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Abstract: Employing phase-change materials (PCM) is considered a very efficient and cost-effective
option for addressing the mismatch between the energy supply and the demand. The high storage
density, little temperature degradation, and ease of material processing register the PCM as a key
candidate for the thermal energy storage system. However, the sluggish response rates during their
melting and solidification processes limit their applications and consequently require the inclusion of
heat transfer enhancers. This research aims to investigate the potential enhancement of circular fins
on intensifying the PCM thermal response in a vertical triple-tube casing. Fin arrays of non-uniform
dimensions and distinct distribution patterns were designed and investigated to determine the impact
of modifying the fin geometric characteristics and distribution patterns in various spatial zones of the
heat exchanger. Parametric analysis on the various fin structures under consideration was carried out
to determine the most optimal fin structure from the perspective of the transient melting evolution
and heat storage rates while maintaining the same design limitations of fin material and volume
usage. The results revealed that changing the fin dimensions with the heat-flow direction results
in a faster charging rate, a higher storage rate, and a more uniform temperature distribution when
compared to a uniform fin size. The time required to fully charge the storage system (fully melting of
the PCM) was found to be reduced by up to 10.4%, and the heat storage rate can be improved by up
to 9.3% compared to the reference case of uniform fin sizes within the same fin volume limitations.

Keywords: latent heat storage; phase change materials; melting; triple pipe; fin arrays

1. Introduction

The transition from fossil fuels toward renewable energies such as sunlight and wind
is widely recognized these days as the most important step toward converting the global
energy system into one that is both economically and environmentally sustainable. Due to
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the fact that almost all sources of renewable energy are fluctuating and intermittent in their
availability and amount, energy storage is essential for the widespread adoption of renew-
able energy technologies. Thermal energy storage (TES) is one of the most promising energy
storage technologies available today, and it is also one of the most cost-effective options [1].
It is being advocated because it has the potential to provide consistent production of power
from these sources, preserving the limited fossil-fuel sources, and lowering the need for
pricey natural gas and oil imports [2]. Energy can be supplied on a diurnal or seasonal
basis by TES technologies, resolving any potential imbalance between energy in supply
and use. So, as a consequence, developing efficient designs is very important to carefully
match the suitable TES technology to each specific application of renewable energy.

TES is a term that refers to the temporary holding of energy in thermal form for
future utilization. It can be classified into three categories according to the materials
used. Sensible TES by raising or lowering the temperature of the material via altering
its sensible heat, latent TES by changing the phase of the material by alerting its latent
heat, and thermochemical TES by storing or releasing heat by cyclic endothermic and
exothermic chemical reactions. The latent TES, which makes use of what are known as
phase-changing materials (PCMs), is favored above the others for two reasons. First, the
latent TES systems based on PCMs are far more compact than sensible TES. For instance,
the volume percentage of latent TES to that of rock-based TES is around 1 to 17 [3]. Second,
the thermal properties of phase transitions in PCMs make allowances for only a little or
no temperature degradation, which means that the temperature may stay almost constant
throughout the operating duration. Therefore, PCMs find a wide range of applications
such as building energy management [4], load control in heating and cooling utilities [5,6],
and peak shaving in renewable energy plants [7–15].

Material thermodynamic properties such as thermal diffusivity, point of phase transi-
tion, and latent heat of fusion per unit mass all contribute significantly to the efficacy of
PCM as a useful storage substance. Nevertheless, the most significant inconsistency that
almost all PCMs today suffer from is their intrinsically low heat conduction, which has a
negative impact on the system’s thermal reaction to the cyclic heat charging/discharging
operations. To overcome this issue, researchers identified different approaches for the ther-
mal enhancement of TES systems, such as porous matrices [16–19], extended fins [20–25],
and heat pipes [26,27] along with utilizing good performing casing for PCM containment.
Boosting the thermal performance of PCM-based storage devices by applying extended
fins to the tubes transporting the heat-transfer fluid (HTF) is often considered as one of
the most effective enhancement methods in energy storage systems [23,28]. When fins are
fabricated and installed appropriately, they may achieve a high enhancement ratio, save the
material used, and enhance the system’s compactness. Therefore, optimizing the design,
size, arrangement, and material use of fins has become a major area of interest within the
field of thermal energy systems [29,30]. The optimization of these parameters is carried out
depending on the type and features of the TES technique, the kind of PCM utilized in the
application, and the targeted heat charging/discharging rates.

The useful application of extended fins of longitudinal, circular, angular, tree-like, and
twist-shaped configurations has been a topic of interest to several studies over the last three
decades. The potential for melting enhancement of PCM in a shell-and-tube casing was
studied by Lacroix [31] who revealed that the introduction of circular fins is more influential
at lower intake temperatures (∆T ≥ 5 K) and moderate HTF flow rates (m ≤ 0.015 kg/s).
Effectiveness of the V-shaped longitudinal fin in cylindrical storage assemblies with paraffin
RT60 as PCM was investigated by Velraj et al. [32], and it was determined that the time
required for complete solidification is approximately reduced by (1/number of fins) when
compared to the case of no fins. Gharebaghi and Sezai [33] compared the performance of a
rectangular TES unit equipped with vertical fins on the thermally active horizontal wall to
that of the same unit with horizontal fins on the thermally active vertical wall and found
that the latter was more efficient in terms of the heat-transfer enhancement rate. Al-Abidi
et al. [34] examined the impact of including longitudinal fins on PCM charging response
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in the triple-tube TES unit under various HTF temperature and flow conditions, and the
results indicated that the HTF temperature has a greater effect on the enhanced melting rate
than the HTF flow rate. Sciacovelli et al. [35] achieved a 24% higher discharging efficiency
with the application of Y-shaped fins in the PCM-based shell-and-tube storage system,
and the results indicated that the short-duration operation of PCM systems requires larger
Y-shaped fin angles, whereas the longer duration operation requires smaller Y-shaped
fin angles.

Abdulateef et al. [36] compared the melting enhancement of PCM in horizontal triplex-
tube units with longitudinal and triangular fins and it was reported that a 15% faster
melting rate can be achieved with the application of triangular fins compared to that of
longitudinal fins. As the melting rate is not the same at the different parts of the TES
units, Mahdi et al. [24,37] suggested employing fewer and smaller fins at the top part with
longer fins at the bottom part of horizontal TES units to further support the enhancement
potential of longitudinal fins during the heat storage mode. To maximize the contribution
of natural convection during melting in vertical TES units, Singh et al. [38] suggested the
use of non-uniform distribution of annular fins with a progressive drop in the fin height. To
further enhance the PCM charging response, Ghalambaz et al. [39] introduced twisted fins
as innovative TES enhancer and reported 42% saving in melting time with a 63% increase
in heat storage rate with the inclusion of twisted fins compared to that of longitudinal fins
within the same PCM mass limitations. Further, the PCM has been used as a promising
technique for the thermal management of the car’s battery [40,41].

Based on the literature survey above, there are still several fin parameters that require
further investigations to reveal their role as a good performing enhancer in the design of
PCM-based systems with expanded fins. The influence of reducing the circular fin’s size
(length and thickness) in one system was never considered in the literature. This work
investigates the novel design of the thermal energy storage system, which involves the
incorporation of various fin sizes into the same system. Additionally, combining a flat
fin at the bottom part of the geometry is also being examined to evaluate the expedited
melting process for the solid PCM parts being collected at the base of the system. The
geometric parameters of the fin array, such as their size, placement, and arrangement, have
a significant effect on the buoyancy-driven flow of liquid PCM and the overall thermal
effectiveness of the storage system. Therefore, a simulation model for the PCM melting
process in a vertical triple-tube casing with circular fins was developed and implemented to
identify the impact of modifying the fin geometric characteristics and distribution patterns
in various spatial zones of the heat exchanger. The primary objective was to optimize the
size, arrangement, and vertical placement of the fin array during the charging phase of PCM
under a variety of temperature and flow conditions. The results indicated that the optimal
structure of the fin system depends on the dimensions and distribution patterns of the fin
arrays. Finally, three additional cases were compared: the optimum case with uniform fin
dimensions, the optimum case with nonuniform fin dimensions, and the reference case
with no fins to reveal the superior effectiveness of the proposed fin system.

2. Problem Description

A heat-exchanger in the form of a triple-pipe PCM casing with circular fins is inves-
tigated in this study. The interior and exterior pipes are peripherally finned with a total
number of 10 fins. The five fins with non-uniform dimensions are linked to the interior
pipe and the other five are attached to the exterior pipe of the PCM casing. The PCM
occupies the space inside the middle pipe while water as the heat-transferring fluid (HTF)
is circulated through the interior and exterior pipes. The proposed system is displayed
in Figure 1. The system with fins of non-uniform dimensions is assessed with reference
to the case of uniform fins (case 1) and no-fin (case 0). In the system with uniform fins,
the dimensions of all fins are similar equal to 2 mm × 5 mm. For the finned cases with
non-uniform dimensions, first, the height of the fins is changed in cases 2 and 3 considering
the constant fin’s thickness equal to 2 mm. In case 2, the fin’s height is changed from 9 mm
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to 1 mm while the fin’s height in case 3 is changed from 7 mm to 2 mm. In cases 4 and 5,
the heights of the fins are constant equal to 5 mm; however, the thickness of fins is changed
from 3 mm to 1 mm in case 4 and from 2.5 mm to 1.5 mm in case 5.
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Figure 1. The Two-dimensional structure of the studied vertical triple-tube heat exchanger cases
including (a) case 0 (finless case), (b) case 1 (uniformly distributed case), (c) case 2 (the fin’s height is
changed from 9 mm to 1 mm), (d) case 3 (the fin’s height in case 3 is changed from 7 mm to 2 mm),
(e) case 4 (the thickness of fins is changed from 3 mm to 1 mm), (f) case 5 (the thickness changed
from 2.5 mm to 1.5 mm), (g) case 6 (flat fin integrated to the bottom of case 1), and (h) case 7 (flat fin
integrated to the bottom of case 3).

In vertical heat storage systems and owing to the existence of natural convection
phenomenon during the melting phase, the PCM at the upper section of the storage system
is melted at a higher rate than the PCM at the bottom [37]. Thus, in this study, as a
distinct pattern for the first time, to boost the storage performance of the system during
the heat charging mode, an integrated fin in cases 6 and 7 is placed at the bottom of the
heat exchanger. In case 6, in addition to the added fin at the bottom, uniform dimensions
are considered for the other fins while in case 7, a fin is added to the bottom wall of the
heat exchanger for the best-proposed system among cases 2–5 (this is studied later in the
discussion section and is achieved as case 3). The fins’ dimensions related to the studied
cases are presented in Table 1.

Table 1. The dimensions of circular fins in millimeters for all the proposed cases.

Fin 1 (Lowest Fin) Fin 2 Fin 3 Fin 4 Fin 5 Added Fin to
the Bottom

Case 0 - - - - - -
Case 1 2 × 5 2 × 5 2 × 5 2 × 5 2 × 5 -
Case 2 2 × 9 2 × 7 2 × 5 2 × 3 2 × 1 -
Case 3 2 × 7 2 × 6 2 × 5 2 × 4 2 × 3 -
Case 4 3 × 5 2.5 × 5 2 × 5 1.5 × 5 1 × 5 -
Case 5 2.5 × 5 2.25 × 5 2 × 5 1.75 × 5 1.5 × 5 -
Case 6 1.42 × 7 1.42 × 6 1.42 × 5 1.42 × 4 1.42 × 3 1.42 × 20
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It should be noted that the system’s length is 250 mm and that the diameters of the
interior, middle and exterior pipes are 20, 40, and 60 mm, respectively. The pipe walls,
which are made of copper, are equally fixed as 1-mm wide. The HTF is circulated in the
inner pipe in the opposite direction of gravity, while it is circulated in the gravity direction
inside of the outer pipe. As established in the literature [42,43], such a configuration
provides superior performance when compared to co-current directions for the fluid flow.
As a result, the flow of HTF through the PCM casing is kept as counter-current. The
conditions for the HTF at the inlet section are constant velocity and temperature, whereas
the boundary conditions for the HTF at the outlet section are outflow with constant velocity
and temperature, respectively. A 3D representation of the PCM heat-exchanger casing with
no fins is presented in Figure 2 along with the dimensions of constituent pipes and their
associated boundary conditions. The flow is regarded as axisymmetric due to the type and
features of the studied problem and the absence of circumferential flow variation in the
system under investigation (shown in Figure 2). Values of 50 ◦C inlet temperature and
1000-Reynolds number are used for the HTF flow to establish the optimal fin arrangement.
The value 15 ◦C is considered as the initial temperature for heating of PCM during the heat
charging mode.
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The PCM in use is paraffin RT-35, whose thermophysical characteristics are reported
in Table 2.



Nanomaterials 2022, 12, 403 6 of 26

Table 2. Thermodynamic properties of the PCM used [44].

Properties ρl
[
kg/m3] ρs

[
kg/m3] Lf [kJ/kg] Cp [kJ/kg.K] K [W/m.K] µ [N.s/m2] TL [◦C] TS [◦C] β [J/K]

Values 770 860 170 2 0.2 0.023 36 29 0.0006

3. Mathematical Modeling

To numerically simulate the phase transition of PCM in use, the enthalpy–porosity
approach was implemented [45,46]. In this approach, the liquid fraction and the porosity
were assumed to be equivalent inside all cells of the computational domain. To drive the
governing equations, the following assumptions are made [47,48]:

• Applying the Boussinesq approximation to figure out the density and buoyant
force variations.

• Assuming the flow of liquid PCM is transient, axisymmetric, laminar, and incompressible.
• Taking acceleration of gravity is along the negative y-axis.
• Neglecting heat loss into the surroundings due to the good thermal insulation at the

exterior boundaries.
• Applying no velocity-slip boundary conditions at the solid boundaries.

On the next section are presented the Navier-Stokes conservation equations for conti-
nuity, momentum, and energy [49]:

∂ρ

∂t
+∇·ρ

→
V = 0 (1)

ρ
∂
→
V

∂t
+ ρ

(→
V·∇

)→
V = −∇P + µ

(
∇2
→
V
)
− ρre f β

(
T − Tre f

)→
g −

→
S (2)

ρCp∂T
∂t

+∇
(

ρCp
→
VT
)
= ∇(k∇T)− SL (3)

The last term (
→
S ) in the second conservation equation is included to account for the

influence of phase transition, which is specified as the velocity damping component of the
Darcy law [50]:

→
S = Am

(1− λ)2

λ3 + 0.001

→
V (4)

where the mushy zone constant Am is considered 105 according to the literature [29]. It
would be worthy to mention that there is a semi-liquid zone exists between the melted

and solidified zones of PCM during phase transition. So, high values of
→
V indicate sharper

transitions of material velocity to zero during solidification. This, in turn, affects heat
transport and flow properties during melting and solidification as high readings of damping
velocity may produce oscillations in the predicted numerical solution.

For the effect of latent heat and phase change process in the energy equation, a source
term is added where λ (liquid fraction of PCM) is introduced as [41]:

λ =
∆H
L f

=


0i f T < TSolidus
1i f T > TLiquidus

T−TSolidus
TLiquidus−TSolidus

i f TSolidus < T < TLiquidus

 (5)

The Boussinesq approximation is applied to compute the density fluctuations due to
the temperature swings during the PCM’s phase transition course. In this approximation,
fluid density is handled as constant, except in the gravity part of the momentum equation,
where density is regarded as a temperature-dependent variable [16]:

ρ = ρre f

(
1− β

(
T − Tre f

))
(6)
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The source term SL in the third conservation equation is described as follows:

SL =
ρ∂λL f

∂t
+ ρ∇

(→
VλL f

)
(7)

The rate of energy stored during the melting phase is estimated as:

.
ET =

Ee − Ei
tm

(8)

where tm is the melting time and Ee and Ei are the total heat storage in PCM upon ending
and starting of the phase-transition course. E is the summation of sensible heat

(
MCpdT

)
and latent heat

(
ML f

)
of the PCM. The flow of the HTF flow is assumed laminar in the

present analysis.

4. Numerical Model

A numerical simulation is a trustworthy approach for assessing the functioning of a
given system design before fabrication so that any design modifications can be approved
or rejected [51–53]. In this study, a modified ANSYS-FLUENT simulation solver based on
SIMPLE model for pressure-velocity coupling and Green-Gauss meshing approach was
used to examine the thermofluidic performance characteristics of PCM throughout the heat
charging mode. The QUICK differencing approach was utilized to solve the momentum
and energy equations, while the PRESTO scheme was employed to solve the pressure
correction equations. Following a thorough pre-selection, the under-relaxation factors for
pressure correction, velocity components, liquid fraction, and energy equation are set to
0.3, 0.3, 0.5, and 1, respectively. For the continuity, momentum, and energy equations, the
convergence requirements for ending the iterative solution are set to 10–4, 10–4, and 10–6,
respectively. The grid, as well as timestep size independence tests, are conducted. For this
purpose, different cell numbers of 28,500, 43,000, and 81,620 are assessed using the timestep
size of 0.2 s for the finned triple-pipe with uniform fins. Table 3 shows the melting time for
different sizes of the grids in use. The outcomes, as shown in the table, are almost identical
for the grid sizes of 43,000 and 81,620, and therefore, the mesh size of 43,000 is chosen for
further analysis. It should be noted that a denser mesh is selected at the boundaries in both
the PCM and HTF domains. Table 3 also presents the melting time for different sizes of
time step size for the selected grid with 43,200 cells. As shown, the outcome data for the
time step sizes of 0.1, 0.2, and 0.4 s investigated are nearly identical, particularly for the
values of 0.2 and 0.1s. As a result, 0.2 s is adopted as the time step size in this research. The
configuration of the selected mesh after the grid independence test is shown in Figure 3.

Table 3. Effect of cell number and time step size on the melting time.

Number of Cells 28,500 43,000 81,620

Time step size (s) 0.2 0.1 0.2 0.4 0.2
Melting time 4644 4733 4727 4701 4739

To validate the suitability of the simulation model developed, the findings of Mat et al. [34]
were used as referential, and the geometry utilized in that investigation was regenerated.
Mat et al. [34] numerically and experimentally evaluated a double-tube casing unit utilizing
RT58 as the PCM. The study by Mat et al. was used as referential to validate the present
study since the geometries examined in the two studies are almost similar. The referential
study investigated the presence of inserted fins attached to both the interior and exterior
tubes of the PCM shell in a staggered arrangement with the inner tube having a constant
wall temperature. Two performance parameters were utilized to determine the validity
of this work: the overall temperature of the PCM and the transient development of the
liquid fraction. Figure 4 shows the results of the validation study, which indicate that the
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numerically predicted and experimentally measured data points of Mat et al. [34] are very
equivalent to the present model predictions. The maximum error of the liquid fraction and
the mean temperature for the numerical results for the current work against the work of
Mat et al. [28] is found to be 1.5% and 0.78%, respectively. However, the error of the mean
temperature of the current work and the experimental side of Mat et al. [28] is 4%.
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5. Results and Discussion

This section studies the effects of the fins’ distribution design and the dimension
on the charging process. The finned case with uniform fins is compared with the finless
circumstances. Then different dimensions of the fins are explored, considering various
lengths with a constant width and various widths with a constant length. Further, an
additional fin was added for the bottom of cases 1 and 3 to enhance the thermal behavior
of PCM during melting. All the studied cases were assessed by analyzing the temperature
contour track record and the history of the liquid-fraction progression during the heat
charging process.

5.1. Impact of Uniforms Addition Fin in the Compared with the No-Fin Case

Applying fins in the thermal energy storage system improves the thermal performance
owing to increasing the surface area of the heat transfer and enhancing the mean thermal
conductivity of the whole domain. The reason is that the thermal conductivity of the added
fins is greater than that of the PCM. The fins guarantee the delivery of heat deeply in the
region of the PCM domain, which improves the heat distribution in the PCM domain. Once
the PCM melts, the thermal convection is affected more by the attendance of fins. This part
of the study included a domain with five fins with a length of 5 mm and a thickness of
2 mm, in comparison with the case of no-fins.

Figure 5 shows the development of the liquid fraction in the uniform distributed
fins compared with the no-fins (fin-less) case. The figure shows that the melting process
performs in the region besides the walls and around the fins. The solid phase in the
regions amongst the fin regions is still connected at the time of 600 s. This connection is
disappearing within 1200 s, because of the considerable among of transferred heat from
inline fins. The solid part shrinks with time, and they held over the patch of the fins. Within
2400 s, only 2% of the solid part can be seen at the base of the system. For the no-fin case,
the melting process takes a longer time to cover the same spaces compared to the inline
fins case, due to the limited surface area caused by the absence of the fins. Within 2400 s,
only 70% of the total PCM was melted.

The temperature of HTF is stabilized at 50 ◦C, and the temperature of the PCM rises
at the region close to the walls and around the fins, as shown in Figure 6. The average
temperature of the PCM increases rapidly within the first 600 s due to the heat conductivity
of the solid fins (before the melting process). The warm region gathers at the top part
of the system. The average temperature of the PCM reaches 49 ◦C within 2400 s. This
phenomenon is not detected in the fin-less case; in which the temperature increases slightly,
as the heat transfers to the PCM through only that separated wall. The average temperature
of the PCM increases to 40% within 2400 s.

Figure 7a illustrates the liquid fraction development till the fully molten process. The
figure shows that in case 1, The melting process increases rapidly during the first 2000 s,
because of the high heat transfer rate to the PCM through the fins as well as the effect of
the thermal conduction. After 2000 s, the melting process goes with a slower mode because
of the natural convection, which is caused by the converting of the most PCM to the liquid
phase. For the finless case, the molten PCM growth logarithmically in slow modes because
the heat transfers only due to the conduction effect. The converting process goes fast, then
it slows down gradually because of the development of the natural convection. Figure 7b
illustrates the mean temperature rising of the PCM in both case 1 and the fin-less case.
The figure shows that the temperature increases sharply for both cases during the first
400 s due to the conduction process. After, the temperature growth goes slower due to
the development of the convection effect, especially in the fin-less case. In case one, the
effect of the fins reduces the impact of the Thermal convection. The total melting times are
3056 s and 4654 s for case 1 and the finless case, respectively, as shown in Table 4, which
also indicates that the heat storage rate (the amount of the stored heat per unit time) in
case 1 (55.1 W) is much higher than that in the finless case (36.2 W). It can be concluded
that the thermal performance in case 1 is much more efficient than that in the fin-less case.
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Table 4. Heat storage rate and the total melting time for case 1 and the finless case.

Studied Model Heat Storage Rate (W) Melting Time (s)

Case 1 55.1 3056
No-fin 36.2 4654



Nanomaterials 2022, 12, 403 12 of 26

Nanomaterials 2022, 12, x FOR PEER REVIEW 12 of 26 
 

 

due to the development of the convection effect, especially in the fin-less case. In case one, 

the effect of the fins reduces the impact of the Thermal convection. The total melting times 

are 3056 s and 4654 s for case 1 and the finless case, respectively, as shown in Table 4, 

which also indicates that the heat storage rate (the amount of the stored heat per unit time) 

in case 1 (55.1 W) is much higher than that in the finless case (36.2 W). It can be concluded 

that the thermal performance in case 1 is much more efficient than that in the fin-less case. 

  
(a) (b) 

Figure 7. (a) liquid fraction, (b) average temperature profiles for case 1 and the fin-less case during 

the melting process. 

Table 4. Heat storage rate and the total melting time for case 1 and the finless case. 

Studied Model Heat Storage Rate (W) Melting Time (s) 

Case 1 55.1 3056 

No-fin 36.2 4654 

5.2. Impact of Non-Uniform Dimensions in Fin Arrays 

In this part of the study, non-uniform dimensions of the fins are considered. In cases 

2 and 3, the height of the fins is changed considering the constant value for the width as 

mentioned in the system discretion. In cases 4 and 5, the width of fins is non-uniform 

considering the constant value for the height. 

Figure 8 illustrates the liquid fraction of the cases (2, 3, 4, and 5) during different time 

steps. For the first 600 s, the behaviors of the malting process look similar, as the conduc-

tion heat transfer dominates the process. The behavior slightly changed for the various 

cases because of the different surface areas of the fins. As the molten PCM covers the wall 

and the fins, the effect of the convection heat transfer appears clearly on the system. For 

case 2, the solid part extends on the areas over the highest fin (1 mm × 2 mm) at the time 

of the 1800 s due to the short length of that fin. For the other cases, the solid part is confined 

between the fins except for the highest part of case 2 which is molten completely. At 2400 

s, most of the PCM melts in all the cases excluding the lowest part of the system due to 

the buoyancy effect, which helps to collect the solid part at the bottom and rise the liquid 

phase up due to the density differences. 

  

Figure 7. (a) liquid fraction, (b) average temperature profiles for case 1 and the fin-less case during
the melting process.

5.2. Impact of Non-Uniform Dimensions in Fin Arrays

In this part of the study, non-uniform dimensions of the fins are considered. In cases
2 and 3, the height of the fins is changed considering the constant value for the width as
mentioned in the system discretion. In cases 4 and 5, the width of fins is non-uniform
considering the constant value for the height.

Figure 8 illustrates the liquid fraction of the cases (2, 3, 4, and 5) during different time
steps. For the first 600 s, the behaviors of the malting process look similar, as the conduction
heat transfer dominates the process. The behavior slightly changed for the various cases
because of the different surface areas of the fins. As the molten PCM covers the wall and
the fins, the effect of the convection heat transfer appears clearly on the system. For case 2,
the solid part extends on the areas over the highest fin (1 mm × 2 mm) at the time of the
1800 s due to the short length of that fin. For the other cases, the solid part is confined
between the fins except for the highest part of case 2 which is molten completely. At 2400 s,
most of the PCM melts in all the cases excluding the lowest part of the system due to the
buoyancy effect, which helps to collect the solid part at the bottom and rise the liquid phase
up due to the density differences.

Figure 9 shows the temperature profile of cases (2, 3, 4, and 5) at different time steps.
Within 600 s, the average temperature for all the cases is almost the same, as the effect of the
conduction is appearing in all the cases. The temperature rises around the fin and beside
the wall and expands gradually to the deep part of the PCM. The top region of the system
reaches the thermal equilibrium first due to the collection of the liquid PCM at the top of the
region. All the regions in cases 3, 4, and 5 reach the thermal equilibrium except the bottom
part. In case 2, there is a patch of a solid part, which appears colder because the fin around
is smaller than the other, relatively. The heat storage rate shows a maximum value in case 3
and has also a minimum melting time as shown in Figure 10. This behavior is caused by
the dimensions of the fins in case 3, which is longer in suitable size at the bottom (the
place of collecting the solid phase) and becomes shorter as higher be raised. The maximum
melting time with the lowest heat transfer rate is shown in case 5. The heat storage rate in
all the cases is almost the same within a range between 54–60.5 W (Figure 6a) and the total
melting time changes between the range of (2780 s–3077 s) (Figure 10b). Table 5 shows the
values of the melting time and the heat storage rate for cases 2, 3, 4, and 5. Case 3 with the
highest storage rate (16.32 W) has an advantage over cases 2, 4, and 5 by 5.2%, 7.4%, and
9.3%, respectively. However, the melting time of case 3 (2787 s) is shorter than cases 2, 4,
and 5 by 5.1%, 8.1%, and 10.4.
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Table 5. Heat storage rate and the total melting time for different cases of the non-uniform fin sizes
during the melting process.

Studied Model Heat Storage Rate Melting Time

Case 2 57.2 2929
Case 3 60.3 2787
Case 4 55.9 3014
Case 5 54.7 3077
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non-uniform fins sizes during the melting process.

5.3. Impact of Adding a Fin to the Bottom of the PCM Shell

In this part of the study, an extra fin is added for cases 1 (uniform fins dimension) and
3 (the best case with non-uniform fins dimensions) and they are compared with the original
cases. Case 6 is the modified version of case 1 (after adding the fin at the base of the shell),
and case 7 is the modified version of case 3. It should be noted that the total sizes of the
fins are the same to grantee the same mass of the utilized PCM.

Adding fin to the bottom of the system in cases 1 and 3 increases the melting rate of the
PCM at the base of the heat exchanger (the place where the solid PCM is collected due to the
buoyancy effect). This behavior is caused by the direct and continuous adhesion between
the based horizontal flat fin and the solid part of the PCM till the end of the melting process.
This effect clearly appears with times over 1200 s (Figure 11). By comparing the figures of
both cases 6 and 7 with cases of 1 and 3, a small portion of the solid-state appears at the base
of the heat exchanger in cases 6 and 7, and the solid PCM totally disappears within 2400 s.
On the other hand, the solid PCM is slightly bigger in cases 6 and 7 in the other regions.
This is caused by the small thickness of the fins in those cases (the thickness reduces to
compensation to adding the new fin at the base). The effect of the base fin also appears on
the temperature profile, as shown in Figure 12. The figure shows that the temperature at
the bottom of the exchange exchanger in cases 6 and 7 is slightly higher than those in cases
1 and 3, respectively. In the other regions, the temperature shows a higher value due to the
small fins used in cases 6 and 7 as explained previously.
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Figure 12. The temperature profiles in cases 1, 3, 6, and 7 for the times of (a) 600, (b) 1200, (c) 1800
and (d) 2400.

Figure 13 shows the heat storage straight and the total melting time for cases 1, 3, 6,
and 7. It clearly shows that case 6 presents the most efficient performance with a higher
heat storage rate and lower melting time. This behavior is caused by the uniform size of the
fins which can distribute the heat uniformly in the domain even the thickness is reduced.
However, in case 7 the reduction of the fins thickness affects the heat distribution in the
domain because of the non-uniform sizes of the fins, including a small fan at the top of
the system.



Nanomaterials 2022, 12, 403 22 of 26Nanomaterials 2022, 12, x FOR PEER REVIEW 22 of 26 
 

 

  
(a) (b) 

Figure 13. (a) Heat storage rate in Watt, (b) Melting time in seconds for cases 1, 3, 6, and 7 during 

the melting process. 

Figure 14 shows the liquid fraction history and the temperature profile for cases 1, 3, 

6, and 7 during the melting process. Figure 14a clearly indicates that the melting process 

of all the cases had the same pattern till the first 1800 s and more than 95% of the entire 

PCM is melted. Thereafter, the progress changes; the total PCM in case 6 melts faster than 

the other cases and shows a linear relationship, however, the other cases present a slower 

procedure. This behavior could be copied to the average temperature profile as illustrated 

in Figure 14b. The temperatures rise to 41 °C at the same time for all the cases at 1800 s. 

then the profiles take different patterns, and the temperature in case 6 reaches the equilib-

rium point faster than the other cases. 

 
(a) 

Figure 13. (a) Heat storage rate in Watt, (b) Melting time in seconds for cases 1, 3, 6, and 7 during the
melting process.

Figure 14 shows the liquid fraction history and the temperature profile for cases 1, 3,
6, and 7 during the melting process. Figure 14a clearly indicates that the melting process
of all the cases had the same pattern till the first 1800 s and more than 95% of the entire
PCM is melted. Thereafter, the progress changes; the total PCM in case 6 melts faster than
the other cases and shows a linear relationship, however, the other cases present a slower
procedure. This behavior could be copied to the average temperature profile as illustrated
in Figure 14b. The temperatures rise to 41 ◦C at the same time for all the cases at 1800 s. then
the profiles take different patterns, and the temperature in case 6 reaches the equilibrium
point faster than the other cases.
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Table 6 shows the values of the heat storage rate and the melting time for cases 1, 3, 6,
and 7. Case 6 was found as the best case with a 77.9 W with storage rate which is higher
by 29%, 22.5%, and 13.5% over cases 1, 3, and 7, respectively. The melting time of case six
(2057 s) is also, shorter than cases 1, 3, and 7 by 48.5%, 35.5%, and 18.6%, respectively.

Table 6. Heat storage rate and the total melting time for cases 1, 3, 6, and 7 during the melting process.

Studied Model Heat Storage Rate Melting Time

Case 1 55.1 3056
Case 6 77.9 2057
Case 3 60.3 2787
Case 7 67.3 2440

6. Conclusions

This study was to examine the accelerated charging response of a latent TES system
based on PCM confinement of triple-tube configuration with an internal circular fin array.
The aim was to explore how adjusting the fin geometric dimensions and distribution
patterns along the heat-flow direction allow superior heat transfer enhancement on the
PCM side. To find the optimum fin structure, various fin arrangements were considered and
compared in terms of melting front behavior, temperature distribution, melting completion
time, and heat storage rate. All cases were maintained the same design limitations of fin
material and volume usage. The major conclusions can be summarized as follows:

(1) Modifying the geometric dimensions of the fins and their distribution patterns along
the heat-flow direction has a substantial impact on the melting enhancement potential
of circular fins. Adjustment of the fin dimensions in different regions of the heat
exchanger can save up to 10.4% of the melting completion time and improve the
thermal storage rate by up to 9.3% compared to the reference case of uniform fin
dimensions within the same fin volume limitations.

(2) Adding an extra fin at the base of the storage system affects the overall enhancement
potential of circular fins. The fin array of non-uniform fin dimensions is generally more
affected than the reference case of uniform fin dimensions because the fin structure
of non-uniform fin dimensions promotes higher flow resistance to be generated,
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which, in turn, negatively affects the natural convection’s beneficial impact during
the melting mode.

(3) Increasing the number of circular fins from five to six fins substantially improves the
melting characteristics of PCM. However, a better melting rate can be achieved if the
fin structure of uniform dimensions is applied. Compared to the case of nonuniform
fin dimensions, the heat storage rate and the melting time can be improved by 13.5%
and the melting completion time can be saved by up to 18.6%.

Eventually, the author suggests that for such cases, adding a flat fin to the base of
the geometry improves the thermal performance obviously. This fact is clearly stated in
Figure 6, which is considered as the optimum case in this work. Studying different sizes and
angles for a pointed finned case could be considered in future work to study the slipping
effect of the PCM on the sloped sides of the fin.
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Nomenclature

Am The mushy zone constant
C Inertial coefficient
Cp PCM specific heat (J/kgK)
D Hydrolic diameter (m)
g Gravitational acceleration (m/s2)
K thermal conductivity (W/mK)
L Latent heat of fusion (J/kg)
m PCM mass (kg)
P Pressure (Pa)
.

Q Solidification rate (J)
tm Solidification time (s)
T Temperature (K)
Tm Melting point temperature (K)
ui Velocity component (m/s)
→
V Velocity vector (m/s)

Greek Symbols
β Thermal expansion coefficient (1/K)
λ Liquid fraction
α Thermal diffusivity (m2/s)
µ Dynamic viscosity (kg/ms)
ρ Density (kg/m3)
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