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Abstract: To further improve the comprehensive performance of Mg-based alloy, hot extrusion com-
bined with multi-pass equal channel angular pressing (ECAP) was applied to process Mg-3 wt%Zn-
0.2 wt%Ca alloy and 1 wt%β-TCP/Mg-3 wt%Zn-0.2 wt%Ca biocomposites. The microstructure
evolution, mechanical properties, corrosion behavior, and cell biocompatibility of the experimental
specimens were systematically investigated. The average grain size of 13.4 ± 0.6 µm in MgZnCa
alloy and 9.6 ± 0.3 µm in composites materials can be achieved by six ECAP passes. The uniaxial
compressive strength (UCS) of 388.4 ± 7.3 MPa and the strain at failure of 14.3 ± 1.5% were confirmed
in MgZnCa alloy, while the UCS of 405.3 ± 7.4 MPa and the strain at failure of 9.8 ± 1.9% were
achieved by the addition of β-TCP after six ECAP passes. In spite of different compositions, the
minimum corrosion rate of 0.895 mm·Y−1 and 1.117 mm·Y−1 can be achieved by two ECAP passes at
593 K. The cytocompatibility evaluation revealed that the experimental materials processed by six
ECAP passes had no significant cytotoxicity to L929 cells, and the addition of β-TCP improved the
cytocompatibility.

Keywords: magnesium-based composites; equal channel angular pressing; microstructure; mechani-
cal properties; corrosion resistance; biocompatibility

1. Introduction

Biodegradable magnesium (Mg)-based materials attracted significant attention for
their potential application in the biomedical industry [1,2]. Compared with conventional
metallic biomaterials such as stainless steel [3], CoCr [4], and titanium alloys [5], biodegrad-
able Mg alloys can be safely metabolized after fulfilling their function in the human body,
which circumvents secondary operation for the removal of the implant. By using biodegrad-
able Mg-based implant materials, the burden on the body and the economy of the patients
could be decreased [6]. Moreover, compared to the bioinert metallic materials, Mg-based
materials possess lower densities of 1.74–2.00 g·cm−3, and a lower elastic modulus of
10–40 GPa [7,8]. It is beneficial to reduce the stress shielding effect after Mg alloys are
implanted in the human body [8]. Among various Mg-based alloy systems, the Mg-Zn-Ca
alloys have been recognized as promising candidates for orthopedic applications due to
their biodegradability and good biocompatibility [9–12]. Zn as the alloying element could
enhance the corrosion resistance of the Mg matrix by forming a compound protective
layer on the material’s surface, while Ca shows excellent biocompatibility like Mg, and is
prone to form calcium phosphate during degradation, which is beneficial to the formation
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of bone tissue [13,14]. Furthermore, the development of magnesium-matrix composites
reinforced by bioactive ceramics could be an efficiency approach to further improve the
mechanical performance further and functionalize materials simultaneously [15–17]. In
previous studies, beta-tricalcium phosphate (β-TCP), which is a bioactive ceramic, was
used to develop β-TCP/Mg-Zn-Ca biocomposites with [18–20]. However, before the appro-
priate post-treatment, the mechanical performance of these composites is still insufficient
to meet the requirement of a load-bearing orthopedic implant.

Generally, the plastic formation process is necessary to improve the mechanical per-
formance of Mg-based materials and a conventional hot extrusion process was widely
used for this purpose [21–23]. However, conventional extrusion is a single-pass plastic
formation process, making it hard to provide sufficient deformation to achieve an adequate
and controllable mechanical performance. On the contrary, the ECAP process could pro-
vide a cumulative shear strain without changing the cross-sectional area of the processed
materials. In other words, unlike the conventional extrusion process, the ECAP process
could be repeated multiple times, contributing to a significant plastic strain and substantial
grain refinement in the ECAP-processed materials [24–28]. In recent years, several stud-
ies regarding the feasibility of the ECAP process for controlling the microstructure and
mechanical properties of Mg-based composites were reported. Significant grain refine-
ment effects caused by multi-pass ECAP were confirmed in AZ31, AZ61, and AZ91-based
materials [29–32]. In the meantime, the ECAP process could simultaneously ameliorate
the strength and ductility of Mg-based composites. Moreover, Gan et al. [33] reported the
re-distribution of reinforcements particles in the Mg2Si/Mg composites after the ECAP
process, resulting in a homogeneous distribution of Mg2Si reinforcements. More impor-
tantly, the ECAP process also could adjust the corrosion resistance of Mg-based alloy by
grain refinement and the redistribution of second phases [34]. However, scant reports
are available to the best of our knowledge, exploring the feasibility of the conventional
extrusion combined with the multi-pass ECAP process for the Mg-based composite. Fur-
thermore, the evolution of microstructure, mechanical properties, and corrosion behavior
of β-TCP/Mg-Zn-Ca biocomposites during the ECAP process was still unclear.

In the present study, the 1β-TCP/Mg-3Zn-0.2Ca composite has been fabricated by cast-
ing with high-speed stirring and ultrasonication followed by a conventional hot extrusion
process. Thereafter, a multi-pass ECAP process was performed for the 1β-TCP/Mg-3Zn-
0.2Ca composites. The microstructure evolution, mechanical properties, corrosion behavior,
and cytocompatibility of ECAP-processed 1β-TCP/Mg-3Zn-0.2Ca composites were system-
atically investigated. The comprehension effect of conventional extrusion combined with
the ECAP process as a promising approach for the development of 1β-TCP/Mg-3Zn-0.2Ca
composites was evaluated and discussed in detail.

2. Materials and Methods
2.1. Material Preparation Method

Commercially available high-purity magnesium ingots (99.99 wt%), pure zinc granules
(99.99 wt%) with the size of 3–4 mm, magnesium-calcium intermediate alloy (25 wt% Ca)
and β-TCP nanoparticles were used as raw materials. β-TCP particles with an average
diameter of ~150 nm were prepared via a hydrothermal method, which was reported else-
where [35]. Generally, compared with micro-sized TCP particles, nano-sized counterparts
with the same content could result in a higher specific surface area and a higher number
density in the Mg matrix, which could possibly induce a more intimate bonding between
TCP and Mg matrix, and a more efficient grain refinement effect [36–38]. Furthermore,
nano-reinforcements can remarkably increase mechanical strength by effectively promoting
particle hardening mechanisms [39]. Hence, for the sake of efficient grain refinement and
effective strengthening behavior, nano-sized β-TCP particles were chosen as the reinforce-
ment for the Mg-Zn-Ca matrix. According to our experience, to achieve a substantial
improvement in mechanical performance and avoid the aggregation of β-TCP particles, the
β-TCP content was set at 1 wt%. A schematic diagram of the processing route of Mg-3Zn-
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0.2Ca alloy and 1β-TCP/Mg-3Zn-0.2Ca composite is shown in Figure 1a. A self-developed
furnace with the devices for high-speed stirring and ultra-sonication was employed for
the material preparation. Under the protective atmosphere of N2 + SF6, the raw materials
were melted at 993 K under high-speed stirring and ultra-sonication for 15 min and then
cast. Subsequently, the ingot was hot extruded into a square rod with an edge length of
15 mm followed by a multi-pass ECAP process with an internal-channel angle of 120◦ and
an external angle of 0◦, as shown in Figure 1b. The specimens were preheated for 15 min
before each ECAP pass. The ECAP process was carried out in route A (no rotation between
subsequent passes) with a cross-head speed of 2 mm·s−1.
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Figure 1. Schematic diagram of (a) the processing route of Mg-3Zn-0.2Ca alloy and 1β-TCP/Mg-
3Zn-0.2Ca composite; (b) the essential geometrical parameters for the ECAP die and specimen
orientation nominations.

In this study, the ECAP processing parameters for Mg-3Zn-0.2Ca alloy and the 1β-
TCP/Mg-3Zn-0.2Ca composites were summarized in Table 1. The ECAP-processed spec-
imens were named using composition (A means Mg-3Zn-0.2Ca alloy and C means 1β-
TCP/Mg-3Zn-0.2Ca composite), ECAP processing times, and ECAP temperature for con-
venience. For example, A-2-593 K means that Mg-3Zn-0.2Ca alloy ECAP was treated
2 times at 593 K. The effect of ECAP on the microstructure mechanical properties and
corrosion resistance of the materials was systematically investigated from the ED of the
experimental specimens.

Table 1. ECAP processing parameters used in this study.

Names Material ECAP Times Temperature (K)

A-as-extruded alloy 0 -
C-as-extruded composite 0 -

A-2-593 K alloy 2 593
C-2-593 K composite 2 593
A-4-593 K alloy 4 593
C-4-553 K composite 4 553
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Table 1. Cont.

Names Material ECAP Times Temperature (K)

C-4-573 K composite 4 573
C-4-593 K composite 4 593
C-4-613 K composite 4 613
A-6-593 K alloy 6 593
C-6-593 K composite 6 593
A-8-593 K alloy 8 593
C-8-593 K composite 8 593

2.2. Phase Analysis and Microstructure Observation

The phase constitution was analyzed by X-ray diffraction (XRD; SmartLab, Rigaku,
Tokyo, Japan) using Cu-Ka radiation (k = 0.154059 nm) with an operating voltage of 40 kV
and an operating current of 44 mA. XRD investigation was carried out over the 2 theta
range of 20◦ to 80◦ with a step size of 0.02◦ and a dwelling time of 1 s. The test surface was
perpendicular to the extrusion direction. The microstructure observations were performed
on an optical microscope (GX51, OLYMPUS, Tokyo, Japan). The grain size was measured
using an automatic image analyzer (OLYMPUS M3, OLYMPUS, Tokyo, Japan), using the
linear intercept method as described in the ASTM standard E112-G6. Transmission electron
microscope (TEM) investigations were performed on a JEOL 2100 device (JEOL, Tokyo,
Japan) at an accelerated voltage of 200 kV. The TEM specimens were prepared by twin-jet
etching by a mixed solution of 2.75 g picric acid, 2.5 mL glacial acetic acid, 5 mL deionized
water, and 45 mL anhydrous ethanol. Texture analysis for the C-as-extruded and the C-4-
593 K was executed by electron backscatter diffraction (EBSD; Hikari XP, EDAX, Mahwah,
NJ, USA). The samples for EBSD were prepared by a typical ion-milling method. The EBSD
results were analyzed using the Channel 5 software (Version 3.1, Hobro, Denmark).

2.3. Mechanical Properties

The mechanical properties were tested via compressive test. Samples for the compres-
sive tests are processed into the dimension of Φ 4 mm × 8 mm. The compression rate was
0.5 mm·s−1. The compressive yield strength was determined according to ASTM E111.
Three parallel samples were tested for each material.

2.4. Electrochemical Measurements

Electrochemical analysis was performed at 310 K using an electrochemical workstation
(Zennium Zahner, Sciencetech, London, ON, Canada), which consisted of the electrolytic
tank containing simulated body fluid (SBF) and a standard three-electrode system (graphite
as the control electrode, saturated calomel electrode as the reference electrode and the
sample as the working electrode). After the open circuit potential was recorded for 1800 s,
the potential dynamic polarization was performed at a scanning rate of 1 mV·s−1, and the
voltage range was set as self-corrosion potential ± 500 mV.

2.5. Cell Biocompatibility Evaluation

The test was determined pursuant to ISO 10993-5 standard [40]. The medium was
RPMI-1640 (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% inacti-
vated fetal bovine serum, 100 U·mL−1 penicillin, and 100 U·mL−1 streptomycin. Samples
(7 mm × 7 mm × 3 mm) were sterilized by ultraviolet rays, and then added into RPMI-
1640 culture medium according to the ratio of sample surface area to culture volume of
3 cm2·mL−1, and placed in an incubator with 5% CO2 at 310 K for leaching for 7 days to ob-
tain the leaching stock solution. Mouse fibroblasts (L-929 cells) were grown in a cell culture
incubator with 5% CO2 at 310 K. Four parallel samples were set for each material in this test.
The negative control group was 10% serum +90% RPMI-1640 culture medium. 100 mL cells
were stained with 0.4% trypan blue. According to the concentration of 5000 cells·well-1, the
cells were injected into a 96-well culture plate and cultured at 310 K for 24 h, then washed
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with phosphate buffer solution (PBS). After 1 day, 3 days, and 5 days of culture, the cells
were taken out, and 20 mL 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide
(MTT) with a concentration of 5 mg·mL-1 was added to continue to culture for 3 h. After
MTT fully reacted with the cells, the supernatant of the culture medium was removed,
and 150 mL dimethyl sulfoxide was added. After the crystals were completely dissolved,
the absorbance (OD value) was measured with a microplate reader at a wavelength of
570 mm. The relative proliferation rate of the cells was calculated as RGR (average OD of
the experimental group × 100%/mean OD of the negative control group).

3. Results and Discussion
3.1. Phase Analysis

Figure 2 shows the XRD profiles of as-extruded Mg-3Zn-0.2Ca alloy and 1β-TCP/Mg-
3Zn-0.2Ca composite. For A-as-extruded and C-as-extruded, the main constitution was
identified as the α-Mg, the second phases were composed of Ca2Mg6Zn3 and MgZn phases.
However, no diffraction peak of TCP was detected by XRD in the C-as-extruded. It may be
because the β-TCP content is lower than the sensitive value detected by XRD. No diffraction
peak of the intermediate phase between the β-TCP and the matrix alloy was identified
in the C-as-extruded, indicating that no significant chemical reaction occurred between
β-TCP and the matrix alloy.
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Figure 2. XRD profiles of A-as-extruded and C-as-extruded specimens.

3.2. Microstructure Observation

Figure 3 shows the microstructure of as-cast, as-extruded and different ECAP passes
(0, 2, 4, 6, and 8) at 593 K of Mg-3Zn-0.2Ca alloy and 1β-TCP/Mg-3Zn-0.2Ca composites.
Compared with the as-cast microstructure of Mg-3Zn-0.2Ca alloy as shown in Figure 3a,
the as-extruded alloy exhibits significant grain refinement. Equiaxed morphology was
observed in as-extruded and ECAP-processed specimens. When the ECAP times up to two,
the Mg-3Zn-0.2Ca alloy exhibits apparent grain refinement compared with the as-extruded.
With the further increase in ECAP passes, the grain refinement effect of Mg-3Zn-0.2Ca alloy
is enhanced. The A-6 P-593 K possesses the smallest grain size. When the ECAP times
were more than six (eight in this study), it is apparent that some grains grow excessively.
The average grain sizes of Mg-3Zn-0.2Ca alloy components with 0, 2, 4, 6, and 8 ECAP
passes are approximately 17.1 ± 1.3 mm, 15.6 ± 1.0 mm, 14.4 ± 0.8 mm, 13.4 ± 0.6 mm and
14.2 ± 0.8 mm, respectively.
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0.2Ca composites: (a) A-as-cast, (b) C-as-cast, (c) A-as-extruded, (d) C-as-extruded, (e) A-2 P-593 K,
(f) C-2 P-593 K, (g) A-4 P-593 K, (h) C-4 P-593 K, (i) A-6 P-593 K, (j) C-6 P-593 K, (k) A-8 P-593 K,
(l) C-8 P-593 K.

Similarly, compared with the as-cast microstructure of 1β-TCP/Mg-3Zn-0.2Ca com-
posite as shown in Figure 3b, the as-extruded composite also shows significant grain re-
finement. The average grain sizes of 1β-TCP/Mg-3Zn-0.2Ca composites after 0, 2, 4, 6 and
8 ECAP passes processing are approximately 13.4 ± 1.1 mm, 11.6 ± 0.9 mm, 10.8 ± 0.5 mm,
9.6 ± 0.3 mm and 10.4 ± 0.5 mm, respectively. It is worth noting that 1β-TCP/Mg-3Zn-
0.2Ca composite possessed smaller average grain sizes than the Mg-3Zn-0.2Ca alloy pro-
cessed by the same ECAP parameters. This is mainly due to the role of β-TCP particles in
facilitating the dynamic recrystallization and hindering the grain growth during the ECAP
process. It is worth noting that the dispersion properties of β-TCP were improved after the
ECAP process, due to the redistribution of β-TCP caused by significant shear deformation.
The microstructure evolution of the experiment materials with multiple ECAP passes can be
partially attributed to the dynamic recrystallization and the redistribution of second phases
and β-TCP particles. Under the strong shear force derived from the ECAP process, the Mg-
3Zn-0.2Ca alloy undergoes severe plastic deformation in each ECAP processing. The severe
plastic deformation caused dynamic recrystallization and promoted grain refinement. In
the meantime, the redistribution of the second phase would occur in each ECAP processing
due to the strong shear force of ECAP. Figure 4 shows TEM images and corresponding EDS
results for the second phase which should be the Ca2Mg6Zn3 phase. However, when the
ECAP times were beyond six (eight in this study), the factor of recovery dominated the
microstructure evolution of A-8 P-593 K, thereby facilitating the grain growth, resulting in
higher grain size than that of A-6 P-593 K specimens. In the case of 1β-TCP/Mg-3Zn-0.2Ca
biocomposites, except for the grain refinement and redistribution of Ca2Mg6Zn3 s phase,
the dispersion properties of the β-TCP particles were also improved under the substantial
deformation derived from the ECAP process. The improved dispersion properties of β-TCP
are also beneficial to grain refinement by hindering the movement of grain boundary and
acting as a potential nucleation site. Therefore, from the viewpoint of grain refinement,
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six ECAP passes at 593 K should be the optimal ECAP parameter for Mg-3Zn-0.2Ca alloy
and 1β-TCP/Mg-3Zn-0.2Ca composite.
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On the other hand, ECAP temperature also obviously impacts the microstructure of
1β-TCP/Mg-3Zn-0.2Ca composites. Figure 5 shows the microstructure of the as-extruded
1β-TCP/Mg-3Zn-0.2Ca composites processed by 4 ECAP passes at different temperatures
(553 K, 573 K, 593 K, and 613 K). When the 1β-TCP/Mg-3Zn-0.2Ca composite was processed
at 553 K, coarse grains and small grains coexisted to form a heterogeneous microstructure,
as shown in Figure 5a. With the further increase in ECAP temperature, the volume fraction
of refined grains increased. When the ECAP temperature was up to 593 K, the C-4 P-593
K displayed the most uniform microstructure. According to Figure 5d, when the ECAP
temperature was up to 613 K, abnormal grain growth was observed due to the excessive
temperature. The average grain sizes of C-4 P-553 K, C-4 P-573 K, C-4 P-573 K, and C-4
P-613 K are approximately 9.8 ± 0.9 mm, 10.3 ± 0.8 mm, 10.8 ± 0.5 mm and 11.1 ± 0.7 mm,
respectively. The increase in ECAP temperature was beneficial to the dislocation slip and
plastic deformation of the 1β-TCP/Mg-3Zn-0.2Ca composite, which means that the uniform
microstructure could be achieved. On the other hand, the increase in ECAP temperature
accelerated grain growth of 1β-TCP/Mg-3Zn-0.2Ca composites [40], which was adverse to
grain refinement. Hence, due to the competitive effect of grain growth and recrystallization,
the C-4 P-593 K displayed the most uniform microstructure among all specimens with
different ECAP temperatures.
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From the viewpoint of microstructure, 593 K should be the optimal temperature of the
ECAP process for the 1β-TCP/Mg-3Zn-0.2Ca composites.

3.3. Texture Evolution

Figure 6 provides the inverse pole figures, the misorientation angle distributions, and
the grain size distributions of the C-as-extruded and the C-6 P-593K specimens. According
to Figure 6a,b, a heterogeneous microstructure was formed in an as-extruded composite,
including the coarse grains whose grain sizes are larger than 60 um and fine grains whose
grain sizes are under 5 um. After six passes of ECAP processing, almost all elongated
grains in as-extruded specimens were transformed into fine recrystallized grains, reducing
the average grain size. Grain size distribution results reveal that a relatively narrow
distribution was achieved in C-6 P-593 K compared with as-extruded counterparts, which
means the ECAP process contributes to the homogenization of microstructure, as shown
in Figure 6d,e. This is mainly due to ECAP-induced dynamic recrystallization, and the
redistribution of the second phase and β-TCP particles. As shown in Figure 6c,f, the
proportion of high angle grain boundaries (HAGBs) of the C-6 P-593 K increases compared
with that of the C-as-extruded 1β-TCP/Mg-3Zn-0.2Ca composite, which is a key character
of dynamic recrystallization.

Figure 7 shows the (0 0 0 1) pole Figures of the C-as-extruded and the C-6 P-593
K. The C-as-extruded possessed a single (0 0 0 1) texture, in which the (0 0 0 1) basal
plane paralleled to ED-axis. The texture is typical for magnesium alloys processed by hot
extrusion [33]. The texture of the C-6 P-593 K changed and was divided into two kinds of
texture. One, which corresponds to area A in Figure 7b, indicates the (0 0 0 1) basal plane
parallel to the ND plane. The other one, which corresponds to area B in Figure 7b, indicates
that the angle between the normal direction of (0 0 0 1) basal plane and the ED-axis is
60 degrees. It is supposed that the substantial shear stress, which also possessed an angle
of 60 degrees with the ED-axis, contributes to the formation of the second texture type
during the ECAP process.
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3.4. Mechanical Properties

Figure 8 shows the compressive stress–strain curves of Mg-3Zn-0.2Ca alloy and 1β-
TCP/Mg-3Zn-0.2Ca with different ECAP process parameters. The results of the compres-
sive test (UCS, CYS, and strain at failure (σ)) are shown in Table 2.
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Figure 8. Compressive stress–strain curves of (a) Mg-3Zn-0.2Ca alloy and (b) 1β-TCP/Mg-3Zn-0.2Ca
composites with different ECAP process parameters.

Table 2. Summary of mechanical properties of the experimental specimens.

Name UCS (MPa) CYS (MPa) σ (%)

A-as-extruded 360.6 ± 8.5 103.1 ± 6.4 9.5 ± 1.5
C-as-extruded 365.9 ± 9.3 107.8 ± 5.8 7.6 ± 1.3

A-2 P-593 K 341.1 ± 6.4 75.7 ± 6.1 11.9 ± 2.0
C-2 P-593 K 382.5 ± 7.6 112.4 ± 6.3 8.8 ± 1.7
A-4 P-593 K 384.9 ± 9.5 84.6 ± 5.7 13.0 ± 1.9
C-4 P-593 K 405.3 ± 7.4 118.9 ± 7.0 9.8 ± 1.9
A-6 P-593 K 388.4 ± 7.3 94.5 ± 7.2 14.3 ± 1.5
C-6 P-593 K 411.7 ± 6.8 123.6 ± 5.5 10.1 ± 2.8
A-8 P-593 K 367.1 ± 8.1 86.8 ± 8.7 13.4 ± 2.3
C-8 P-593 K 401.0 ± 6.9 115.7 ± 7.1 9.4 ± 1.8

For Mg-3Zn-0.2Ca alloy, it was found that both strength and strain at failure of Mg-
3Zn-0.2Ca alloy increase first and then decrease with the increasing ECAP passes. The
A-6 P-593K exhibits the optimized mechanical performance in Mg-3Zn-0.2Ca alloy groups,
which includes the UCS of 388.4 ± 7.3 MPa, and the CYS of 94.5 ± 7.2 MPa, and the strain
at failure of 14.3 ± 1.5%. For 1β-TCP/Mg-3Zn-0.2Ca composites groups, the C-6 P-593K
specimens showed the best comprehensively mechanical performance, including the UCS
of 411.7 ± 6.8 MPa, the CYS of 123.6 ± 5.5 MPa and the strain at failure of 10.1 ± 2.8%.
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Thus, the optimal ECAP parameter for Mg-3Zn-0.2Ca alloy and 1β-TCP/Mg-3Zn-0.2Ca
composite should be six ECAP passes at 593 K from the viewpoint of mechanical properties.
It is worth mentioning that 1β-TCP/Mg-3Zn-0.2Ca composites possess higher strength
but lower strain at failure than the Mg-3Zn-0.2Ca alloy components processed by the
same ECAP parameters. This may be due to the improved dispersion properties of β-TCP
particles induced by the severe shear force during the ECAP process. Furthermore, β-TCP
particles could facilitate nucleation during the ECAP process, thereby contributing to the
recrystallization and grain refinement in the ECAP-process composites. Above all, the im-
proved mechanical performance of ECAP-processed 1β-TCP/Mg-3Zn-0.2Ca composites is
associated with enhanced second phase strengthening and grain refinement strengthening
caused by uniformly dispersed β-TCP particles and β-TCP-induced recrystallization.

The enhanced mechanical properties of the ECAP-processed 1β-TCP/Mg-3Zn-0.2Ca
composites could be explained as follows. According to the Hall–Petch relationship, grain
refinement induced by the ECAP process has a positive effect on both strength and ductility.
Moreover, the ECAP process also led to the redistribution of the second phases, as shown in
Figure 4, which enhanced the role of the second phases in hindering dislocation migration
and grain boundary migration, resulting in a increased second phase strengthening. Simi-
larly, the dispersion properties of the β-TCP particle was improved by the ECAP-induced
redistribution, which could contribute to an increased strengthening efficiency of β-TCP
in the ECAP-processed 1β-TCP/Mg-3Zn-0.2Ca composites. Furthermore, texture plays a
vital role in the mechanical properties of materials with strong textures [41]. According
to the Figure 7, the single texture with the (0 0 0 1) basal plane paralleled to ED-axis was
confirmed in the C-as-extruded. This kind of texture is not conducive to basal slip during
the compressive deformation, but the basal slip possessed the lowest activated energy in the
slip system of magnesium alloy, thereby resulting in a relatively low ductility [42]. On the
contrary, after the ECAP process, a new texture component was confirmed in Figure 7b. The
new texture component indicates the normal direction of the (0 0 0 1) basal plane inclines
to the ED-axis by about 60 degrees. Such a texture component facilitated the activation of
the basal slip system resulting in improved ductility.

Consequently, the evolution in the mechanical properties of Mg-3Zn-0.2Ca alloy and
1β-TCP/Mg-3Zn-0.2Ca composites with multiple ECAP passes depend on the synergistic
effect factors, including grain refinement, second phases, β-TCP particles, and texture
transformation. With the further increasing ECAP passes, the effect of grain refinement
and second phases redistribution had a much higher impact on the resulting mechanical
properties than the texture transformation, resulting in the increase in both strength and
strain at failure of Mg-3Zn-0.2Ca alloy and 1β-TCP/Mg-3Zn-0.2Ca within six (including
six) ECAP passes and reached peak values at six passes. However, the ECAP process
resulted in excessive grain growth of the C-8 P-593K, which deteriorated the comprehensive
mechanical properties of Mg-3Zn-0.2Ca alloy and 1β-TCP/Mg-3Zn-0.2Ca composites.

3.5. Electrochemical Analysis

Figure 9 shows the potentiodynamic polarization curves of Mg-3Zn-0.2Ca alloy and
1β-TCP/Mg-3Zn-0.2Ca composite with different ECAP passes (0, 2, 4, 6, and 8) at 593 K,
and the corrosion parameters of the polarization test are shown in Table 3.

According to Table 3, the A-2 P-593 K possesses higher corrosion resistance than that
of A-as-extruded, while the corrosion resistance of Mg-3Zn-0.2Ca alloy decreases with the
further increased ECAP passes. Similarly, according to the electrochemical analysis results
of the ECAP-processed 1β-TCP/Mg-3Zn-0.2Ca composites, the C-2 P-593 K exhibited
enhanced corrosion resistance compared to the C-as-extruded. Nevertheless, when the
ECAP passes are higher than two, the corrosion resistance was trending downward.
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Figure 9. Potentiodynamic polarization curves of samples with different ECAP processing
parameters in SBF.

Table 3. Corrosion parameters of the experimental specimens obtained from polarization curves.

Name Ecorr (V vs. SCE) Icorr (µA·cm−2) Vcorr (mm·Y−1)

A-as-extruded −1.398 53.6 1.224
C-as-extruded −1.458 71.6 1.635

A-2 P-593 K −1.438 39.2 0.895
C-2 P-553 K −1.486 48.9 1.117
A-4 P-593 K −1.478 60.3 1.377
C-4 P-593 K −1.505 69.2 1.580
A-6 P-593 K −1.513 78.5 1.793
C-6 P-593 K −1.529 93.1 2.126
A-8 P-593 K −1.566 91.2 2.083
C-8 P-593 K −1.534 112.6 2.571

The evolution in corrosion resistance of Mg-3Zn-0.2Ca alloy and 1β-TCP/Mg-3Zn-
0.2Ca composite with multiple ECAP passes could be explained from two aspects. The
grain refinement has a significant impact on corrosion resistance. A protective surface
film composed of MgO formed during corrosion, which could improve the corrosion
resistance of matrix alloy. However, the free volume mismatch between surface film and
metal matrix caused tensile stress in the surface film, thus increasing its cracking tendency.
The grain refinement reduced the mismatch between the protective surface film and the
underlying matrix alloy, thereby reducing the crack potential. Moreover, the ECAP process
also contributes to the redistribution of the second phases and β-TCP particles in the
experimental materials, which ameliorate the homogeneity and corrosion resistance of
ECAP-processed materials [43]. A similar phenomenon was reported by several studies
about the ECAP-processed Mg-based alloys [44,45].

Therefore, the evolution in corrosion resistance of Mg-3Zn-0.2Ca alloy and 1β-TCP/Mg-
3Zn-0.2Ca composite with multiple ECAP passes depends on the synergistic effect of the
above three factors (grain size, redistribution of second phases and β-TCP particles, lattice
defects). For the specimens processed by ECAP with a few passes (less than two passes), the
positive effect of grain refinement and redistribution of the second phase β-TCP particles
on the corrosion resistance were dominant factors and exceeded the opposite effect of the
increased residual stress. With the increase in ECAP passes, the negative effect of the lattice
defects became the dominant factor for the corrosion behavior of experimental specimens.
Hence, thus, the more ECAP passes correlate with the lower corrosion resistance.

3.6. Cell Biocompatibility

From the viewpoint of mechanical performance, A-6 P-593 K and C-6 P-593 K samples
with optimized mechanical properties in each group were selected for cell biocompatibility
evaluation. Figure 10 shows the relative proliferation rate (RGR) of mouse fibroblasts (L-929
cells) cultured in extracts of the A-6 P-593 K and the C-6 P-593 K specimens for 1 day, 3 days,
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and 5 days. The result shows that A-6 P-593 K and C-6 P-593 K exhibit non-cytotoxicity
to L-929 cells. Moreover, it is worth mentioning that C-6 P-593 K exhibited higher RGR
compared to the A-6 P-593 K with the same incubation times, indicating the positive effect
of β-TCP addition on the cytocompatibility of the experimental composites.
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Figure 10. The relative growth rate (RGR) of L929 cells cultured with extracts of A-6 P-593 K and C-6
P-593 K specimens.

4. Conclusions

In summary, this study reported the microstructure, mechanical performance, corro-
sion behavior, and cytotoxicity of Mg-3Zn-0.2Ca alloy and 1β-TCP/Mg-3Zn-0.2Ca compos-
ites processed by hot extrusion combined with subsequent multi-pass ECAP process. The
main findings are summarized as follows:

(1) From the viewpoint of grain refinement, hot extrusion combined with six ECAP
passes at 593 K is the optimized route, resulting in an average grain size of 13.4 ± 0.6 µm and
9.6 ± 0.3 µm in Mg-3Zn-0.2Ca alloy and 1β-TCP/Mg-3Zn-0.2Ca composite, respectively.
The redistribution of second phases, as well as β-TCP particles induced by the ECAP
process, were also confirmed.

(2) Due to the synergistic effect of grain refinement, redistribution of second phases
and β-TCP particles, and texture transformation, C-6 P-593 K displays the best mechanical
properties, including the UCS of 405.3 ± 7.4 MPa, UYS of 118.9 ± 7.0 MPa and strain at
failure of 10.1 ± 2.8%.

(3) For Mg-3Zn-0.2Ca alloy, the A-2 P-593 K exhibited the lowest degradation rate
of 0.895 mm·Y−1. The improvement of corrosion resistance is associated with the grain
refinement and the uniform distribution of the second phases after the ECAP process.

(4) The cell biocompatibility result shows that the A-6 P-593 K and C-6 P-593 K had
no significant cytotoxicity to L929 cells, and the addition of β-TCP could improve the cell
biocompatibility. C-6 P-593 K exhibited great potential for applications in the fields of bone
repair and bone replacement.
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