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Abstract—Due to policy support, low cost and easy 
applicability, distribution photovoltaic systems (DPVSs) are 
increasingly popular among residential community. However, 
small-scale DPVSs of less than 10 kWp are always installed 
behind the meter (BTM), which results in the invisible of the 
photovoltaic (PV) power generation. Only access of composite 
power data can result in non-optimal distribution network 
control and optimization, leading to a series of energy 
management problems. In order to solve the aforementioned 
problems, this paper proposes a BTM composite power 
disaggregation method focusing on small-scale DPVSs, with 
only composite power data of residential users in a community, 
without relying on weather data and models assumption. 
Considering that community users’ DPVSs usually exhibit 
approximate output characteristics, neighboring composite 
power is used to extract PV power generation information as 
mutual proxies. After obtaining approximate PV proxy data by 
subtracting composite power of inter-users, a grid search 
algorithm guided by Maximal Information Coefficient (MIC) is 
performed to obtain final PV power generation disaggregation 
results. The proposed method is evaluated using data gathered 
from residential customers located in Ithaca, New York and 
Austin, Texas in real-life scenarios. Testing results show that 
our proposed method achieve considerable disaggregation 
accuracy in the absence of solar radiation and temperature 
data as compared to other state-of-art methods. 

Keywords—Behind-the-meter, photovoltaic power generation 
disaggregation, correlation analysis, residential. 

I. INTRODUCTION  
Tightening of non-renewable resources and 

environmental degradation issues is the driving force for the 
transformation of traditional fossil fuel energy-dependent 
power system. Therefore, increasingly utilizing of renewable 
resources are emerging in different countries. Countries like 
Iceland, Norway, Costa Rica, Brazil and Canada have 
achieved 100%, 97%, 93%, 76% and 62% renewable grid, 
respectively [1]. Photovoltaic (PV), due to its massive and 
accessible energy that receive from the sun and price 
reduction on the installation of PV system, has a huge growth 
prospect with the low levelized cost of energy [2],[3]. 
Considering not occupying external areas and to reduce 
transmission losses, a large number of PV systems are 
installed rooftop [4]. According to the Solar Power Europe 
2019, rooftop PV is estimated with installation of 44 GW 
with low scenario and 76.5 GW with high scenario [5]. 
However, most of the rooftop PV systems are installed 

behind the meter (BTM) without energy of demand and PV 
power generation separated metering, which will result in the 
troublesome of energy management, energy storage sizing 
and protection system setting. Moreover, the issue of power 
privacy is of concern, customers not sharing of details of 
residential energy information can also create problems of 
management of utilities operators. Therefore, designing 
methods of estimating BTM PV power generation is very 
meaningful. 

The present research can be divided into model 
assumption based and data-driven approach according to the 
way of modelling. 

The common feature of the model assumption based 
methods represented by [6], [7], and [8] is that the 
disaggregated PV is calculated from the assumed PV system 
geometry and generation output characteristics, which will 
lead to excessive transfer consistency between solar radiation 
and outgrowth, and the estimation error would persist once 
the assumed model is different from, the reality. The model 
assumption based method [9] disaggregates the BTM PV by 
building PV power generation model under clear sky 
condition and modifies it by the universal weather-solar 
effect to circumvent the errors brought about by specific 
kinds of PV output characteristics assumptions, but 
assumption about the geometric architecture is still 
unavoidable and the requirement for residential idleness 
limits the application scenarios of the model. 

The data-driven methods can avoid the pitfalls of models 
assumption altogether, but has higher exogenous data 
requirements in comparison. Most data-driven methods 
disaggregate composite power relying on proxy settings. In 
[10], by setting a PV proxy of unit capacity, estimated PV 
power generation was calculated by multiplying the unit PV 
proxy to the estimated installation capacity which inferred by 
a designed support vector machine (SVR) model. Similarly, 
but starting from energy demand, [11] formulated the target 
customer demand as a mixed behavioral composition of 
neighbors without PV installation (similar to a proxy of 
“consumer”, but no additional installation was required) and 
disaggregated the composite power using multivariate linear 
programming in combination with solar radiation data. In 
[12], PV of individuals were disaggregated with the help of 
separated measured demand and PV power generation of 
aggregated customers on the feeder side using linear model 
with scale proxy data as an additional input. The study 



carried out in [13] with the disaggregation method does not 
employ any proxies while using a data-driven approach, but 
rather by minimizing the estimated error of composite power 
to search relevant parameters to disaggregate BTM PV 
power generation. 

In summary, whether the method is model assumption 
based or data-driven, the disaggregation results of the target 
BTM composite power always require at least one 
exogenous data to derive the estimated demand or PV power 
generation. For the model assumption based method, the 
exogenous variable is mostly meteorological data, while for 
the data-driven method, it is mostly the demand or PV power 
generation data of proxies. A summary of the exogenous 
variables required for different studies is given in Table I 
below. 

Bringing in exogenous variables, for example, the 
transposition error of meteorological data due to 
geographically distance between the collection device and 
the target users, and will increase the implementation cycle 
of the disaggregation methods such as the time required to 
collect data from newly installation proxy devices, which is 
detrimental to the practical implementation of composite 
power disaggregation. Therefore, we propose a data-driven 
method to disaggregate BTM PV of community individuals 
using only composite power data of residential users but not 
requiring meteorological data, PV power generation and 
demand proxies data for better application to real-world 
scenarios. 

The rest of the paper is organized as follows: Section II 
presents the disaggregation methodology. Section III 
presents case study on two datasets to verify the 
effectiveness and superiority of the proposed method. Finally, 
conclusions and future work are presented in Section IV. 

II. PROPOSED METHODOLOGY 

A. Framework 
PV power generation data are invisible in the BTM 

system. It is difficult to obtain PV power generation data 
only through the composite power data of a single residential 
user. In general, composite power data of residential users in 
a community have similar shape of PV power generation 
curves but with different  capacity. 

By subtracting composite power data between users with 
similar demand, the difference of PV power generation can 
be roughly obtained. Due to the strong linear relationship 
between PV power generation and capacity, the curve of the 
difference of PV power generation has a similar shape to the 
curves of PV power generation. The most suitable PV power 
generation curve can be obtained by Maximal Information 
Coefficient (MIC) between integrated composite power of all 

users and the PV power generation difference obtained 
before.  

Denoising technology can be used to obtain smoother PV 
data from the most suitable PV power generation curve by 
reducing the impact of residential demand. The most similar 
PV power generation curve after denoising can be seen as 
PV proxy of the whole community. A grid search algorithm 
is performed to obtain the residential disaggregated PV 
power generation data guided by MIC metric finally. 

B. Estimation of PV proxy by composite power data 
The weather conditions in the same community are 

similar, such as solar radiation and ambient temperature. 
Hence, the generation output characteristics of solar PV 
panels of residential users in a community are similar. 
Therefore, each user can be seen as an implied PV proxy for 
others. Subtracting the composite power of users with similar 
demand but different PV capacities can offset the demand 
between users, and obtain a PV power generation difference 
as PV proxy for the community 

Composite power (kW) is equal to demand (kW) 
minus PV power generation (kW) [14]. Suppose there 
are users in the community, for user , it could be present 
as: 

  (1) 

Since the basic demand of each user is unknown and 
different, demand of each user is required to be adjusted to 
the same magnitude. Thus, feature scaling of is needed. 
Considering that is equal to at night ( equals to zero at 
night), feature scaling of can be performed by dividing by 
the mean of composite power in nighttime as below: 

  (2) 

Denominator of (2) is the mean of composite power in 
nighttime, represents the number of total time points at 
night. 

In order to reduce the influence of demand of each user, a 
subtract operation of between users and after feature 
scaling of same numerical magnitude is performed as below: 

  (3) 

For simplicity, (3) is represented by (4). 

  (4) 

The feature scaling makes in (4) a small value that 
can be seen as noise. Beside, due to the geographically close 
and strong linear relationship between PV power generation 
and capacity, the PV power generation of users and  with 
difference capacity has similar output curves: 

  (5) 
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TABLE I.  A SUMMARY OF THE EXOGENOUS VARIABLES REQUIRED 
FOR DIFFERENT STUDIES 

Study Model type Exogenous variable 

[5], [6], [7], 
and [8] 

Model 
assumption 
based 

Solar radiation and temperature data 

[9] Data-driven PV power generation of the PV proxy 

[10] Data-driven Demand of the neighbor 

[11] Data-driven PV power generation and demand of 
feeder level 

[12] Data-driven Solar radiation and temperature data 
 



Where and in (5) represent the capacity of users and 
, respectively. 

Obviously, also have strong linear relationship 
with and : 

  (6) 

Simultaneously, each user in a community has similar 
shape of PV power generation curves while with difference 
capacity. Thus, can be a PV proxy for each user of the 
whole community. However, the demand diversity of 
different users exists, it is necessary to filter in (4). 
Specifically, the aim of this step is to find a pair of users 
with mainly composed by . 

For users in a community, combinations 
of can be obtained from (4). The most suitable 
users and in which mainly is composed by can 
be selected through correlation analysis. MIC is used to 
correlation analysis between  and integrated composite 
power in (7). MIC can quantify both linear and non-linear 
correlation relationships of pairs of variables. More details of 
MIC are given in [15]. If the value of correlation relationship 
between the integrated composite power and achieves 
the maximum, the most suitable users and are determined, 
and the corresponding is considered to be the highest 
percentage of among all combinations of . 

  (7) 

where, is the integrated composite power of users. 
Thus, the user matching process is converted into an 
optimization problem of (7). This is a non-analytical 
optimization problem, which cannot be solved by traditional 
mathematical analysis methods. A grid search algorithm 
guided by (7) is employed to find the most relevant and . 
For simplify, after finding the most relevant and , the 
corresponding is represent as . 

To further reduce the impact of , Variational Mode 
Decomposition (VMD) is applied to denoise . The 
constrained variational problem is represented as: 

  (8) 

Where is the signal of  with frequency and 
mode , is the index of mode, is the Dirac distribution, 

denoted the convolution operation, is the total number 
of modes and the decomposition level. More details are 
given in [16]. 

The composite power data for residential users is a 
combination of relatively low-frequency and high-
frequency , thus, it is easy to decompose by VMD 
for the low-frequency part as . The filtered can be 
seen as a finer PV proxy for each user of the whole 
community. 

C. Estimation of Residential PV generation by MIC 
To simplify the explanation, the PV proxy obtained 

after VMD represents as . PV power generation of each 
residential users is equal to multiplied by a coefficient , 
for user : 

  (9) 

Where in (9) is solved by a grid search algorithm with 
metric of (10): 

  (10) 

By manually setup the lower bound , upper 
bound and discretization step , an exhaustive 
search is performed to the manually specified subset of . If 
the correlation between and achieves its 
minimum value, the first component would be seen as  
which has very low correlation with PV power generation, 
and is determined from (10). Then the residential PV 
power generation can be obtained according to (9). 

Finally, the residential PV power generation for user can 
be obtained after inverse transformation of by multiplying 
the denominator in (2). 

The algorithm to disaggregate residential PV power 
generation from composite power is summarized in 
Algorithm 1 below. 

Algorithm 1: Algorithm for residential PV power 
generation disaggregation from composite power 
Input: Composite power data of users in a 

community. 
Output: Estimated PV power generation of user . 

1: Feature scaling of for all residential users using 
(2), obtain . 

2: Obtain the integrated composite power . 
3: for to do 
4: for to do 
5: Obtain from (3) and (4). 

6: Calculate . 

7: end for 
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8: end for 
9: Obtain the most relevant according to (7). 
10: Denoise by VMD, obtain as PV proxy. 
11: for do 
12: Calculate . 
13: end for 
14: Obtain according to (9). 
15: Calculate . 

16: Inverse transformation of in (2), obtain . 

17: Return . 

III. CASE STUDY 

A.Dataset and evaluation metrics 
To evaluate the proposed residential BTM PV power 

generation disaggregation method for real scenarios, open-
source datasets which located in Austin, Texas and Ithaca, 
New York are applied. After data pre-processing of 
complementing, dataset located in Austin, Texas have 24 
residential users with metering time from 01/01/2018 to 
30/12/2018 with 15-minute interval, while Ithaca, New York 
have 18 with metering time from 01/05/2019 to 31/10/2019 
with 15-minute interval. Both datasets provide real-world 
composite power data and PV power generation data, so this 
experiment is completely based on actual scenarios. Daytime 
of the experiment is set from 6:30 to 17:30. 

The root mean square error (RMSE) and the coefficient 
of variation (CV) are used to evaluate the disaggregation 
accuracy. Considering the large number of zero points in PV 
data, which is unavailable for commonly used MAPE, CV is 
used instead. RMSE and CV are calculated as follows: 

in CV is another expression of , 
where and represent the day and the moment of the day, 
respectively. 

  (11) 

  (12) 

B.Correlation analysis of PV generation inter-users 
The key point of proposed method is the assumption of (5) 

that all residential users in a community have similar shape 
of PV power generation curves. To illustrate the rationality 
of this assumption, Pearson Correlation Coefficient (PPC) 
[17] is used to evaluate the linear correlation of PV power 
generation between each residential users of the datasets. 
PPC is a measure of linear correlation between two sets of 
data. Figs. 1 and 2 show the heatmap of PPC matrix of 
Austin and Ithaca, respectively. Both the horizontal axis and 
the vertical axis of the figures are the user ID of the 
community. The result of PPC have a value between -1 and 1, 

when a value close to 1 indicates that the linear correlation is 
stronger.  

It can be seen from the figure that PV power generation 
data between each residential user has a high degree of linear 
correlation, mostly above 0.9. Users in white part of the 
figure have no PV equipment installed with considering the 
capacity in (5) as zeros. Therefore, the assumption is 
rationality and feasible. 

It is worth noting that, due to the data access permission 
restrictions, only open source dataset, in which users are not 
geographically concentrated enough, is used in this 
experiment. It will affect the disaggregation accuracy to a 
certain extent. When collected users data are more 
geographically concentrated, such as under the same feeder, 
the correlation coefficient will be higher, which is more in 
line with the ideal situation. 

C. Method performance and comparation 
In this section, the performance of proposed method is 

compared with two other state-of-art composite power 
disaggregation methods proposed in [5] and [12]. 
Noteworthy, the model assumption based on method [5] and 
the data-driven based method [12] both require exogenous 
variable of solar radiation and temperature data as input, 
while our method only require the same type of residential 
composite power data in the community as input, which is 
more accessible. The required solar radiation and 
temperature data in method [5] and method [12] for 
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Fig. 2. Pearson correlation coefficient matrix of Austin 

 
Fig. 1. Pearson correlation coefficient matrix of Ithaca 



corresponding period are obtained from National Solar 
Radiation Database (NSRDB). Due to the NSRDB only 
supply 30-minute interval meteorological data, linear 
interpolation is applied to obtain 15-minute interval 
meteorological data.  

The experiment is to verify composite power 
disaggregation performance of residential users. User #2 in 
both datasets equipped with PV system is randomly selected 
as experimental object. Figs. 3 and 4 show the disaggregation 
results of user #2 of difference method in a week. Tables II 
and III present the disaggregation results of user #2 of 
difference method in RMSE and CV. 

It can be seen from Tables II and III that disaggregation 
results of the three methods are similar, and proposed 
method obtains the best disaggregation results of RMSE in 
Austin dataset, but the overall gap is very small. However, 
the proposed algorithm can obtain results comparable to 
other two state-of-the-art methods without relying on 
exogenous solar radiation and temperature data, which is a 
great advantage in practical implementation. This is a 
relatively ideal result and illustrates the feasibility of the 

proposed method. Disaggregation results of New York 
dataset are a little worse than other two methods. The reason 
may be that New York dataset has fewer residential users 
than Austin dataset, thus it is difficult to match users with 
similar electricity demand, but it is still considerable under 
this data requirement.  

It can be seen from Figs. 3 and 4 that the data is a small-
scale PV power generation system for a single residential 
user, thus, PV power generation curve has more glitched and 
fluctuations. Disaggregation results between method [5] and 
method [12] are relatively similar, and the overall shape of 
both method are relatively smooth, but they are difficult to 
learn the real PV fluctuations. The proposed method can 
better adapt the fluctuation of real PV curve due to the 
directly calculation of composite power. 

D. Ablation experiments of community user scales 
The number of residential users in the dataset is an 

important parameter of proposed method. In theory, the 
larger the group of community, the easier it is to match users 
with similar demand. Experiments are conducted to verify 
the feasibility of the method under different community user 
scales. 

The experiment uses Austin dataset, and experiment 
object is still user #2, randomly select other users in the 
dataset to form 3 new datasets of 8, 16, and 24 users. Table 
IV shows the disaggregation results of user #2 of difference 
user scales. 

It can be seen from Table IV that as the number of users 
in dataset decreases, disaggregation accuracy continues to 
decrease. The main reason is that when the number of users 
in dataset are too small, the probability of matching a 
suitable user will decrease, and the sub-suitable user will be 
matched, lead to a decrease in disaggregation accuracy.  

 
Fig. 3. Disaggregation results of user #2 in Austin, Texas 

 

 
Fig. 4. Disaggregation results of user #2 in Ithaca, New York 

 

TABLE II.  RMSE AND CV OF VARIOUS DISAGGREGATION METHODS 
OF USER #2 IN AUSTIN, TEXAS 

Evaluation 
method Method [5] Method [12] Proposed 

Method 
RMSE(kW) 0.550 0.543 0.540 

CV(%) 8.537 7.870 8.235 
 

TABLE III.  RMSE AND CV OF VARIOUS DISAGGREGATION METHODS OF 
USER #2 IN ITHACA, NEW YORK 

Evaluation 
method Method [5] Method [12] Proposed 

Method 
RMSE(kW) 1.006 0.926 1.070 

CV(%) 7.434 6.939 9.556 
 



Therefore, for the system operator, if the composite 
power data of a large number of users under the same feeder 
is available, the proposed method may be able to obtain a 
higher disaggregation accuracy. 

IV. CONCLUTION AND FUTURE WORK 
We propose a BTM residential PV power generation 

disaggregation method only using composite power data of 
users in a community, without relying on solar radiation and 
temperature data which are strong exogenous variables 
related to PV power generation. The ease access to 
composite power data contributed to the high universality of 
the proposed method. In the comparison of other two state-
of-art methods that rely on solar radiation and temperature, 
proposed method has achieved considerable disaggregation 
accuracy. 

This method is still relatively primitive with room for 
improvement. For example, it is difficult to match with the 
suitable users in composite power difference phase when the 
number of users is small and it is still difficult to eliminate 
for some unexplained fluctuations in VMD decomposition 
phase. Therefore, in future research, various integrated 
methods will be considered to optimize the composite power 
difference phase to eliminate the influence of user demand, 
and research for better filtering in VMD decomposition 
phase. 

REFERENCES  
[1] B. Johnson, P. Denholm, B. Kroposki, and B. Hodge, “Achieving 

a 100% renewable grid,” IEEE Power Energy Mag., no 2, pp. 61–
73, Apr, 2017. 

[2] O. Gandhi, D. S. Kumar, C. D. Rodríguez-Gallegos, and D. 
Srinivasan, “Review of power system impacts at high PV 
penetration Part I: Factors limiting PV penetration,” Sol. Energy, 
vol. 210, pp. 181–201, Feb, 2020. 

[3] C. S. Lai et al., “Levelized cost of electricity for 
photovoltaic/biogas power plant hybrid system with electrical 
energy storage degradation costs,” Energy Convers. Manag., vol. 
153, pp. 34–47, 2017. 

[4] B. Uzum, A. Onen, H. M. Hasanien, and S. M. Muyeen, 
“Rooftop solar pv penetration impacts on distribution network 
and further growth factors—a comprehensive review,” Electron., 
vol. 10, no. 1, pp. 1–31, Dec. 2020. 

[5] Michael Schmela et al, “Global market outlook for solar 
Power/2018–2022,” Sept, 2018. 

[6] Y. Wang, N. Zhang, Q. Chen, D. S. Kirschen, P. Li, and Q. Xia, 
“Data-driven probabilistic net load forecasting with high 
penetration of behind-the-meter PV,” IEEE Trans. Power Syst., 
vol. 33, no. 3, pp. 3255–3264, Oct, 2017. 

[7] F. Kabir, N. Yu, W. Yao, R. Yang, and Y. Zhang, “Estimation of 
behind-the-meter solar generation by integrating physical with 
statistical models,” 2019 IEEE Int. Conf. Commun. Control. 
Comput. Technol. Smart Grids, SmartGridComm 2019, 2019. 

[8] F. Kabir, N. Yu, W. Yao, R. Yang, and Y. Zhang, “Joint 
estimation of behind-the-meter solar generation in a community,” 
IEEE Trans. Sustain. Energy, vol. 12, no. 1, pp. 682–694, Jan, 
2021. 

[9] D. Chen and D. Irwin, “SunDance: Black-box behind-the-meter 
solar disaggregation,” e-Energy 2017 - Proc. 8th Int. Conf. Futur. 
Energy Syst., pp. 45–55, 2017. 

[10] K. Li, F. Wang, Z. Mi, M. Fotuhi-Firuzabad, N. Duić, and T. 
Wang, “Capacity and output power estimation approach of 
individual behind-the-meter distributed photovoltaic system for 
demand response baseline estimation,” Appl. Energy, vol. 253, 
pp. 113595, Nov, 2019 

[11] C. M. Cheung, S. R. Kuppannagari, R. Kannan, and V. K. 
Prasanna, “Disaggregation of behind-the-meter solar generation 
in presence of energy storage resources,” 2020 IEEE Conf. 
Technol. Sustain. SusTech 2020, no. 1911229, 2020. 

[12] M. Tabone, S. Kiliccote, and E. C. Kara, “Disaggregating solar 
generation behind individual meters in real time,” BuildSys 2018 
- Proc. 5th Conf. Syst. Built Environ., pp. 43–52, 2018. 

[13] F. Sossan, L. Nespoli, V. Medici, and M. Paolone, “Unsupervised 
disaggregation of photovoltaic production from composite power 
flow measurements of heterogeneous prosumers,” IEEE Trans. 
Ind. Informatics, vol. 14, no. 9, pp. 3904–3913, Sept. 2018. 

[14] K. Pan, C. Xie, C. S. Lai, D. Wang, and L. L. Lai, “Photovoltaic 
output power estimation and baseline prediction approach for a 
residential distribution network with behind-the-meter systems,” 
Forecasting, vol. 2, no. 4, pp. 470–487, Oct. 2020. 

[15] D. Reshef et al., “Detecting novel associations in large data 
Sets,” Sci. Transl. Med., vol. 334, no. 6062, pp. 1518–1524, Dec. 
2011. 

[16] K. Dragomiretskiy and D. Zosso, “Variational mode 
decomposition,” IEEE Trans. Signal Process., vol. 62, no. 3, pp. 
531–544, Nov. 2013. 

[17] J. Lee Rodgers and W. Alan Nice Wander, “Thirteen ways to 
look at the correlation coefficient,” Am. Stat., vol. 42, no. 1, pp. 
59–66, Jun. 1987. 

 

TABLE IV.  RMSE AND CV OF VARIOUS USER SCALES OF AUSTIN, 
TEXAS 

Evaluation 
Metric 

Number of Users in Dataset 
8 16 24 

RMSE(kW) 0.766 0.658 0.540 
CV(%) 12.334 8.936 8.235 

 


