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ABSTRACT

We provide a definition for class density that can be used to measure the aggregate similarity of
the samples within each of the classes in a high-dimensional, unstructured dataset. We then put
forth several candidate methods for calculating class density and analyze the correlation between
the values each method produces with the corresponding individual class test accuracies achieved
on a trained model. Additionally, we propose a definition for dataset quality for high-dimensional,
unstructured data and show that those datasets that met a certain quality threshold (experimentally
demonstrated to be > 10 for the datasets studied) were candidates for eliding redundant data based
on the individual class densities.

Keywords Class Density, Dataset Quality, Completeness, Data Reduction, Dynamic Data Reduction

1 Introduction and Related Work

Data density is of interest in the classification domain mostly in cases where there exists a class imbalance prob-
lem, which can be quite common in many real-world data collection scenarios (for example credit card fraud detec-
tion [1][2]). In this context, the interest is in increasing the density of the data in the minority class via synthetic
sample creation [3] or in under-sampling the majority class [4]. In [5] and [6], the authors showed that generating
synthetic minority class samples from data near the boundaries of the classes produced superior results as compared
to completely randomly sampling from the entire minority class. In the clustering domain, data density has been ana-
lyzed to produce more intelligent clustering algorithms that do not require the prior selection of the number of clusters
(as is required for k-means clustering) [7].

Studies in data density are replete in the literature for low-dimensional data, such as in those cited in the prior paragraph.
However, data density is less studied in high-dimensional data. This is most likely due to the fact that distance
measurements in high-dimensional space produce near uniform distances [8], a phenomenon colloquially referred to
as the curse of dimensionality. As in [9], in order to reclaim meaningful differences when measuring the distances
between samples, in the studies in this work, we use Uniform Manifold Projection and Approximation (UMAP) [10]
to reduce high-dimensional image data to 3 dimensions.

http://arxiv.org/abs/2202.03856v1
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In this work, we will be defining a density measurement that can be applied to the 3-dimensional reduction of each
class in a dataset independently and then providing a study of classification accuracy after reducing the data in each
class to a variety of target densities as opposed to reducing each class by the same amount as in [9].

As has been put forth and stands to reason, data quality is context dependent [11]. Most of the context in the existing
literature is on highly-structured, often relational, data for which there are known domains and constraints for well
defined groups (tuples) of atomic values [12][13]. Further, There is no universally agreed upon definition of data
quality, let alone a universal method for measuring it. However, there is widespread agreement on some things, such
as having high levels of the following attributes: timeliness, accuracy, consistency, and completeness [14]. In the
present study, we will limit our focus to quality in the sense of completeness. Only a dataset comprised of low-
dimensional data with very limited domains could ever be considered complete in the most strict definition of the term.
For the high-dimensional, unstructured data we will be evaluating, completeness will be demonstrated by removing
data from the dataset, based on a target density threshold, while maintaining classification accuracy.

1.1 Our Contribution

Our contribution is as follows:

1. We provide a definition and method for calculating individual class densities based on 3-dimensional reduc-
tions produced by UMAP.

2. We provide a method for calculating an unstructured, high-dimensional dataset’s quality, with quality specif-
ically referring to a level of demonstrable completeness.

3. We show that for 6 out of the 7 datasets studied, datasets with a quality of > 10 could be reduced to a target
density of at most 1.0 and achieve accuracy that is statistically insignificantly different from the baseline.
Unique to the dataset for which this was not true (Imagenette) is the relatively low number of training samples.
This combined with the large image size and the assumptions made by UMAP suggest that there is a lower
bound on the number of training samples such that any elision whatsoever risks underfitting in the training.

2 Defining Density

Definition 1 (Class Density). The class density of a class is a measure of the aggregate similarity of the training
samples available for that class.

Three candidates for the calculation of a class’s density were initially considered, all of them based on the distribution
of points in each dimension of any m-dimensional reduction. The three candidates are based on the minimum (see
Equation 1), the maximum (see Equation 2), and the mean (see Equation 3) standard deviation of the m gaussians of
the m-dimensional reduction.

For all three candidate calculations, the density is calculated for class i among all n classes where ci is the count of
samples for class i. σi are the standard deviations of the m gaussians of the m-dimensional reduction for class i.

The first three terms of each calculation are identical and are used for biasing unbalanced datasets. For unbalanced
datasets, these terms create a value < 1.0 for those classes that have fewer samples than average and > 1.0 for those
classes that have more samples than average. The motivation for this is to incorporate over and underrepresentation of
classes into the density definition. For balanced datasets, these three terms will compute to 1.0 and thus have no effect
on the broader density calculation.

dmin

i = n · ci ·





n
∑

j

cj





−1

·min (σi)
−1

(1)

Min-Derived Density Calculation

The densities were calculated using each of these calculations for each of the classes for MNIST [15], Fashion-
MNIST [16], CIFAR-10 [17], CIFAR-100 [17], and Imagenette [18]. Then the individual class accuracies for every
class in each of these datasets were averaged across the five trials of the baseline experiments. Then correlations were
calculated, using the Pearson Product-Moment Correlation Coefficient (PPMCC), between the class densities and the
class accuracies, looking for a correlation between higher accuracy and higher density. The results of this correlation
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Max-Derived Density Calculation
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Mean-Derived Density Calculation

study are presented in Table 1, Table 2, Table 3, Table 4, and Table 5 (a tabulation of the correlation of the individual
classes in CIFAR-100 has not been presented here due to the large number of classes). The study showed that on
average, all candidate calculations showed a moderate correlation. However, the min and max candidates each had
a dataset for which the correlation was negative (MNIST and Fashion-MNIST respectively). Aside from having no
datasets with a negative correlation, the mean candidate also had the highest mean correlation. Notably, CIFAR-10,
and CIFAR-100 had the weakest non-negative correlation for all three candidates. When excluding these datasets, the
difference in the mean correlation between the min and max candidates and the mean candidate was even greater. As
such, the mean candidate, Equation 3, has been chosen for the calculation of class density.

Table 1: Mean Correlation Between Datasets’ Class Accuracies and Class Densities For Each Candidate Class Density
Calculation

Density Calculation Dataset Correlation Correlation Excluding
CIFAR-10/CIFAR-100

Min-Derived Density

(Equation 1)

MNIST -0.125230279 -0.125230279
Fashion-MNIST 0.712199587 0.712199587
CIFAR-10 0.299431773 —
CIFAR-100 0.129662784 —
Imagenette 0.408186019 0.408186019

Mean 0.284849977 0.331718442

Max-Derived Density

(Equation 2)

MNIST 0.627101694 0.627101694
Fashion-MNIST -0.105499485 -0.105499485
CIFAR-10 0.270797282 —
CIFAR-100 0.153205742 —
Imagenette 0.334691583 0.334691583

Mean 0.256059363 0.285431264

Mean-Derived Density

(Equation 3)

MNIST 0.599024755 0.599024755
Fashion-MNIST 0.465716661 0.465716661
CIFAR-10 0.141685897 —
CIFAR-100 0.130301561 —
Imagenette 0.373871535 0.373871535

Mean 0.342120082 0.479537651

3 Dynamic Data Reduction

3.1 Experimental Design

Using the Mean-Derived Density Calculation (Equation 3), the training data in each class, for each dataset, was re-
duced using the Central Exclusion data reduction strategy from [9] by the number of samples necessary to ensure
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Class # Accuracy Density (di)

0 99.94% 1.203606482
1 99.75% 0.900390918
2 99.79% 0.966957099
3 99.96% 1.234064737
4 99.57% 0.954383008
5 99.44% 0.917783773
6 99.71% 1.095102748
7 99.65% 1.182528651
8 99.81% 0.910899921
9 99.50% 0.875168049

Correlation Coefficient 0.599024755

Table 2: Class Accuracy vs. Class Density using
the Mean-Derived Density Calculation (Equation 3) —
MNIST

Class # Accuracy Density (di)

0 89.44% 0.785806014
1 98.97% 0.787244604
2 90.45% 0.886734509
3 88.85% 0.944081467
4 93.40% 0.805763371
5 98.73% 0.825402009
6 80.40% 0.550174158
7 98.13% 1.219426745
8 99.26% 0.720677105
9 96.46% 1.094532682

Correlation Coefficient 0.465716661

Table 3: Class Accuracy vs. Class Density using
the Mean-Derived Density Calculation (Equation 3) —
Fashion-MNIST

Class # Accuracy Density (di)

0 93.68% 0.675261028
1 96.49% 0.694783936
2 90.34% 0.561082899
3 86.04% 0.533699944
4 96.20% 0.598262085
5 91.48% 0.590848128
6 93.88% 0.709070212
7 86.70% 0.694788326
8 94.08% 0.564920444
9 94.95% 0.747507803

Correlation Coefficient 0.373871535

Table 4: Class Accuracy vs. Class Density using the
Mean-Derived Density Calculation (Equation 3) — Ima-
genette

Class # Accuracy Density (di)

0 90.97% 0.726249735
1 95.01% 0.659240091
2 85.27% 0.698367900
3 75.59% 0.710996520
4 88.89% 0.757157015
5 81.51% 0.781883942
6 92.85% 0.765887353
7 92.78% 0.741599817
8 94.28% 0.786613742
9 93.99% 0.799861845

Correlation Coefficient 0.141685897

Table 5: Class Accuracy vs. Class Density using
the Mean-Derived Density Calculation (Equation 3) —
CIFAR-10

all classes in the training data that had a density greater than a target density value were reduced by the number of
samples needed to achieve that target density value. In order to find how many samples would need to be excluded, a
binary search through each class’s samples, ordered by distance from the class’s centroid was performed. The binary
search terminated and selected the threshold distance for inclusion after 9 iterations, which was sufficient to choose
the number of samples to be included to within a margin of .05% of the total number of samples in the class.

While studying dynamic data reduction, we used the datasets for which the correlation studies were performed above
(MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, and Imagenette) as well as two additional datasets. The first is
the micro-PCB dataset introduced in [19]. Data augmentation used during the training for the micro-PCB dataset
was uniform and the same strategy as used for the experiments in [20]. The second additional dataset was EMNIST-
Digits [21], which is a dataset with the same format as MNIST and with the same domain of interest, namely the
Hindu-Arabic numerals. The difference is that EMNIST-Digits contains exactly four times as many samples in both
the training and test sets. This allows for an investigation into whether the test accuracy achieved after reducing data to
a target threshold per class is sensitive to or independent of the number of samples used for training. Data augmentation
used during the training for EMNIST-Digits was uniform and the same strategy as used for the experiments in [22].

Each of MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, and EMNIST-Digits were subjected to this method using
target density levels of 1.0, 0.9, 0.8, 0.7, 0.6, and 0.5. These target densities were chosen because they produced a
similar number of excluded samples for these datasets. However, in the case of Imagenette and the micro-PCB dataset,
the UMAP dimensional reduction produced values in each dimension with much larger variances (thus producing
smaller densities). This is due to the fact that the UMAP algorithm assumes that the population in the higher dimen-
sional space from which the data is sampled is uniformly distributed on some manifold. Since Imagenette and the
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micro-PCB dataset are both higher dimensional than the other datasets as well as having fewer samples in the training
set, UMAP assumes the values of these samples in the higher dimensional space represent a much broader range of
possible values for the assumed uniformity of the population. Therefore, a larger number of approximately evenly
spaced target densities was chosen specifically for each of Imagenette and of the micro-PCB dataset.

For all experiments, 5 trials were conducted, and the accuracy reported is the mean accuracy of those 5 trials.

3.2 Experimental Results

Table 6 through Table 12 show the results of these experiments. Bold typeface in the Accuracy columns indicate that
the accuracy matched or exceeded the accuracy of the baseline.

For the MNIST dataset, there was no statistically significant difference (p < 0.05) between the accuracy of the baseline
and the accuracies of the experiments with target densities 1.0, 0.9, 0.8, and 0.7. These target densities resulted in
reducing the training dataset size by 4.4%, 7.8%, 15%, and 22.6%, respectively.

For the Fashion-MNIST dataset, there was no statistically significant difference (p < 0.05) between the accuracy of
the baseline and the accuracy of the experiment with target density 1.0 which resulted in reducing the training dataset
size by 2.0%.

For the CIFAR-10 dataset, there was no statistically significant difference (p < 0.05) between the accuracy of the
baseline and the accuracies of the experiments with target densities 1.0, 0.9, 0.8, and 0.7. These target densities
resulted in reducing the training dataset size by 0.2%, 0.2%, 0.2%, and 4.2%, respectively.

For the CIFAR-100 dataset, there was no statistically significant difference (p < 0.05) between the accuracy of
the baseline and the accuracies of the experiments with target densities 1.0 and 0.8. These target densities resulted in
reducing the training dataset size by 0.4% and 2.3%, respectively, The experiment with a target density of 0.9 produced
a statistically significantly superior accuracy while reducing the dataset size by 0.4%.

For the Imagenette dataset, there was no statistically significant difference (p < 0.05) between the accuracy of the
baseline and the accuracies of the experiments with target densities 0.70, 0.65, 0.60, and 0.55. These target densities
resulted in reducing the training dataset size by 0.3%, 2.4%, 5.1%, and 9.2%, respectively.

For the micro-PCB dataset, there was no statically significant difference (p < 0.05) between the accuracy of the
baseline and the accuracies of the experiments with target densities 0.25, 0.20, 0.15, 0.10, 0.075, and 0.05. These
target densities resulted in reducing the training dataset size by 5.4%, 15.8%, 30.5%, 42.9%, and 53.2%, respectively.
Of particular note with the micro-PCB dataset is that the baseline accuracy of 100% was able to be achieved with
53.2% of the training samples removed.

For the EMNIST-Digits dataset, there was no statistically significant difference (p < 0.05) between the accuracy of the
baseline and the accuracies of the experiments with target densities 1.0, 0.9, and 0.8. These target densities resulted in
reducing the training dataset size by 3.1%, 7.2%, and 13.4%, respectively.

Table 6: Class Accuracies Achieved at Target Densities — MNIST

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 99.716% 0.000162481 —
1.0 95.6% 99.714% 0.000080000 0.415365855
0.9 92.2% 99.732% 0.000172047 0.106638807
0.8 85.0% 99.708% 0.000097980 0.21178501
0.7 77.4% 99.716% 0.000135647 0.5
0.6 69.4% 99.682% 0.000116619 0.004680234
0.5 61.0% 99.694% 0.000080000 0.020617404

4 Dynamic Data Reduction Redux

4.1 Experimental Design

As was noted in the previous section, the UMAP dimensionality reduction algorithm makes assumptions about the dis-
tribution of the data in the higher dimensional space that results in density values that are dependent on the dataset. In
order to account for this, the Mean-Derived Density Calculation (Equation 3) has been modified to include a normal-
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Table 7: Class Accuracies Achieved at Target Densities — Fashion-MNIST

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 93.404% 0.001380724 —
1.0 98.0% 93.298% 0.000928224 0.119171827
0.9 96.4% 93.202% 0.000982649 0.022137464
0.8 93.2% 93.254% 0.000611882 0.041111842
0.7 86.4% 92.994% 0.001330564 0.001350314

0.6 78.2% 92.574% 0.001089220 6.52× 10−6

0.5 68.8% 91.922% 0.001750885 4.90× 10−7

Table 8: Class Accuracies Achieved at Target Densities — CIFAR-10

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 89.146% 0.001518684 —
1.0 99.8% 89.342% 0.002688048 0.119942536
0.9 99.8% 89.154% 0.002361864 0.477979183
0.8 99.8% 89.346% 0.002151836 0.083656408
0.7 95.8% 89.192% 0.001828004 0.354382759
0.6 86.2% 88.700% 0.002044505 0.004518233

0.5 75.4% 88.064% 0.002030369 1.37× 10−5

Table 9: Class Accuracies Achieved at Target Densities — CIFAR-100

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 61.896% 0.001786169 —
1.0 99.6% 62.186% 0.003273286 0.079228788
0.9 99.6% 62.220% 0.002830548 0.044442483
0.8 97.7% 61.876% 0.003501200 0.460722547
0.7 93.1% 61.642% 0.002057571 0.049626893

0.6 85.4% 60.398% 0.003592993 3.58× 10−5

0.5 75.1% 59.108% 0.001561282 5.71× 10−9

Table 10: Class Accuracies Achieved at Target Densities — Imagenette

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 92.390% 0.002333238 —
0.70 99.7% 92.104% 0.002514438 0.06698284
0.65 97.6% 92.486% 0.001497465 0.25410172
0.60 94.9% 92.250% 0.003331066 0.255309713
0.55 90.8% 92.120% 0.002728369 0.085472681
0.50 85.1% 91.798% 0.001984339 0.002385587

0.45 78.6% 91.434% 0.001416474 5.60× 10−5

0.40 72.2% 90.650% 0.002086145 1.91× 10−6

0.35 65.1% 90.026% 0.003338622 1.38× 10−6

0.30 57.6% 89.626% 0.001276871 1.51× 10−8

0.25 49.8% 88.206% 0.002298347 2.95× 10−9

0.20 41.7% 86.304% 0.005313229 1.40× 10−8

0.15 32.5% 83.866% 0.00475546 4.73× 10−10

0.10 22.4% 79.134% 0.004674441 1.26× 10−11

0.05 9.15% 43.564% 0.037764248 2.72× 10−9
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Table 11: Class Accuracies Achieved at Target Densities — micro-PCB

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 100.000% 0 —
0.25 94.6% 100.000% 0 N/A
0.20 84.2% 100.000% 0 N/A
0.15 69.5% 100.000% 0 N/A
0.10 57.1% 100.000% 0 N/A

0.075 46.8% 100.000% 0 N/A

0.05 34.5% 99.912% 1.48× 10−3 0.133988429

0.04 25.6% 99.024% 9.49× 10−3 0.036866271

0.03 17.2% 75.112% 5.52× 10−2 9.14× 10−6

0.02 11.8% 48.088% 2.24× 10−1 0.000846406

0.01 6.90% 18.800% 5.45× 10−2 8.78× 10−10

Table 12: Class Accuracies Achieved at Target Densities — EMNIST-Digits

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 99.790% 0 —
1.0 96.9% 99.790% 6.32456E-05 0.5
0.9 92.8% 99.786% 4.89898E-05 0.070556641
0.8 86.6% 99.782% 9.79796E-05 0.070556641
0.7 79.8% 99.784% 4.89898E-05 0.019984262

0.6 71.5% 99.772% 4.00000E-05 9.27× 10−6

0.5 62.8% 99.766% 1.01980E-04 0.000764001

ization term. Additionally, the first three terms of Equation 3 have been elided as the purpose they served of biasing
unbalanced classes does not apply to the well-balanced datasets being studied here.

In Equation 4, di is the density of class i among all n classes. σi and σj are the standard deviations of the m gaussians
of the m-dimensional reduction for classes i and j, respectively.

di =
1

n

n
∑

j

(

1

m

m
∑

k

σjk

)

·

(

1

m

m
∑

k

σik

)

−1

(4)

Mean-Derived and Normalized Density Calculation

Table 13 through Table 18 show a comparison of the densities calculated using the Mean-Derived Density Calculation
(Equation 3) vs. the Mean-Derived and Normalized Density Calculation (Equation 4) (a comparison of the individual
classes in CIFAR-100 has not been tabulated here due to the large number of classes).

As in the previous section, but instead using the Mean-Derived and Normalized Density Calculation (Equation 4),
another set of experiments was conducted. In these experiments, the training data in each class was reduced using the
Central Exclusion data reduction strategy by the number of samples necessary to ensure all classes in the training data
that had a density greater than a target density value were reduced by the number of samples needed to achieve that
target density value. Each of MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, Imagenette, the micro-PCB dataset,
and EMNIST-Digits were subjected to this method using target density levels of 1.1, 1.05, 1.0, 0.95, and 0.9.

For all experiments, 5 trials were conducted, and the accuracy reported is the mean accuracy of those 5 trials.

4.2 Experimental Results

Table 19 through Table 25 show the results of these experiments. Bold typeface in the Accuracy columns indicate that
the accuracy matched or exceeded the accuracy of the baseline.
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Class # Mean-Derived
Mean-Derived

and Normalized

0 1.203606 1.208877
1 0.900391 0.794478
2 0.966957 0.965486
3 1.234065 1.197419
4 0.954383 0.971853
5 0.917784 1.007165
6 1.095103 1.100828
7 1.182529 1.122872
8 0.910900 0.926147
9 0.875168 0.875159

Table 13: Mean-Derived Density Calculation
(Equation 3) vs. Mean-Derived and Normalized Density
Calculation (Equation 4) — MNIST

Class # Mean-Derived
Mean-Derived

and Normalized

0 1.184466 1.225866
1 0.696331 0.720669
2 1.045727 1.082278
3 1.163892 1.204573
4 0.963187 0.996853
5 0.963509 0.997186
6 1.118438 1.157530
7 0.996212 1.031032
8 0.904710 0.936332
9 0.851514 0.881277

Table 14: Mean-Derived Density Calculation
(Equation 3) vs. Mean-Derived and Normalized Density
Calculation (Equation 4) — EMNIST-Digits

Class # Mean-Derived
Mean-Derived

and Normalized

0 0.675261 1.054048
1 0.694784 1.093608
2 0.561083 0.849362
3 0.533700 0.935029
4 0.598262 0.955690
5 0.590848 0.929037
6 0.709070 1.109126
7 0.694788 1.121807
8 0.564920 0.892939
9 0.747508 1.170468

Table 15: Mean-Derived Density Calculation
(Equation 3) vs. Mean-Derived and Normalized Density
Calculation (Equation 4) — Imagenette

Class # Mean-Derived
Mean-Derived

and Normalized

0 0.726250 0.980983
1 0.659240 0.890469
2 0.698368 0.943321
3 0.710997 0.960379
4 0.757157 1.022731
5 0.781884 1.056131
6 0.765887 1.034523
7 0.741600 1.001717
8 0.786614 1.062520
9 0.799862 1.080414

Table 16: Mean-Derived Density Calculation
(Equation 3) vs. Mean-Derived and Normalized Density
Calculation (Equation 4) — CIFAR-10

Class # Mean-Derived
Mean-Derived

and Normalized

0 0.277563 1.007280
1 0.260718 0.946147
2 0.255069 0.925648
3 0.264466 0.959749
4 0.273648 0.993069
5 0.308335 1.118948
6 0.274374 0.995703
7 0.286130 1.038367
8 0.281862 1.022877
9 0.278199 1.009587
10 0.276846 1.004674
11 0.276255 1.002530
12 0.275822 1.000960

Table 17: Mean-Derived Density Calculation
(Equation 3) vs. Mean-Derived and Normalized Density
Calculation (Equation 4) — micro-PCB

Class # Mean-Derived
Mean-Derived

and Normalized

0 0.785806 0.952496
1 0.787245 0.954240
2 0.886735 1.074834
3 0.944081 1.144346
4 0.805763 0.976687
5 0.825402 1.000492
6 0.550174 0.666881
7 1.219427 1.478100
8 0.720677 0.873552
9 1.094533 1.326712

Table 18: Mean-Derived Density Calculation
(Equation 3) vs. Mean-Derived and Normalized Density
Calculation (Equation 4) — Fashion-MNIST
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For the MNIST dataset, there was no statistically significant difference (p < 0.05) between the accuracy of the
baseline and the accuracies of any of the experiments with target densities. These target densities resulted in reducing
the training dataset size by 4.2%, 8.0%, 11.8%, 17.2%, and 24.2%, respectively.

For the Fashion-MNIST dataset, all target densities were statistically significantly inferior to the baseline (p < 0.05).
This is consistent with the results from the prior section as the highest target density resulted in removing 15% of the
data whereas the only statistically insignificant data reduction using Equation 3 elided just 2% of the data.

For the CIFAR-10 dataset, there was no statistically significant difference (p < 0.05) between the accuracy of the
baseline and the accuracies of the experiments with target densities 1.1, 1.05, and 1.0. These target densities resulted
in reducing the training dataset size by 0.2%, 1.1%, and 5.4%, respectively.

For the CIFAR-100 dataset, all target densities were statistically significantly inferior to the baseline (p < 0.05). This
is consistent with the results from the prior section as the highest target density resulted in removing 5.7% of the data
whereas statistically insignificant data reduction using Equation 3 was only achieved when eliding 2.3% of the data.

For the Imagenette dataset, there was no statistically significant difference (p < 0.05) between the accuracy of the
baseline and the accuracies of the experiments with target density 1.1. This target density resulted in reducing the
training dataset size by 1.7%. This is inconsistent with the results from the prior section as statistically insignificant
data reduction using Equation 3 was achieved when eliding as much as 9.2% of the data.

For the micro-PCB dataset, all target densities achieved 100% test accuracy while reducing the training dataset size by
0.5%, 0.5%, 2%, 8.4%, and 19.9%, respectively.

For the EMNIST-Digits dataset, there was no statistically significant difference (p < 0.05) between the accuracy of
the baseline and the accuracies of the experiments with target densities 1.1 and 1.05. These target densities resulted in
reducing the training dataset size by 5.1% and 8.5%, respectively. After 5 trials, a statistical significance to the superior
accuracy of the experiment with target density of 1.0 was narrowly missed (p < 0.07). Of worthy note for this dataset
is the remarkable consistency and low variance across trials for the baseline (which all achieved the same accuracy of
99.79%) and across trials for each of the target densities. The trials for target density 1.1 produced two accuracies of
99.79% and three accuracies of 99.78%. The trials for target density 1.05 produced one accuracy of 99.79%, three
accuracies of 99.78%, and the lowest accuracy of all trials of 99.76%. The trials for target density 1.0 produced two
of the highest accuracies at 99.8% and three at 99.79%. The trials for target density 0.95 produced three accuracies
of 99.78% and two of 99.77%. The trials for target density 0.9 produced one accuracy of 99.79%, two accuracies of
99.78%, and two accuracies of 99.77%.

Table 19: Class Accuracies Achieved at Target Densities — MNIST

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 99.716% 0.000162481 —
1.10 95.8% 99.722% 0.000172047 0.312884652
1.05 92.0% 99.714% 0.000101980 0.420019164
1.00 88.2% 99.730% 0.000209762 0.161058701
0.95 82.8% 99.720% 0.000167332 0.370219727
0.90 75.8% 99.706% 0.000185472 0.220382883

Table 20: Class Accuracies Achieved at Target Densities — Fashion-MNIST

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 93.404% 0.001380724 —

1.10 85.0% 84.058% 0.004762100 1.35× 10−10

1.05 82.6% 83.752% 0.001151347 3.16× 10−14

1.00 74.6% 83.526% 0.001400857 5.39× 10−14

0.95 74.2% 82.834% 0.001293986 2.30× 10−14

0.90 65.8% 81.716% 0.002239286 1.44× 10−13
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Table 21: Class Accuracies Achieved at Target Densities — CIFAR-10

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 89.146% 0.001518684 —
1.10 99.8% 89.104% 0.001504128 0.352296774
1.05 98.9% 89.166% 0.002129413 0.441118341
1.00 94.6% 89.130% 0.002399167 0.456523145
0.95 86.6% 88.742% 0.002066301 0.006790324

0.90 75.8% 88.140% 0.001052616 2.24× 10−6

Table 22: Class Accuracies Achieved at Target Densities — CIFAR-100

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 61.896% 0.001786169 —
1.10 94.3% 61.194% 0.002620382 0.00110249

1.05 90.2% 60.736% 0.001651181 6.04× 10−6

1.00 84.5% 58.470% 0.001255388 5.78× 10−10

0.95 78.0% 57.134% 0.004187410 1.43× 10−8

0.90 70.1% 55.368% 0.003521023 3.81× 10−10

Table 23: Class Accuracies Achieved at Target Densities — Imagenette

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 92.390% 0.002333238 —
1.10 98.3% 92.224% 0.000705975 0.105163732
1.05 94.2% 92.126% 0.001473228 0.04602054
1.00 88.8% 92.080% 0.000748331 0.017619593
0.95 82.7% 91.316% 0.002465441 0.000112946

0.90 73.9% 90.428% 0.002318103 1.12× 10−6

Table 24: Class Accuracies Achieved at Target Densities — micro-PCB

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 100.000% 0 —
1.10 99.5% 100.000% 0 N/A
1.05 99.5% 100.000% 0 N/A
1.00 98.0% 100.000% 0 N/A
0.95 91.6% 100.000% 0 N/A
0.90 80.1% 100.000% 0 N/A

Table 25: Class Accuracies Achieved at Target Densities — EMNIST-Digits

Target Density (di) # Samples Included Accuracy Std. Dev. p-value

N/A 100.0% 99.790% 0 —

1.10 94.9% 99.784% 4.90× 10−5 0.019984262
1.05 91.5% 99.778% 9.80× 10−5 0.019984262

1.00 87.2% 99.794% 4.90× 10−5 0.070556641

0.95 80.7% 99.776% 4.90× 10−5 0.000223176

0.90 73.4% 99.778% 7.48× 10−5 0.006238937
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5 Dataset Quality

The experiments detailed thus far have demonstrated that, for the datasets studied, there exists an amount of redundant
data in each such dataset and that that data can be located near the centroid of a dimensional reduction of the data.

This observation inspires the possibility of a measure of the dataset quality that can be used a-priori to determine
whether or not the data distributed in the lower-dimensional space is capable of leading to optimal or near-optimal
classification accuracy.

Equation 5 represents an attempt to capture this measure numerically in a single value, such that the closer the value
is to zero, the lower the “quality” of the dataset, or from another point of view, there exists room for improvement.
In this equation, d are the densities of the classes as calculated using Equation 4. As such, the equation is simply 1
over the product of the standard deviation of the class densities and the range of density values. Thus and simply, the
greater variance among the class densities, the lower the quality of the data.

q =
1

σd · (max (d)−min (d))
(5)

Dataset Quality Calculation

Table 26 shows this calculation as applied to the training datasets we have studied. MNIST, EMNIST-Digits, CIFAR-
10 and the micro-PCB dataset all had values for quality > 10 and all of these datasets were shown to have had excess
data in their training datasets. Fashion-MNIST and CIFAR-100 each had values for quality < 10 and both of these
datasets were shown not to have had an excess of data in their training datasets. Imagenette was inconsistent with
this. It is hypothesized that in the case of Imagenette, that the lower number of training samples coupled with the
complexity of the features that comprise the subject matter, compared to the other datasets, dominates any ability to
elide redundant data. Table 27 shows the same calculation as applied to the validation data of the studied datasets.
Consistent with the training data, the validation data had values for quality > 10 for MNIST, EMNIST-Digits, CIFAR-
10 and the micro-PCB dataset, and Fashion-MNIST and CIFAR-100 each had values for quality < 10.

Table 26: Statistical Properties and the Quality of Training Datasets

Training Dataset Std. Dev. Range Quality

MNIST 0.1304920 0.4143995 18.492560
EMNIST-Digits 0.1470203 0.5051971 13.463625
Fashion-MNIST 0.2176022 0.8112188 5.664984
CIFAR-10 0.0568050 0.1899450 92.680124
CIFAR-100 0.1623155 0.8421434 7.315669
Imagenette 0.1056541 0.3211061 29.475744
micro-PCB 0.0450495 0.1933003 114.835613

Table 27: Statistical Properties and the Quality of Validation Datasets

Validation Dataset Std. Dev. Range Quality

MNIST 0.1308110 0.4797679 15.933995
EMNIST-Digits 0.1268322 0.3672039 21.471530
Fashion-MNIST 0.2274090 0.8411320 5.227911
CIFAR-10 0.0495897 0.1651205 122.125472
CIFAR-100 0.1321202 0.7995342 9.466595
Imagenette 0.1223012 0.3698493 22.107753
micro-PCB 0.1455047 0.4808525 14.2925951

6 Summary

In this work, we have put forth a definition for class density along with several methods for calculating such. Analysis
of seven datasets showed that Equation 4, derived from the normalized mean standard deviations of the data points
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in lower dimensional space, was the appropriate choice for the calculation for density. Additionally, we put forth
a definition for dataset quality in Equation 5, which showed that those datasets that met a certain quality threshold
(experimentally demonstrated to be > 10 for the datasets studied) were candidates for eliding redundant data using
Equation 4. The experiments showed that for all datasets except Imagenette, datasets with a quality of > 10 could
be reduced to a target density of at most 1.0 and achieve accuracy that is statistically insignificantly different from
the baseline. Unique to Imagenette is the relatively low number of training samples coupled with the complexity of
the features that comprise the subject matter. That combined with the large image size and the assumptions made by
UMAP suggest that there is a lower bound on the number of training samples such that any elision whatsoever risks
underfitting in the training procedure.

Future work will attempt to incorporate a predictive quantification of the impact of image size (and thus dimensionality)
and feature complexity into the quality assessment.
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