization, and signal segmentation
	 99.8 
	Kim and Pyun [147]
	Sensitivity 99.8 
	-
	-
	-
	-
	-
	Precision:
	99.8
	Accuracy
	University of California, Irvine (UCI) repository
	93.5, 
	Khan and Kim [148]
	Sensitivity
	16
	LSTM
	PCA
	-
	-
	-
	PCA
	90.7
	Precision
	92.8
	Accuracy
	95.81
	2 median filters (200 and 600 ms) and low-pass filter
	Sensitivity
	MIT-BIH arrhythmia 
	RR intervals and HOS (68), convolutional features
	CNN and R peak detection
	Essa and Xie [29]
	 69.20
	5
	LSTM
	-
	-
	Specificity
	 94.56
	Precision 74.97
	Accuracy:
	Chapman University and Shaoxing People’s Hospital
	Lowpass filter, local polynomial regression smoother (LOESS), and Non-Local Means (NLM)
	96.13 
	4
	Convolutional features
	Yildirim et al. [111]
	LSTM
	-
	-
	1D CNN
	92.24
	7
	Chinese PLA General Hospital; CardioCloud Medical Technology (Beijing) Co. Ltd; The China Physiological Signal Challenge 2018
	Accuracy:
	Bandpass filter (0.5-35Hz) and segmentation in 10s segments
	 99.35
	DNN
	Cai et al. [31]
	Sensitivity 
	 (36 layers)
	99.19
	3 
	-
	-
	-
	-
	Specificity 99.44
	Accuracy 99.1 for SVEB detection
	MIT-BIH arrhythmia 
	Xu et al. [149]
	2 
	DNN
	-
	-
	-
	i-vector
	-
	 99.7 for VEB detection
	heartbeat segmentation using Pan-Tompkins algorithm and heartbeat alignment along the time axis
	 Xu et al. [150]
	Accuracy:
	MIT-BIH arrhythmia 
	DNN
	-
	-
	-
	DNN
	93.1 
	2 
	Accuracy: 99.68
	5
	MIT-BIH arrhythmia 
	DNN
	-
	4
	RR interval features (pre RR; post-RR; local average RR; global average RR)
	Pan and Tompkins
	Denoising (2 median filters and lowpass filter); 
	Sannino and De Pietro [151] 
	F1 score 83.7
	MIT-BIH arrhythmia 
	Hannun et al. [152]
	12
	DNN
	-
	-
	-
	CNN
	-
	Accuracy: 98.27
	sample entropy (SE) and the Variational mode decomposition estimated centre frequency features
	Hilbert transform and frequency heterodyning
	MIT-BIH arrhythmia and MIT-BIH AF 
	Sensitivity
	High pass filter
	Tripathy et al. [112]
	97.77
	2 
	DBN
	-
	18
	Specificity
	98.67
	Accuracy
	Detection of R-peak using filter bank based approach and T-wave using search windows with adaptive thresholds
	 93.78 for VEB detection
	RR intervals; heartbeat intervals; segmented morphology intervals; fixed interval morphology
	Bandpass, 2 median filters and adaptive filters; 
	Mathews et al. [113]
	MIT-BIH arrhythmia 
	2 
	DBN
	-
	48
	96.94 for SVEB detection
	High Order Statistic; Morphological features; Higher order statistic of Wavelet Packet decomposition; Discrete Fourier transform features
	Wavelet packet decomposition, higher order statistics, morphology and Discrete Fourier transform
	Accuracy
	94.15 
	Sensitivity 92.64
	2 median filters 
	Altan et al. [114] 
	5
	MIT-BIH arrhythmia
	DBN
	-
	150
	Specificity 93.38
	Accuracy 99.5 for SVEB and 99.4 for VEB on MITdb; 
	2
	SVM
	-
	-
	-
	unsupervised feature learning using GB- DBN
	noise removal (2 median filters and a lowpass filter)
	Sayantan et al.   [30]
	MIT-BIH arrhythmia;
	 SVDB database 
	Accuracy 97.5 for SVEB and 98.6 for VEB on SVDB database
	Accuracy:98.1%,Sensitivity:97.5%Specificity:98.7% 
	5
	MIT-BIH arrhythmia; SVDB database 
	Fully connected layer
	-
	-
	-
	CNN and LSTM
	Different lengths signal segmentation
	Oh et al. [119]
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