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Abstract

We propose a novel model-based approach for constructing optimal designs with complex blocking
structures and network effects, for application in agricultural field experiments. The potential interfer-
ence among treatments applied to different plots is described via a network structure, defined via the
adjacency matrix. We consider a field trial run at Rothamsted Research and provide a comparison of
optimal designs under various different models, including the commonly used designs in such situa-
tions. It is shown that when there is interference between treatments on neighbouring plots, due to the
spatial arrangement of the plots, designs incorporating network effects are at least as, and often more
efficient than, randomised row-column designs. The advantage of network designs is that we can con-
struct the neighbour structure even for an irregular layout by means of a graph to address the particular
characteristics of the experiment. The need for such designs arises when it is required to account for
treatment-induced patterns of heterogeneity. Ignoring the network structure can lead to imprecise esti-
mates of the treatment parameters and invalid conclusions.
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1 Introduction

Agricultural field experiments often exhibit neighbour effects, that is, the responses to treatments on plots
are affected by the treatments applied to neighbouring plots (Cox, 1958). For example, a chemical pesticide
applied to one plot can potentially influence the responses on surrounding plots due to spray drift, a taller
variety in one plot may influence the growth of a shorter variety on a neighbouring plot by shading the
plants, the lack of control of a foliar disease on one plot may cause there to be a higher disease pressure
on neighbouring plots, or the control or lack of control of an insect pest on one plot may influence the pest
pressure on plants in neighbouring plots. Research on reducing or accounting for neighbour effects has
mainly concentrated on the construction of either neighbour-balanced designs within crossed and nested
blocking structures or designs that are optimal for some interference model (see, e.g. David and Kempton,
1996). This work proposes the construction of optimal designs with complex blocking structures, while
also accounting for neighbour effects. Although our focus is primarily on agricultural field experiments,
the suggested methodology is applicable in a wide variety of medical, marketing and industrial contexts for
obtaining efficient designs tailored to the particular experimental requirements and constraints (for experi-
ments on networks, see, e.g. Aral, 2015; Bapna and Umyarov, 2015; Bond et al., 2012; Centola, 2010). For a
marketing experiment on a social network, for example, we need to select which users should receive which
advertisements of a commercial product in order to assess differences in click-through rates or revenue (Xu
et al., 2015).

Blocking involves grouping together experimental units that are expected to have similar responses in
the absence of treatments. Agricultural field experiments are often designed with simple (e.g. randomised
complete block designs) or more complicated (incorporating nested and/or crossed structures) blocking
structures to allow for anticipated systematic sources of variability associated with the physical arrangement
of plots or with constraints on the management of groups of plots. Systematic sources of variability associ-
ated with the physical arrangement of plots might include trends in soil characteristics, such as pH or soil
fertility, topography (e.g. locations down a slope), or distance from a field margin or hedge that might be
a source for pests or diseases. Constraints imposed by farm management activities could include lines of
plots being drilled in a single pass of the farm machinery, or a set of plots being simultaneously sprayed
with nutrients or pesticides under a boom sprayer. Where there is only a single source of such variability,
or where multiple sources can be confounded, then simple blocked designs can be used, but often these po-
tential systematic sources of variability will affect different subsets of plots, so that more complex blocking
structures need to be incorporated into the designs.

With relatively few treatments and the need to block for potential systematic variability in two orthogo-
nal directions, standard row-column designs might be appropriate, such as Latin squares or Youden squares
(where rows and/or columns contain a complete replicate of the treatment set). But as the number of treat-
ments increases, particularly where only relatively few complete replicates are possible (as is usually the
case with agricultural field experiments), it will often be necessary to consider the impact of rows and
columns of plots within each of a number of (replicate) blocks. In some cases, these blocks will be phys-
ically separated due to farm management constraints, whilst in other cases the blocks will be contiguous,
additionally allowing for row and column structures to run across multiple blocks. Thus, many agricultural
field experiments have to be designed within large two-dimensional (row-column) arrays of plots, allowing
for variation between rows and between columns.

A commonly used approach are resolved row-column designs, where each block contains a complete
replicate of the set of treatments (John and Williams, 1995, Ch.4-6). Several authors have developed re-
solvable row-column designs for comparing different treatments, for example Bose (1947), Singh and Dey
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(1979), Ipinyomi and John (1985), Bailey (1993) and Piepho et al. (2015). In general, such designs are pre-
ferred when dealing with a large number of treatments (e.g. a large number of varieties) and a small number
of replications. Other possibilities include α-designs (introduced by Patterson and Williams, 1976), which
are resolvable block designs with respect to a single within-block sub-blocking component (see also John
and Eccleston, 1986, who developed a class of orthogonal row-column designs based on the α-designs).
The software package CycDesigN (Whitaker, Williams, and John, 1997) is a practical tool for constructing
efficient resolvable nested block and row-column designs.

Much recent work on the design of experiments of agricultural experiments concerns spatial design for
mixed models with complicated correlation structures (see, e.g. Edmondson, 2020; Verdooren, 2020; Piepho
et al., 2020). Hoefler et al. (2020) described a large-scale simulation study to investigate the performance of
spatial designs relative to designs with more traditional blocking structures across different scenarios. Their
design evaluations revealed that replication improved the design performance and designs that controlled for
some spatial variability had overall best performance. This literature focuses on the unit structure (includ-
ing spatial effects). In the current paper, we instead account for treatment interference including spillover
(neighbour) effects, additionally to a complicated blocking structure.

Plot interference is another potential source of experimental error and bias which occurs when the re-
sponse is affected by (either response or treatment) interference in neighbouring plots. Adjustments to the
unit structure or modelling unit effects do not directly address the estimation of such interference effects,
which are indirect treatment effects. There are practical methods for reducing the effects of plot interference,
such as using wider spacing between plots, including border plants as guards, or using larger plots and only
recording on inner rows (Spitters, 1979; Besag and Kempton, 1986).

Apart from standard experimental practices that aid in decreasing interference through implementation,
it may be possible to take account of treatment interference effects by including additional terms in the re-
sponse model and optimising the design for such a model. A wide variety of possible models and designs
have been suggested for accommodating treatment interference. Examples include the work of David and
Kempton (1996), Druilhet (1999), Kunert and Martin (2000), Bailey and Druilhet (2004) and Kunert and
Mersmann (2011), who developed models and efficient designs for experiments where units are arranged in
a circle or a line allowing for the effects of immediate neighbours. Their suggested designs were primarily
neighbour-balanced in the sense that all pairs of treatments occur in adjacent plots equally often in some
cases allowing for the direction of any neighbour effects. Important work suggesting ways of accommodat-
ing interference in the analysis of field experiments is that of Besag and Kempton (1986), which investigated
different causes of association between neighbouring plots and provided appropriate models for better cap-
turing each cause (i.e. spatial techniques for the adjustment of field variation, response interference–interplot
competition, and treatment interference).

More recently, Parker, Gilmour, and Schormans (2017) suggested a model that relaxed the assumption of
neighbour effects being controlled in only one direction and allowed for a network setting. Koutra, Gilmour,
and Parker (2021) constructed efficient block designs using an extended version of that model with the
inclusion of blocks in addition to the neighbour effects for eliminating heterogeneity across experimental
units. Here, we extend the latter work to consider more complex blocking structures.

We obtain optimal resolved row-column designs that are suitable for use in agricultural field experiments
when additionally there is an underlying interference structure governing the plots which can be captured
via a network. That network structure is represented by means of a graph and accounts for sources of field
variation from adjacent plots caused by he direct interference or competition effects due to the treatments,
or indirect effects associated with crop management activities (e.g. drilling, harvesting), or by variation in
allocated resources (e.g. variation in pesticide rates for plots treated simultaneously). The network structure
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therefore represents separate sources of variation from the systematic sources captured by conventional
blocking structures. Thus, our suggested complex blocked designs with network effects aim at controlling
heterogeneity from multiple sources ultimately maximising the separation of treatment information from
within-field trends and other sources of variation which could influence the estimation of treatment effects
and comparisons.

Section 2 considers an agricultural field experiment that was designed and implemented at Rothamsted
Research and serves as a motivating example for this paper. The specification of the adjacency matrix for this
example experiment is considered in this section. Section 3 provides the model on which the optimal designs
will be based capturing the potential treatment interference between neighbouring units, incorporating both
network effects and the nested and crossed blocking factors. The formulation ofAs-optimality for estimating
differences between the treatment effects in the presence of nuisance network effects is also discussed in this
section. Several optimal designs are provided in Section 4 for the motivating example field experiment with a
detailed comparison made among them. Finally, Section 5 discusses relevant practical issues and concludes
the paper.

2 Motivating application

We consider an agricultural field experiment which aimed to assess differences in the natural cereal aphid
colonisation of eighteen selected lines from the Watkins bread wheat landrace collection (Wingen et al.,
2014) compared to three elite wheat varieties. For practical reasons, the experiment was restricted to small
plots (1m by 1m) for testing insect preference among the different wheat lines, with sufficient seed resources
for 4 complete replicates, and space for an array of 84 plots arranged in 14 rows and 6 columns was available.
The size of the plots and relatively small distances between neighbouring plots (0.75m between rows, 0.5m
between columns) suggests the potential for direct interference effects because of lines having different
levels of susceptibility to aphid infestation.

The responses measure the level of aphid colonisation of individual plants, aggregated within each plot.
Farm operations suggest the need for additional blocking structures beyond the relatively compact complete
replicate blocks of experimental units (21 plots in 7 rows and 3 columns, nested within 2 superrows and
2 supercolumns so that each superrow by supercolumn combination formed a replicate block, see Figure
1). The two farm operations potentially influencing the responses in a systematic way are the drilling of
the plots, where a column of 14 plots will be drilled in one pass of the machinery, and the application of
any crop protection or nutritional sprays, applied by boom sprayer with rows of 6 plots across the design
sprayed simultaneously. These two constraints justify the use of a conventional nested row-column design
allowing for variation between rows of 3 plots and columns of 7 plots nested within each complete block,
but also suggest a need for blocking structures along long rows of 6 plots and long columns of 14 plots
across complete blocks.

Figure 1 depicts the physical field layout with the original randomisation of the 21 treatments (lines). The
different colours denote the four complete blocks of the nested row-column blocking structure. The design
was constructed using the CycDesigN package (https://www.vsni.co.uk/software/cycdesign) as a resolvable
row-column α-design with rows of 3 plots and columns of 7 plots, latinised by rows (so that any treatment
only occurs once in each long row of 6 plots), partially latinised by long columns (but some treatments
appear more than once in some long columns of 14 plots) (Williams and Piepho, 2013). Given that for
this implementation of the experiment the complete blocks are already defined, we call the design resolved
rather than resolvable. The resulting design is therefore a resolved nested row-column design with additional
cross-replicate blocking.
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Figure 1: Field layout and treatment allocation (numbers) for the motivating agricultural experiment at
Rothamsted Research (year 2016). Blue/green shading indicates the superrows and light/dark shading indi-
cates supercolumns considered in the development of alternative models and designs

The potential interference among plots can be described via a network structure, which performs one of
two functions: either capturing the spatial structure to reflect distances between neighbouring plots across
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space or adjusting for farmer operations. The aim of the motivating experiment was to compare the selected
wheat lines with regards to natural cereal aphid colonisation, potentially identifying lines that show some
resistance to colonisation. The experimental units correspond to plots (areas of land), which form a network
structure pre-specified by the physical arrangement and practical management of the field experiment, so
as to address the particular characteristics of the field experiment. The plots constitute the vertices of the
network, with adjacencies based on the distances between the plot centroids, allowing for both the spatial
separation of plots and the plot size and shape. In particular, the horizontal, vertical and diagonal distances
between the centroids are 1.5m, 1.75m and 2.3m respectively (see Figure 1).

Different causes of interference among neighbouring units (vertices) can result in different specifica-
tions of the network structure. Issues to be considered include non-directional or directional interference
(e.g. impacts of spray drift might be considered as non-directional as wind direction is probably unknown,
whereas impacts of shading are probably directional defined by the orientation of the experiment and indi-
vidual plots), and unweighted or weighted interference effects (e.g. weightings might allow for geographical
distances or a different impact of neighbouring units at a higher or lower altitude). When dealing with spatial
arrangements of experimental units, there are several methods available to specify the neighbour structure.
In this case, the experimental units are arranged in a rectangular array, and the physical distances between
the units provide a natural basis for calculation of the network structure. We should note, however, that plots
are not contiguous but rather they are separated by small distances, with different distances across rows and
along columns.

The network structure can accommodate other factors which could have an impact on the analysis of the
field experiment related to farm management, e.g. sets of plots that are sprayed simultaneously or cultivated
in a particular order. Alternatively such factors could be incorporated as part of the blocking structure, if
there is potential systematic variation due to groups of plots being managed simultaneously. We consider the
effects due to the network structure separately to the different levels of blocking complexity and additional
to the particular treatment allocation.

The specification of the network structure may not be straightforward and this structure will likely be a
proxy for the actual dynamics (e.g. farmer operations) and interactions that take place between the plots. We
assume that the network structure is pre-specified (non-stochastic) and appropriately captures the observed
or potential associations among the plots. In common with other features of the design of experiments, such
as the blocking structure, subject matter expertise is needed to define an appropriate network structure for a
given experiment.

We consider two choices for this network structure as shown in Figure 2. These network structure speci-
fications can be used for controlling for unwanted geographical differences in the site and causes of variation
incurred from the farm operations and could be appropriately altered if needed for capturing the spatial pat-
terns even of an irregular arrangement of plots. Firstly, we consider the direct competitive effects of the
treatments applied to the immediate neighbours that are vertically, diagonally or horizontally connected.
The second choice for the adjacency matrix relates to the farmer operations.

More specifically, for our first specification the adjacency matrix is weighted, with weights based on
the inverse spatial distance between plots (centroids) including plots that are very close diagonally to one
another, while for the second specification the adjacency matrix is constructed without imposing any weights
and it is related to the farm operations and specifically the directions of drilling and spraying applications
implemented by the farmer. For brevity we refer to these adjacency specifications as King’s case (as in
chess) and Farmer’s case respectively.

These adjacency matrices have been specifically chosen to represent two common forms of neighbour
effects that might occur across agricultural field experiments, accounting for important components of the
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Figure 2: Different connectivity graphs: G1 (left) and G2 (right)

trial layout that might otherwise introduce a bias to the results and therefore to the conclusions drawn by the
experimenter. We might expect direct interference effects to stem from the treatments applied to all adjacent
plots, and indirect interference effects because of the order of particular farm management operations. This
led us to consider a weighted and undirected network for the direct interference effects, with the weights
being the reciprocals of the distances between the plot centroids, and a directed but unweighted network
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for the indirect effects, where the directions indicate the order in which farm management operations are
planned to be applied. Section 4 explores the optimality of the designs for these two alternative scenarios of
treatment interference among neighbouring plots.

From an analysis of the data collected from the motivating agricultural field experiment there was ev-
idence that the network effects are important despite the highly complex blocking structure (for removing
spatial variation). In particular, Tables 1–3 report the results of nested model comparisons accounting or not
for network effects, including two different comparisons for each of the network effect specifications. Fitting
the model with network effects and then adding direct effects adjusting for network effects (Comparison 1
in Tables 2 and 3) aligns with the design perspective of estimating direct effects in the presence of nuisance
network effects, while fitting the model with direct effects and then adding network effects adjusting for
direct effects (Comparison 2) aligns with the modelling perspective of understanding what is the added con-
tribution of network effects. Direct treatment and network effects were modelled as fixed effects and block
effects as random. Satterthwaite’s approximation method (Satterthwaite, 1997; Fai and Cornelius, 1996)
was used for the denominator degrees of freedom. The estimated residual variances for the models without
and with network effects are 0.71, 0.50 (King’s case) and 0.59 (Farmer’s case) respectively. We can observe
that the network effects are significant and that the background variation was partly explained by allowing
for these network effects, which is a justification of the need for designing the experiment accounting for
the network effects in addition to the complex blocking structure. A more detailed discussion can be found
in the Appendix.

Table 1: Analysis without network effects
Sum Sq Mean Sq NumDF DenDF F-value p-value

Variety 31.70 1.59 20.00 57.87 2.23 0.0095

Table 2: Analysis with network effects for the King’s case
Sum Sq Mean Sq NumDF DenDF F-value p-value

Comparison 1 Network effect 32.58 1.63 20.00 31.76 3.24 0.0015
Variety 19.34 0.97 20.00 35.48 1.92 0.0437

Comparison 2 Variety 32.20 1.61 20.00 35.85 3.20 0.0012
Network effect 20.41 1.02 20.00 32.09 2.03 0.0361

Table 3: Analysis with network effects for the Farmer’s case
Sum Sq Mean Sq NumDF DenDF F-value p-value

Comparison 1 Network effect 19.73 0.99 20.00 32.65 1.68 0.0911
Variety 23.85 1.19 20.00 33.43 2.03 0.0340

Comparison 2 Variety 26.80 1.34 20.00 33.24 2.28 0.0170
Network effect 15.76 0.79 20.00 34.05 1.34 0.2188
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3 The design and the model

We assume a general row-column structure and then we group rows into superrows (as shown by the green
and blue shading in Figure 1) and columns into supercolumns (as shown by the light and dark shadings in
Figure 1). We have (superrows/rows)×(supercolumns/columns), where superrows and supercolumns corre-
spond to sets of adjacent rows and sets of adjacent columns respectively (see, e.g., Bailey, 2008; Wingen
et al., 2014). Moreover, there is assumed to be an underlying network structure governing the experimental
units (plots) which is represented by means of a graph G = (V, E), with vertex set V (of size n) and edge
set E (of size l). The adjacency matrix of a graph is an n × n matrix A = [Ajh] with j, h ∈ V , which is a
compact way to represent the connectivity structure. The elements of the matrix indicate whether pairs of
vertices are adjacent or not in the graph. We aim to improve accuracy as well as the precision of the experi-
ment by controlling for heterogeneity due to multiple sources and by adjusting for the interference between
neighbouring units. Note that we are designing the experiment on the network with respect to fixed effects
for each of the blocking model terms. If block labels are properly randomised to blocks, it is reasonable to
analyse these trials with recovery of inter-block information by using random effects for blocks. However,
we will develop a design criterion using the model with fixed block effects. Although the model with ran-
dom block effects may well be better for analysis, the variances of estimated treatment parameters depend
on the ratio of between- and within-block variances. Since this ratio is unknown, it is safest to design for
the worst case, i.e., that which leads to the largest variances of estimated treatment parameters. This occurs
when the between-block variance tends to infinity, which is equivalent to the fixed blocks case.

Returning to the motivating agricultural experiment, the entire experiment is broken down into super-
rows and supercolumns of lengths b1 = b2 = 2 (see Figure 1, the first superrow contains the blue-shaded
plots and the second superrow contains the green shaded plots, and the first supercolumn contains the light
shaded plots and the second supercolumn contains the dark shaded plots). The superrow by supercolumn
combinations are equal to the κ = 4 blocks, and the complete array can also be broken down to κ1 = 14
rows each containing 6 plots and κ2 = 6 columns each containing 14 plots. The Hasse diagram (see, e.g.,
Bailey, 2008, Ch.10.4) in Figure 3 describes the unit structure for this experiment with the corresponding
degrees of freedom in each stratum. Recall that for the original design of the trial, the management opera-
tions of drilling and spray applications are done column-by-column and row-by-row respectively, so that it
is assumed that the effects of these processes will be confounded with the positional effects (i.e. the row,
column, superrow and supercolumn effects and interactions among these terms).

Let yikgh denote the response from the experimental unit in the g-th row and h-th column within the
i-th superrow and k-th supercolumn. The quadruple (i, k, g, h), where i = 1, 2, . . . , b1; k = 1, 2, . . . , b2;
g = 1, 2, . . . , κ1; and h = 1, 2, . . . , κ2, identifies the experimental unit which corresponds to the vertex
v ∈ {1, . . . , n} and t(ikgh) ∈ {1, . . . ,m} corresponds to the treatment applied to unit (i, k, g, h). We
should also note that the identity of every vertex in the network has been fixed by assigning a unique label
to each one (given that a labelling is arbitrary and every choice leads to an equivalent description of the
same network space). The most complex model we might consider, incorporating blocks (combinations
of superrows and supercolumns), rows and columns within superrows and supercolumns respectively, and
network effects. Hence the Block Row-Column Network Model (BRCNM), which is an extension of the
block network model (Koutra et al., 2021), is
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Figure 3: Hasse diagram of the unit structure of the design. Each node has two numbers: the number
of levels of the corresponding blocking factor and the corresponding degrees of freedom (in brackets),
obtained by subtracting the degrees of freedom for higher factors from the number of levels of the factor
under consideration. R, C, r and c represent supperrows, suppercolumns, rows and columns respectively.

BRCNM: yikgh = µ+ τt(ikgh) +

b1∑
i′=1

b2∑
k′=1

κ1∑
g′=1

κ2∑
h′=1

A{ikgh,i′k′g′h′}γt(i′k′g′h′)

+Ri + Ck + (RC)ik + rig + ckh + (rC)ikg + (Rc)ikh + εikgh, (1)

where µ denotes the overall mean effect, τt(ijkl) is the (direct) treatment effect,Ri andCj denote the i-th and
j-th superrow and supercolumn effects respectively, while rig and ckh denote the row and column effects
nested within the superrows and supercolumns respectively, (RC)ik denotes the interaction effects of su-
perrows and supercolumns, (rC)ikg denotes the interaction effects of rows and supercolumns, and similarly
(Rc)ikh denotes the interaction effects of columns and superrows. The adjacency matrix A{ikgh,i′k′g′h′}
indicates connections between the units (i, k, g, h) and (i′, k′, g′, h′) of the weighted and/or directed graph
and γt(i′k′g′h′) is the network effect of the treatment t(i′k′g′h′) applied to the connected unit (i′, k′, g′, h′)
when there is connection between the two experimental units defined by these indices (neighbour or indirect
treatment effect or interference effect). By convention the diagonal elements of the adjacency matrix are all
set to zero for avoiding self loops. The εikgh are assumed to be independent random variables, each with
E(εikgh) = 0 and E(εikgh

2) = σ2.
The model in matrix notation can be written as

E [y] = µ1 +Xττ +AXγγ +XRR+XCC +XRC(RC) +Xrr +Xcc+XrC(rC) +XRc(Rc),

where τ , γ, R, C, (RC), r, c, (rC) and (Rc) denote the vectors of treatment, network, superrow, super-
column, superrow×supercolumn interaction, row, column, row×supercolumn interaction and superrow×column
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interaction effects respectively. The model matrices Xτ , Xγ , XR, XC , XRC , Xr, Xc, XrC and XRc repre-
sent the treatments, network effects, superrows, supercolumns, superrow× supercolumn interactions, rows,
columns, row×supercolumn interaction and superrow×column interaction respectively.

Thus the information matrix for this model is M = XTX , where

X = (1 Xτ AXγ XR XC XRC Xr Xc XrC XRc) .

The information matrix has the form

M =


n 1TXτ 1TAXγ . . . 1TXRc

Xτ
T 1 Xτ

TXτ Xτ
TAXγ . . . Xτ

TXRc

Xτ
TA1 Xτ

TAXτ Xτ
TA2Xγ . . . Xτ

TAXRc
... · · ·

...
. . .

...
XT
Rc1 XT

RcXτ XT
RcAXγ . . . XT

RcXRc

 .

We are interested in obtaining the least squares estimators of the pairwise differences of the treatment
effects, ̂τs − τs′ with s, s′ ∈ {1, . . . ,m}. The design performance will be assessed via the As-optimality
criterion, which minimises the average variance of all pairwise differences of treatment comparisons

2

m(m− 1)

m−1∑
s=1

m∑
s′=s+1

var( ̂τs − τs′).
This is proportional to

φ =

m∑
v=2

m+1∑
h=v+1

sT (v, h)M−s(v, h) ,

where s(v, h) is a contrast vector formed of zeroes of appropriate dimension, except the v and h elements
which are 1 and −1 respectively, corresponding to the particular treatments we wish to compare in a given
contrast. The M = M(ξ) corresponds to the information matrix and ξ is a design chosen from Ξ the set
of all possible designs, where the design is a choice of treatment assignments to the experimental units
that correspond to the vertices of the network. The M− is a generalised inverse of the information matrix
M (Harville, 1997, Ch.9), which is pre- and post-multiplied by this contrast vector in the summation that
defines the optimality criterion φ across the 210 pairwise comparisons between varieties (treatments) in this
experiment. Our interest is in the variance of estimable contrasts, which is invariant with respect to the
choice of the generalised inverse. Thus the minimisation of the criterion function leads to an As-optimal
design and the minimum value of φ is the optimal function value. Koutra et al. (2021) provides a more
thorough description of the formulation of the optimality criterion but for a simpler blocking structure.

For each potential model, the optimal design will be obtained following an optimisation algorithm that is
described in the Appendix, by generating an initial treatment arrangement with some particular properties,
e.g. resolved row-column design, and making pairwise interchanges of treatments between plots (restricting
these interchanges to maintain the overall properties where appropriate, e.g. only making interchanges
within blocks for a resolved design). We have chosen a fairly standard exchange type algorithm because
its flexibility can be used for any design structure and it seems to work adequately for the problems of
interest. However other methods can be used such as tabu search (Glover, 1989), or simulating annealing
(Kirkpatrick et al., 1983).
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For our comparisons, we consider models that are special cases of the BRCNM. In particular:

CRM: E [y] = µ1 +Xττ ,

RBM: E [y] = µ1 +Xττ +XRR+XCC +XRC(RC) ,

RCM: E [y] = µ1 +Xττ +Xrr +Xcc ,

BRCM: E [y] = µ1 +Xττ +XRR+XCC +XRC(RC) +Xrr +Xcc+XrC(rC) +XRc(Rc) ,

LNM: E [y] = µ1 +Xττ +AXγγ ,

BNM: E [y] = µ1 +Xττ +AXγγ +XRR+XCC +XRC(RC) ,

RCNM: E [y] = µ1 +Xττ +AXγγ +Xrr +Xcc .

We consider the standard treatment models derived from the simplest randomisation schemes, the Com-
pletely Randomised Model (CRM) and the Randomised (complete) Block Model (RBM). The correspond-
ing designs for these models are the simplest forms of designs to compare different treatments by randomly
assigning them to experimental units (the Completely Randomised Design (CRD) and the Randomised
(complete) Block Design where treatments are additionally arranged in, potentially resolvable, blocks). If
instead of a simple blocking structure, we allow for experimental units being in a two-dimensional arrange-
ment of rows and columns then we have the Row-Column Model (RCM) and if, additionally, we consider
the row and column effects to be nested within blocks we have the Block Row-Column Model (BRCM).
Extending these four models (CRM, RBM, RCM, BRCM) to include a network model term to capture the
connections among units lead to the Linear Network effects Model (LNM) (introduced in Parker et al.,
2017), the Block Network Model (BNM) (introduced in Koutra et al., 2021), the Row-Column Network
Model (RCNM) and the Block Row-Column Network Model (BRCNM). The models are functions of the
network effects, the treatment (and blocking) factors, plus the error terms. We assume that, in all cases, the
errors are independent and random with zero mean and constant variance. Our interest lies in comparing
designs under the same model, making σ2 redundant as it is the same for all proposed designs under the
same model.

4 Comparison of designs

In this section comparisons are provided of optimal designs for estimating the treatment differences under
different models for the two different pre-specified adjacency matrices. We consider designs with unequal
and equal replication restricting the latter additionally for resolvability. This allows us to measure the ef-
ficiency loss by imposing additional restrictions on the randomisation process: for instance comparing a
resolved row-column design with network effects and equal replication to a row-column design with net-
work effects, which is not restricted to be resolved or equally replicated. In doing so we obtain the optimality
function values of each of the optimal designs with respect to the different models.

Designs for the corresponding models we compare are labelled as CRD (for the Completely Randomised
Design), RBD (for the Randomised Block Design), RCD (for the Row-Column Design), BRCD (for the
nested Block Row-Column Design), LND (for the network design under the Linear Network effects Model),
BND (for the Block Network Design), RCND (for the Row-Column Network Design), and BRCND (for
the Block Row-Column Network Design). We compare the performance of two designs using their relative
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As-efficiency, which, with respect to the objective function φ of a design ξ2 compared with a design ξ1,
is given by Eff(ξ1, ξ2) = φ(ξ1)/φ(ξ2). We can also define the As-efficiency of a design ξ as Eff(ξ) =
Eff(ξ∗, ξ), where ξ∗ is anAs-optimal design. The relative efficiencies for different designs are in the context
of assuming a particular model, with most interest in comparing alternative designs with the optimal design
for each model. We return to these definitions when assessing the performance of the optimal designs for
different models for the two different network specifications.

We investigate the benefits of imposing equal replication and/or resolvability, wherever these restrictions
can be imposed under a class of designs. In general, we get a loss of efficiency both with adding restrictions
to the randomisation process and also by adding restrictions to the relative replications – so when we assume
a more complex model, an optimal design for a simpler model will be less As-efficient.

As will be seen later, the arguments against imposing equal replication and resolvability are weaker if we
have already included network effects in the design, in the sense that we are not losing much in efficiency
by imposing further restrictions on the optimisation process. This is an important observation given that
algorithmically it is better to impose more restrictions since we reduce the design space leading to a faster
convergence to an efficient design. We should also remember that the algorithm presented in the Appendix
has been adjusted appropriately for producing each class of designs by imposing additional restrictions. For
the unrestricted case the algorithm is an interchange-exchange algorithm running two nested computations
sequentially: visiting each unit in order and freely allowing for an exchange of the treatment with any of the
listed competitive treatments and then interchanging those treatments until we reach convergence. Note that
the optimal designs for the first step under CRM, RBM, RCM and BRCM always have equal replication,
without imposing any constraint. Note also that we always assume that competing block designs have the
same block partition.

King’s case (G1)

We first consider the King’s case where the adjacency matrix represents the direct effects of treatments
in up to eight neighbouring plots (fewer for the edge plots). Thus it has weights corresponding to the
reciprocal of the distances between the plot centroids. The optimality function values for each obtained
design (labelling the rows of the table) under the different models (labelling the columns of the table)
are given in Table 4. The criterion values of the optimal designs for each model are highlighted in bold.
Recall that the smaller the criterion value the better the design is. Note that the optimal designs under the
standard models have been chosen arbitrarily (multiple designs will be optimal where no network effects are
included).

Focusing on the last column where the true model is assumed to be the BRCNM, we can see that all stan-
dard randomised designs without network effects (which we will refer to as non-network designs) perform
poorly with approximate As-efficiencies of 40% (= 254/642), 43% (= 254/589), 46% (= 254/550) and
51% (= 254/499) for the optimal CRD, RBD, RCD and BRCD respectively. Moreover, when we account
for block effects, in addition to network effects, the designs perform slightly better than when ignoring them;
efficiency increases to 48% (= 254/506 for BND1) compared with 46% (= 254/549 for LND1). Account-
ing additionally for the row and column effects (in RCND1) the design is 71% (= 254/353) efficient. Thus
we can see that with respect to this criterion all designs perform poorly under BRCNM, which means that
if we strongly believe that all these effects are present, we should account for them in the design. If we do
not believe that there are block effects, by including them the efficiency decreases to 88% (= 239/373) (see
φBRCND1 under RCNM).

As we can observe from the class of designs with equal replication, if we impose this constraint we
lose efficiency compared to not doing so. It is interesting to note that the differences in the efficiencies for
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Table 4: King’s Case: values of the objective function φ for the optimal designs under the different models
(smaller φ the better the design is)

Models

Classes of designs
CRM RBM RCM BRCM LNM BNM RCNM BRCNM

Unrestricted
CRD 105 111 146 159 192 238 682 642
RBD 105 105 129 142 228 249 547 589
RCD 105 108 126 143 199 239 552 550
BRCD1 105 106 140 126 190 210 502 499

LND1 106 110 149 153 130 158 550 549
BND1 109 112 150 159 137 144 622 506
RCND1 108 112 141 153 152 167 239 353
BRCND1 108 114 148 147 155 174 373 254

Equal-replicated
LND2 105 106 145 145 140 155 622 625
BND2 105 105 145 142 141 146 604 570
RCND2 105 106 134 142 178 191 311 512
BRCND2 105 105 144 144 163 176 401 315

Resolved
BND3 105 105 143 142 144 148 625 533
BRCND3 105 105 140 146 167 174 474 318

Implemented design
α-RCD 105 105 132 137 179 191 554 513
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designs that account for the network structure compared to those without are relatively small. It can also
be seen that there is modest loss of efficiency for using a more complex design approach. For example,
LND1, BND1, RCND1 and BRCND1 are 85% (= 126/149), 84% (= 126/150), 90% (= 126/141) and
85% (= 126/148) efficient, under the Row-Column Model (RCM). Note also that the BND1 performs
almost as well as the LND1 (the same holds for BND2 compared to LND2) under LNM indicating that we
do not do much worse by including block effects in the network model in terms of the design efficiencies.
Additionally forcing resolvability we obtain the third class of optimal designs that perform similarly to those
found under the constraint of equal replication.

Another observation from the results is that some of the biggest differences occur when there are network
effects with and without the row-column structure. In particular, when the unit structure is left out from the
design, the efficiency drops. Also including the row-column structure nested within blocks in the design,
there is a smaller but still significant reduction in efficiency possibly due to the additional imposed structure
conflicting with the network structure.

Farmer’s case (G2)

At this point, we focus on the adjacency matrix related to the farmer operations. The optimality function
values for the optimal designs under each of the models are shown in Table 5. We can obtain the As-
efficiencies of each design with respect to the optimal design. We note that in the first class of candidate
designs where we allow for non-resolvability and unequal replication, the optimal designs are all equally
replicated (including those accounting for network effects).

We see that the results here follow similar patterns to the results in the King’s case. One difference
stemming from the different network specification is that the optimal function values of the non-network
designs are slightly better than before. Assuming, for instance, that BRCNM is true, the non-network
designs have approximate As-efficiencies of 51% (= 174/343), 64% (= 174/273), 57% (= 174/306)
and 68% (= 174/255) for the CRD, RBD, RCD and BRCD respectively. Accounting additionally for the
network effects, the optimal designs are 65% (= 174/266), 78% (= 174/223) and 78% (= 174/222)
efficient for the LND4, BND4 and RCND4 respectively, implying that accounting for the block effects is as
good as accounting for the row and column effects. When we additionally restrict for resolvability we lose
less than 10% in efficiency (e.g. 92% = 174/189 for BRCND5 and 97% = 132/136 for BND5 efficient
relative to the non-resolved designs), but the BND5 compared to the BRCND5 performs very similarly in
terms of efficiency under all models.

In general, we can infer that when we believe that there may be important spillover (neighbour) effects
due to a structure governing the plots under experimentation, it is sensible to incorporate them in the model.
For this second network specification (the Farmer’s case) accounting for the network effects even when we
question their true existence does not do much harm in the design efficiencies, which means that we are
better off accounting for network effects than ignoring them.
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Table 5: Farmer’s Case: values of the objective function φ for the optimal designs under the different
models (smaller φ the better the design is)

Models

Classes of designs
CRM RBM RCM BRCM LNM BNM RCNM BRCNM

Unrestricted
CRD 105 111 146 159 164 183 306 343
RBD 105 105 129 142 159 161 249 273
RCD 105 108 126 143 167 176 249 306
BRCD 105 106 140 126 162 168 275 255

LND4 105 110 140 143 130 143 223 266
BND4 105 106 141 145 130 132 240 223
RCND4 105 108 131 142 134 141 170 222
BRCND4 105 107 138 131 134 138 233 174

Resolved
BND5 105 106 146 148 135 136 237 242
BRCND5 105 106 144 133 139 140 244 189

Implemented design
α-RCD 105 105 132 137 153 155 258 282

Implemented design for motivating example

We obtain the objective function values for the resolved α-RCD, the design actually used for our mo-
tivating example, under the different models. The design is shown in Figure 1. By ignoring the network
effects under the assumption that the network structure exists, we observe that the design efficiency, with
respect to the resolved BRCND3, is around 62% (= 318/513) for the King’s case (see Table 4). Likewise
with respect to the resolved BRCND5, the design efficiency is around 67% (= 189/282) for the Farmer’s
case (see Table 5). This implies that we considerably increase the design efficiency if network effects are
both necessary and accounted for in the modelling.

In this section we showed that optimal designs that account for network effects outperformed conven-
tional non-network designs in terms of efficiency when network effects are present. There is also no signif-
icant loss of efficiency in assuming a more complex model, when designing the experiment as the optimal
network design is about 2% to 15% less efficient as the standard non-networked design when the network
effects are ignored. The loss becomes higher with more complex blocking structure as the randomisation of
the allocation of treatments to units matter more.

In the resulting optimal network designs, it was noticed that each replicate of every treatment was close
to at least one replicate of all the other treatments, a desirable feature previously highlighted by Freeman
(1979) for the case of row-column designs. Also, pairs of closely connected units tend to receive the same
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treatment, also observed by Parker et al. (2017) and Koutra et al. (2021). The optimal designs can be found
in the Supplementary Material.

5 Discussion

In this study, we attempted to control for the potential variation and bias resulting from treatment inter-
ference or farm operations in agricultural field experiments through incorporating network effects in order
to improve the precision of treatment comparisons. We show that optimal designs with network effects
outperform conventional designs in terms of efficiency, where there is strong expectation of neighbour or
network effects. This approach is especially effective when there is good information about potential effects
for example associated with the size of effects or the distance of neighbours. Including network effects that
might be important is better than ignoring them and still the resulting optimal designs perform well under
the conventional models CRM, RBM, RCM etc. Also, by not taking into account network effects in our
design, we produce an experiment which can have higher variance than necessary but also biased treatment
effect estimators.

In practice, the adjacency matrix is tailor-made reflecting the suspected underlying interference structure
among plots. The choice of this matrix can also address irregular layouts demanding further potential
constraints. According to the specific problem at hand, the experimenter should appropriately choose the
adjacency matrix, suggest a suitable model to fit and optimise the design for that model for estimating the
important parameters of interest. Various alternative specifications of the adjacency matrix might include
detailed measurements between neighbouring plots to better reflect the spatial structure, the identification of
different field management practices, and the identification of both direct and indirect impacts of treatments
on neighbouring plots. In practice, the specification of this network might be a result of the scientific
knowledge of the experimenter or elicitation of information from farm managers on the suspected sources
of spillover effects based on experience which is likely to strongly affect the differences in treatment effects.
A conclusion drawn from the comparison of the optimal designs is that unsystematic designs that ignore
network effects are inefficient when network effects are present and may lead to poor results due to additional
variability associated with treatment effects.

Increasing constraints on the funding for agricultural research, particularly field experiments, and an
interest in being able to detect smaller and smaller treatment differences as being statistically significant,
means that there is increasing demand for the development of statistical design approaches that can lead
to the implementation of more efficient field experiments. Although the motivating example had a rectan-
gular array of plots, the adjacency matrix can be easily specified to accommodate any potential inter-plot
interference to ultimately reduce spatial and/or other sources of variation. Designs explicitly incorporat-
ing neighbour effects overcome these challenges, and the approaches described in this paper, building on
the models previously described by Parker et al. (2017) and Koutra et al. (2021), extend the pioneering re-
search of Besag and Kempton (1986). Our approach allows consideration of different types of neighbour
effects – including the direct effects of treatments on neighbouring plots, the indirect effects of the responses
to treatments on neighbouring plots, and “nuisance” effects associated with farm management practices –
within a complex nested and/or crossed blocking structure. Thus considering models that combine net-
work and block effects to capture the wide range of “nuisance” and “interference” sources of variability
provides an approach to the design of more efficient agricultural field experiments to better address the cur-
rent challenges of achieving more efficient and sustainable food production with limited resources, through
identifying treatments resulting in small incremental improvements.

The advantage of the suggested design approach is that we can control for the neighbouring environment
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according to the shapes, sizes, causes, directions and weights of the neighbouring interference. For instance,
neighbour effects may depend on the speed and direction of wind or periods in shade, which can result in an
appropriate definition of the connectivity matrix imposing suitable weights for the left or right neighbours,
etc. This highlights the importance of defining the adjacency matrix based on requirements of the experiment
at hand. If the network structure is adequately modelled, this design procedure may be expected to cause an
increase in precision of the treatment contrasts.

This study is intended to encourage the future application for agricultural field experiments of designs
assuming models including both network effects and complex blocking structures, to account for the antici-
pated dependence among neighbouring experimental units alongside those sources of variation convention-
ally accounted for using blocking.
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The designs with network effects discussed in Section 4 of the paper are shown in Figures 1 – 16.

Appendix

Optimisation algorithm

Early algorithms for optimal row-column designs were discussed in detail by Jones and Eccleston (1980a,b).
Their optimal designs were evaluated using the As-optimality criterion for minimising the sum of the
weighted variances of a set of treatment contrasts of interest. Computer algorithms have also been sug-
gested for obtaining row-column designs, for instance, the design generation package ALPHA+ for obtain-
ing α-designs developed by Williams and Talbot (1993), described in detail by Nguyen and Williams (1993)
and the nested simulated annealing algorithm developed by John and Whitaker (1993). They all use some
form of interchange procedure where pairs of treatments are swapped in the design, subject to an itera-
tive improvement procedure with respect to a chosen optimality criterion. To address the problem of the
interchange procedure getting stuck at a local optimum, Nguyen and Williams (1993) suggested repeated
runs of the algorithm using different starting designs, and then choosing the best design over all runs. John
and Whitaker (1993) also addressed this problem by accepting with low probability some randomly chosen
interchanges that do not result in an improvement in the chosen optimality criterion.

For the objectives of designing the motivating agricultural field experiment, we describe the algorithm
for the most complex case of resolvable blocks, nested row and column effects, and equal replication. This is
an interchange algorithm for the construction of efficient resolved row-column designs with network effects.
The algorithm begins with the generation of a non-singular design with a crossed blocking structure and a
fixed number and sizes of blocks, ensuring that the starting design contains all treatments. TheAs-optimality
criterion determines the decision rule of either allowing the interchange to occur or leaving the design
unchanged. Given that we restrict the design to be resolved, the candidate treatment swaps are restricted to
take place only within blocks, accepting those interchanges that improve the criterion value for the overall
design. The interchanges of pairs of treatments are chosen systematically within the same block. Thus the
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algorithm focuses on each block in turn, keeping the treatment allocation fixed in the remaining blocks. The
algorithm continues to cycle through the blocks, making interchanges until no beneficial changes can be
made in any of the blocks. The steps in the algorithm are as follows:

– Step 1: Generate a random non-singular resolved row-column design and calculate the optimality
criterion function for this starting design.

– Step 2: Make a pairwise interchange of treatments within the current block keeping the arrangement of
the treatment combinations fixed for the remaining blocks. Calculate the optimality criterion function
for the current design that corresponds to that specific interchange. If an interchange improves the
criterion value of the overall design, accept it and continue; otherwise, undo the interchange and
continue.

– Step 3: Repeat Step 2 for for each unit in the block until no further interchanges in the current block
result in an improvement (or if the above holds for at least a large number of iterations) then move on
to the next block.

– Step 4: Repeat Steps 2 and 3 until a pass through all blocks yields no changes or for a specific number
of times.

– Step 5: Repeat Steps 1– 4 for several randomly generated initial designs to overcome the problem of
becoming stuck in a local optimum.

In Section 4, we provide different designs adjusting this algorithm appropriately. In particular, we
consider two modified algorithms where we drop the resolvability property and/or the constraint of equal
replication. In the first case we relax the constraint of having a resolved design with the treatment inter-
changes occurring between pairs of plots within the same replicate blocks, and let them occur across the
whole design (non-resolved but equal replicated), while the second modified algorithm allows for treatment
exchanges rather than interchanges to generate non-equireplicate designs. For the exchanges the algorithm
moves systematically along all the units and exchanges the treatment with an alternative treatment retaining
the exchange if this results in an improvement of the criterion.

Analysis of the motivating agricultural experiment at Rothamsted Research

We provide the analysis of the experiment run in 2016 to explore the presence of the possible network effects
in this type of study. In particular we fit linear mixed effects models using lme4 package (Bates et al.,
2015) in R (R Core Team, 2021) with random block effects to assess differences in total aphid numbers
between treatments (wheat lines). We include both direct treatment and network effects as fixed effects and
block structures as random effects. We fit both the BRCM and BRCNM (Equation 1), where all blocking
components are random effects that are induced by restrictions in the randomisation in the unit structure,
that is rows, columns, superrows, supercolumns, and their interactions. We fit the models using residual
maximum likelihood (REML) and the generalised least squares (GLS) estimation method. Zero variance
component estimates were mostly obtained, and that is because there are only very small numbers of degrees
of freedom left for estimating them (Gilmour and Goos, 2009). The estimated residual variances for BRCM
and BRCNM (King’s and Farmer’s cases) are 0.71, 0.50 and 0.59 respectively. Non-orthogonality of the unit
structure requires an adjustment to be made to the degrees of freedom, for example using Satterthwaite’s
approximation method (Satterthwaite, 1997; Fai and Cornelius, 1996) as implemented in the lmerTest
package (Kuznetsova et al., 2017).
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Visual inspection of residual plots reveal small deviations from homoscedasticity and normality, which
were addressed using the Box-Cox approach which suggested the application of a square root transforma-
tion to the total aphid counts. Tables 1–3 report the the results of nested model comparisons for the models
BRCM, BRCNM (King’s case) and BRCNM (Farmer’s case) respectively, including two orders for fitting
the direct treatment and network effects for each of the network effect specifications. This is because from a
design perspective having the network effects first ties up with the optimality criterion used in this paper (i.e.
estimate direct effects in the presence of nuisance network effects), but from a modelling perspective net-
work effects are added second in order to understand what is their added contribution. Despite the complex
blocking structure (for removing spatial variation) there is evidence that the network effects are important.
Thus we can observe that the background variation is partly explained by allowing for the network effects,
and this provides a justification for designing the experiment accounting for the network effects as well
as the complex blocking structure. We can discern that the network effects are significant for the King’s
case but not for the Farmer’s case suggesting that the assumption that some of the farm management ac-
tivities might have influenced the responses is not likely. Recall that the King’s case is obtained based on
the weighted spatial structure capturing the neighbour effects from adjacent plots, while the farmer’s case is
directional and unweighted capturing the farmer activities. This might be because there is more association
with the blocking structure for the farmer’s case. However, if we assume that the best design (RCNBD)
is much better than the design that was actually used, then the design that was used may not be powerful
enough to detect these network effects even if they exist. The analysis of the motivating agricultural exper-
iment provides evidence that the BRCNM captures important sources of interference by accounting for the
network effects indicating the need to design accounting for these effects.
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